Benchmark of a self-consistent dynamic 1D divertor model DIV1D using the 2D SOLPS-ITER code

This paper presents DIV1D, a new 1D dynamic physics-based model of the divertor plasma under development to study and control the dynamics of detached plasmas. An innovative feature of DIV1D is that it mimics cross-field transport using an effective flux expansion and includes a neutral gas backgrou...

Full description

Saved in:
Bibliographic Details
Published inPlasma physics and controlled fusion Vol. 64; no. 12; pp. 125013 - 125035
Main Authors Derks, G L, Frankemölle, J P K W, Koenders, J T W, van Berkel, M, Reimerdes, H, Wensing, M, Westerhof, E
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.12.2022
Subjects
Online AccessGet full text
ISSN0741-3335
1361-6587
DOI10.1088/1361-6587/ac9dbd

Cover

Abstract This paper presents DIV1D, a new 1D dynamic physics-based model of the divertor plasma under development to study and control the dynamics of detached plasmas. An innovative feature of DIV1D is that it mimics cross-field transport using an effective flux expansion and includes a neutral gas background outside the divertor leg. We outline a 1D mapping procedure for static 2D SOLPS-ITER simulations of divertor plasmas in the Tokamak á Configuration Variable, which can be used to benchmark 1D codes. For DIV1D good agreement is found for the most important divertor plasma quantities along the leg (e.g., densities temperature, heat flux, and velocity) both in a qualitative and quantitative sense. In addition, the comparison with SOLPS-ITER demonstrates that DIV1D self-consistently captures the evolution of divertor plasma quantities in the main heat flux channel as a function of the upstream plasma density in a scan from 2 to 3 × 10 19 m − 3 . The agreement is ascribed to the unique account of cross-field transport in DIV1D with an effective flux expansion and the interaction with an external neutral gas background.
AbstractList This paper presents DIV1D, a new 1D dynamic physics-based model of the divertor plasma under development to study and control the dynamics of detached plasmas. An innovative feature of DIV1D is that it mimics cross-field transport using an effective flux expansion and includes a neutral gas background outside the divertor leg. We outline a 1D mapping procedure for static 2D SOLPS-ITER simulations of divertor plasmas in the Tokamak á Configuration Variable, which can be used to benchmark 1D codes. For DIV1D good agreement is found for the most important divertor plasma quantities along the leg (e.g., densities temperature, heat flux, and velocity) both in a qualitative and quantitative sense. In addition, the comparison with SOLPS-ITER demonstrates that DIV1D self-consistently captures the evolution of divertor plasma quantities in the main heat flux channel as a function of the upstream plasma density in a scan from 2 to 3 × 10 19 m − 3 . The agreement is ascribed to the unique account of cross-field transport in DIV1D with an effective flux expansion and the interaction with an external neutral gas background.
Author Westerhof, E
Wensing, M
van Berkel, M
Koenders, J T W
Reimerdes, H
Derks, G L
Frankemölle, J P K W
Author_xml – sequence: 1
  givenname: G L
  orcidid: 0000-0003-3420-0388
  surname: Derks
  fullname: Derks, G L
  organization: Eindhoven University of Technology, Science and Technology of Nuclear Fusion , Eindhoven, The Netherlands
– sequence: 2
  givenname: J P K W
  orcidid: 0000-0002-1658-1765
  surname: Frankemölle
  fullname: Frankemölle, J P K W
  organization: Eindhoven University of Technology, Science and Technology of Nuclear Fusion , Eindhoven, The Netherlands
– sequence: 3
  givenname: J T W
  orcidid: 0000-0003-4385-923X
  surname: Koenders
  fullname: Koenders, J T W
  organization: Eindhoven University of Technology, Control Systems Technology , Eindhoven, The Netherlands
– sequence: 4
  givenname: M
  orcidid: 0000-0001-6574-3823
  surname: van Berkel
  fullname: van Berkel, M
  organization: DIFFER—Dutch Institute for Fundamental Energy Research , De Zaale 20, 5612 AJ Eindhoven, The Netherlands
– sequence: 5
  givenname: H
  orcidid: 0000-0002-9726-1519
  surname: Reimerdes
  fullname: Reimerdes, H
  organization: Swiss Plasma Center (SPC) Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
– sequence: 6
  givenname: M
  orcidid: 0000-0003-4462-7860
  surname: Wensing
  fullname: Wensing, M
  organization: Swiss Plasma Center (SPC) Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
– sequence: 7
  givenname: E
  orcidid: 0000-0002-0749-9399
  surname: Westerhof
  fullname: Westerhof, E
  organization: DIFFER—Dutch Institute for Fundamental Energy Research , De Zaale 20, 5612 AJ Eindhoven, The Netherlands
BookMark eNp9kE1LAzEQhoNUsFbvHvMDXJuP3Wz2qG3VQqFiqxcPIU2yNnWblCQV-u_dpeJB0MsMDO8zzDznoOe8MwBcYXSDEedDTBnOWMHLoVSVXukT0P8Z9UAflTnOKKXFGTiPcYMQxpywPni7M06ttzJ8QF9DCaNp6kx5F21MxiWoD05urYJ4DLX9NCH5ALdemwaOp6_tcB-te4dpbSAZw8V89rTIpsvJM1Rt5gKc1rKJ5vK7D8DL_WQ5esxm84fp6HaWKUpIyhhTjGFNCt3eKglRRY4kZvlKcYYZIZqvcmnKvCtc5qSQlcIlrRDhFFcloQPAjntV8DEGUwtlk0zWuxSkbQRGolMkOh-i8yGOiloQ_QJ3wbYuDv8h10fE-p3Y-H1w7Wd_x78ATYl3lQ
CODEN PLPHBZ
CitedBy_id crossref_primary_10_1016_j_fusengdes_2024_114387
crossref_primary_10_1088_1361_6587_ad2e37
crossref_primary_10_1088_1741_4326_ad4f9e
crossref_primary_10_1088_1741_4326_ad5a1d
crossref_primary_10_1088_1741_4326_acf70d
crossref_primary_10_1016_j_cpc_2023_108991
crossref_primary_10_1088_1674_1056_ad426a
crossref_primary_10_1016_j_nme_2024_101819
crossref_primary_10_1063_5_0202986
crossref_primary_10_1016_j_cpc_2024_109195
Cites_doi 10.1088/0741-3335/42/4/303
10.1016/S0022-3115(98)00577-7
10.1585/pfr.8.2403096
10.1016/j.nme.2021.100922
10.1063/5.0056216
10.1088/0029-5515/51/8/083052
10.1088/1361-6587/ab4f1e
10.1016/j.nme.2019.100696
10.1016/j.fusengdes.2021.112307
10.1088/1361-6587/ac7ee7
10.1088/1741-4326/ac7a4c
10.1063/1.5081670
10.1063/1.5010325
10.1063/1.5023731
10.1088/0741-3335/51/11/115002
10.1063/5.0043523
10.1088/0741-3335/55/6/065004
10.1088/1741-4326/ac1dc5
10.1088/0029-5515/53/9/093031
10.1088/1361-6587/ac6890
10.1038/s41467-021-21268-3
10.1063/1.327954
10.1016/j.jnucmat.2014.10.012
10.1063/1.4948273
10.1088/1361-6587/aaacf6
10.1088/1741-4326/ac5b8c
10.1088/1741-4326/ac3293
10.1088/1741-4326/abf99f
10.1088/1741-4326/ac2ff5
10.1088/0029-5515/56/5/056007
10.1063/1.4710517
10.1088/1361-6587/ab1321
10.1016/j.fusengdes.2021.112560
10.1088/1741-4326/ab4251
10.1016/0092-640X(77)90026-2
10.1088/1741-4326/ac613a
10.1016/j.nme.2020.100858
10.1088/1741-4326/ab34d2
10.1088/1361-6587/ab2b1f
10.1088/1741-4326/ab7a66
10.1137/0910062
ContentType Journal Article
Copyright 2022 The Author(s). Published by IOP Publishing Ltd
Copyright_xml – notice: 2022 The Author(s). Published by IOP Publishing Ltd
DBID O3W
TSCCA
AAYXX
CITATION
DOI 10.1088/1361-6587/ac9dbd
DatabaseName Institute of Physics Open Access (via IOPscience)
IOPscience (Open Access)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access (via IOPscience)
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1361-6587
ExternalDocumentID 10_1088_1361_6587_ac9dbd
ppcfac9dbd
GrantInformation_xml – fundername: EUROfusion
  grantid: 101052200; 633053
  funderid: http://dx.doi.org/10.13039/100019784
– fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  funderid: http://dx.doi.org/10.13039/501100001711
GroupedDBID -~X
.DC
123
1JI
4.4
5B3
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
O3W
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TSCCA
W28
XPP
AAYXX
CITATION
ID FETCH-LOGICAL-c322t-66c661d25d658a22c540a164bc861622d8b4ae744ae78a425a9c1739028319723
IEDL.DBID IOP
ISSN 0741-3335
IngestDate Tue Jul 01 02:47:50 EDT 2025
Thu Apr 24 23:03:38 EDT 2025
Wed Aug 21 03:35:01 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-66c661d25d658a22c540a164bc861622d8b4ae744ae78a425a9c1739028319723
Notes PPCF-103973.R1
ORCID 0000-0002-1658-1765
0000-0002-9726-1519
0000-0003-3420-0388
0000-0003-4462-7860
0000-0002-0749-9399
0000-0003-4385-923X
0000-0001-6574-3823
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1361-6587/ac9dbd
PageCount 23
ParticipantIDs crossref_citationtrail_10_1088_1361_6587_ac9dbd
crossref_primary_10_1088_1361_6587_ac9dbd
iop_journals_10_1088_1361_6587_ac9dbd
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Plasma physics and controlled fusion
PublicationTitleAbbrev PPCF
PublicationTitleAlternate Plasma Phys. Control. Fusion
PublicationYear 2022
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Ravensbergen (ppcfac9dbdbib3) 2021; 12
Stangeby (ppcfac9dbdbib2) 2018; 60
Pitts (ppcfac9dbdbib19) 2019; 20
Krasheninnikov (ppcfac9dbdbib25) 2016; 23
Koenders (ppcfac9dbdbib15) 2022; 62
Verhaegh (ppcfac9dbdbib28) 2021; 26
Wensing (ppcfac9dbdbib20) 2021; 28
Tsui (ppcfac9dbdbib24) 2022; 64
Perek (ppcfac9dbdbib43) 2021; 26
Post (ppcfac9dbdbib36) 1977; 20
Krasheninnikov (ppcfac9dbdbib26) 1999; 266
Anand (ppcfac9dbdbib41) 2021; 171
Togo (ppcfac9dbdbib8) 2013; 8
De Oliveira (ppcfac9dbdbib42) 2022; 92
Brown (ppcfac9dbdbib49) 1989; 10
Komm (ppcfac9dbdbib13) 2019; 59
Havlíčková (ppcfac9dbdbib17) 2013; 55
Kotov (ppcfac9dbdbib37) 2009; 51
Zhou (ppcfac9dbdbib29) 2022; 64
Chang (ppcfac9dbdbib34) 2018; 25
Verhaegh (ppcfac9dbdbib30) 2019; 59
Frerichs (ppcfac9dbdbib35) 2021; 61
Skogestad (ppcfac9dbdbib45) 2005
Verhaegh (ppcfac9dbdbib47) 2018
Verhaegh (ppcfac9dbdbib27) 2021; 61
Russell (ppcfac9dbdbib31) 2019; 26
Luda (ppcfac9dbdbib40) 2021; 61
Stangeby (ppcfac9dbdbib16) 2000
Verhaegh (ppcfac9dbdbib39) 2019; 61
Ravensbergen (ppcfac9dbdbib44) 2021
Byrne (ppcfac9dbdbib48) 2013
Zohm (ppcfac9dbdbib1) 2021; 166
Wensing (ppcfac9dbdbib18) 2019; 61
Wensing (ppcfac9dbdbib21) 2021
Makowski (ppcfac9dbdbib23) 2012; 19
Stroth (ppcfac9dbdbib10) 2022; 62
Frankemölle (ppcfac9dbdbib50) 2021
Dudson (ppcfac9dbdbib51) 2016
Felici (ppcfac9dbdbib11) 2011; 51
Van Berkel (ppcfac9dbdbib14) 2018; 25
Eich (ppcfac9dbdbib33) 2020; 60
Bohdansky (ppcfac9dbdbib22) 1980; 51
Wiesen (ppcfac9dbdbib5) 2015; 463
Westerhof (ppcfac9dbdbib12) 2021
Cowley (ppcfac9dbdbib38) 2022; 62
Dudson (ppcfac9dbdbib7) 2019; 61
Nakazawa (ppcfac9dbdbib9) 2000; 42
Hoelzl (ppcfac9dbdbib6) 2021; 61
Eich (ppcfac9dbdbib32) 2013; 53
Lipschultz (ppcfac9dbdbib4) 2016; 56
Reiter (ppcfac9dbdbib46) 2019
References_xml – volume: 42
  start-page: 401
  year: 2000
  ident: ppcfac9dbdbib9
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/42/4/303
– volume: 266
  start-page: 251
  year: 1999
  ident: ppcfac9dbdbib26
  publication-title: J. Nucl. Mater.
  doi: 10.1016/S0022-3115(98)00577-7
– start-page: pp 1048
  year: 2021
  ident: ppcfac9dbdbib12
– year: 2016
  ident: ppcfac9dbdbib51
  article-title: SD1D: 1D divertor model for detachment studies
– volume: 8
  year: 2013
  ident: ppcfac9dbdbib8
  publication-title: Plasma Fusion Res.
  doi: 10.1585/pfr.8.2403096
– volume: 26
  year: 2021
  ident: ppcfac9dbdbib28
  publication-title: Nucl. Mater. Energy
  doi: 10.1016/j.nme.2021.100922
– volume: 28
  year: 2021
  ident: ppcfac9dbdbib20
  publication-title: Phys. Plasmas
  doi: 10.1063/5.0056216
– volume: 51
  year: 2011
  ident: ppcfac9dbdbib11
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/51/8/083052
– year: 2019
  ident: ppcfac9dbdbib46
– volume: 61
  year: 2019
  ident: ppcfac9dbdbib39
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/1361-6587/ab4f1e
– volume: 20
  year: 2019
  ident: ppcfac9dbdbib19
  publication-title: Nucl. Mater. Energy
  doi: 10.1016/j.nme.2019.100696
– volume: 166
  year: 2021
  ident: ppcfac9dbdbib1
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2021.112307
– volume: 64
  year: 2022
  ident: ppcfac9dbdbib29
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/1361-6587/ac7ee7
– volume: 62
  year: 2022
  ident: ppcfac9dbdbib38
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ac7a4c
– volume: 26
  year: 2019
  ident: ppcfac9dbdbib31
  publication-title: Phys. Plasmas
  doi: 10.1063/1.5081670
– volume: 25
  start-page: 1
  year: 2018
  ident: ppcfac9dbdbib14
  publication-title: Phys. Plasmas
  doi: 10.1063/1.5010325
– volume: 25
  year: 2018
  ident: ppcfac9dbdbib34
  publication-title: Phys. Plasmas
  doi: 10.1063/1.5023731
– volume: 51
  year: 2009
  ident: ppcfac9dbdbib37
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/51/11/115002
– volume: 92
  year: 2022
  ident: ppcfac9dbdbib42
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/5.0043523
– volume: 55
  year: 2013
  ident: ppcfac9dbdbib17
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/55/6/065004
– volume: 61
  year: 2021
  ident: ppcfac9dbdbib27
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ac1dc5
– volume: 53
  year: 2013
  ident: ppcfac9dbdbib32
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/53/9/093031
– volume: 64
  year: 2022
  ident: ppcfac9dbdbib24
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/1361-6587/ac6890
– volume: 12
  start-page: 1
  year: 2021
  ident: ppcfac9dbdbib3
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21268-3
– volume: 51
  start-page: 2861
  year: 1980
  ident: ppcfac9dbdbib22
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.327954
– volume: 463
  start-page: 480
  year: 2015
  ident: ppcfac9dbdbib5
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2014.10.012
– volume: 23
  year: 2016
  ident: ppcfac9dbdbib25
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4948273
– year: 2000
  ident: ppcfac9dbdbib16
– volume: 60
  year: 2018
  ident: ppcfac9dbdbib2
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/1361-6587/aaacf6
– year: 2021
  ident: ppcfac9dbdbib50
  article-title: Master Thesis
– volume: 62
  year: 2022
  ident: ppcfac9dbdbib15
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ac5b8c
– volume: 61
  year: 2021
  ident: ppcfac9dbdbib40
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ac3293
– volume: 61
  year: 2021
  ident: ppcfac9dbdbib6
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/abf99f
– volume: 61
  year: 2021
  ident: ppcfac9dbdbib35
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ac2ff5
– volume: 56
  year: 2016
  ident: ppcfac9dbdbib4
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/56/5/056007
– volume: 19
  year: 2012
  ident: ppcfac9dbdbib23
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4710517
– year: 2018
  ident: ppcfac9dbdbib47
  article-title: Spectroscopic investigations of detachment on TCV
– volume: 61
  year: 2019
  ident: ppcfac9dbdbib7
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/1361-6587/ab1321
– year: 2021
  ident: ppcfac9dbdbib21
  article-title: Drift-related transport and plasma-neutral interaction in the TCV divertor
– volume: 171
  year: 2021
  ident: ppcfac9dbdbib41
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2021.112560
– year: 2021
  ident: ppcfac9dbdbib44
  article-title: Advanced methods in control of the core density and divertor detachment in nuclear fusion
– year: 2005
  ident: ppcfac9dbdbib45
– year: 2013
  ident: ppcfac9dbdbib48
– volume: 59
  year: 2019
  ident: ppcfac9dbdbib30
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ab4251
– volume: 20
  start-page: 397
  year: 1977
  ident: ppcfac9dbdbib36
  publication-title: At. Data Nucl. Data Tables
  doi: 10.1016/0092-640X(77)90026-2
– volume: 62
  year: 2022
  ident: ppcfac9dbdbib10
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ac613a
– volume: 26
  year: 2021
  ident: ppcfac9dbdbib43
  publication-title: Nucl. Mater. Energy
  doi: 10.1016/j.nme.2020.100858
– volume: 59
  year: 2019
  ident: ppcfac9dbdbib13
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ab34d2
– volume: 61
  year: 2019
  ident: ppcfac9dbdbib18
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/1361-6587/ab2b1f
– volume: 60
  year: 2020
  ident: ppcfac9dbdbib33
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ab7a66
– volume: 10
  start-page: 1038
  year: 1989
  ident: ppcfac9dbdbib49
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0910062
SSID ssj0011826
Score 2.4537387
Snippet This paper presents DIV1D, a new 1D dynamic physics-based model of the divertor plasma under development to study and control the dynamics of detached plasmas....
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 125013
SubjectTerms detachment
dynamic
simulation
Title Benchmark of a self-consistent dynamic 1D divertor model DIV1D using the 2D SOLPS-ITER code
URI https://iopscience.iop.org/article/10.1088/1361-6587/ac9dbd
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zInjxW5xf5KAHD9nWpE1TPKlzbCJuOKcDhZImrcJmN7bu4l_vS9sNFRXxEkp5TcNL8j7IL7-H0FFVgU8VtkWEJyJiu9WAyDCwicM1BdOguJIp2-cNb3Ttq57TK6DT-V2Y4Sg3_WV4zIiCMxXmgDhRsRi3CDhOtyKVpwO9gBZN4UqzvJut9vwIwQTOGQenRRhjTn5G-V0Pn3zSAvz3g4upr6Kn2eAyZEm_PE2Csnr7wtv4z9GvoZU89MRnmeg6KoTxBlpKIaBqsokez6HHl1c57uNhhCWehIOIKIOfhYUQJ1hnteuxVcPagDkgWcdpHR1ca97DS4Ogf8YQT2Jaw53WdbtDwCzeYnNpfgt165d3Fw2Sl14gCnZ4QjhX4Lg1dTQMVVKqILCTkFkFSnCLU6pFYMvQtU0jJOx76SnLZYYKhqWFzLZRMR7G4Q7Chk-HM0lFZDPIxqinpTEU1IXcxHW1KKHKTPm-ynnJTXmMgZ-ejwvhG5X5RmV-prISOpl_Mco4OX6RPYaZ8PONOflRbvePcntomZoLECmgZR8Vk_E0PICwJAkO0-UHbYs9vANuG9gD
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT4MwEG_cjMYX42ecn33QBx_qRgulPKq4OF22xTld4gMpLWjiZMuG_79XqIsmanwhhBzQHtxX7u53CB03FNhU4TpEBCIlrt-IiUxil3hcU1ANiitZoH12-PXAvRl6QzvntOiFGU-s6j-D0xIouGShLYgTdYdxh4Dh9OtSBTrW9YlOK2jRY9wz4Pld9jhPIxjnucThdAhjzLN5yp-e8s0uVeDdX8xMcw2tWv8Qn5erWUcLSbaBloo6TTXbRE8XsOiXNzl9xeMUSzxLRilRpsgVvlaWY10OmMdOiLWpuICIGhfDbnDYeoCLpsz9GYPTh2mI-912r09Ad91h09m-hQbNq_vLa2LnIxAFYpgTzhVYV009DfuQlCrwviSEP7ES3OGUahG7MvFdcxAShFMGyvGZwWthxbSxbVTNxlmyg7ABveFMUpG6DEImGmhppJn6EED4vhY1VP_kTqQseLiZYTGKiiS2EJHhZ2T4GZX8rKHT-R2TEjjjD9oTYHhkpWf2K93uP-mO0HIvbEbtVud2D61Q07BQFKDso2o-fU8OwI3I48PiV_kASeW7Yg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmark+of+a+self-consistent+dynamic+1D+divertor+model+DIV1D+using+the+2D+SOLPS-ITER+code&rft.jtitle=Plasma+physics+and+controlled+fusion&rft.au=Derks%2C+G+L&rft.au=Frankem%C3%B6lle%2C+J+P+K+W&rft.au=Koenders%2C+J+T+W&rft.au=van+Berkel%2C+M&rft.date=2022-12-01&rft.issn=0741-3335&rft.eissn=1361-6587&rft.volume=64&rft.issue=12&rft.spage=125013&rft_id=info:doi/10.1088%2F1361-6587%2Fac9dbd&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6587_ac9dbd
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0741-3335&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0741-3335&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0741-3335&client=summon