Detection of Mental Stress through EEG Signal in Virtual Reality Environment
This paper investigates the use of an electroencephalogram (EEG) signal to classify a subject’s stress level while using virtual reality (VR). For this purpose, we designed an acquisition protocol based on alternating relaxing and stressful scenes in the form of a VR interactive simulation, accompan...
Saved in:
Published in | Electronics (Basel) Vol. 10; no. 22; p. 2840 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper investigates the use of an electroencephalogram (EEG) signal to classify a subject’s stress level while using virtual reality (VR). For this purpose, we designed an acquisition protocol based on alternating relaxing and stressful scenes in the form of a VR interactive simulation, accompanied by an EEG headset to monitor the subject’s psycho-physical condition. Relaxation scenes were developed based on scenarios created for psychotherapy treatment utilizing bilateral stimulation, while the Stroop test worked as a stressor. The experiment was conducted on a group of 28 healthy adult volunteers (office workers), participating in a VR session. Subjects’ EEG signal was continuously monitored using the EMOTIV EPOC Flex wireless EEG head cap system. After the session, volunteers were asked to re-fill questionnaires regarding the current stress level and mood. Then, we classified the stress level using a convolutional neural network (CNN) and compared the classification performance with conventional machine learning algorithms. The best results were obtained considering all brain waves (96.42%) with a multilayer perceptron (MLP) and Support Vector Machine (SVM) classifiers. |
---|---|
AbstractList | This paper investigates the use of an electroencephalogram (EEG) signal to classify a subject’s stress level while using virtual reality (VR). For this purpose, we designed an acquisition protocol based on alternating relaxing and stressful scenes in the form of a VR interactive simulation, accompanied by an EEG headset to monitor the subject’s psycho-physical condition. Relaxation scenes were developed based on scenarios created for psychotherapy treatment utilizing bilateral stimulation, while the Stroop test worked as a stressor. The experiment was conducted on a group of 28 healthy adult volunteers (office workers), participating in a VR session. Subjects’ EEG signal was continuously monitored using the EMOTIV EPOC Flex wireless EEG head cap system. After the session, volunteers were asked to re-fill questionnaires regarding the current stress level and mood. Then, we classified the stress level using a convolutional neural network (CNN) and compared the classification performance with conventional machine learning algorithms. The best results were obtained considering all brain waves (96.42%) with a multilayer perceptron (MLP) and Support Vector Machine (SVM) classifiers. |
Author | Kamińska, Dorota Smółka, Krzysztof Zwoliński, Grzegorz |
Author_xml | – sequence: 1 givenname: Dorota orcidid: 0000-0002-3416-5554 surname: Kamińska fullname: Kamińska, Dorota – sequence: 2 givenname: Krzysztof orcidid: 0000-0002-8054-0386 surname: Smółka fullname: Smółka, Krzysztof – sequence: 3 givenname: Grzegorz orcidid: 0000-0002-6100-2654 surname: Zwoliński fullname: Zwoliński, Grzegorz |
BookMark | eNp9kE1LAzEQhoNUsNb-Ai8Bz6uzyX7lKHWtQkWw6nXJZpM2ZZvUJCv035tSDyLiXGZg5pl55z1HI2ONROgyhWtKGdzIXorgrNHCp0AIqTI4QWMCJUsYYWT0oz5DU-83EIOltKIwRos7GSKurcFW4SdpAu_xMjjpPQ5rZ4fVGtf1HC_1ysSONvhduzDE8kXyXoc9rs2njte3Eb1Ap4r3Xk6_8wS93devs4dk8Tx_nN0uEkEJCUmuyrykSkYZJQgqmeCcZ0IBT9s2V7nIGMis62gFLRMqbwlkHWe8AJanRVvRCbo67t05-zFIH5qNHVzU5xtSAAFaRQ_iFDtOCWe9d1I1Qgd-eDU4rvsmhebgX_OHf5Glv9id01vu9v9SX_jTeeE |
CitedBy_id | crossref_primary_10_1371_journal_pone_0305864 crossref_primary_10_1016_j_heliyon_2024_e38681 crossref_primary_10_3390_app122010385 crossref_primary_10_1109_TAFFC_2023_3312762 crossref_primary_10_1109_ACCESS_2024_3471590 crossref_primary_10_4236_jbbs_2023_132002 crossref_primary_10_1080_00038628_2024_2438185 crossref_primary_10_3390_electronics11101647 crossref_primary_10_1007_s00521_024_09809_5 crossref_primary_10_3390_brainsci14050470 crossref_primary_10_1038_s41598_024_72376_1 crossref_primary_10_1007_s13042_024_02455_2 crossref_primary_10_13005_bpj_3052 crossref_primary_10_3390_bios14030131 crossref_primary_10_3390_s22051785 crossref_primary_10_1371_journal_pone_0299127 crossref_primary_10_2196_48803 crossref_primary_10_3390_brainsci14090894 crossref_primary_10_3390_mi16030340 crossref_primary_10_1109_TNSRE_2023_3254551 crossref_primary_10_1109_ACCESS_2025_3528518 crossref_primary_10_1007_s11814_024_00227_w crossref_primary_10_3390_electronics12163468 crossref_primary_10_25046_aj080606 crossref_primary_10_3390_app13148298 crossref_primary_10_1016_j_aap_2024_107835 crossref_primary_10_3390_technologies12030038 |
Cites_doi | 10.1109/MSP.2014.2300511 10.20944/preprints202010.0616.v1 10.1007/978-3-030-00220-6_21 10.4324/9781315742397 10.3389/fnins.2018.00530 10.1016/j.eswa.2016.10.035 10.1109/JBHI.2018.2870963 10.1891/1933-3196.13.4.325 10.1016/j.ces.2004.04.031 10.18517/ijaseit.6.6.1072 10.1097/00004691-200307000-00004 10.1016/j.trac.2008.01.009 10.1109/TBME.2019.2897651 10.1007/978-1-4899-7641-3 10.1891/1933-3196.13.4.302 10.1016/j.jbi.2010.07.001 10.1113/jphysiol.2014.273995 10.1016/j.jbi.2019.103139 10.1016/j.clinph.2020.05.037 10.1371/journal.pone.0200306 10.1109/TBME.2007.891164 10.3390/e21070646 10.1201/9781315156415 10.1007/s11277-015-2565-1 10.1109/ACCESS.2020.3035540 10.1142/S0218339010003640 10.1007/978-0-387-39940-9_565 10.1016/B978-0-12-804490-2.00007-5 10.1007/s11749-016-0481-7 10.20944/preprints202107.0255.v1 10.1007/978-3-030-30581-9 10.1016/j.eswa.2006.04.016 10.1109/5.939827 10.1016/j.neuroimage.2014.12.040 10.1016/S0893-6080(00)00026-5 10.1109/SMC.2016.7844738 10.1109/IMBIOC.2019.8777843 10.3390/s17102435 10.1016/j.ijmst.2017.05.005 10.1109/10.841330 10.1007/s10479-005-5724-z 10.1007/978-3-540-24688-6_105 10.23919/MIPRO.2018.8400184 10.3390/s19133021 10.1016/j.trac.2011.07.010 10.1007/978-1-4471-5445-7 10.1093/bioinformatics/bth270 10.3389/fpsyg.2018.01061 10.1109/TSP.2018.2844203 10.1016/S1364-6613(00)01813-1 10.1109/TAU.1967.1161901 10.1891/1933-3196.12.3.132 10.1145/3332340.3332349 10.1109/TAFFC.2015.2451622 10.1046/j.1365-8711.2002.05425.x 10.1016/B978-0-12-809324-5.02208-2 10.1111/papt.12145 10.1007/978-3-319-49655-9_16 10.1109/BSN.2018.8329668 10.3389/fnins.2013.00267 10.1007/s00138-018-0960-9 10.1016/j.csda.2012.06.008 10.7717/peerj.9713 10.1007/978-981-10-8204-7_5 10.3390/s19214736 10.1016/0001-6918(65)90024-7 10.1037/h0054651 10.1162/105474603322955950 10.4324/9780429474187 10.1016/j.ctcp.2013.03.003 10.1016/S0166-2236(96)10065-5 10.3389/fpsyg.2018.01280 10.1002/hbm.20540 10.1109/51.844386 10.1109/SMC.2015.540 10.1007/978-981-13-1501-5_32 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.3390/electronics10222840 |
DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Databases Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-9292 |
ExternalDocumentID | 10_3390_electronics10222840 |
GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c322t-5f7573fe00070c3e9caaa4cf0a1bb5f5c490e4dd380b9cf5b204da9a609516b83 |
IEDL.DBID | BENPR |
ISSN | 2079-9292 |
IngestDate | Fri Jul 25 03:58:00 EDT 2025 Tue Jul 01 02:00:34 EDT 2025 Thu Apr 24 23:07:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c322t-5f7573fe00070c3e9caaa4cf0a1bb5f5c490e4dd380b9cf5b204da9a609516b83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3416-5554 0000-0002-8054-0386 0000-0002-6100-2654 |
OpenAccessLink | https://www.proquest.com/docview/2602038840?pq-origsite=%requestingapplication% |
PQID | 2602038840 |
PQPubID | 2032404 |
ParticipantIDs | proquest_journals_2602038840 crossref_citationtrail_10_3390_electronics10222840 crossref_primary_10_3390_electronics10222840 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Electronics (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Zhang (ref_8) 2017; 27 Ahn (ref_75) 2007; 33 Wiak (ref_95) 2020; 8 Iriarte (ref_79) 2003; 20 ref_91 Perna (ref_27) 2018; 9 ref_58 ref_57 ref_56 Kroese (ref_92) 2005; 134 ref_10 Engemann (ref_93) 2015; 108 ref_52 ref_96 ref_51 Wagh (ref_53) 2019; 33 Tarrant (ref_31) 2018; 9 ref_17 ref_15 ref_59 Greco (ref_42) 2018; 8 Gramfort (ref_60) 2013; 7 Faretta (ref_28) 2019; 13 Uddin (ref_76) 2015; 83 Refaeilzadeh (ref_88) 2009; 5 Yogesh (ref_18) 2017; 69 Lee (ref_69) 2004; 59 Saif (ref_23) 2019; 9 ref_24 ref_22 ref_21 ref_20 Wood (ref_11) 2018; 91 Grigoryan (ref_73) 2016; 7 ref_26 Jung (ref_77) 2001; 89 Lefter (ref_19) 2015; 7 Lin (ref_16) 2007; 54 Li (ref_25) 2019; 66 Chattopadhyay (ref_72) 2013; 57 Avots (ref_38) 2019; 30 Malandrone (ref_12) 2019; 13 Jebelli (ref_35) 2018; 2018 Ablin (ref_81) 2018; 66 ref_36 Jensen (ref_29) 1965; 24 Stroop (ref_46) 1935; 18 Engreitz (ref_65) 2010; 43 ref_32 Scholz (ref_64) 2004; 20 ref_30 ref_74 Kakavand (ref_14) 2018; 6 Gielkens (ref_13) 2018; 12 Williams (ref_49) 2020; 8 ref_39 Can (ref_4) 2019; 92 Xu (ref_67) 2009; 30 ref_37 Wang (ref_68) 2008; 27 Stone (ref_61) 2002; 6 Hari (ref_94) 1997; 20 Oja (ref_62) 2000; 13 Jebelli (ref_33) 2018; 23 Jas (ref_82) 2018; 12 Welch (ref_83) 1967; 15 ref_47 Maino (ref_71) 2002; 334 ref_45 ref_89 ref_44 Stinson (ref_54) 2013; 19 Ismail (ref_55) 2016; 6 ref_43 ref_87 Zhukov (ref_78) 2000; 19 ref_41 ref_85 ref_40 ref_84 ref_1 Sarela (ref_80) 2000; 47 ref_3 ref_2 Hosseini (ref_34) 2010; 18 Nazarov (ref_63) 2018; 12 Adali (ref_66) 2014; 31 Parastar (ref_70) 2012; 31 ref_48 ref_9 Collins (ref_5) 2014; 592 Biau (ref_86) 2016; 25 ref_7 Scholten (ref_90) 2020; 131 ref_6 |
References_xml | – volume: 31 start-page: 18 year: 2014 ident: ref_66 article-title: Diversity in Independent Component and Vector Analyses: Identifiability, algorithms, and applications in medical imaging publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2014.2300511 – ident: ref_89 doi: 10.20944/preprints202010.0616.v1 – ident: ref_40 doi: 10.1007/978-3-030-00220-6_21 – ident: ref_50 doi: 10.4324/9781315742397 – ident: ref_74 – volume: 12 start-page: 530 year: 2018 ident: ref_82 article-title: A reproducible MEG/EEG group study with the MNE software: Recommendations, quality assessments, and good practices publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00530 – volume: 2018 start-page: 43 year: 2018 ident: ref_35 article-title: A supervised learning-based construction workers’ stress recognition using a wearable electroencephalography (EEG) device publication-title: Constr. Res. Congr. – ident: ref_51 – volume: 6 start-page: 140 year: 2018 ident: ref_14 article-title: The efficacy of eye movement desensitization and reprocessing (EMDR) in reducing symptoms of anxiety disorders in sexually-abused students publication-title: J. Sch. Psychol. – volume: 69 start-page: 149 year: 2017 ident: ref_18 article-title: A new hybrid PSO assisted biogeography-based optimization for emotion and stress recognition from speech signal publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.10.035 – volume: 23 start-page: 1928 year: 2018 ident: ref_33 article-title: A Continuously Updated, Computationally Efficient Stress Recognition Framework Using Electroencephalogram (EEG) by Applying Online Multitask Learning Algorithms (OMTL) publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2018.2870963 – volume: 13 start-page: 325 year: 2019 ident: ref_28 article-title: Efficacy of EMDR therapy for anxiety disorders publication-title: J. EMDR Pract. Res. doi: 10.1891/1933-3196.13.4.325 – volume: 59 start-page: 2995 year: 2004 ident: ref_69 article-title: Statistical monitoring of dynamic processes based on dynamic independent component analysis publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2004.04.031 – volume: 6 start-page: 1005 year: 2016 ident: ref_55 article-title: Human emotion detection via brain waves study by using electroencephalogram (EEG) publication-title: Int. J. Adv. Sci. Eng. Inf. Technol. doi: 10.18517/ijaseit.6.6.1072 – volume: 20 start-page: 249 year: 2003 ident: ref_79 article-title: Independent component analysis as a tool to eliminate artifacts in EEG: A quantitative study publication-title: J. Clin. Neurophysiol. doi: 10.1097/00004691-200307000-00004 – volume: 27 start-page: 368 year: 2008 ident: ref_68 article-title: Independent component analysis and its applications in signal processing for analytical chemistry publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2008.01.009 – volume: 66 start-page: 2869 year: 2019 ident: ref_25 article-title: EEG based emotion recognition by combining functional connectivity network and local activations publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2019.2897651 – ident: ref_84 doi: 10.1007/978-1-4899-7641-3 – volume: 13 start-page: 302 year: 2019 ident: ref_12 article-title: A brief narrative summary of randomized controlled trials investigating EMDR treatment of patients with depression publication-title: J. EMDR Pract. Res. doi: 10.1891/1933-3196.13.4.302 – ident: ref_1 – volume: 43 start-page: 932 year: 2010 ident: ref_65 article-title: Independent component analysis: Mining microarray data for fundamental human gene expression modules publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2010.07.001 – volume: 592 start-page: 2989 year: 2014 ident: ref_5 article-title: The microbiota–gut–brain axis in gastrointestinal disorders: Stressed bugs, stressed brain or both? publication-title: J. Physiol. doi: 10.1113/jphysiol.2014.273995 – volume: 92 start-page: 103139 year: 2019 ident: ref_4 article-title: Stress detection in daily life scenarios using smart phones and wearable sensors: A survey publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2019.103139 – volume: 131 start-page: 2499 year: 2020 ident: ref_90 article-title: Transitions between repetitive tapping and upper limb freezing show impaired movement-related beta band modulation publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2020.05.037 – ident: ref_44 doi: 10.1371/journal.pone.0200306 – volume: 54 start-page: 1349 year: 2007 ident: ref_16 article-title: EEG-based assessment of driver cognitive responses in a dynamic virtual-reality driving environment publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2007.891164 – ident: ref_39 doi: 10.3390/e21070646 – ident: ref_56 doi: 10.1201/9781315156415 – ident: ref_52 – volume: 83 start-page: 2711 year: 2015 ident: ref_76 article-title: Applications of independent component analysis in wireless communication systems publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-015-2565-1 – volume: 8 start-page: 200351 year: 2020 ident: ref_95 article-title: Stress reduction using bilateral stimulation in virtual reality publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3035540 – volume: 18 start-page: 101 year: 2010 ident: ref_34 article-title: Emotional stress recognition system for affective computing based on bio-signals publication-title: J. Biol. Syst. doi: 10.1142/S0218339010003640 – ident: ref_48 – ident: ref_10 – volume: 5 start-page: 532 year: 2009 ident: ref_88 article-title: Cross-validation publication-title: Encycl. Database Syst. doi: 10.1007/978-0-387-39940-9_565 – ident: ref_57 doi: 10.1016/B978-0-12-804490-2.00007-5 – ident: ref_87 – volume: 25 start-page: 197 year: 2016 ident: ref_86 article-title: A random forest guided tour publication-title: Test doi: 10.1007/s11749-016-0481-7 – ident: ref_96 doi: 10.20944/preprints202107.0255.v1 – ident: ref_58 doi: 10.1007/978-3-030-30581-9 – volume: 33 start-page: 181 year: 2007 ident: ref_75 article-title: Extracting underlying meaningful features and canceling noise using independent component analysis for direct marketing publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2006.04.016 – volume: 89 start-page: 1107 year: 2001 ident: ref_77 article-title: Imaging brain dynamics using independent component analysis publication-title: Proc. IEEE doi: 10.1109/5.939827 – volume: 108 start-page: 328 year: 2015 ident: ref_93 article-title: Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.12.040 – volume: 13 start-page: 411 year: 2000 ident: ref_62 article-title: Independent component analysis: Algorithms and applications publication-title: Neural Netw. doi: 10.1016/S0893-6080(00)00026-5 – volume: 8 start-page: 1 year: 2018 ident: ref_42 article-title: Affective computing in virtual reality: Emotion recognition from brain and heartbeat dynamics using wearable sensors publication-title: Sci. Rep. – ident: ref_37 doi: 10.1109/SMC.2016.7844738 – ident: ref_59 – ident: ref_43 doi: 10.1109/IMBIOC.2019.8777843 – ident: ref_20 doi: 10.3390/s17102435 – volume: 27 start-page: 717 year: 2017 ident: ref_8 article-title: Head-mounted display-based intuitive virtual reality training system for the mining industry publication-title: Int. J. Min. Sci. Technol. doi: 10.1016/j.ijmst.2017.05.005 – volume: 47 start-page: 589 year: 2000 ident: ref_80 article-title: Independent component approach to the analysis of EEG and MEG recordings publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.841330 – volume: 134 start-page: 19 year: 2005 ident: ref_92 article-title: A tutorial on the cross-entropy method publication-title: Ann. Oper. Res. doi: 10.1007/s10479-005-5724-z – ident: ref_17 doi: 10.1007/978-3-540-24688-6_105 – ident: ref_30 doi: 10.23919/MIPRO.2018.8400184 – ident: ref_45 doi: 10.3390/s19133021 – volume: 31 start-page: 134 year: 2012 ident: ref_70 article-title: Is independent component analysis appropriate for multivariate resolution in analytical chemistry? publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2011.07.010 – ident: ref_3 – ident: ref_24 – ident: ref_9 doi: 10.1007/978-1-4471-5445-7 – ident: ref_47 – volume: 20 start-page: 2447 year: 2004 ident: ref_64 article-title: Metabolite fingerprinting: Detecting biological features by independent component analysis publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth270 – volume: 9 start-page: 1061 year: 2018 ident: ref_27 article-title: Commentary: “Cognitive Behavioral Therapy vs. Eye Movement Desensitization and Reprocessing for Treating Panic Disorder: A Randomized Controlled Trial” publication-title: Front. Psychol. doi: 10.3389/fpsyg.2018.01061 – volume: 66 start-page: 4040 year: 2018 ident: ref_81 article-title: Faster Independent Component Analysis by Preconditioning with Hessian Approximations publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2018.2844203 – volume: 6 start-page: 59 year: 2002 ident: ref_61 article-title: Independent component analysis: An introduction publication-title: Trends Cogn. Sci. doi: 10.1016/S1364-6613(00)01813-1 – volume: 15 start-page: 70 year: 1967 ident: ref_83 article-title: The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms publication-title: IEEE Trans. Audio Electroacoust. doi: 10.1109/TAU.1967.1161901 – volume: 12 start-page: 132 year: 2018 ident: ref_13 article-title: EMDR in older adults with posttraumatic stress disorder publication-title: J. EMDR Pract. Res. doi: 10.1891/1933-3196.12.3.132 – ident: ref_22 doi: 10.1145/3332340.3332349 – volume: 7 start-page: 162 year: 2015 ident: ref_19 article-title: Recognizing stress using semantics and modulation of speech and gestures publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2015.2451622 – volume: 334 start-page: 53 year: 2002 ident: ref_71 article-title: All-sky astrophysical component separation with Fast Independent Component Analysis (FASTICA) publication-title: Mon. Not. R. Astron. Soc. doi: 10.1046/j.1365-8711.2002.05425.x – ident: ref_2 doi: 10.1016/B978-0-12-809324-5.02208-2 – volume: 91 start-page: 63 year: 2018 ident: ref_11 article-title: EMDR as a treatment for long-term depression: A feasibility study publication-title: Psychol. Psychother. Theory Res. Pract. doi: 10.1111/papt.12145 – ident: ref_15 doi: 10.1007/978-3-319-49655-9_16 – ident: ref_6 – ident: ref_32 doi: 10.1109/BSN.2018.8329668 – volume: 7 start-page: 267 year: 2013 ident: ref_60 article-title: MEG and EEG data analysis with MNE-Python publication-title: Front. Neurosci. doi: 10.3389/fnins.2013.00267 – volume: 30 start-page: 975 year: 2019 ident: ref_38 article-title: Audiovisual emotion recognition in wild publication-title: Mach. Vis. Appl. doi: 10.1007/s00138-018-0960-9 – volume: 57 start-page: 17 year: 2013 ident: ref_72 article-title: Independent Component Analysis for the objective classification of globular clusters of the galaxy NGC 5128 publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2012.06.008 – volume: 8 start-page: e9713 year: 2020 ident: ref_49 article-title: A validation of Emotiv EPOC Flex saline for EEG and ERP research publication-title: PeerJ doi: 10.7717/peerj.9713 – ident: ref_85 – volume: 33 start-page: 37 year: 2019 ident: ref_53 article-title: Electroencephalograph (EEG) based emotion recognition system: A review publication-title: Innov. Electron. Commun. Eng. doi: 10.1007/978-981-10-8204-7_5 – ident: ref_41 doi: 10.3390/s19214736 – volume: 24 start-page: 398 year: 1965 ident: ref_29 article-title: Scoring the Stroop test publication-title: Acta Psychol. doi: 10.1016/0001-6918(65)90024-7 – volume: 12 start-page: 395145 year: 2018 ident: ref_63 article-title: Independent component analysis provides clinically relevant insights into the biology of melanoma patients publication-title: BioRxiv – ident: ref_91 – volume: 18 start-page: 643 year: 1935 ident: ref_46 article-title: Studies of interference in serial verbal reactions publication-title: J. Exp. Psychol. doi: 10.1037/h0054651 – ident: ref_7 doi: 10.1162/105474603322955950 – ident: ref_26 doi: 10.4324/9780429474187 – volume: 19 start-page: 114 year: 2013 ident: ref_54 article-title: A novel EEG for alpha brain state training, neurobiofeedback and behavior change publication-title: Complement. Ther. Clin. Pract. doi: 10.1016/j.ctcp.2013.03.003 – volume: 20 start-page: 44 year: 1997 ident: ref_94 article-title: Human cortical oscillations: A neuromagnetic view through the skull publication-title: Trends Neurosci. doi: 10.1016/S0166-2236(96)10065-5 – volume: 9 start-page: 1280 year: 2018 ident: ref_31 article-title: Virtual reality for anxiety reduction demonstrated by quantitative EEG: A pilot study publication-title: Front. Psychol. doi: 10.3389/fpsyg.2018.01280 – volume: 30 start-page: 711 year: 2009 ident: ref_67 article-title: Source-based morphometry: The use of independent component analysis to identify gray matter differences with application to schizophrenia publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20540 – volume: 7 start-page: 12 year: 2016 ident: ref_73 article-title: A stock market prediction method based on support vector machines (SVM) and independent component analysis (ICA) publication-title: Database Syst. J. – volume: 19 start-page: 87 year: 2000 ident: ref_78 article-title: Independent component analysis for EEG source localization publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/51.844386 – ident: ref_36 doi: 10.1109/SMC.2015.540 – ident: ref_21 doi: 10.1007/978-981-13-1501-5_32 – volume: 9 start-page: 34 year: 2019 ident: ref_23 article-title: A Review based on Brain Computer Interaction using EEG Headset for Physically Handicapped People publication-title: Int. J. Educ. Manag. Eng. |
SSID | ssj0000913830 |
Score | 2.445458 |
Snippet | This paper investigates the use of an electroencephalogram (EEG) signal to classify a subject’s stress level while using virtual reality (VR). For this... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 2840 |
SubjectTerms | Accuracy Algorithms Anxiety Artificial neural networks Classification Computer simulation Discriminant analysis Electroencephalography Emotions Investigations Machine learning Multilayer perceptrons Nervous system Psychological stress Psychotherapy Signal classification Signal monitoring Stress Support vector machines Traffic congestion Virtual reality |
Title | Detection of Mental Stress through EEG Signal in Virtual Reality Environment |
URI | https://www.proquest.com/docview/2602038840 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFH8RuOjB-BlRJD14dGFb2607GZQBMUAMiOG2tF1rSMxAwP_fdZQPE8O5H4fX9n31vd8P4EGz3KjzNHS0CgKHRIHnRMqNHM19kqqQY1GU_PcHQXdMXid0YhNuS1tWudGJhaJOZ9LkyBu53-0b5BLiPs2_HcMaZX5XLYVGCSq5CmasDJXnePA23GZZDOolw-4abgjn8X1jxy6zLIIdZtIe-ybpr0YuzEz7DE6tf4ia6wM9hyOVXcDJHmrgJfRaalUUUGVoptEahAeNip4PZGl3UBx30Gj6abaaZuhjujBtImioCq8bxbvutisYt-P3l65jSREcmb-9lUN1SEOslTHursQqkpxzIrXLPSGoppJEriJpipkrIqmp8F2S8ogbYDkvEAxfQzmbZeoGEKdppAMqAp4ygqUWJnzA-X4-kdTjvAr-Ri6JtIjhhrjiK8kjByPM5B9hVuFxu2i-Bsw4PL22EXhiX88y2Z317eHhOzj2TY1J0RtYg_Jq8aPucydhJepQYu1OHSrNVr83qtt78Qt-GMJB |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BGYAB8RTl6QE2orqxnSYDQghaCi0MvMQWbMdGlVBa2iDEn-I3YjsJLRLqxuzkhsv5XrnvO4ADHZqgzpOGp1UQeDQK6l6kcORp7tNENTgRbuT_-iZoP9CrJ_Y0A18lFsaOVZY-0TnqpC9tj7xm8m7fMpdQfDJ48-zWKPt3tVyhkZtFR31-mJJtdHx5br7voe-3mvdnba_YKuBJY7yZx3SDNYhWNjpiSVQkOedUaszrQjDNJI2woklCQiwiqZnwMU14xC0zWz0QITFyZ2GOEhPJLTK9dfHT07EcmyHBObmROce18S6bkSutQttkmQyAv_2_C2qtZVgqslF0mpvPCsyodBUWJzgK16B7rjI3rpWivkY55Q-6cwgTVCz5Qc3mBbrrvVhRvRQ99oYWlIJulcvxUXOMpVuHh39R1gZU0n6qNgFxlkQ6YCLgSUiJ1MIWK8TI86lkdc6r4Jd6iWXBT27XZLzGpk6xyoz_UGYVjn5eGuT0HNMf3ykVHhd3dRSPLWtr-vE-zLfvr7tx9_Kmsw0Lvp1ucajEHahkw3e1a9KTTOw5m0Dw_N9G-A1H8vv7 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BkRAcEKtYCvgAN6K6sZ3EB4SApuwVYhO3YDs2qoRSaIsQv8bXYWehICFunJPMYfLiWTLzHsCWiWxQF2noGR0EHuVB0-Mac88In6Y6FETmI_8XneD4lp7es_sx-Kh2YdxYZXUm5gd12lOuR96webfvmEsobphyLOKy1d57fvGcgpT701rJaRQQOdPvb7Z8G-yetOy73vb9dnxzeOyVCgOeskAeesyELCRGu0iJFdFcCSGoMlg0pWSGKcqxpmlKIiy5Mkz6mKaCC8fS1gxkRKzdcZgIXVVUg4mDuHN59dXhcYybEcEF1REhHDdGyjaDvNCKXMvlezj8GQ3yENeehZkyN0X7BZjmYExn8zD9jbFwAc5bepgPb2WoZ1BBAISu830TVEr-oDg-QtfdR2eqm6G7bt-tqKArnWf8KB5t1i3C7b-4awlqWS_Ty4AES7kJmAxEGlGijHSlC7H2fKpYU4gV8Cu_JKpkK3eiGU-JrVqcM5NfnLkCO18PPRdkHX_fXq8cnpRf7iAZ4Wz178ubMGkBmJyfdM7WYMp3oy75imIdasP-q163ucpQbpSgQPDw3zj8BMXmAZw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Mental+Stress+through+EEG+Signal+in+Virtual+Reality+Environment&rft.jtitle=Electronics+%28Basel%29&rft.au=Kami%C5%84ska%2C+Dorota&rft.au=Sm%C3%B3%C5%82ka%2C+Krzysztof&rft.au=Zwoli%C5%84ski%2C+Grzegorz&rft.date=2021-11-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=10&rft.issue=22&rft.spage=2840&rft_id=info:doi/10.3390%2Felectronics10222840&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics10222840 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |