Benchmark of a self-consistent dynamic 1D divertor model DIV1D using the 2D SOLPS-ITER code
This paper presents DIV1D, a new 1D dynamic physics-based model of the divertor plasma under development to study and control the dynamics of detached plasmas. An innovative feature of DIV1D is that it mimics cross-field transport using an effective flux expansion and includes a neutral gas backgrou...
Saved in:
Published in | Plasma physics and controlled fusion Vol. 64; no. 12; pp. 125013 - 125035 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.12.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0741-3335 1361-6587 |
DOI | 10.1088/1361-6587/ac9dbd |
Cover
Abstract | This paper presents DIV1D, a new 1D dynamic physics-based model of the divertor plasma under development to study and control the dynamics of detached plasmas. An innovative feature of DIV1D is that it mimics cross-field transport using an effective flux expansion and includes a neutral gas background outside the divertor leg. We outline a 1D mapping procedure for static 2D SOLPS-ITER simulations of divertor plasmas in the Tokamak á Configuration Variable, which can be used to benchmark 1D codes. For DIV1D good agreement is found for the most important divertor plasma quantities along the leg (e.g., densities temperature, heat flux, and velocity) both in a qualitative and quantitative sense. In addition, the comparison with SOLPS-ITER demonstrates that DIV1D self-consistently captures the evolution of divertor plasma quantities in the main heat flux channel as a function of the upstream plasma density in a scan from 2 to
3
×
10
19
m
−
3
. The agreement is ascribed to the unique account of cross-field transport in DIV1D with an effective flux expansion and the interaction with an external neutral gas background. |
---|---|
AbstractList | This paper presents DIV1D, a new 1D dynamic physics-based model of the divertor plasma under development to study and control the dynamics of detached plasmas. An innovative feature of DIV1D is that it mimics cross-field transport using an effective flux expansion and includes a neutral gas background outside the divertor leg. We outline a 1D mapping procedure for static 2D SOLPS-ITER simulations of divertor plasmas in the Tokamak á Configuration Variable, which can be used to benchmark 1D codes. For DIV1D good agreement is found for the most important divertor plasma quantities along the leg (e.g., densities temperature, heat flux, and velocity) both in a qualitative and quantitative sense. In addition, the comparison with SOLPS-ITER demonstrates that DIV1D self-consistently captures the evolution of divertor plasma quantities in the main heat flux channel as a function of the upstream plasma density in a scan from 2 to
3
×
10
19
m
−
3
. The agreement is ascribed to the unique account of cross-field transport in DIV1D with an effective flux expansion and the interaction with an external neutral gas background. |
Author | Westerhof, E Wensing, M van Berkel, M Koenders, J T W Reimerdes, H Derks, G L Frankemölle, J P K W |
Author_xml | – sequence: 1 givenname: G L orcidid: 0000-0003-3420-0388 surname: Derks fullname: Derks, G L organization: Eindhoven University of Technology, Science and Technology of Nuclear Fusion , Eindhoven, The Netherlands – sequence: 2 givenname: J P K W orcidid: 0000-0002-1658-1765 surname: Frankemölle fullname: Frankemölle, J P K W organization: Eindhoven University of Technology, Science and Technology of Nuclear Fusion , Eindhoven, The Netherlands – sequence: 3 givenname: J T W orcidid: 0000-0003-4385-923X surname: Koenders fullname: Koenders, J T W organization: Eindhoven University of Technology, Control Systems Technology , Eindhoven, The Netherlands – sequence: 4 givenname: M orcidid: 0000-0001-6574-3823 surname: van Berkel fullname: van Berkel, M organization: DIFFER—Dutch Institute for Fundamental Energy Research , De Zaale 20, 5612 AJ Eindhoven, The Netherlands – sequence: 5 givenname: H orcidid: 0000-0002-9726-1519 surname: Reimerdes fullname: Reimerdes, H organization: Swiss Plasma Center (SPC) Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland – sequence: 6 givenname: M orcidid: 0000-0003-4462-7860 surname: Wensing fullname: Wensing, M organization: Swiss Plasma Center (SPC) Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland – sequence: 7 givenname: E orcidid: 0000-0002-0749-9399 surname: Westerhof fullname: Westerhof, E organization: DIFFER—Dutch Institute for Fundamental Energy Research , De Zaale 20, 5612 AJ Eindhoven, The Netherlands |
BookMark | eNp9kE1LAzEQhoNUsFbvHvMDXJuP3Wz2qG3VQqFiqxcPIU2yNnWblCQV-u_dpeJB0MsMDO8zzDznoOe8MwBcYXSDEedDTBnOWMHLoVSVXukT0P8Z9UAflTnOKKXFGTiPcYMQxpywPni7M06ttzJ8QF9DCaNp6kx5F21MxiWoD05urYJ4DLX9NCH5ALdemwaOp6_tcB-te4dpbSAZw8V89rTIpsvJM1Rt5gKc1rKJ5vK7D8DL_WQ5esxm84fp6HaWKUpIyhhTjGFNCt3eKglRRY4kZvlKcYYZIZqvcmnKvCtc5qSQlcIlrRDhFFcloQPAjntV8DEGUwtlk0zWuxSkbQRGolMkOh-i8yGOiloQ_QJ3wbYuDv8h10fE-p3Y-H1w7Wd_x78ATYl3lQ |
CODEN | PLPHBZ |
CitedBy_id | crossref_primary_10_1016_j_fusengdes_2024_114387 crossref_primary_10_1088_1361_6587_ad2e37 crossref_primary_10_1088_1741_4326_ad4f9e crossref_primary_10_1088_1741_4326_ad5a1d crossref_primary_10_1088_1741_4326_acf70d crossref_primary_10_1016_j_cpc_2023_108991 crossref_primary_10_1088_1674_1056_ad426a crossref_primary_10_1016_j_nme_2024_101819 crossref_primary_10_1063_5_0202986 crossref_primary_10_1016_j_cpc_2024_109195 |
Cites_doi | 10.1088/0741-3335/42/4/303 10.1016/S0022-3115(98)00577-7 10.1585/pfr.8.2403096 10.1016/j.nme.2021.100922 10.1063/5.0056216 10.1088/0029-5515/51/8/083052 10.1088/1361-6587/ab4f1e 10.1016/j.nme.2019.100696 10.1016/j.fusengdes.2021.112307 10.1088/1361-6587/ac7ee7 10.1088/1741-4326/ac7a4c 10.1063/1.5081670 10.1063/1.5010325 10.1063/1.5023731 10.1088/0741-3335/51/11/115002 10.1063/5.0043523 10.1088/0741-3335/55/6/065004 10.1088/1741-4326/ac1dc5 10.1088/0029-5515/53/9/093031 10.1088/1361-6587/ac6890 10.1038/s41467-021-21268-3 10.1063/1.327954 10.1016/j.jnucmat.2014.10.012 10.1063/1.4948273 10.1088/1361-6587/aaacf6 10.1088/1741-4326/ac5b8c 10.1088/1741-4326/ac3293 10.1088/1741-4326/abf99f 10.1088/1741-4326/ac2ff5 10.1088/0029-5515/56/5/056007 10.1063/1.4710517 10.1088/1361-6587/ab1321 10.1016/j.fusengdes.2021.112560 10.1088/1741-4326/ab4251 10.1016/0092-640X(77)90026-2 10.1088/1741-4326/ac613a 10.1016/j.nme.2020.100858 10.1088/1741-4326/ab34d2 10.1088/1361-6587/ab2b1f 10.1088/1741-4326/ab7a66 10.1137/0910062 |
ContentType | Journal Article |
Copyright | 2022 The Author(s). Published by IOP Publishing Ltd |
Copyright_xml | – notice: 2022 The Author(s). Published by IOP Publishing Ltd |
DBID | O3W TSCCA AAYXX CITATION |
DOI | 10.1088/1361-6587/ac9dbd |
DatabaseName | Institute of Physics Open Access (via IOPscience) IOPscience (Open Access) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access (via IOPscience) url: http://iopscience.iop.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1361-6587 |
ExternalDocumentID | 10_1088_1361_6587_ac9dbd ppcfac9dbd |
GrantInformation_xml | – fundername: EUROfusion grantid: 101052200; 633053 funderid: http://dx.doi.org/10.13039/100019784 – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung funderid: http://dx.doi.org/10.13039/501100001711 |
GroupedDBID | -~X .DC 123 1JI 4.4 5B3 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A O3W P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TSCCA W28 XPP AAYXX CITATION |
ID | FETCH-LOGICAL-c322t-66c661d25d658a22c540a164bc861622d8b4ae744ae78a425a9c1739028319723 |
IEDL.DBID | IOP |
ISSN | 0741-3335 |
IngestDate | Tue Jul 01 02:47:50 EDT 2025 Thu Apr 24 23:03:38 EDT 2025 Wed Aug 21 03:35:01 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c322t-66c661d25d658a22c540a164bc861622d8b4ae744ae78a425a9c1739028319723 |
Notes | PPCF-103973.R1 |
ORCID | 0000-0002-1658-1765 0000-0002-9726-1519 0000-0003-3420-0388 0000-0003-4462-7860 0000-0002-0749-9399 0000-0003-4385-923X 0000-0001-6574-3823 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1361-6587/ac9dbd |
PageCount | 23 |
ParticipantIDs | crossref_citationtrail_10_1088_1361_6587_ac9dbd crossref_primary_10_1088_1361_6587_ac9dbd iop_journals_10_1088_1361_6587_ac9dbd |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Plasma physics and controlled fusion |
PublicationTitleAbbrev | PPCF |
PublicationTitleAlternate | Plasma Phys. Control. Fusion |
PublicationYear | 2022 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Ravensbergen (ppcfac9dbdbib3) 2021; 12 Stangeby (ppcfac9dbdbib2) 2018; 60 Pitts (ppcfac9dbdbib19) 2019; 20 Krasheninnikov (ppcfac9dbdbib25) 2016; 23 Koenders (ppcfac9dbdbib15) 2022; 62 Verhaegh (ppcfac9dbdbib28) 2021; 26 Wensing (ppcfac9dbdbib20) 2021; 28 Tsui (ppcfac9dbdbib24) 2022; 64 Perek (ppcfac9dbdbib43) 2021; 26 Post (ppcfac9dbdbib36) 1977; 20 Krasheninnikov (ppcfac9dbdbib26) 1999; 266 Anand (ppcfac9dbdbib41) 2021; 171 Togo (ppcfac9dbdbib8) 2013; 8 De Oliveira (ppcfac9dbdbib42) 2022; 92 Brown (ppcfac9dbdbib49) 1989; 10 Komm (ppcfac9dbdbib13) 2019; 59 Havlíčková (ppcfac9dbdbib17) 2013; 55 Kotov (ppcfac9dbdbib37) 2009; 51 Zhou (ppcfac9dbdbib29) 2022; 64 Chang (ppcfac9dbdbib34) 2018; 25 Verhaegh (ppcfac9dbdbib30) 2019; 59 Frerichs (ppcfac9dbdbib35) 2021; 61 Skogestad (ppcfac9dbdbib45) 2005 Verhaegh (ppcfac9dbdbib47) 2018 Verhaegh (ppcfac9dbdbib27) 2021; 61 Russell (ppcfac9dbdbib31) 2019; 26 Luda (ppcfac9dbdbib40) 2021; 61 Stangeby (ppcfac9dbdbib16) 2000 Verhaegh (ppcfac9dbdbib39) 2019; 61 Ravensbergen (ppcfac9dbdbib44) 2021 Byrne (ppcfac9dbdbib48) 2013 Zohm (ppcfac9dbdbib1) 2021; 166 Wensing (ppcfac9dbdbib18) 2019; 61 Wensing (ppcfac9dbdbib21) 2021 Makowski (ppcfac9dbdbib23) 2012; 19 Stroth (ppcfac9dbdbib10) 2022; 62 Frankemölle (ppcfac9dbdbib50) 2021 Dudson (ppcfac9dbdbib51) 2016 Felici (ppcfac9dbdbib11) 2011; 51 Van Berkel (ppcfac9dbdbib14) 2018; 25 Eich (ppcfac9dbdbib33) 2020; 60 Bohdansky (ppcfac9dbdbib22) 1980; 51 Wiesen (ppcfac9dbdbib5) 2015; 463 Westerhof (ppcfac9dbdbib12) 2021 Cowley (ppcfac9dbdbib38) 2022; 62 Dudson (ppcfac9dbdbib7) 2019; 61 Nakazawa (ppcfac9dbdbib9) 2000; 42 Hoelzl (ppcfac9dbdbib6) 2021; 61 Eich (ppcfac9dbdbib32) 2013; 53 Lipschultz (ppcfac9dbdbib4) 2016; 56 Reiter (ppcfac9dbdbib46) 2019 |
References_xml | – volume: 42 start-page: 401 year: 2000 ident: ppcfac9dbdbib9 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/42/4/303 – volume: 266 start-page: 251 year: 1999 ident: ppcfac9dbdbib26 publication-title: J. Nucl. Mater. doi: 10.1016/S0022-3115(98)00577-7 – start-page: pp 1048 year: 2021 ident: ppcfac9dbdbib12 – year: 2016 ident: ppcfac9dbdbib51 article-title: SD1D: 1D divertor model for detachment studies – volume: 8 year: 2013 ident: ppcfac9dbdbib8 publication-title: Plasma Fusion Res. doi: 10.1585/pfr.8.2403096 – volume: 26 year: 2021 ident: ppcfac9dbdbib28 publication-title: Nucl. Mater. Energy doi: 10.1016/j.nme.2021.100922 – volume: 28 year: 2021 ident: ppcfac9dbdbib20 publication-title: Phys. Plasmas doi: 10.1063/5.0056216 – volume: 51 year: 2011 ident: ppcfac9dbdbib11 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/51/8/083052 – year: 2019 ident: ppcfac9dbdbib46 – volume: 61 year: 2019 ident: ppcfac9dbdbib39 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/1361-6587/ab4f1e – volume: 20 year: 2019 ident: ppcfac9dbdbib19 publication-title: Nucl. Mater. Energy doi: 10.1016/j.nme.2019.100696 – volume: 166 year: 2021 ident: ppcfac9dbdbib1 publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2021.112307 – volume: 64 year: 2022 ident: ppcfac9dbdbib29 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/1361-6587/ac7ee7 – volume: 62 year: 2022 ident: ppcfac9dbdbib38 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ac7a4c – volume: 26 year: 2019 ident: ppcfac9dbdbib31 publication-title: Phys. Plasmas doi: 10.1063/1.5081670 – volume: 25 start-page: 1 year: 2018 ident: ppcfac9dbdbib14 publication-title: Phys. Plasmas doi: 10.1063/1.5010325 – volume: 25 year: 2018 ident: ppcfac9dbdbib34 publication-title: Phys. Plasmas doi: 10.1063/1.5023731 – volume: 51 year: 2009 ident: ppcfac9dbdbib37 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/51/11/115002 – volume: 92 year: 2022 ident: ppcfac9dbdbib42 publication-title: Rev. Sci. Instrum. doi: 10.1063/5.0043523 – volume: 55 year: 2013 ident: ppcfac9dbdbib17 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/55/6/065004 – volume: 61 year: 2021 ident: ppcfac9dbdbib27 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ac1dc5 – volume: 53 year: 2013 ident: ppcfac9dbdbib32 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/53/9/093031 – volume: 64 year: 2022 ident: ppcfac9dbdbib24 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/1361-6587/ac6890 – volume: 12 start-page: 1 year: 2021 ident: ppcfac9dbdbib3 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21268-3 – volume: 51 start-page: 2861 year: 1980 ident: ppcfac9dbdbib22 publication-title: J. Appl. Phys. doi: 10.1063/1.327954 – volume: 463 start-page: 480 year: 2015 ident: ppcfac9dbdbib5 publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2014.10.012 – volume: 23 year: 2016 ident: ppcfac9dbdbib25 publication-title: Phys. Plasmas doi: 10.1063/1.4948273 – year: 2000 ident: ppcfac9dbdbib16 – volume: 60 year: 2018 ident: ppcfac9dbdbib2 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/1361-6587/aaacf6 – year: 2021 ident: ppcfac9dbdbib50 article-title: Master Thesis – volume: 62 year: 2022 ident: ppcfac9dbdbib15 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ac5b8c – volume: 61 year: 2021 ident: ppcfac9dbdbib40 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ac3293 – volume: 61 year: 2021 ident: ppcfac9dbdbib6 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/abf99f – volume: 61 year: 2021 ident: ppcfac9dbdbib35 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ac2ff5 – volume: 56 year: 2016 ident: ppcfac9dbdbib4 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/56/5/056007 – volume: 19 year: 2012 ident: ppcfac9dbdbib23 publication-title: Phys. Plasmas doi: 10.1063/1.4710517 – year: 2018 ident: ppcfac9dbdbib47 article-title: Spectroscopic investigations of detachment on TCV – volume: 61 year: 2019 ident: ppcfac9dbdbib7 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/1361-6587/ab1321 – year: 2021 ident: ppcfac9dbdbib21 article-title: Drift-related transport and plasma-neutral interaction in the TCV divertor – volume: 171 year: 2021 ident: ppcfac9dbdbib41 publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2021.112560 – year: 2021 ident: ppcfac9dbdbib44 article-title: Advanced methods in control of the core density and divertor detachment in nuclear fusion – year: 2005 ident: ppcfac9dbdbib45 – year: 2013 ident: ppcfac9dbdbib48 – volume: 59 year: 2019 ident: ppcfac9dbdbib30 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ab4251 – volume: 20 start-page: 397 year: 1977 ident: ppcfac9dbdbib36 publication-title: At. Data Nucl. Data Tables doi: 10.1016/0092-640X(77)90026-2 – volume: 62 year: 2022 ident: ppcfac9dbdbib10 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ac613a – volume: 26 year: 2021 ident: ppcfac9dbdbib43 publication-title: Nucl. Mater. Energy doi: 10.1016/j.nme.2020.100858 – volume: 59 year: 2019 ident: ppcfac9dbdbib13 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ab34d2 – volume: 61 year: 2019 ident: ppcfac9dbdbib18 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/1361-6587/ab2b1f – volume: 60 year: 2020 ident: ppcfac9dbdbib33 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ab7a66 – volume: 10 start-page: 1038 year: 1989 ident: ppcfac9dbdbib49 publication-title: SIAM J. Sci. Stat. Comput. doi: 10.1137/0910062 |
SSID | ssj0011826 |
Score | 2.4537387 |
Snippet | This paper presents DIV1D, a new 1D dynamic physics-based model of the divertor plasma under development to study and control the dynamics of detached plasmas.... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 125013 |
SubjectTerms | detachment dynamic simulation |
Title | Benchmark of a self-consistent dynamic 1D divertor model DIV1D using the 2D SOLPS-ITER code |
URI | https://iopscience.iop.org/article/10.1088/1361-6587/ac9dbd |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zInjxW5xf5KAHD9nWpE1TPKlzbCJuOKcDhZImrcJmN7bu4l_vS9sNFRXxEkp5TcNL8j7IL7-H0FFVgU8VtkWEJyJiu9WAyDCwicM1BdOguJIp2-cNb3Ttq57TK6DT-V2Y4Sg3_WV4zIiCMxXmgDhRsRi3CDhOtyKVpwO9gBZN4UqzvJut9vwIwQTOGQenRRhjTn5G-V0Pn3zSAvz3g4upr6Kn2eAyZEm_PE2Csnr7wtv4z9GvoZU89MRnmeg6KoTxBlpKIaBqsokez6HHl1c57uNhhCWehIOIKIOfhYUQJ1hnteuxVcPagDkgWcdpHR1ca97DS4Ogf8YQT2Jaw53WdbtDwCzeYnNpfgt165d3Fw2Sl14gCnZ4QjhX4Lg1dTQMVVKqILCTkFkFSnCLU6pFYMvQtU0jJOx76SnLZYYKhqWFzLZRMR7G4Q7Chk-HM0lFZDPIxqinpTEU1IXcxHW1KKHKTPm-ynnJTXmMgZ-ejwvhG5X5RmV-prISOpl_Mco4OX6RPYaZ8PONOflRbvePcntomZoLECmgZR8Vk_E0PICwJAkO0-UHbYs9vANuG9gD |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT4MwEG_cjMYX42ecn33QBx_qRgulPKq4OF22xTld4gMpLWjiZMuG_79XqIsmanwhhBzQHtxX7u53CB03FNhU4TpEBCIlrt-IiUxil3hcU1ANiitZoH12-PXAvRl6QzvntOiFGU-s6j-D0xIouGShLYgTdYdxh4Dh9OtSBTrW9YlOK2jRY9wz4Pld9jhPIxjnucThdAhjzLN5yp-e8s0uVeDdX8xMcw2tWv8Qn5erWUcLSbaBloo6TTXbRE8XsOiXNzl9xeMUSzxLRilRpsgVvlaWY10OmMdOiLWpuICIGhfDbnDYeoCLpsz9GYPTh2mI-912r09Ad91h09m-hQbNq_vLa2LnIxAFYpgTzhVYV009DfuQlCrwviSEP7ES3OGUahG7MvFdcxAShFMGyvGZwWthxbSxbVTNxlmyg7ABveFMUpG6DEImGmhppJn6EED4vhY1VP_kTqQseLiZYTGKiiS2EJHhZ2T4GZX8rKHT-R2TEjjjD9oTYHhkpWf2K93uP-mO0HIvbEbtVud2D61Q07BQFKDso2o-fU8OwI3I48PiV_kASeW7Yg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmark+of+a+self-consistent+dynamic+1D+divertor+model+DIV1D+using+the+2D+SOLPS-ITER+code&rft.jtitle=Plasma+physics+and+controlled+fusion&rft.au=Derks%2C+G+L&rft.au=Frankem%C3%B6lle%2C+J+P+K+W&rft.au=Koenders%2C+J+T+W&rft.au=van+Berkel%2C+M&rft.date=2022-12-01&rft.issn=0741-3335&rft.eissn=1361-6587&rft.volume=64&rft.issue=12&rft.spage=125013&rft_id=info:doi/10.1088%2F1361-6587%2Fac9dbd&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6587_ac9dbd |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0741-3335&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0741-3335&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0741-3335&client=summon |