Privacy-Protected Contactless Sleep Parameters Measurement Using a Defocused Camera
Sleep monitoring plays a vital role in various scenarios such as hospitals and living-assisted homes, contributing to the prevention of sleep accidents as well as the assessment of sleep health. Contactless camera-based sleep monitoring is promising due to its user-friendly nature and rich visual se...
Saved in:
Published in | IEEE journal of biomedical and health informatics Vol. 28; no. 8; pp. 4660 - 4673 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.08.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2168-2194 2168-2208 2168-2208 |
DOI | 10.1109/JBHI.2024.3396397 |
Cover
Loading…
Abstract | Sleep monitoring plays a vital role in various scenarios such as hospitals and living-assisted homes, contributing to the prevention of sleep accidents as well as the assessment of sleep health. Contactless camera-based sleep monitoring is promising due to its user-friendly nature and rich visual semantics. However, the privacy concern of video cameras limits their applications in sleep monitoring. In this paper, we explored the opportunity of using a defocused camera that does not allow identification of the monitored subject when measuring sleep-related parameters, as face detection and recognition are impossible on optically blurred images. We proposed a novel privacy-protected sleep parameters measurement framework, including a physiological measurement branch and a semantic analysis branch based on ResNet-18. Four important sleep parameters are measured: heart rate (HR), respiration rate (RR), sleep posture, and movement. The results of HR, RR, and movement have strong correlations with the reference (HR: R = 0.9076; RR: R = 0.9734; Movement: R = 0.9946). The overall mean absolute errors (MAE) for HR and RR are 5.2 bpm and 1.5 bpm respectively. The measurement of HR and RR achieve reliable estimation coverage of 72.1% and 93.6%, respectively. The sleep posture detection achieves an overall accuracy of 94.5%. Experimental results show that the defocused camera is promising for sleep monitoring as it fundamentally eliminates the privacy issue while still allowing the measurement of multiple parameters that are essential for sleep health informatics. |
---|---|
AbstractList | Sleep monitoring plays a vital role in various scenarios such as hospitals and living-assisted homes, contributing to the prevention of sleep accidents as well as the assessment of sleep health. Contactless camera-based sleep monitoring is promising due to its user-friendly nature and rich visual semantics. However, the privacy concern of video cameras limits their applications in sleep monitoring. In this paper, we explored the opportunity of using a defocused camera that does not allow identification of the monitored subject when measuring sleep-related parameters, as face detection and recognition are impossible on optically blurred images. We proposed a novel privacy-protected sleep parameters measurement framework, including a physiological measurement branch and a semantic analysis branch based on ResNet-18. Four important sleep parameters are measured: heart rate (HR), respiration rate (RR), sleep posture, and movement. The results of HR, RR, and movement have strong correlations with the reference (HR: R = 0.9076; RR: R = 0.9734; Movement: R = 0.9946). The overall mean absolute errors (MAE) for HR and RR are 5.2 bpm and 1.5 bpm respectively. The measurement of HR and RR achieve reliable estimation coverage of 72.1% and 93.6%, respectively. The sleep posture detection achieves an overall accuracy of 94.5%. Experimental results show that the defocused camera is promising for sleep monitoring as it fundamentally eliminates the privacy issue while still allowing the measurement of multiple parameters that are essential for sleep health informatics. Sleep monitoring plays a vital role in various scenarios such as hospitals and living-assisted homes, contributing to the prevention of sleep accidents as well as the assessment of sleep health. Contactless camera-based sleep monitoring is promising due to its user-friendly nature and rich visual semantics. However, the privacy concern of video cameras limits their applications in sleep monitoring. In this paper, we explored the opportunity of using a defocused camera that does not allow identification of the monitored subject when measuring sleep-related parameters, as face detection and recognition are impossible on optically blurred images. We proposed a novel privacy-protected sleep parameters measurement framework, including a physiological measurement branch and a semantic analysis branch based on ResNet-18. Four important sleep parameters are measured: heart rate (HR), respiration rate (RR), sleep posture, and movement. The results of HR, RR, and movement have strong correlations with the reference (HR: R = 0.9076; RR: R = 0.9734; Movement: R = 0.9946). The overall mean absolute errors (MAE) for HR and RR are 5.2 bpm and 1.5 bpm respectively. The measurement of HR and RR achieve reliable estimation coverage of 72.1% and 93.6%, respectively. The sleep posture detection achieves an overall accuracy of 94.5%. Experimental results show that the defocused camera is promising for sleep monitoring as it fundamentally eliminates the privacy issue while still allowing the measurement of multiple parameters that are essential for sleep health informatics.Sleep monitoring plays a vital role in various scenarios such as hospitals and living-assisted homes, contributing to the prevention of sleep accidents as well as the assessment of sleep health. Contactless camera-based sleep monitoring is promising due to its user-friendly nature and rich visual semantics. However, the privacy concern of video cameras limits their applications in sleep monitoring. In this paper, we explored the opportunity of using a defocused camera that does not allow identification of the monitored subject when measuring sleep-related parameters, as face detection and recognition are impossible on optically blurred images. We proposed a novel privacy-protected sleep parameters measurement framework, including a physiological measurement branch and a semantic analysis branch based on ResNet-18. Four important sleep parameters are measured: heart rate (HR), respiration rate (RR), sleep posture, and movement. The results of HR, RR, and movement have strong correlations with the reference (HR: R = 0.9076; RR: R = 0.9734; Movement: R = 0.9946). The overall mean absolute errors (MAE) for HR and RR are 5.2 bpm and 1.5 bpm respectively. The measurement of HR and RR achieve reliable estimation coverage of 72.1% and 93.6%, respectively. The sleep posture detection achieves an overall accuracy of 94.5%. Experimental results show that the defocused camera is promising for sleep monitoring as it fundamentally eliminates the privacy issue while still allowing the measurement of multiple parameters that are essential for sleep health informatics. |
Author | Zhu, Yingen Hong, Hong Wang, Wenjin |
Author_xml | – sequence: 1 givenname: Yingen orcidid: 0009-0005-3811-7532 surname: Zhu fullname: Zhu, Yingen organization: Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China – sequence: 2 givenname: Hong orcidid: 0000-0002-1528-8479 surname: Hong fullname: Hong, Hong email: hongnju@njust.edu.cn organization: School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China – sequence: 3 givenname: Wenjin orcidid: 0000-0001-7832-5444 surname: Wang fullname: Wang, Wenjin email: wangwj3@sustech.edu.cn organization: Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38696292$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kFtLwzAYQINM3Jz7AYJIH33pzK1p86jzMmXiYO65JOlXqfQyk1TYv7dlm4gP5iUhnPN9cE7RoG5qQOic4CkhWF4_386fphRTPmVMCibjIzSiRCQhpTgZHN5E8iGaOPeBu5N0X1KcoCFLhBRU0hFaLW3xpcw2XNrGg_GQBbOm9sr4EpwLViXAJlgqqyrwYF3wAsq1FiqofbB2Rf0eqOAO8sa0rlc7zKozdJyr0sFkf4_R-uH-bTYPF6-PT7ObRWgYpT6MBBOCZ5QlmrM403kkCY5zo0FrEQEHFmONM2Y41kqziOcGgBBNeRILpWI2Rle7uRvbfLbgfFoVzkBZqhqa1qUMR1gyQQXv0Ms92uoKsnRji0rZbXoI0QFkBxjbOGch_0EITvvead877Xun-96dE_9xTOGVL7p-VhXlv-bFziwA4NemiMSRxOwbaZyMsw |
CODEN | IJBHA9 |
CitedBy_id | crossref_primary_10_1109_JIOT_2024_3484752 |
Cites_doi | 10.3390/s18020401 10.1109/jbhi.2024.3371687 10.1109/JSEN.2021.3059681 10.1145/3386082 10.1109/BHI56158.2022.9926833 10.1109/TBME.2017.2676160 10.1109/SMC53992.2023.10394350 10.1364/BOE.510925 10.1109/EMBC.2018.8513201 10.1109/TBME.2015.2508602 10.1109/TMTT.2017.2658567 10.3390/s21051836 10.1002/kjm2.12130 10.3390/s17071685 10.1109/CVPRW53098.2021.00430 10.1007/978-3-642-19309-5_55 10.3390/bdcc3010003 10.3390/s21041135 10.5194/isprsannals-II-3-205-2014 10.1007/978-3-540-74958-5_28 10.1109/CVPR46437.2021.01458 10.1007/s00737-009-0070-9 10.5664/jcsm.2258 10.1109/TBME.2018.2882396 10.1109/ICDSP.2017.8096119 10.1145/3491245 10.3390/s20051360 10.1109/ICCV48922.2021.00387 10.1145/1920261.1920276 10.1109/TIFS.2022.3142993 10.3390/s140508895 10.1038/s41598-018-31411-8 10.1088/1361-6579/ab1f1d 10.1007/978-3-319-57959-7 10.1109/EMBC.2013.6610380 10.1109/AVSS.2013.6636641 10.1109/JBHI.2020.3045859 10.1016/j.smrv.2011.02.005 10.1109/TBME.2016.2609282 10.1109/EMBC40787.2023.10340693 10.1109/TBME.2014.2356291 10.1109/TMTT.2020.3020082 10.1109/CVPR.2016.90 10.1109/CVPRW59228.2023.00644 10.1109/LGRS.2022.3166665 10.1136/bmjopen-2019-031150 10.1109/CVPRW59228.2023.00638 10.1109/ASYU50717.2020.9259802 10.1109/TNSRE.2020.3048121 10.1109/EMBC40787.2023.10340835 10.1088/1361-6579/ac5b49 10.1007/s11325-022-02698-9 10.1109/EMBC40787.2023.10340050 10.1109/jbhi.2024.3370394 10.1007/s11042-023-15775-2 10.1145/3397311 10.1371/journal.pone.0190466 10.1109/JSEN.2009.2030987 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1109/JBHI.2024.3396397 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2168-2208 |
EndPage | 4673 |
ExternalDocumentID | 38696292 10_1109_JBHI_2024_3396397 10517590 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation grantid: 2023A1515012983 funderid: 10.13039/501100021171 – fundername: National Key Research and Development Program of China; National Key R&D Program of China grantid: 2022YFC2407800 funderid: 10.13039/501100012166 – fundername: Shenzhen Science and Technology Program grantid: JSGGKQTD20221103174704003 – fundername: Shenzhen Municipal Fundamental Research Program; Shenzhen Fundamental Research Program grantid: JCYJ20220530112601003 funderid: 10.13039/501100017607 – fundername: National Natural Science Foundation of China grantid: 62271241; 62350068 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c322t-563664d238b437dbf59107fcbebb65e4e370b0d3c40bab354fcee11b24876aa73 |
IEDL.DBID | RIE |
ISSN | 2168-2194 2168-2208 |
IngestDate | Fri Jul 11 09:28:57 EDT 2025 Thu Apr 03 07:03:43 EDT 2025 Tue Jul 01 03:00:09 EDT 2025 Thu Apr 24 22:54:47 EDT 2025 Wed Aug 27 02:35:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c322t-563664d238b437dbf59107fcbebb65e4e370b0d3c40bab354fcee11b24876aa73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0009-0005-3811-7532 0000-0002-1528-8479 0000-0001-7832-5444 |
PMID | 38696292 |
PQID | 3050936264 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmed_primary_38696292 crossref_citationtrail_10_1109_JBHI_2024_3396397 ieee_primary_10517590 proquest_miscellaneous_3050936264 crossref_primary_10_1109_JBHI_2024_3396397 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE journal of biomedical and health informatics |
PublicationTitleAbbrev | JBHI |
PublicationTitleAlternate | IEEE J Biomed Health Inform |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref57 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref55 ref10 ref54 Pardau (ref12) 2018; 23 ref17 Jin (ref48) 2021 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref47 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Sun (ref42) 2014; 27 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref60 Voigt (ref11) 2017; 10 ref61 |
References_xml | – ident: ref9 doi: 10.3390/s18020401 – ident: ref34 doi: 10.1109/jbhi.2024.3371687 – ident: ref27 doi: 10.1109/JSEN.2021.3059681 – ident: ref45 doi: 10.1145/3386082 – ident: ref32 doi: 10.1109/BHI56158.2022.9926833 – ident: ref16 doi: 10.1109/TBME.2017.2676160 – ident: ref47 doi: 10.1109/SMC53992.2023.10394350 – start-page: 994 volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst. year: 2021 ident: ref48 article-title: CAFE: Catastrophic data leakage in vertical federated learning – ident: ref33 doi: 10.1364/BOE.510925 – ident: ref26 doi: 10.1109/EMBC.2018.8513201 – ident: ref29 doi: 10.1109/TBME.2015.2508602 – volume: 23 start-page: 68 year: 2018 ident: ref12 article-title: The California consumer privacy act: Towards a European-style privacy regime in the United States publication-title: J. Tech. L. Poly – ident: ref18 doi: 10.1109/TMTT.2017.2658567 – ident: ref59 doi: 10.3390/s21051836 – ident: ref5 doi: 10.1002/kjm2.12130 – ident: ref37 doi: 10.3390/s17071685 – ident: ref60 doi: 10.1109/CVPRW53098.2021.00430 – ident: ref55 doi: 10.1007/978-3-642-19309-5_55 – ident: ref17 doi: 10.3390/bdcc3010003 – ident: ref24 doi: 10.3390/s21041135 – ident: ref50 doi: 10.5194/isprsannals-II-3-205-2014 – ident: ref53 doi: 10.1007/978-3-540-74958-5_28 – ident: ref56 doi: 10.1109/CVPR46437.2021.01458 – ident: ref3 doi: 10.1007/s00737-009-0070-9 – ident: ref40 doi: 10.5664/jcsm.2258 – ident: ref14 doi: 10.1109/TBME.2018.2882396 – ident: ref25 doi: 10.1109/ICDSP.2017.8096119 – ident: ref4 doi: 10.1145/3491245 – ident: ref22 doi: 10.3390/s20051360 – ident: ref43 doi: 10.1109/ICCV48922.2021.00387 – ident: ref46 doi: 10.1145/1920261.1920276 – ident: ref49 doi: 10.1109/TIFS.2022.3142993 – ident: ref13 doi: 10.3390/s140508895 – ident: ref6 doi: 10.1038/s41598-018-31411-8 – ident: ref7 doi: 10.1088/1361-6579/ab1f1d – volume: 10 start-page: 10 volume-title: The EU General Data Protection Regulation (GDPR), A Practical Guide year: 2017 ident: ref11 doi: 10.1007/978-3-319-57959-7 – ident: ref19 doi: 10.1109/EMBC.2013.6610380 – ident: ref44 doi: 10.1109/AVSS.2013.6636641 – ident: ref38 doi: 10.1109/JBHI.2020.3045859 – ident: ref41 doi: 10.1016/j.smrv.2011.02.005 – ident: ref51 doi: 10.1109/TBME.2016.2609282 – ident: ref61 doi: 10.1109/EMBC40787.2023.10340693 – ident: ref15 doi: 10.1109/TBME.2014.2356291 – ident: ref20 doi: 10.1109/TMTT.2020.3020082 – ident: ref52 doi: 10.1109/CVPR.2016.90 – ident: ref35 doi: 10.1109/CVPRW59228.2023.00644 – ident: ref23 doi: 10.1109/LGRS.2022.3166665 – ident: ref57 doi: 10.1136/bmjopen-2019-031150 – ident: ref10 doi: 10.1109/CVPRW59228.2023.00638 – ident: ref54 doi: 10.1109/ASYU50717.2020.9259802 – ident: ref8 doi: 10.1109/TNSRE.2020.3048121 – volume: 27 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2014 ident: ref42 article-title: Deep learning face representation by joint identification-verification – ident: ref39 doi: 10.1109/EMBC40787.2023.10340835 – ident: ref30 doi: 10.1088/1361-6579/ac5b49 – ident: ref1 doi: 10.1007/s11325-022-02698-9 – ident: ref31 doi: 10.1109/EMBC40787.2023.10340050 – ident: ref58 doi: 10.1109/jbhi.2024.3370394 – ident: ref36 doi: 10.1007/s11042-023-15775-2 – ident: ref21 doi: 10.1145/3397311 – ident: ref28 doi: 10.1371/journal.pone.0190466 – ident: ref2 doi: 10.1109/JSEN.2009.2030987 |
SSID | ssj0000816896 |
Score | 2.4349017 |
Snippet | Sleep monitoring plays a vital role in various scenarios such as hospitals and living-assisted homes, contributing to the prevention of sleep accidents as well... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4660 |
SubjectTerms | Adult Biomedical measurement Biomedical monitoring Cameras Contactless sensing defocused camera Female Heart Rate - physiology Humans Image Processing, Computer-Assisted - methods Male Middle Aged Monitoring Movement - physiology Optical variables measurement Polysomnography - instrumentation Polysomnography - methods Privacy privacy protection Respiratory Rate - physiology Sleep - physiology Sleep apnea sleep monitoring Video Recording - methods Young Adult |
Title | Privacy-Protected Contactless Sleep Parameters Measurement Using a Defocused Camera |
URI | https://ieeexplore.ieee.org/document/10517590 https://www.ncbi.nlm.nih.gov/pubmed/38696292 https://www.proquest.com/docview/3050936264 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS9xAEB-sD-JLtdaPq21ZwSchZ5LdbG4frVauwsmBCr6F_ZiAeNyJd1do_3pnNrmrCkrf8rCbTXZmmO_fAByGEIzLFXkn2NOJktokbIUkSoeiTkNWZyU3OA8udf9GXdwWt22zeuyFQcRYfIZdfoy5_DDxcw6VkYQXpO0MeegfiM-aZq1lQCVOkIjzuHJ6SEgSVZvFzFJzfPGj_4u8wVx1pTSczFqHNdnTRucmf6GS4oyVt83NqHbON-By8cFNtcl9dz5zXf_3FZbjf__RJnxsDVBx0nDMJ1jB8RasDdoU-2e4Gj7e_bb-TzJsEBwwCEawsp6YajoVVyPEBzG0XNPFwJxi8C_IKGL9gbDiDGs6espbLQe9tuHm_Of1aT9pJy8kngR8lhRaaq0CqXOnZBlcXZBVUdbeoXO6QIWyTF0apFeps04WqiZdm2VM9FJbW8odWB1PxrgHQpI_RlZG6WwPlSVnKws690Yrhn3JM-xAurj8yrew5DwdY1RF9yQ1FZOuYtJVLek6cLTc8tBgcry3eJuv_dnC5sY7cLAgcUUSxWkSO8bJfFpJhsRhlB7Vgd2G9svdC5b58sZb92GdD28qBL_C6uxxjt_Iapm575FbnwDsk-NP |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB5VIFEu0FIogT62Uk-VHGzvep090gcKlESRAImbtY-xVIESRBIk-PXMrJ2UVqLqzYdde70zo3l_A_A5hGBcrsg7wZ5OlNQmYSskUToUdRqyOiu5wXkw1P0LdXJZXLbN6rEXBhFj8Rl2-THm8sPEzzlURhJekLYz5KGvkuJXRdOutQypxBkScSJXTg8JyaJq85hZag5OvvaPyR_MVVdKw-msdViTPW10bvI_lFKcsvK8wRkVz9EmDBdHbupNrrrzmev6h7_QHP_7n17BRmuCisOGZ17DCxxvwdqgTbK_gbPR7a876--TUYPhgEEwhpX1xFbTqTi7RrwRI8tVXQzNKQa_w4wiViAIK75jTZ-e8lbLYa9tuDj6cf6tn7SzFxJPIj5LCi21VoEUulOyDK4uyK4oa-_QOV2gQlmmLg3Sq9RZJwtVk7bNMiZ7qa0t5Q6sjCdj3AUhySMjO6N0tofKkruVBZ17oxUDv-QZdiBdXH7lW2Byno9xXUUHJTUVk65i0lUt6TrwZbnlpkHl-Nfibb72JwubG-_ApwWJK5IpTpTYMU7m00oyKA7j9KgOvG1ov9y9YJm9Z976EV72zwen1enx8Oc-rPNBmnrBd7Ayu53je7JhZu5D5NxH_5LmnA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Privacy-Protected+Contactless+Sleep+Parameters+Measurement+Using+a+Defocused+Camera&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Zhu%2C+Yingen&rft.au=Hong%2C+Hong&rft.au=Wang%2C+Wenjin&rft.date=2024-08-01&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=28&rft.issue=8&rft.spage=4660&rft.epage=4673&rft_id=info:doi/10.1109%2FJBHI.2024.3396397&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JBHI_2024_3396397 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |