Privacy-Protected Contactless Sleep Parameters Measurement Using a Defocused Camera

Sleep monitoring plays a vital role in various scenarios such as hospitals and living-assisted homes, contributing to the prevention of sleep accidents as well as the assessment of sleep health. Contactless camera-based sleep monitoring is promising due to its user-friendly nature and rich visual se...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 28; no. 8; pp. 4660 - 4673
Main Authors Zhu, Yingen, Hong, Hong, Wang, Wenjin
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2024
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2024.3396397

Cover

Loading…
Abstract Sleep monitoring plays a vital role in various scenarios such as hospitals and living-assisted homes, contributing to the prevention of sleep accidents as well as the assessment of sleep health. Contactless camera-based sleep monitoring is promising due to its user-friendly nature and rich visual semantics. However, the privacy concern of video cameras limits their applications in sleep monitoring. In this paper, we explored the opportunity of using a defocused camera that does not allow identification of the monitored subject when measuring sleep-related parameters, as face detection and recognition are impossible on optically blurred images. We proposed a novel privacy-protected sleep parameters measurement framework, including a physiological measurement branch and a semantic analysis branch based on ResNet-18. Four important sleep parameters are measured: heart rate (HR), respiration rate (RR), sleep posture, and movement. The results of HR, RR, and movement have strong correlations with the reference (HR: R = 0.9076; RR: R = 0.9734; Movement: R = 0.9946). The overall mean absolute errors (MAE) for HR and RR are 5.2 bpm and 1.5 bpm respectively. The measurement of HR and RR achieve reliable estimation coverage of 72.1% and 93.6%, respectively. The sleep posture detection achieves an overall accuracy of 94.5%. Experimental results show that the defocused camera is promising for sleep monitoring as it fundamentally eliminates the privacy issue while still allowing the measurement of multiple parameters that are essential for sleep health informatics.
AbstractList Sleep monitoring plays a vital role in various scenarios such as hospitals and living-assisted homes, contributing to the prevention of sleep accidents as well as the assessment of sleep health. Contactless camera-based sleep monitoring is promising due to its user-friendly nature and rich visual semantics. However, the privacy concern of video cameras limits their applications in sleep monitoring. In this paper, we explored the opportunity of using a defocused camera that does not allow identification of the monitored subject when measuring sleep-related parameters, as face detection and recognition are impossible on optically blurred images. We proposed a novel privacy-protected sleep parameters measurement framework, including a physiological measurement branch and a semantic analysis branch based on ResNet-18. Four important sleep parameters are measured: heart rate (HR), respiration rate (RR), sleep posture, and movement. The results of HR, RR, and movement have strong correlations with the reference (HR: R = 0.9076; RR: R = 0.9734; Movement: R = 0.9946). The overall mean absolute errors (MAE) for HR and RR are 5.2 bpm and 1.5 bpm respectively. The measurement of HR and RR achieve reliable estimation coverage of 72.1% and 93.6%, respectively. The sleep posture detection achieves an overall accuracy of 94.5%. Experimental results show that the defocused camera is promising for sleep monitoring as it fundamentally eliminates the privacy issue while still allowing the measurement of multiple parameters that are essential for sleep health informatics.
Sleep monitoring plays a vital role in various scenarios such as hospitals and living-assisted homes, contributing to the prevention of sleep accidents as well as the assessment of sleep health. Contactless camera-based sleep monitoring is promising due to its user-friendly nature and rich visual semantics. However, the privacy concern of video cameras limits their applications in sleep monitoring. In this paper, we explored the opportunity of using a defocused camera that does not allow identification of the monitored subject when measuring sleep-related parameters, as face detection and recognition are impossible on optically blurred images. We proposed a novel privacy-protected sleep parameters measurement framework, including a physiological measurement branch and a semantic analysis branch based on ResNet-18. Four important sleep parameters are measured: heart rate (HR), respiration rate (RR), sleep posture, and movement. The results of HR, RR, and movement have strong correlations with the reference (HR: R = 0.9076; RR: R = 0.9734; Movement: R = 0.9946). The overall mean absolute errors (MAE) for HR and RR are 5.2 bpm and 1.5 bpm respectively. The measurement of HR and RR achieve reliable estimation coverage of 72.1% and 93.6%, respectively. The sleep posture detection achieves an overall accuracy of 94.5%. Experimental results show that the defocused camera is promising for sleep monitoring as it fundamentally eliminates the privacy issue while still allowing the measurement of multiple parameters that are essential for sleep health informatics.Sleep monitoring plays a vital role in various scenarios such as hospitals and living-assisted homes, contributing to the prevention of sleep accidents as well as the assessment of sleep health. Contactless camera-based sleep monitoring is promising due to its user-friendly nature and rich visual semantics. However, the privacy concern of video cameras limits their applications in sleep monitoring. In this paper, we explored the opportunity of using a defocused camera that does not allow identification of the monitored subject when measuring sleep-related parameters, as face detection and recognition are impossible on optically blurred images. We proposed a novel privacy-protected sleep parameters measurement framework, including a physiological measurement branch and a semantic analysis branch based on ResNet-18. Four important sleep parameters are measured: heart rate (HR), respiration rate (RR), sleep posture, and movement. The results of HR, RR, and movement have strong correlations with the reference (HR: R = 0.9076; RR: R = 0.9734; Movement: R = 0.9946). The overall mean absolute errors (MAE) for HR and RR are 5.2 bpm and 1.5 bpm respectively. The measurement of HR and RR achieve reliable estimation coverage of 72.1% and 93.6%, respectively. The sleep posture detection achieves an overall accuracy of 94.5%. Experimental results show that the defocused camera is promising for sleep monitoring as it fundamentally eliminates the privacy issue while still allowing the measurement of multiple parameters that are essential for sleep health informatics.
Author Zhu, Yingen
Hong, Hong
Wang, Wenjin
Author_xml – sequence: 1
  givenname: Yingen
  orcidid: 0009-0005-3811-7532
  surname: Zhu
  fullname: Zhu, Yingen
  organization: Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
– sequence: 2
  givenname: Hong
  orcidid: 0000-0002-1528-8479
  surname: Hong
  fullname: Hong, Hong
  email: hongnju@njust.edu.cn
  organization: School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China
– sequence: 3
  givenname: Wenjin
  orcidid: 0000-0001-7832-5444
  surname: Wang
  fullname: Wang, Wenjin
  email: wangwj3@sustech.edu.cn
  organization: Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38696292$$D View this record in MEDLINE/PubMed
BookMark eNp9kFtLwzAYQINM3Jz7AYJIH33pzK1p86jzMmXiYO65JOlXqfQyk1TYv7dlm4gP5iUhnPN9cE7RoG5qQOic4CkhWF4_386fphRTPmVMCibjIzSiRCQhpTgZHN5E8iGaOPeBu5N0X1KcoCFLhBRU0hFaLW3xpcw2XNrGg_GQBbOm9sr4EpwLViXAJlgqqyrwYF3wAsq1FiqofbB2Rf0eqOAO8sa0rlc7zKozdJyr0sFkf4_R-uH-bTYPF6-PT7ObRWgYpT6MBBOCZ5QlmrM403kkCY5zo0FrEQEHFmONM2Y41kqziOcGgBBNeRILpWI2Rle7uRvbfLbgfFoVzkBZqhqa1qUMR1gyQQXv0Ms92uoKsnRji0rZbXoI0QFkBxjbOGch_0EITvvead877Xun-96dE_9xTOGVL7p-VhXlv-bFziwA4NemiMSRxOwbaZyMsw
CODEN IJBHA9
CitedBy_id crossref_primary_10_1109_JIOT_2024_3484752
Cites_doi 10.3390/s18020401
10.1109/jbhi.2024.3371687
10.1109/JSEN.2021.3059681
10.1145/3386082
10.1109/BHI56158.2022.9926833
10.1109/TBME.2017.2676160
10.1109/SMC53992.2023.10394350
10.1364/BOE.510925
10.1109/EMBC.2018.8513201
10.1109/TBME.2015.2508602
10.1109/TMTT.2017.2658567
10.3390/s21051836
10.1002/kjm2.12130
10.3390/s17071685
10.1109/CVPRW53098.2021.00430
10.1007/978-3-642-19309-5_55
10.3390/bdcc3010003
10.3390/s21041135
10.5194/isprsannals-II-3-205-2014
10.1007/978-3-540-74958-5_28
10.1109/CVPR46437.2021.01458
10.1007/s00737-009-0070-9
10.5664/jcsm.2258
10.1109/TBME.2018.2882396
10.1109/ICDSP.2017.8096119
10.1145/3491245
10.3390/s20051360
10.1109/ICCV48922.2021.00387
10.1145/1920261.1920276
10.1109/TIFS.2022.3142993
10.3390/s140508895
10.1038/s41598-018-31411-8
10.1088/1361-6579/ab1f1d
10.1007/978-3-319-57959-7
10.1109/EMBC.2013.6610380
10.1109/AVSS.2013.6636641
10.1109/JBHI.2020.3045859
10.1016/j.smrv.2011.02.005
10.1109/TBME.2016.2609282
10.1109/EMBC40787.2023.10340693
10.1109/TBME.2014.2356291
10.1109/TMTT.2020.3020082
10.1109/CVPR.2016.90
10.1109/CVPRW59228.2023.00644
10.1109/LGRS.2022.3166665
10.1136/bmjopen-2019-031150
10.1109/CVPRW59228.2023.00638
10.1109/ASYU50717.2020.9259802
10.1109/TNSRE.2020.3048121
10.1109/EMBC40787.2023.10340835
10.1088/1361-6579/ac5b49
10.1007/s11325-022-02698-9
10.1109/EMBC40787.2023.10340050
10.1109/jbhi.2024.3370394
10.1007/s11042-023-15775-2
10.1145/3397311
10.1371/journal.pone.0190466
10.1109/JSEN.2009.2030987
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/JBHI.2024.3396397
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 4673
ExternalDocumentID 38696292
10_1109_JBHI_2024_3396397
10517590
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation
  grantid: 2023A1515012983
  funderid: 10.13039/501100021171
– fundername: National Key Research and Development Program of China; National Key R&D Program of China
  grantid: 2022YFC2407800
  funderid: 10.13039/501100012166
– fundername: Shenzhen Science and Technology Program
  grantid: JSGGKQTD20221103174704003
– fundername: Shenzhen Municipal Fundamental Research Program; Shenzhen Fundamental Research Program
  grantid: JCYJ20220530112601003
  funderid: 10.13039/501100017607
– fundername: National Natural Science Foundation of China
  grantid: 62271241; 62350068
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c322t-563664d238b437dbf59107fcbebb65e4e370b0d3c40bab354fcee11b24876aa73
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Fri Jul 11 09:28:57 EDT 2025
Thu Apr 03 07:03:43 EDT 2025
Tue Jul 01 03:00:09 EDT 2025
Thu Apr 24 22:54:47 EDT 2025
Wed Aug 27 02:35:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-563664d238b437dbf59107fcbebb65e4e370b0d3c40bab354fcee11b24876aa73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0005-3811-7532
0000-0002-1528-8479
0000-0001-7832-5444
PMID 38696292
PQID 3050936264
PQPubID 23479
PageCount 14
ParticipantIDs pubmed_primary_38696292
crossref_citationtrail_10_1109_JBHI_2024_3396397
ieee_primary_10517590
proquest_miscellaneous_3050936264
crossref_primary_10_1109_JBHI_2024_3396397
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref55
ref10
ref54
Pardau (ref12) 2018; 23
ref17
Jin (ref48) 2021
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref47
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Sun (ref42) 2014; 27
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref60
Voigt (ref11) 2017; 10
ref61
References_xml – ident: ref9
  doi: 10.3390/s18020401
– ident: ref34
  doi: 10.1109/jbhi.2024.3371687
– ident: ref27
  doi: 10.1109/JSEN.2021.3059681
– ident: ref45
  doi: 10.1145/3386082
– ident: ref32
  doi: 10.1109/BHI56158.2022.9926833
– ident: ref16
  doi: 10.1109/TBME.2017.2676160
– ident: ref47
  doi: 10.1109/SMC53992.2023.10394350
– start-page: 994
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  year: 2021
  ident: ref48
  article-title: CAFE: Catastrophic data leakage in vertical federated learning
– ident: ref33
  doi: 10.1364/BOE.510925
– ident: ref26
  doi: 10.1109/EMBC.2018.8513201
– ident: ref29
  doi: 10.1109/TBME.2015.2508602
– volume: 23
  start-page: 68
  year: 2018
  ident: ref12
  article-title: The California consumer privacy act: Towards a European-style privacy regime in the United States
  publication-title: J. Tech. L. Poly
– ident: ref18
  doi: 10.1109/TMTT.2017.2658567
– ident: ref59
  doi: 10.3390/s21051836
– ident: ref5
  doi: 10.1002/kjm2.12130
– ident: ref37
  doi: 10.3390/s17071685
– ident: ref60
  doi: 10.1109/CVPRW53098.2021.00430
– ident: ref55
  doi: 10.1007/978-3-642-19309-5_55
– ident: ref17
  doi: 10.3390/bdcc3010003
– ident: ref24
  doi: 10.3390/s21041135
– ident: ref50
  doi: 10.5194/isprsannals-II-3-205-2014
– ident: ref53
  doi: 10.1007/978-3-540-74958-5_28
– ident: ref56
  doi: 10.1109/CVPR46437.2021.01458
– ident: ref3
  doi: 10.1007/s00737-009-0070-9
– ident: ref40
  doi: 10.5664/jcsm.2258
– ident: ref14
  doi: 10.1109/TBME.2018.2882396
– ident: ref25
  doi: 10.1109/ICDSP.2017.8096119
– ident: ref4
  doi: 10.1145/3491245
– ident: ref22
  doi: 10.3390/s20051360
– ident: ref43
  doi: 10.1109/ICCV48922.2021.00387
– ident: ref46
  doi: 10.1145/1920261.1920276
– ident: ref49
  doi: 10.1109/TIFS.2022.3142993
– ident: ref13
  doi: 10.3390/s140508895
– ident: ref6
  doi: 10.1038/s41598-018-31411-8
– ident: ref7
  doi: 10.1088/1361-6579/ab1f1d
– volume: 10
  start-page: 10
  volume-title: The EU General Data Protection Regulation (GDPR), A Practical Guide
  year: 2017
  ident: ref11
  doi: 10.1007/978-3-319-57959-7
– ident: ref19
  doi: 10.1109/EMBC.2013.6610380
– ident: ref44
  doi: 10.1109/AVSS.2013.6636641
– ident: ref38
  doi: 10.1109/JBHI.2020.3045859
– ident: ref41
  doi: 10.1016/j.smrv.2011.02.005
– ident: ref51
  doi: 10.1109/TBME.2016.2609282
– ident: ref61
  doi: 10.1109/EMBC40787.2023.10340693
– ident: ref15
  doi: 10.1109/TBME.2014.2356291
– ident: ref20
  doi: 10.1109/TMTT.2020.3020082
– ident: ref52
  doi: 10.1109/CVPR.2016.90
– ident: ref35
  doi: 10.1109/CVPRW59228.2023.00644
– ident: ref23
  doi: 10.1109/LGRS.2022.3166665
– ident: ref57
  doi: 10.1136/bmjopen-2019-031150
– ident: ref10
  doi: 10.1109/CVPRW59228.2023.00638
– ident: ref54
  doi: 10.1109/ASYU50717.2020.9259802
– ident: ref8
  doi: 10.1109/TNSRE.2020.3048121
– volume: 27
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2014
  ident: ref42
  article-title: Deep learning face representation by joint identification-verification
– ident: ref39
  doi: 10.1109/EMBC40787.2023.10340835
– ident: ref30
  doi: 10.1088/1361-6579/ac5b49
– ident: ref1
  doi: 10.1007/s11325-022-02698-9
– ident: ref31
  doi: 10.1109/EMBC40787.2023.10340050
– ident: ref58
  doi: 10.1109/jbhi.2024.3370394
– ident: ref36
  doi: 10.1007/s11042-023-15775-2
– ident: ref21
  doi: 10.1145/3397311
– ident: ref28
  doi: 10.1371/journal.pone.0190466
– ident: ref2
  doi: 10.1109/JSEN.2009.2030987
SSID ssj0000816896
Score 2.4349017
Snippet Sleep monitoring plays a vital role in various scenarios such as hospitals and living-assisted homes, contributing to the prevention of sleep accidents as well...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4660
SubjectTerms Adult
Biomedical measurement
Biomedical monitoring
Cameras
Contactless sensing
defocused camera
Female
Heart Rate - physiology
Humans
Image Processing, Computer-Assisted - methods
Male
Middle Aged
Monitoring
Movement - physiology
Optical variables measurement
Polysomnography - instrumentation
Polysomnography - methods
Privacy
privacy protection
Respiratory Rate - physiology
Sleep - physiology
Sleep apnea
sleep monitoring
Video Recording - methods
Young Adult
Title Privacy-Protected Contactless Sleep Parameters Measurement Using a Defocused Camera
URI https://ieeexplore.ieee.org/document/10517590
https://www.ncbi.nlm.nih.gov/pubmed/38696292
https://www.proquest.com/docview/3050936264
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS9xAEB-sD-JLtdaPq21ZwSchZ5LdbG4frVauwsmBCr6F_ZiAeNyJd1do_3pnNrmrCkrf8rCbTXZmmO_fAByGEIzLFXkn2NOJktokbIUkSoeiTkNWZyU3OA8udf9GXdwWt22zeuyFQcRYfIZdfoy5_DDxcw6VkYQXpO0MeegfiM-aZq1lQCVOkIjzuHJ6SEgSVZvFzFJzfPGj_4u8wVx1pTSczFqHNdnTRucmf6GS4oyVt83NqHbON-By8cFNtcl9dz5zXf_3FZbjf__RJnxsDVBx0nDMJ1jB8RasDdoU-2e4Gj7e_bb-TzJsEBwwCEawsp6YajoVVyPEBzG0XNPFwJxi8C_IKGL9gbDiDGs6espbLQe9tuHm_Of1aT9pJy8kngR8lhRaaq0CqXOnZBlcXZBVUdbeoXO6QIWyTF0apFeps04WqiZdm2VM9FJbW8odWB1PxrgHQpI_RlZG6WwPlSVnKws690Yrhn3JM-xAurj8yrew5DwdY1RF9yQ1FZOuYtJVLek6cLTc8tBgcry3eJuv_dnC5sY7cLAgcUUSxWkSO8bJfFpJhsRhlB7Vgd2G9svdC5b58sZb92GdD28qBL_C6uxxjt_Iapm575FbnwDsk-NP
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB5VIFEu0FIogT62Uk-VHGzvep090gcKlESRAImbtY-xVIESRBIk-PXMrJ2UVqLqzYdde70zo3l_A_A5hGBcrsg7wZ5OlNQmYSskUToUdRqyOiu5wXkw1P0LdXJZXLbN6rEXBhFj8Rl2-THm8sPEzzlURhJekLYz5KGvkuJXRdOutQypxBkScSJXTg8JyaJq85hZag5OvvaPyR_MVVdKw-msdViTPW10bvI_lFKcsvK8wRkVz9EmDBdHbupNrrrzmev6h7_QHP_7n17BRmuCisOGZ17DCxxvwdqgTbK_gbPR7a876--TUYPhgEEwhpX1xFbTqTi7RrwRI8tVXQzNKQa_w4wiViAIK75jTZ-e8lbLYa9tuDj6cf6tn7SzFxJPIj5LCi21VoEUulOyDK4uyK4oa-_QOV2gQlmmLg3Sq9RZJwtVk7bNMiZ7qa0t5Q6sjCdj3AUhySMjO6N0tofKkruVBZ17oxUDv-QZdiBdXH7lW2Byno9xXUUHJTUVk65i0lUt6TrwZbnlpkHl-Nfibb72JwubG-_ApwWJK5IpTpTYMU7m00oyKA7j9KgOvG1ov9y9YJm9Z976EV72zwen1enx8Oc-rPNBmnrBd7Ayu53je7JhZu5D5NxH_5LmnA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Privacy-Protected+Contactless+Sleep+Parameters+Measurement+Using+a+Defocused+Camera&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Zhu%2C+Yingen&rft.au=Hong%2C+Hong&rft.au=Wang%2C+Wenjin&rft.date=2024-08-01&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=28&rft.issue=8&rft.spage=4660&rft.epage=4673&rft_id=info:doi/10.1109%2FJBHI.2024.3396397&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JBHI_2024_3396397
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon