Detection of Mental Stress through EEG Signal in Virtual Reality Environment

This paper investigates the use of an electroencephalogram (EEG) signal to classify a subject’s stress level while using virtual reality (VR). For this purpose, we designed an acquisition protocol based on alternating relaxing and stressful scenes in the form of a VR interactive simulation, accompan...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 10; no. 22; p. 2840
Main Authors Kamińska, Dorota, Smółka, Krzysztof, Zwoliński, Grzegorz
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper investigates the use of an electroencephalogram (EEG) signal to classify a subject’s stress level while using virtual reality (VR). For this purpose, we designed an acquisition protocol based on alternating relaxing and stressful scenes in the form of a VR interactive simulation, accompanied by an EEG headset to monitor the subject’s psycho-physical condition. Relaxation scenes were developed based on scenarios created for psychotherapy treatment utilizing bilateral stimulation, while the Stroop test worked as a stressor. The experiment was conducted on a group of 28 healthy adult volunteers (office workers), participating in a VR session. Subjects’ EEG signal was continuously monitored using the EMOTIV EPOC Flex wireless EEG head cap system. After the session, volunteers were asked to re-fill questionnaires regarding the current stress level and mood. Then, we classified the stress level using a convolutional neural network (CNN) and compared the classification performance with conventional machine learning algorithms. The best results were obtained considering all brain waves (96.42%) with a multilayer perceptron (MLP) and Support Vector Machine (SVM) classifiers.
AbstractList This paper investigates the use of an electroencephalogram (EEG) signal to classify a subject’s stress level while using virtual reality (VR). For this purpose, we designed an acquisition protocol based on alternating relaxing and stressful scenes in the form of a VR interactive simulation, accompanied by an EEG headset to monitor the subject’s psycho-physical condition. Relaxation scenes were developed based on scenarios created for psychotherapy treatment utilizing bilateral stimulation, while the Stroop test worked as a stressor. The experiment was conducted on a group of 28 healthy adult volunteers (office workers), participating in a VR session. Subjects’ EEG signal was continuously monitored using the EMOTIV EPOC Flex wireless EEG head cap system. After the session, volunteers were asked to re-fill questionnaires regarding the current stress level and mood. Then, we classified the stress level using a convolutional neural network (CNN) and compared the classification performance with conventional machine learning algorithms. The best results were obtained considering all brain waves (96.42%) with a multilayer perceptron (MLP) and Support Vector Machine (SVM) classifiers.
Author Kamińska, Dorota
Smółka, Krzysztof
Zwoliński, Grzegorz
Author_xml – sequence: 1
  givenname: Dorota
  orcidid: 0000-0002-3416-5554
  surname: Kamińska
  fullname: Kamińska, Dorota
– sequence: 2
  givenname: Krzysztof
  orcidid: 0000-0002-8054-0386
  surname: Smółka
  fullname: Smółka, Krzysztof
– sequence: 3
  givenname: Grzegorz
  orcidid: 0000-0002-6100-2654
  surname: Zwoliński
  fullname: Zwoliński, Grzegorz
BookMark eNp9kE1LAzEQhoNUsNb-Ai8Bz6uzyX7lKHWtQkWw6nXJZpM2ZZvUJCv035tSDyLiXGZg5pl55z1HI2ONROgyhWtKGdzIXorgrNHCp0AIqTI4QWMCJUsYYWT0oz5DU-83EIOltKIwRos7GSKurcFW4SdpAu_xMjjpPQ5rZ4fVGtf1HC_1ysSONvhduzDE8kXyXoc9rs2njte3Eb1Ap4r3Xk6_8wS93devs4dk8Tx_nN0uEkEJCUmuyrykSkYZJQgqmeCcZ0IBT9s2V7nIGMis62gFLRMqbwlkHWe8AJanRVvRCbo67t05-zFIH5qNHVzU5xtSAAFaRQ_iFDtOCWe9d1I1Qgd-eDU4rvsmhebgX_OHf5Glv9id01vu9v9SX_jTeeE
CitedBy_id crossref_primary_10_1371_journal_pone_0305864
crossref_primary_10_1016_j_heliyon_2024_e38681
crossref_primary_10_3390_app122010385
crossref_primary_10_1109_TAFFC_2023_3312762
crossref_primary_10_1109_ACCESS_2024_3471590
crossref_primary_10_4236_jbbs_2023_132002
crossref_primary_10_1080_00038628_2024_2438185
crossref_primary_10_3390_electronics11101647
crossref_primary_10_1007_s00521_024_09809_5
crossref_primary_10_3390_brainsci14050470
crossref_primary_10_1038_s41598_024_72376_1
crossref_primary_10_1007_s13042_024_02455_2
crossref_primary_10_13005_bpj_3052
crossref_primary_10_3390_bios14030131
crossref_primary_10_3390_s22051785
crossref_primary_10_1371_journal_pone_0299127
crossref_primary_10_2196_48803
crossref_primary_10_3390_brainsci14090894
crossref_primary_10_3390_mi16030340
crossref_primary_10_1109_TNSRE_2023_3254551
crossref_primary_10_1109_ACCESS_2025_3528518
crossref_primary_10_1007_s11814_024_00227_w
crossref_primary_10_3390_electronics12163468
crossref_primary_10_25046_aj080606
crossref_primary_10_3390_app13148298
crossref_primary_10_1016_j_aap_2024_107835
crossref_primary_10_3390_technologies12030038
Cites_doi 10.1109/MSP.2014.2300511
10.20944/preprints202010.0616.v1
10.1007/978-3-030-00220-6_21
10.4324/9781315742397
10.3389/fnins.2018.00530
10.1016/j.eswa.2016.10.035
10.1109/JBHI.2018.2870963
10.1891/1933-3196.13.4.325
10.1016/j.ces.2004.04.031
10.18517/ijaseit.6.6.1072
10.1097/00004691-200307000-00004
10.1016/j.trac.2008.01.009
10.1109/TBME.2019.2897651
10.1007/978-1-4899-7641-3
10.1891/1933-3196.13.4.302
10.1016/j.jbi.2010.07.001
10.1113/jphysiol.2014.273995
10.1016/j.jbi.2019.103139
10.1016/j.clinph.2020.05.037
10.1371/journal.pone.0200306
10.1109/TBME.2007.891164
10.3390/e21070646
10.1201/9781315156415
10.1007/s11277-015-2565-1
10.1109/ACCESS.2020.3035540
10.1142/S0218339010003640
10.1007/978-0-387-39940-9_565
10.1016/B978-0-12-804490-2.00007-5
10.1007/s11749-016-0481-7
10.20944/preprints202107.0255.v1
10.1007/978-3-030-30581-9
10.1016/j.eswa.2006.04.016
10.1109/5.939827
10.1016/j.neuroimage.2014.12.040
10.1016/S0893-6080(00)00026-5
10.1109/SMC.2016.7844738
10.1109/IMBIOC.2019.8777843
10.3390/s17102435
10.1016/j.ijmst.2017.05.005
10.1109/10.841330
10.1007/s10479-005-5724-z
10.1007/978-3-540-24688-6_105
10.23919/MIPRO.2018.8400184
10.3390/s19133021
10.1016/j.trac.2011.07.010
10.1007/978-1-4471-5445-7
10.1093/bioinformatics/bth270
10.3389/fpsyg.2018.01061
10.1109/TSP.2018.2844203
10.1016/S1364-6613(00)01813-1
10.1109/TAU.1967.1161901
10.1891/1933-3196.12.3.132
10.1145/3332340.3332349
10.1109/TAFFC.2015.2451622
10.1046/j.1365-8711.2002.05425.x
10.1016/B978-0-12-809324-5.02208-2
10.1111/papt.12145
10.1007/978-3-319-49655-9_16
10.1109/BSN.2018.8329668
10.3389/fnins.2013.00267
10.1007/s00138-018-0960-9
10.1016/j.csda.2012.06.008
10.7717/peerj.9713
10.1007/978-981-10-8204-7_5
10.3390/s19214736
10.1016/0001-6918(65)90024-7
10.1037/h0054651
10.1162/105474603322955950
10.4324/9780429474187
10.1016/j.ctcp.2013.03.003
10.1016/S0166-2236(96)10065-5
10.3389/fpsyg.2018.01280
10.1002/hbm.20540
10.1109/51.844386
10.1109/SMC.2015.540
10.1007/978-981-13-1501-5_32
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/electronics10222840
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Databases
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID 10_3390_electronics10222840
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c322t-5f7573fe00070c3e9caaa4cf0a1bb5f5c490e4dd380b9cf5b204da9a609516b83
IEDL.DBID BENPR
ISSN 2079-9292
IngestDate Fri Jul 25 03:58:00 EDT 2025
Tue Jul 01 02:00:34 EDT 2025
Thu Apr 24 23:07:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-5f7573fe00070c3e9caaa4cf0a1bb5f5c490e4dd380b9cf5b204da9a609516b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3416-5554
0000-0002-8054-0386
0000-0002-6100-2654
OpenAccessLink https://www.proquest.com/docview/2602038840?pq-origsite=%requestingapplication%
PQID 2602038840
PQPubID 2032404
ParticipantIDs proquest_journals_2602038840
crossref_citationtrail_10_3390_electronics10222840
crossref_primary_10_3390_electronics10222840
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Zhang (ref_8) 2017; 27
Ahn (ref_75) 2007; 33
Wiak (ref_95) 2020; 8
Iriarte (ref_79) 2003; 20
ref_91
Perna (ref_27) 2018; 9
ref_58
ref_57
ref_56
Kroese (ref_92) 2005; 134
ref_10
Engemann (ref_93) 2015; 108
ref_52
ref_96
ref_51
Wagh (ref_53) 2019; 33
Tarrant (ref_31) 2018; 9
ref_17
ref_15
ref_59
Greco (ref_42) 2018; 8
Gramfort (ref_60) 2013; 7
Faretta (ref_28) 2019; 13
Uddin (ref_76) 2015; 83
Refaeilzadeh (ref_88) 2009; 5
Yogesh (ref_18) 2017; 69
Lee (ref_69) 2004; 59
Saif (ref_23) 2019; 9
ref_24
ref_22
ref_21
ref_20
Wood (ref_11) 2018; 91
Grigoryan (ref_73) 2016; 7
ref_26
Jung (ref_77) 2001; 89
Lefter (ref_19) 2015; 7
Lin (ref_16) 2007; 54
Li (ref_25) 2019; 66
Chattopadhyay (ref_72) 2013; 57
Avots (ref_38) 2019; 30
Malandrone (ref_12) 2019; 13
Jebelli (ref_35) 2018; 2018
Ablin (ref_81) 2018; 66
ref_36
Jensen (ref_29) 1965; 24
Stroop (ref_46) 1935; 18
Engreitz (ref_65) 2010; 43
ref_32
Scholz (ref_64) 2004; 20
ref_30
ref_74
Kakavand (ref_14) 2018; 6
Gielkens (ref_13) 2018; 12
Williams (ref_49) 2020; 8
ref_39
Can (ref_4) 2019; 92
Xu (ref_67) 2009; 30
ref_37
Wang (ref_68) 2008; 27
Stone (ref_61) 2002; 6
Hari (ref_94) 1997; 20
Oja (ref_62) 2000; 13
Jebelli (ref_33) 2018; 23
Jas (ref_82) 2018; 12
Welch (ref_83) 1967; 15
ref_47
Maino (ref_71) 2002; 334
ref_45
ref_89
ref_44
Stinson (ref_54) 2013; 19
Ismail (ref_55) 2016; 6
ref_43
ref_87
Zhukov (ref_78) 2000; 19
ref_41
ref_85
ref_40
ref_84
ref_1
Sarela (ref_80) 2000; 47
ref_3
ref_2
Hosseini (ref_34) 2010; 18
Nazarov (ref_63) 2018; 12
Adali (ref_66) 2014; 31
Parastar (ref_70) 2012; 31
ref_48
ref_9
Collins (ref_5) 2014; 592
Biau (ref_86) 2016; 25
ref_7
Scholten (ref_90) 2020; 131
ref_6
References_xml – volume: 31
  start-page: 18
  year: 2014
  ident: ref_66
  article-title: Diversity in Independent Component and Vector Analyses: Identifiability, algorithms, and applications in medical imaging
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2014.2300511
– ident: ref_89
  doi: 10.20944/preprints202010.0616.v1
– ident: ref_40
  doi: 10.1007/978-3-030-00220-6_21
– ident: ref_50
  doi: 10.4324/9781315742397
– ident: ref_74
– volume: 12
  start-page: 530
  year: 2018
  ident: ref_82
  article-title: A reproducible MEG/EEG group study with the MNE software: Recommendations, quality assessments, and good practices
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00530
– volume: 2018
  start-page: 43
  year: 2018
  ident: ref_35
  article-title: A supervised learning-based construction workers’ stress recognition using a wearable electroencephalography (EEG) device
  publication-title: Constr. Res. Congr.
– ident: ref_51
– volume: 6
  start-page: 140
  year: 2018
  ident: ref_14
  article-title: The efficacy of eye movement desensitization and reprocessing (EMDR) in reducing symptoms of anxiety disorders in sexually-abused students
  publication-title: J. Sch. Psychol.
– volume: 69
  start-page: 149
  year: 2017
  ident: ref_18
  article-title: A new hybrid PSO assisted biogeography-based optimization for emotion and stress recognition from speech signal
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.10.035
– volume: 23
  start-page: 1928
  year: 2018
  ident: ref_33
  article-title: A Continuously Updated, Computationally Efficient Stress Recognition Framework Using Electroencephalogram (EEG) by Applying Online Multitask Learning Algorithms (OMTL)
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2018.2870963
– volume: 13
  start-page: 325
  year: 2019
  ident: ref_28
  article-title: Efficacy of EMDR therapy for anxiety disorders
  publication-title: J. EMDR Pract. Res.
  doi: 10.1891/1933-3196.13.4.325
– volume: 59
  start-page: 2995
  year: 2004
  ident: ref_69
  article-title: Statistical monitoring of dynamic processes based on dynamic independent component analysis
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2004.04.031
– volume: 6
  start-page: 1005
  year: 2016
  ident: ref_55
  article-title: Human emotion detection via brain waves study by using electroencephalogram (EEG)
  publication-title: Int. J. Adv. Sci. Eng. Inf. Technol.
  doi: 10.18517/ijaseit.6.6.1072
– volume: 20
  start-page: 249
  year: 2003
  ident: ref_79
  article-title: Independent component analysis as a tool to eliminate artifacts in EEG: A quantitative study
  publication-title: J. Clin. Neurophysiol.
  doi: 10.1097/00004691-200307000-00004
– volume: 27
  start-page: 368
  year: 2008
  ident: ref_68
  article-title: Independent component analysis and its applications in signal processing for analytical chemistry
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2008.01.009
– volume: 66
  start-page: 2869
  year: 2019
  ident: ref_25
  article-title: EEG based emotion recognition by combining functional connectivity network and local activations
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2897651
– ident: ref_84
  doi: 10.1007/978-1-4899-7641-3
– volume: 13
  start-page: 302
  year: 2019
  ident: ref_12
  article-title: A brief narrative summary of randomized controlled trials investigating EMDR treatment of patients with depression
  publication-title: J. EMDR Pract. Res.
  doi: 10.1891/1933-3196.13.4.302
– ident: ref_1
– volume: 43
  start-page: 932
  year: 2010
  ident: ref_65
  article-title: Independent component analysis: Mining microarray data for fundamental human gene expression modules
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2010.07.001
– volume: 592
  start-page: 2989
  year: 2014
  ident: ref_5
  article-title: The microbiota–gut–brain axis in gastrointestinal disorders: Stressed bugs, stressed brain or both?
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2014.273995
– volume: 92
  start-page: 103139
  year: 2019
  ident: ref_4
  article-title: Stress detection in daily life scenarios using smart phones and wearable sensors: A survey
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2019.103139
– volume: 131
  start-page: 2499
  year: 2020
  ident: ref_90
  article-title: Transitions between repetitive tapping and upper limb freezing show impaired movement-related beta band modulation
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2020.05.037
– ident: ref_44
  doi: 10.1371/journal.pone.0200306
– volume: 54
  start-page: 1349
  year: 2007
  ident: ref_16
  article-title: EEG-based assessment of driver cognitive responses in a dynamic virtual-reality driving environment
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.891164
– ident: ref_39
  doi: 10.3390/e21070646
– ident: ref_56
  doi: 10.1201/9781315156415
– ident: ref_52
– volume: 83
  start-page: 2711
  year: 2015
  ident: ref_76
  article-title: Applications of independent component analysis in wireless communication systems
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-015-2565-1
– volume: 8
  start-page: 200351
  year: 2020
  ident: ref_95
  article-title: Stress reduction using bilateral stimulation in virtual reality
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3035540
– volume: 18
  start-page: 101
  year: 2010
  ident: ref_34
  article-title: Emotional stress recognition system for affective computing based on bio-signals
  publication-title: J. Biol. Syst.
  doi: 10.1142/S0218339010003640
– ident: ref_48
– ident: ref_10
– volume: 5
  start-page: 532
  year: 2009
  ident: ref_88
  article-title: Cross-validation
  publication-title: Encycl. Database Syst.
  doi: 10.1007/978-0-387-39940-9_565
– ident: ref_57
  doi: 10.1016/B978-0-12-804490-2.00007-5
– ident: ref_87
– volume: 25
  start-page: 197
  year: 2016
  ident: ref_86
  article-title: A random forest guided tour
  publication-title: Test
  doi: 10.1007/s11749-016-0481-7
– ident: ref_96
  doi: 10.20944/preprints202107.0255.v1
– ident: ref_58
  doi: 10.1007/978-3-030-30581-9
– volume: 33
  start-page: 181
  year: 2007
  ident: ref_75
  article-title: Extracting underlying meaningful features and canceling noise using independent component analysis for direct marketing
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2006.04.016
– volume: 89
  start-page: 1107
  year: 2001
  ident: ref_77
  article-title: Imaging brain dynamics using independent component analysis
  publication-title: Proc. IEEE
  doi: 10.1109/5.939827
– volume: 108
  start-page: 328
  year: 2015
  ident: ref_93
  article-title: Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.12.040
– volume: 13
  start-page: 411
  year: 2000
  ident: ref_62
  article-title: Independent component analysis: Algorithms and applications
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(00)00026-5
– volume: 8
  start-page: 1
  year: 2018
  ident: ref_42
  article-title: Affective computing in virtual reality: Emotion recognition from brain and heartbeat dynamics using wearable sensors
  publication-title: Sci. Rep.
– ident: ref_37
  doi: 10.1109/SMC.2016.7844738
– ident: ref_59
– ident: ref_43
  doi: 10.1109/IMBIOC.2019.8777843
– ident: ref_20
  doi: 10.3390/s17102435
– volume: 27
  start-page: 717
  year: 2017
  ident: ref_8
  article-title: Head-mounted display-based intuitive virtual reality training system for the mining industry
  publication-title: Int. J. Min. Sci. Technol.
  doi: 10.1016/j.ijmst.2017.05.005
– volume: 47
  start-page: 589
  year: 2000
  ident: ref_80
  article-title: Independent component approach to the analysis of EEG and MEG recordings
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.841330
– volume: 134
  start-page: 19
  year: 2005
  ident: ref_92
  article-title: A tutorial on the cross-entropy method
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-005-5724-z
– ident: ref_17
  doi: 10.1007/978-3-540-24688-6_105
– ident: ref_30
  doi: 10.23919/MIPRO.2018.8400184
– ident: ref_45
  doi: 10.3390/s19133021
– volume: 31
  start-page: 134
  year: 2012
  ident: ref_70
  article-title: Is independent component analysis appropriate for multivariate resolution in analytical chemistry?
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2011.07.010
– ident: ref_3
– ident: ref_24
– ident: ref_9
  doi: 10.1007/978-1-4471-5445-7
– ident: ref_47
– volume: 20
  start-page: 2447
  year: 2004
  ident: ref_64
  article-title: Metabolite fingerprinting: Detecting biological features by independent component analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth270
– volume: 9
  start-page: 1061
  year: 2018
  ident: ref_27
  article-title: Commentary: “Cognitive Behavioral Therapy vs. Eye Movement Desensitization and Reprocessing for Treating Panic Disorder: A Randomized Controlled Trial”
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2018.01061
– volume: 66
  start-page: 4040
  year: 2018
  ident: ref_81
  article-title: Faster Independent Component Analysis by Preconditioning with Hessian Approximations
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2018.2844203
– volume: 6
  start-page: 59
  year: 2002
  ident: ref_61
  article-title: Independent component analysis: An introduction
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/S1364-6613(00)01813-1
– volume: 15
  start-page: 70
  year: 1967
  ident: ref_83
  article-title: The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms
  publication-title: IEEE Trans. Audio Electroacoust.
  doi: 10.1109/TAU.1967.1161901
– volume: 12
  start-page: 132
  year: 2018
  ident: ref_13
  article-title: EMDR in older adults with posttraumatic stress disorder
  publication-title: J. EMDR Pract. Res.
  doi: 10.1891/1933-3196.12.3.132
– ident: ref_22
  doi: 10.1145/3332340.3332349
– volume: 7
  start-page: 162
  year: 2015
  ident: ref_19
  article-title: Recognizing stress using semantics and modulation of speech and gestures
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2015.2451622
– volume: 334
  start-page: 53
  year: 2002
  ident: ref_71
  article-title: All-sky astrophysical component separation with Fast Independent Component Analysis (FASTICA)
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1046/j.1365-8711.2002.05425.x
– ident: ref_2
  doi: 10.1016/B978-0-12-809324-5.02208-2
– volume: 91
  start-page: 63
  year: 2018
  ident: ref_11
  article-title: EMDR as a treatment for long-term depression: A feasibility study
  publication-title: Psychol. Psychother. Theory Res. Pract.
  doi: 10.1111/papt.12145
– ident: ref_15
  doi: 10.1007/978-3-319-49655-9_16
– ident: ref_6
– ident: ref_32
  doi: 10.1109/BSN.2018.8329668
– volume: 7
  start-page: 267
  year: 2013
  ident: ref_60
  article-title: MEG and EEG data analysis with MNE-Python
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2013.00267
– volume: 30
  start-page: 975
  year: 2019
  ident: ref_38
  article-title: Audiovisual emotion recognition in wild
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-018-0960-9
– volume: 57
  start-page: 17
  year: 2013
  ident: ref_72
  article-title: Independent Component Analysis for the objective classification of globular clusters of the galaxy NGC 5128
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2012.06.008
– volume: 8
  start-page: e9713
  year: 2020
  ident: ref_49
  article-title: A validation of Emotiv EPOC Flex saline for EEG and ERP research
  publication-title: PeerJ
  doi: 10.7717/peerj.9713
– ident: ref_85
– volume: 33
  start-page: 37
  year: 2019
  ident: ref_53
  article-title: Electroencephalograph (EEG) based emotion recognition system: A review
  publication-title: Innov. Electron. Commun. Eng.
  doi: 10.1007/978-981-10-8204-7_5
– ident: ref_41
  doi: 10.3390/s19214736
– volume: 24
  start-page: 398
  year: 1965
  ident: ref_29
  article-title: Scoring the Stroop test
  publication-title: Acta Psychol.
  doi: 10.1016/0001-6918(65)90024-7
– volume: 12
  start-page: 395145
  year: 2018
  ident: ref_63
  article-title: Independent component analysis provides clinically relevant insights into the biology of melanoma patients
  publication-title: BioRxiv
– ident: ref_91
– volume: 18
  start-page: 643
  year: 1935
  ident: ref_46
  article-title: Studies of interference in serial verbal reactions
  publication-title: J. Exp. Psychol.
  doi: 10.1037/h0054651
– ident: ref_7
  doi: 10.1162/105474603322955950
– ident: ref_26
  doi: 10.4324/9780429474187
– volume: 19
  start-page: 114
  year: 2013
  ident: ref_54
  article-title: A novel EEG for alpha brain state training, neurobiofeedback and behavior change
  publication-title: Complement. Ther. Clin. Pract.
  doi: 10.1016/j.ctcp.2013.03.003
– volume: 20
  start-page: 44
  year: 1997
  ident: ref_94
  article-title: Human cortical oscillations: A neuromagnetic view through the skull
  publication-title: Trends Neurosci.
  doi: 10.1016/S0166-2236(96)10065-5
– volume: 9
  start-page: 1280
  year: 2018
  ident: ref_31
  article-title: Virtual reality for anxiety reduction demonstrated by quantitative EEG: A pilot study
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2018.01280
– volume: 30
  start-page: 711
  year: 2009
  ident: ref_67
  article-title: Source-based morphometry: The use of independent component analysis to identify gray matter differences with application to schizophrenia
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20540
– volume: 7
  start-page: 12
  year: 2016
  ident: ref_73
  article-title: A stock market prediction method based on support vector machines (SVM) and independent component analysis (ICA)
  publication-title: Database Syst. J.
– volume: 19
  start-page: 87
  year: 2000
  ident: ref_78
  article-title: Independent component analysis for EEG source localization
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/51.844386
– ident: ref_36
  doi: 10.1109/SMC.2015.540
– ident: ref_21
  doi: 10.1007/978-981-13-1501-5_32
– volume: 9
  start-page: 34
  year: 2019
  ident: ref_23
  article-title: A Review based on Brain Computer Interaction using EEG Headset for Physically Handicapped People
  publication-title: Int. J. Educ. Manag. Eng.
SSID ssj0000913830
Score 2.445458
Snippet This paper investigates the use of an electroencephalogram (EEG) signal to classify a subject’s stress level while using virtual reality (VR). For this...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2840
SubjectTerms Accuracy
Algorithms
Anxiety
Artificial neural networks
Classification
Computer simulation
Discriminant analysis
Electroencephalography
Emotions
Investigations
Machine learning
Multilayer perceptrons
Nervous system
Psychological stress
Psychotherapy
Signal classification
Signal monitoring
Stress
Support vector machines
Traffic congestion
Virtual reality
Title Detection of Mental Stress through EEG Signal in Virtual Reality Environment
URI https://www.proquest.com/docview/2602038840
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFH8RuOjB-BlRJD14dGFb2607GZQBMUAMiOG2tF1rSMxAwP_fdZQPE8O5H4fX9n31vd8P4EGz3KjzNHS0CgKHRIHnRMqNHM19kqqQY1GU_PcHQXdMXid0YhNuS1tWudGJhaJOZ9LkyBu53-0b5BLiPs2_HcMaZX5XLYVGCSq5CmasDJXnePA23GZZDOolw-4abgjn8X1jxy6zLIIdZtIe-ybpr0YuzEz7DE6tf4ia6wM9hyOVXcDJHmrgJfRaalUUUGVoptEahAeNip4PZGl3UBx30Gj6abaaZuhjujBtImioCq8bxbvutisYt-P3l65jSREcmb-9lUN1SEOslTHursQqkpxzIrXLPSGoppJEriJpipkrIqmp8F2S8ogbYDkvEAxfQzmbZeoGEKdppAMqAp4ygqUWJnzA-X4-kdTjvAr-Ri6JtIjhhrjiK8kjByPM5B9hVuFxu2i-Bsw4PL22EXhiX88y2Z317eHhOzj2TY1J0RtYg_Jq8aPucydhJepQYu1OHSrNVr83qtt78Qt-GMJB
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BGYAB8RTl6QE2orqxnSYDQghaCi0MvMQWbMdGlVBa2iDEn-I3YjsJLRLqxuzkhsv5XrnvO4ADHZqgzpOGp1UQeDQK6l6kcORp7tNENTgRbuT_-iZoP9CrJ_Y0A18lFsaOVZY-0TnqpC9tj7xm8m7fMpdQfDJ48-zWKPt3tVyhkZtFR31-mJJtdHx5br7voe-3mvdnba_YKuBJY7yZx3SDNYhWNjpiSVQkOedUaszrQjDNJI2woklCQiwiqZnwMU14xC0zWz0QITFyZ2GOEhPJLTK9dfHT07EcmyHBObmROce18S6bkSutQttkmQyAv_2_C2qtZVgqslF0mpvPCsyodBUWJzgK16B7rjI3rpWivkY55Q-6cwgTVCz5Qc3mBbrrvVhRvRQ99oYWlIJulcvxUXOMpVuHh39R1gZU0n6qNgFxlkQ6YCLgSUiJ1MIWK8TI86lkdc6r4Jd6iWXBT27XZLzGpk6xyoz_UGYVjn5eGuT0HNMf3ykVHhd3dRSPLWtr-vE-zLfvr7tx9_Kmsw0Lvp1ucajEHahkw3e1a9KTTOw5m0Dw_N9G-A1H8vv7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BkRAcEKtYCvgAN6K6sZ3EB4SApuwVYhO3YDs2qoRSaIsQv8bXYWehICFunJPMYfLiWTLzHsCWiWxQF2noGR0EHuVB0-Mac88In6Y6FETmI_8XneD4lp7es_sx-Kh2YdxYZXUm5gd12lOuR96webfvmEsobphyLOKy1d57fvGcgpT701rJaRQQOdPvb7Z8G-yetOy73vb9dnxzeOyVCgOeskAeesyELCRGu0iJFdFcCSGoMlg0pWSGKcqxpmlKIiy5Mkz6mKaCC8fS1gxkRKzdcZgIXVVUg4mDuHN59dXhcYybEcEF1REhHDdGyjaDvNCKXMvlezj8GQ3yENeehZkyN0X7BZjmYExn8zD9jbFwAc5bepgPb2WoZ1BBAISu830TVEr-oDg-QtfdR2eqm6G7bt-tqKArnWf8KB5t1i3C7b-4awlqWS_Ty4AES7kJmAxEGlGijHSlC7H2fKpYU4gV8Cu_JKpkK3eiGU-JrVqcM5NfnLkCO18PPRdkHX_fXq8cnpRf7iAZ4Wz178ubMGkBmJyfdM7WYMp3oy75imIdasP-q163ucpQbpSgQPDw3zj8BMXmAZw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Mental+Stress+through+EEG+Signal+in+Virtual+Reality+Environment&rft.jtitle=Electronics+%28Basel%29&rft.au=Kami%C5%84ska%2C+Dorota&rft.au=Sm%C3%B3%C5%82ka%2C+Krzysztof&rft.au=Zwoli%C5%84ski%2C+Grzegorz&rft.date=2021-11-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=10&rft.issue=22&rft.spage=2840&rft_id=info:doi/10.3390%2Felectronics10222840&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics10222840
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon