Estimating Periodontal Stability Using Computer Vision

Periodontitis is a severe infection affecting oral and systemic health and is traditionally diagnosed through clinical probing—a process that is time-consuming, uncomfortable for patients, and subject to variability based on the operator’s skill. We hypothesized that computer vision can be used to e...

Full description

Saved in:
Bibliographic Details
Published inJournal of dental research Vol. 104; no. 7; pp. 725 - 733
Main Authors Feher, B., Werdich, A.A., Chen, C.-Y., Barrow, J., Lee, S.J., Palmer, N., Feres, M.
Format Journal Article
LanguageEnglish
Published Los Angeles, CA SAGE Publications 01.07.2025
SAGE PUBLICATIONS, INC
Subjects
Online AccessGet full text
ISSN0022-0345
1544-0591
1544-0591
DOI10.1177/00220345251316514

Cover

Loading…
Abstract Periodontitis is a severe infection affecting oral and systemic health and is traditionally diagnosed through clinical probing—a process that is time-consuming, uncomfortable for patients, and subject to variability based on the operator’s skill. We hypothesized that computer vision can be used to estimate periodontal stability from radiographs alone. At the tooth level, we used intraoral radiographs to detect and categorize individual teeth according to their periodontal stability and corresponding treatment needs: healthy (prevention), stable (maintenance), and unstable (active treatment). At the patient level, we assessed full-mouth series and classified patients as stable or unstable by the presence of at least 1 unstable tooth. Our 3-way tooth classification model achieved an area under the receiver operating characteristic curve of 0.71 for healthy teeth, 0.56 for stable, and 0.67 for unstable. The model achieved an F1 score of 0.45 for healthy teeth, 0.57 for stable, and 0.54 for unstable (recall, 0.70). Saliency maps generated by gradient-weighted class activation mapping primarily showed highly activated areas corresponding to clinically probed regions around teeth. Our binary patient classifier achieved an area under the receiver operating characteristic curve of 0.68 and an F1 score of 0.74 (recall, 0.70). Taken together, our results suggest that it is feasible to estimate periodontal stability, which traditionally requires clinical and radiographic examination, from radiographic signal alone using computer vision. Variations in model performance across different classes at the tooth level indicate the necessity of further refinement.
AbstractList Periodontitis is a severe infection affecting oral and systemic health and is traditionally diagnosed through clinical probing-a process that is time-consuming, uncomfortable for patients, and subject to variability based on the operator's skill. We hypothesized that computer vision can be used to estimate periodontal stability from radiographs alone. At the tooth level, we used intraoral radiographs to detect and categorize individual teeth according to their periodontal stability and corresponding treatment needs: healthy (prevention), stable (maintenance), and unstable (active treatment). At the patient level, we assessed full-mouth series and classified patients as stable or unstable by the presence of at least 1 unstable tooth. Our 3-way tooth classification model achieved an area under the receiver operating characteristic curve of 0.71 for healthy teeth, 0.56 for stable, and 0.67 for unstable. The model achieved an F score of 0.45 for healthy teeth, 0.57 for stable, and 0.54 for unstable (recall, 0.70). Saliency maps generated by gradient-weighted class activation mapping primarily showed highly activated areas corresponding to clinically probed regions around teeth. Our binary patient classifier achieved an area under the receiver operating characteristic curve of 0.68 and an F score of 0.74 (recall, 0.70). Taken together, our results suggest that it is feasible to estimate periodontal stability, which traditionally requires clinical and radiographic examination, from radiographic signal alone using computer vision. Variations in model performance across different classes at the tooth level indicate the necessity of further refinement.
Periodontitis is a severe infection affecting oral and systemic health and is traditionally diagnosed through clinical probing—a process that is time-consuming, uncomfortable for patients, and subject to variability based on the operator’s skill. We hypothesized that computer vision can be used to estimate periodontal stability from radiographs alone. At the tooth level, we used intraoral radiographs to detect and categorize individual teeth according to their periodontal stability and corresponding treatment needs: healthy (prevention), stable (maintenance), and unstable (active treatment). At the patient level, we assessed full-mouth series and classified patients as stable or unstable by the presence of at least 1 unstable tooth. Our 3-way tooth classification model achieved an area under the receiver operating characteristic curve of 0.71 for healthy teeth, 0.56 for stable, and 0.67 for unstable. The model achieved an F1 score of 0.45 for healthy teeth, 0.57 for stable, and 0.54 for unstable (recall, 0.70). Saliency maps generated by gradient-weighted class activation mapping primarily showed highly activated areas corresponding to clinically probed regions around teeth. Our binary patient classifier achieved an area under the receiver operating characteristic curve of 0.68 and an F1 score of 0.74 (recall, 0.70). Taken together, our results suggest that it is feasible to estimate periodontal stability, which traditionally requires clinical and radiographic examination, from radiographic signal alone using computer vision. Variations in model performance across different classes at the tooth level indicate the necessity of further refinement.
Periodontitis is a severe infection affecting oral and systemic health and is traditionally diagnosed through clinical probing-a process that is time-consuming, uncomfortable for patients, and subject to variability based on the operator's skill. We hypothesized that computer vision can be used to estimate periodontal stability from radiographs alone. At the tooth level, we used intraoral radiographs to detect and categorize individual teeth according to their periodontal stability and corresponding treatment needs: healthy (prevention), stable (maintenance), and unstable (active treatment). At the patient level, we assessed full-mouth series and classified patients as stable or unstable by the presence of at least 1 unstable tooth. Our 3-way tooth classification model achieved an area under the receiver operating characteristic curve of 0.71 for healthy teeth, 0.56 for stable, and 0.67 for unstable. The model achieved an F1 score of 0.45 for healthy teeth, 0.57 for stable, and 0.54 for unstable (recall, 0.70). Saliency maps generated by gradient-weighted class activation mapping primarily showed highly activated areas corresponding to clinically probed regions around teeth. Our binary patient classifier achieved an area under the receiver operating characteristic curve of 0.68 and an F1 score of 0.74 (recall, 0.70). Taken together, our results suggest that it is feasible to estimate periodontal stability, which traditionally requires clinical and radiographic examination, from radiographic signal alone using computer vision. Variations in model performance across different classes at the tooth level indicate the necessity of further refinement.Periodontitis is a severe infection affecting oral and systemic health and is traditionally diagnosed through clinical probing-a process that is time-consuming, uncomfortable for patients, and subject to variability based on the operator's skill. We hypothesized that computer vision can be used to estimate periodontal stability from radiographs alone. At the tooth level, we used intraoral radiographs to detect and categorize individual teeth according to their periodontal stability and corresponding treatment needs: healthy (prevention), stable (maintenance), and unstable (active treatment). At the patient level, we assessed full-mouth series and classified patients as stable or unstable by the presence of at least 1 unstable tooth. Our 3-way tooth classification model achieved an area under the receiver operating characteristic curve of 0.71 for healthy teeth, 0.56 for stable, and 0.67 for unstable. The model achieved an F1 score of 0.45 for healthy teeth, 0.57 for stable, and 0.54 for unstable (recall, 0.70). Saliency maps generated by gradient-weighted class activation mapping primarily showed highly activated areas corresponding to clinically probed regions around teeth. Our binary patient classifier achieved an area under the receiver operating characteristic curve of 0.68 and an F1 score of 0.74 (recall, 0.70). Taken together, our results suggest that it is feasible to estimate periodontal stability, which traditionally requires clinical and radiographic examination, from radiographic signal alone using computer vision. Variations in model performance across different classes at the tooth level indicate the necessity of further refinement.
Periodontitis is a severe infection affecting oral and systemic health and is traditionally diagnosed through clinical probing—a process that is time-consuming, uncomfortable for patients, and subject to variability based on the operator’s skill. We hypothesized that computer vision can be used to estimate periodontal stability from radiographs alone. At the tooth level, we used intraoral radiographs to detect and categorize individual teeth according to their periodontal stability and corresponding treatment needs: healthy (prevention), stable (maintenance), and unstable (active treatment). At the patient level, we assessed full-mouth series and classified patients as stable or unstable by the presence of at least 1 unstable tooth. Our 3-way tooth classification model achieved an area under the receiver operating characteristic curve of 0.71 for healthy teeth, 0.56 for stable, and 0.67 for unstable. The model achieved an F 1 score of 0.45 for healthy teeth, 0.57 for stable, and 0.54 for unstable (recall, 0.70). Saliency maps generated by gradient-weighted class activation mapping primarily showed highly activated areas corresponding to clinically probed regions around teeth. Our binary patient classifier achieved an area under the receiver operating characteristic curve of 0.68 and an F 1 score of 0.74 (recall, 0.70). Taken together, our results suggest that it is feasible to estimate periodontal stability, which traditionally requires clinical and radiographic examination, from radiographic signal alone using computer vision. Variations in model performance across different classes at the tooth level indicate the necessity of further refinement.
Author Chen, C.-Y.
Feres, M.
Lee, S.J.
Werdich, A.A.
Barrow, J.
Feher, B.
Palmer, N.
Author_xml – sequence: 1
  givenname: B.
  orcidid: 0000-0003-4386-6237
  surname: Feher
  fullname: Feher, B.
– sequence: 2
  givenname: A.A.
  orcidid: 0000-0002-1222-1180
  surname: Werdich
  fullname: Werdich, A.A.
– sequence: 3
  givenname: C.-Y.
  surname: Chen
  fullname: Chen, C.-Y.
– sequence: 4
  givenname: J.
  orcidid: 0000-0003-1899-9898
  surname: Barrow
  fullname: Barrow, J.
– sequence: 5
  givenname: S.J.
  surname: Lee
  fullname: Lee, S.J.
– sequence: 6
  givenname: N.
  surname: Palmer
  fullname: Palmer, N.
– sequence: 7
  givenname: M.
  orcidid: 0000-0002-2293-3392
  surname: Feres
  fullname: Feres, M.
  email: magda_feres@hsdm.harvard.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40091161$$D View this record in MEDLINE/PubMed
BookMark eNp1kE1LxDAQhoOsuB_6A7xIwYuXrpmkaZujLOsHLCjoei1pNl2ytM2apIf996Z0VVA8Dcw878w77xSNWtMqhC4BzwGy7BZjQjBNGGFAIWWQnKAJsCSJMeMwQpN-HvfAGE2d22EMnOT0DI0TjDlAChOULp3XjfC63UYvymqzMa0XdfTqRalr7Q_R2vWzhWn2nVc2etdOm_YcnVaiduriWGdofb98WzzGq-eHp8XdKpaUEB8zXrF0QzgwAFkmSiZljlXOQ49UkkOVBUuAKZHAcsFIiZWSsiQsE5AKrugM3Qx799Z8dMr5otFOqroWrTKdKyhkOcl5-Deg17_QnelsG9wVlEBKA8byQF0dqa5s1KbY2_C9PRRfiQQABkBa45xV1TcCuOhTL_6kHjTzQePEVv2c_V_wCemyfg8
Cites_doi 10.1002/JPER.17-0719
10.1002/JPER.17-0721
10.1016/j.adaj.2023.05.010
10.1007/s00784-022-04708-2
10.1038/s41598-019-44839-3
10.1016/S0140-6736(24)00757-8
10.1038/s41368-024-00294-z
10.1007/s11263-019-01228-7
10.3389/frai.2022.979525
10.1111/prd.12330
10.48550/arXiv.2305.19112
10.1111/j.1600-0757.2012.00450.x
10.1111/jcpe.13506
10.1111/prd.12344
10.1111/jcpe.13290
10.1111/jcpe.13807
10.1902/jop.2001.72.2.210
10.1111/j.1600-0765.1996.tb00500.x
10.1038/s41598-020-60291-0
10.1111/jcpe.13406
10.1111/jcpe.12945
10.1016/j.jdent.2024.105318
10.1038/s41598-019-53758-2
10.5624/isd.20230092
10.3390/jcm12227189
10.1177/0022034512457373
10.1111/idj.12326
10.1038/s41467-022-29637-2
10.7150/thno.57775
10.3390/diagnostics13233562
10.1111/jcpe.12732
10.1111/odi.14436
ContentType Journal Article
Copyright International Association for Dental, Oral, and Craniofacial Research and American Association for Dental, Oral, and Craniofacial Research 2025
Copyright SAGE PUBLICATIONS, INC. 2025
Copyright_xml – notice: International Association for Dental, Oral, and Craniofacial Research and American Association for Dental, Oral, and Craniofacial Research 2025
– notice: Copyright SAGE PUBLICATIONS, INC. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
NAPCQ
U9A
7X8
DOI 10.1177/00220345251316514
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
ProQuest Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Career and Technical Education (Alumni Edition)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Dentistry
EISSN 1544-0591
EndPage 733
ExternalDocumentID 40091161
10_1177_00220345251316514
10.1177_00220345251316514
Genre Journal Article
GrantInformation_xml – fundername: Osteology Foundation
  grantid: 22-005
  funderid: https://doi.org/10.13039/501100007619
– fundername: HSDM Initiative to Integrate Oral Health and Medicine
– fundername: HMS Dean’s Innovation Award
  grantid: FP-0034428
– fundername: World Health Organization
  grantid: 001
GroupedDBID ---
-TM
.2E
.2J
.2N
.55
01A
0R~
18M
1~K
29K
2WC
31R
31U
31X
31Z
34H
4.4
53G
54M
5GY
5RE
5VS
7RQ
7RV
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8FW
8R4
8R5
AABMB
AABOD
AACMV
AACTG
AADUE
AAEWN
AAGGD
AAGLT
AAGMC
AAITX
AAJPV
AAKGS
AANSI
AAOVH
AAPEO
AAQXH
AAQXI
AARDL
AARDX
AARIX
AATAA
AATBZ
AAUAS
AAWTL
AAXOT
AAZBJ
ABAWP
ABCCA
ABCJG
ABDWY
ABEIX
ABFWQ
ABHKI
ABIDT
ABJZC
ABKRH
ABLUO
ABPGX
ABPNF
ABQKF
ABQXT
ABRHV
ABUJY
ABUWG
ABVFX
ABYTW
ACARO
ACDSZ
ACDXX
ACFEJ
ACFMA
ACGBL
ACGFO
ACGFS
ACGZU
ACJER
ACJTF
ACLFY
ACLHI
ACLZU
ACOFE
ACOXC
ACPRK
ACROE
ACSIQ
ACSVP
ACUAV
ACUIR
ACXKE
ACXMB
ADBBV
ADDLC
ADEBD
ADEIA
ADMPF
ADNON
ADRRZ
ADSTG
ADTBJ
ADUKL
ADVBO
ADZZY
AECGH
AEDTQ
AEILP
AEKYL
AENEX
AEPTA
AEQLS
AERKM
AESZF
AEUHG
AEWDL
AEWHI
AEXFG
AEXNY
AFEET
AFFNX
AFGYO
AFKRA
AFKRG
AFMOU
AFOSN
AFQAA
AFUIA
AGHKR
AGKLV
AGNHF
AGPXR
AGWFA
AHDMH
AHJOV
AHMBA
AI.
AIGRN
AJEFB
AJMMQ
AJUZI
AJXAJ
ALIPV
ALKWR
ALMA_UNASSIGNED_HOLDINGS
AMCVQ
ANDLU
ARTOV
AUTPY
AUVAJ
AYAKG
B3H
B8M
B8R
B8Z
B94
BBNVY
BBRGL
BDDNI
BENPR
BHPHI
BKEYQ
BKIIM
BKSCU
BPACV
BPHCQ
BSEHC
BVXVI
BWJAD
BYIEH
CAG
CBRKF
CCPQU
CDWPY
CFDXU
COF
CORYS
CQQTX
CUTAK
D-I
DB0
DC-
DF0
DO-
DOPDO
DU5
DV7
DWQXO
E3Z
EBD
EBS
EJD
EX3
F5P
FHBDP
FYUFA
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
GX1
H13
HCIFZ
HF~
HMCUK
HZ~
J8X
K.F
LK8
M1P
M7P
N9A
NAPCQ
O9-
OHT
P.9
P.B
P2P
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q1R
Q2X
Q7L
Q7U
Q83
ROL
S01
S0X
SASJQ
SAUOL
SCNPE
SFC
SGO
SGR
SGV
SGZ
SHG
SPQ
SPV
TDR
UKHRP
VH1
W8F
WOQ
WOW
X7M
ZE2
ZGI
ZONMY
ZPPRI
ZRKOI
ZSSAH
AAYXX
AJGYC
CITATION
AAEJI
AAPII
AJVBE
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
AJHME
K9.
U9A
7X8
ID FETCH-LOGICAL-c322t-59f56d291511cb4ec4b80e896d22fc91f70191032c158a52b0eeccb257a16a9e3
ISSN 0022-0345
1544-0591
IngestDate Fri Jul 11 14:31:48 EDT 2025
Wed Aug 13 09:54:34 EDT 2025
Mon Jul 21 05:56:51 EDT 2025
Thu Jul 03 08:30:46 EDT 2025
Tue Jun 17 22:27:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords deep learning
medical informatics computing
radiography
artificial intelligence
periodontal medicine
diagnostic imaging
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c322t-59f56d291511cb4ec4b80e896d22fc91f70191032c158a52b0eeccb257a16a9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1899-9898
0000-0002-2293-3392
0000-0002-1222-1180
0000-0003-4386-6237
PMID 40091161
PQID 3216328958
PQPubID 47467
PageCount 9
ParticipantIDs proquest_miscellaneous_3178289059
proquest_journals_3216328958
pubmed_primary_40091161
crossref_primary_10_1177_00220345251316514
sage_journals_10_1177_00220345251316514
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Los Angeles, CA
PublicationPlace_xml – name: Los Angeles, CA
– name: United States
– name: Alexandria
PublicationTitle Journal of dental research
PublicationTitleAlternate J Dent Res
PublicationYear 2025
Publisher SAGE Publications
SAGE PUBLICATIONS, INC
Publisher_xml – name: SAGE Publications
– name: SAGE PUBLICATIONS, INC
References Genco, Sanz 2020 2000; 83
Büttner, Rokhshad, Brinz, Issa, Chaurasia, Uribe, Karteva, Chala, Tichy, Schwendicke 2024; 150
Grossi, Dunford, Ho, Koch, Machtei, Genco 1996; 31
Feres, Louzoun, Haber, Faveri, Figueiredo, Levin 2018; 68
Sanz, Herrera, Kebschull, Chapple, Jepsen, Beglundh, Sculean, Tonetti 2020
Chapple, Mealey, Van Dyke, Bartold, Dommisch, Eickholz, Geisinger, Genco, Glogauer, Goldstein 2018; 89
Chen, Zhong, Dong, Wong, Wen 2021; 48
Hamamci, Er, Simsar, Yuksel, Gultekin, Ozdemir, Yang, Li, Pati, Stadlinger 2023; 2305
2024; 403
Hoss, Meyer, Wölfle, Wülk, Meusburger, Meier, Hickel, Gruhn, Hesenius, Kühnisch 2023; 12
Scannapieco, Gershovich 2020 2000; 84
Kim, Lee, Song, Jung 2019; 9
Bartold, Van Dyke 2013 2000; 62
Cui, Fang, Mei, Zhang, Yu, Liu, Jiang, Sun, Ma, Huang 2022; 13
Wang, Hao, Di Gianfilippo, Sugai, Li, Gong, Kornman, Wang, Kamada, Xie 2021; 11
Papapanou, Sanz, Buduneli, Dietrich, Feres, Fine, Flemmig, Garcia, Giannobile, Graziani 2018; 89
Patil, Joda, Soffe, Awan, Fageeh, Tovani-Palone, Licari 2023; 154
Tonetti, Jepsen, Jin, Otomo-Corgel 2017; 44
Nogueira-Reis, Morgan, Nomidis, Van Gerven, Oliveira-Santos, Jacobs, Tabchoury 2023; 27
Eke, Dye, Wei, Thornton-Evans, Genco 2012; 91
Zhang, Wang, Wu, Wang, Hu, Qu, Zhang, Li 2024; 30
Dujic, Meyer, Hoss, Wölfle, Wülk, Meusburger, Meier, Gruhn, Hesenius, Hickel 2023; 13
Marini, Tonetti, Nibali, Rojas, Aimetti, Cairo, Cavalcanti, Crea, Ferrarotti, Graziani 2021; 48
Patel, Su, Tellez, Albandar, Rao, Iyer, Shi, Wu 2022; 5
Lee, Jeon, Strauss, Jung, Gruber 2020; 10
Feres, Retamal-Valdes, Faveri, Duarte, Shibli, Soares, Miranda, Teles, Goodson, Hasturk 2020; 22
Tariq, Nakhi, Salah, Eltayeb, Abdulla, Najim, Khedr, Elkerdasy, Al-Rawi, Alkawas 2023; 53
Tonetti, Greenwell, Kornman 2018; 45
Liu, Xie, Wang, Liu, Liu, Zhao, Bai, Liu 2024; 16
Herrera, Sanz, Shapira, Brotons, Chapple, Frese, Graziani, Hobbs, Huck, Hummers 2023; 50
Selvaraju, Cogswell, Das, Vedantam, Parikh, Batra 2020; 128
Krois, Ekert, Meinhold, Golla, Kharbot, Wittemeier, Dörfer, Schwendicke 2019; 9
Billings, Holtfreter, Papapanou, Mitnik, Kocher, Dye 2018
Daly, Mitchell, Highfield, Grossberg, Stewart 2001; 72
e_1_3_3_30_1
e_1_3_3_18_1
e_1_3_3_17_1
e_1_3_3_19_1
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_13_1
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_15_1
e_1_3_3_36_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_31_1
e_1_3_3_11_1
e_1_3_3_32_1
Billings M (e_1_3_3_3_1) 2018
e_1_3_3_7_1
e_1_3_3_6_1
e_1_3_3_9_1
e_1_3_3_8_1
Feres M (e_1_3_3_12_1) 2020; 22
e_1_3_3_29_1
e_1_3_3_28_1
cr-split#-e_1_3_3_34_1.1
cr-split#-e_1_3_3_34_1.2
e_1_3_3_25_1
e_1_3_3_24_1
e_1_3_3_27_1
e_1_3_3_26_1
e_1_3_3_21_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_4_1
e_1_3_3_22_1
References_xml – volume: 89
  year: 2018
  article-title: Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: consensus report of workgroup 1 of the 2017 World Workshop on the Classification of Periodontal and Peri-implant Diseases and Conditions
  publication-title: J Periodontol
– volume: 9
  start-page: 17615
  issue: 1
  year: 2019
  article-title: DeNTNet: deep neural transfer network for the detection of periodontal bone loss using panoramic dental radiographs
  publication-title: Sci Rep
– volume: 10
  start-page: 3665
  issue: 1
  year: 2020
  article-title: Digital scanning is more accurate than using a periodontal probe to measure the keratinized tissue width
  publication-title: Sci Rep
– volume: 11
  start-page: 6703
  issue: 14
  year: 2021
  end-page: 6716
  article-title: Machine learning-assisted immune profiling stratifies peri-implantitis patients with unique microbial colonization and clinical outcomes
  publication-title: Theranostics
– start-page: 4
  year: 2020
  end-page: 60
  article-title: Treatment of stage I-III periodontitis—the EFP S3 level clinical practice guideline
  publication-title: J Clin Periodontol
– volume: 31
  start-page: 330
  issue: 5
  year: 1996
  end-page: 336
  article-title: Sources of error for periodontal probing measurements
  publication-title: J Periodontal Res
– year: 2018
  article-title: Age-dependent distribution of periodontitis in two countries: findings from NHANES 2009 to 2014 and SHIP-Trend 2008 to 2012
  publication-title: J Clin Periodontol
– volume: 2305
  start-page: 19112
  year: 2023
  article-title: DENTEX: an abnormal tooth detection with dental enumeration and diagnosis benchmark for panoramic X-rays
  publication-title: arXiv [Preprint]
– volume: 72
  start-page: 210
  issue: 2
  year: 2001
  end-page: 214
  article-title: Bacteremia due to periodontal probing: a clinical and microbiological investigation
  publication-title: J Periodontol
– volume: 154
  start-page: 795
  issue: 9
  year: 2023
  end-page: 804
  article-title: Efficacy of artificial intelligence in the detection of periodontal bone loss and classification of periodontal diseases: a systematic review
  publication-title: J Am Dent Assoc
– volume: 30
  start-page: 754
  issue: 2
  year: 2024
  end-page: 768
  article-title: The global burden of periodontal diseases in 204 countries and territories from 1990 to 2019
  publication-title: Oral Dis
– volume: 403
  start-page: 2133
  issue: 10440
  year: 2024
  end-page: 2161
  article-title: Global incidence, prevalence, years lived with disability (YLDS), disability-adjusted life-years (DALYS), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021
  publication-title: Lancet
– volume: 12
  start-page: 7189
  issue: 22
  year: 2023
  article-title: Detection of periodontal bone loss on periapical radiographs—a diagnostic study using different convolutional neural networks
  publication-title: J Clin Med
– volume: 5
  start-page: 979525
  year: 2022
  article-title: Developing and testing a prediction model for periodontal disease using machine learning and big electronic dental record data
  publication-title: Front Artif Intell
– volume: 22
  start-page: 41
  issue: 2
  year: 2020
  end-page: 53
  article-title: Proposal of a clinical endpoint for periodontal trials: the treat-to-target approach
  publication-title: J Int Acad Periodontol
– volume: 89
  year: 2018
  article-title: Periodontitis: consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-implant Diseases and Conditions
  publication-title: J Periodontol
– volume: 13
  start-page: 2096
  issue: 1
  year: 2022
  article-title: A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images
  publication-title: Nat Commun
– volume: 68
  start-page: 39
  issue: 1
  year: 2018
  end-page: 46
  article-title: Support vector machine-based differentiation between aggressive and chronic periodontitis using microbial profiles
  publication-title: Int Dent J
– volume: 13
  start-page: 3562
  issue: 23
  year: 2023
  article-title: Automatized detection of periodontal bone loss on periapical radiographs by vision transformer networks
  publication-title: Diagnostics (Basel)
– volume: 27
  start-page: 1133
  issue: 3
  year: 2023
  end-page: 1141
  article-title: Three-dimensional maxillary virtual patient creation by convolutional neural network-based segmentation on cone-beam computed tomography images
  publication-title: Clin Oral Investig
– volume: 62
  start-page: 203
  issue: 1
  year: 2013 2000
  end-page: 217
  article-title: Periodontitis: a host-mediated disruption of microbial homeostasis
  publication-title: Periodontol
– volume: 50
  start-page: 819
  issue: 6
  year: 2023
  end-page: 841
  article-title: Association between periodontal diseases and cardiovascular diseases, diabetes and respiratory diseases: consensus report of the joint workshop by the European Federation of Periodontology (EFP) and the European arm of the World Organization of Family Doctors (WONCA Europe)
  publication-title: J Clin Periodontol
– volume: 48
  start-page: 205
  issue: 2
  year: 2021
  end-page: 215
  article-title: The staging and grading system in defining periodontitis cases: consistency and accuracy amongst periodontal experts, general dentists and undergraduate students
  publication-title: J Clin Periodontol
– volume: 91
  start-page: 914
  issue: 10
  year: 2012
  end-page: 920
  article-title: Prevalence of periodontitis in adults in the United States: 2009 and 2010
  publication-title: J Dent Res
– volume: 83
  start-page: 7
  issue: 1
  year: 2020 2000
  end-page: 13
  article-title: Clinical and public health implications of periodontal and systemic diseases: an overview
  publication-title: Periodontol
– volume: 45
  year: 2018
  article-title: Staging and grading of periodontitis: framework and proposal of a new classification and case definition
  publication-title: J Clin Periodontol
– volume: 48
  start-page: 1165
  issue: 9
  year: 2021
  end-page: 1188
  article-title: Global, regional, and national burden of severe periodontitis, 1990–2019: an analysis of the Global Burden of Disease Study 2019
  publication-title: J Clin Periodontol
– volume: 84
  start-page: 9
  issue: 1
  year: 2020 2000
  end-page: 13
  article-title: The prevention of periodontal disease—an overview
  publication-title: Periodontol
– volume: 16
  start-page: 34
  issue: 1
  year: 2024
  article-title: Fully automatic AI segmentation of oral surgery-related tissues based on cone beam computed tomography images
  publication-title: Int J Oral Sci
– volume: 128
  start-page: 336
  year: 2020
  end-page: 359
  article-title: Grad-CAM: visual explanations from deep networks via gradient-based localization
  publication-title: Int J Comput Vis
– volume: 44
  start-page: 456
  issue: 5
  year: 2017
  end-page: 462
  article-title: Impact of the global burden of periodontal diseases on health, nutrition and wellbeing of mankind: a call for global action
  publication-title: J Clin Periodontol
– volume: 150
  start-page: 105318
  year: 2024
  article-title: Core outcomes measures in dental computer vision studies (DentalCOMS)
  publication-title: J Dent
– volume: 53
  start-page: 193
  issue: 3
  year: 2023
  end-page: 198
  article-title: Efficiency and accuracy of artificial intelligence in the radiographic detection of periodontal bone loss: a systematic review
  publication-title: Imaging Sci Dent
– volume: 9
  start-page: 8495
  issue: 1
  year: 2019
  article-title: Deep learning for the radiographic detection of periodontal bone loss
  publication-title: Sci Rep
– ident: e_1_3_3_36_1
– ident: e_1_3_3_5_1
  doi: 10.1002/JPER.17-0719
– ident: e_1_3_3_25_1
  doi: 10.1002/JPER.17-0721
– ident: e_1_3_3_27_1
  doi: 10.1016/j.adaj.2023.05.010
– volume: 22
  start-page: 41
  issue: 2
  year: 2020
  ident: e_1_3_3_12_1
  article-title: Proposal of a clinical endpoint for periodontal trials: the treat-to-target approach
  publication-title: J Int Acad Periodontol
– ident: e_1_3_3_24_1
  doi: 10.1007/s00784-022-04708-2
– ident: e_1_3_3_20_1
  doi: 10.1038/s41598-019-44839-3
– ident: #cr-split#-e_1_3_3_34_1.1
– ident: e_1_3_3_13_1
  doi: 10.1016/S0140-6736(24)00757-8
– ident: e_1_3_3_22_1
  doi: 10.1038/s41368-024-00294-z
– ident: e_1_3_3_30_1
  doi: 10.1007/s11263-019-01228-7
– ident: e_1_3_3_26_1
  doi: 10.3389/frai.2022.979525
– year: 2018
  ident: e_1_3_3_3_1
  article-title: Age-dependent distribution of periodontitis in two countries: findings from NHANES 2009 to 2014 and SHIP-Trend 2008 to 2012
  publication-title: J Clin Periodontol
– ident: e_1_3_3_29_1
  doi: 10.1111/prd.12330
– ident: e_1_3_3_16_1
  doi: 10.48550/arXiv.2305.19112
– ident: e_1_3_3_2_1
  doi: 10.1111/j.1600-0757.2012.00450.x
– ident: e_1_3_3_6_1
  doi: 10.1111/jcpe.13506
– ident: e_1_3_3_14_1
  doi: 10.1111/prd.12344
– ident: e_1_3_3_28_1
  doi: 10.1111/jcpe.13290
– ident: e_1_3_3_17_1
  doi: 10.1111/jcpe.13807
– ident: e_1_3_3_8_1
  doi: 10.1902/jop.2001.72.2.210
– ident: e_1_3_3_15_1
  doi: 10.1111/j.1600-0765.1996.tb00500.x
– ident: e_1_3_3_21_1
  doi: 10.1038/s41598-020-60291-0
– ident: e_1_3_3_23_1
  doi: 10.1111/jcpe.13406
– ident: e_1_3_3_32_1
  doi: 10.1111/jcpe.12945
– ident: #cr-split#-e_1_3_3_34_1.2
– ident: e_1_3_3_4_1
  doi: 10.1016/j.jdent.2024.105318
– ident: e_1_3_3_19_1
  doi: 10.1038/s41598-019-53758-2
– ident: e_1_3_3_31_1
  doi: 10.5624/isd.20230092
– ident: e_1_3_3_18_1
  doi: 10.3390/jcm12227189
– ident: e_1_3_3_10_1
  doi: 10.1177/0022034512457373
– ident: e_1_3_3_11_1
  doi: 10.1111/idj.12326
– ident: e_1_3_3_7_1
  doi: 10.1038/s41467-022-29637-2
– ident: e_1_3_3_35_1
  doi: 10.7150/thno.57775
– ident: e_1_3_3_9_1
  doi: 10.3390/diagnostics13233562
– ident: e_1_3_3_33_1
  doi: 10.1111/jcpe.12732
– ident: e_1_3_3_37_1
  doi: 10.1111/odi.14436
SSID ssj0019283
Score 2.4743772
Snippet Periodontitis is a severe infection affecting oral and systemic health and is traditionally diagnosed through clinical probing—a process that is...
Periodontitis is a severe infection affecting oral and systemic health and is traditionally diagnosed through clinical probing-a process that is...
SourceID proquest
pubmed
crossref
sage
SourceType Aggregation Database
Index Database
Publisher
StartPage 725
SubjectTerms Adult
Computer vision
Female
Humans
Male
Middle Aged
Patients
Periodontitis
Periodontitis - diagnostic imaging
Radiography
ROC Curve
Teeth
Title Estimating Periodontal Stability Using Computer Vision
URI https://journals.sagepub.com/doi/full/10.1177/00220345251316514
https://www.ncbi.nlm.nih.gov/pubmed/40091161
https://www.proquest.com/docview/3216328958
https://www.proquest.com/docview/3178289059
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFLa4PMAL2hiwbmUK0iSkoURxGufy2HZchATigU7lqbIT57FFozxsv37fsRM3LVSCvUSVW9muz8Xfic_5zNj3CoKVWik_TwsEKFlW-gqe0k9EXomMV1FpDtpvbpOrUXw9FuOV6pK5Coq_r9aV_I9U0Qa5UpXsOyTrOkUDPkO-eELCeL5JxuewT0KciPbvMB4iTFPbCABpUl7_nI3csT7d3HD2yxSSr8GjZcPy33q_ZTBiLdVBsDjFgVbZK6T6Qd81D-tCj2HgP7jGgSN5vA7abxgi4bJR2xn_Yc_SPga6dpRx7AOa8SVPam8SrlUmbfnFNBKtLTa13Bcvvbc5P6bhaDQgrx5PhK0xXWbKXtnBXF4hb8jLV7vYZNsR4gjy3JdjlwMEdGt5Wps_WB97G0au1S6WgcuLaGQpE9CAk_sPbK-Wote3KvKRbejpPtv5SZlgdJnfJ5YsVMVrqYrnVMUzquI1quJZVTlgo4vz--GVX1-Z4RfwzHOfLCwpoxw4jhcq1kWsslBnOdqiqsh5Rez7xKFYcJFJEalQw4YV_Lbkicx175BtTWdT_Zl5eVryJAuTUEpOpJUwXFh1LCUQbYQ4ocN-NOsxebTMKJO1699h3WbFJrUBPU2omx4CfpF12In7Gu6NzqzkVM-e8Rue0jsBaFqHHdmVdqNh-8FWTTM5paVfdLx2Gl_eM-evbHdhDV22Nf_9rI-BQOfqm9Gif9UjdeU
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+Periodontal+Stability+Using+Computer+Vision&rft.jtitle=Journal+of+dental+research&rft.au=Feher%2C+B.&rft.au=Werdich%2C+A.A.&rft.au=Chen%2C+C.-Y.&rft.au=Barrow%2C+J.&rft.date=2025-07-01&rft.issn=0022-0345&rft.eissn=1544-0591&rft.volume=104&rft.issue=7&rft.spage=725&rft.epage=733&rft_id=info:doi/10.1177%2F00220345251316514&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_00220345251316514
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0345&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0345&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0345&client=summon