GTT: Leveraging data characteristics for guiding the tensor train decomposition

The demand for searching, querying multimedia data such as image, video and audio is omnipresent, how to effectively access data for various applications is a critical task. Nevertheless, these data usually are encoded as multi-dimensional arrays, or tensor, and traditional data mining techniques mi...

Full description

Saved in:
Bibliographic Details
Published inInformation systems (Oxford) Vol. 108; p. 102047
Main Authors Li, Mao-Lin, Candan, K. Selçuk, Sapino, Maria Luisa
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.09.2022
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The demand for searching, querying multimedia data such as image, video and audio is omnipresent, how to effectively access data for various applications is a critical task. Nevertheless, these data usually are encoded as multi-dimensional arrays, or tensor, and traditional data mining techniques might be limited due to the curse of dimensionality. Tensor decomposition is proposed to alleviate this issue. Commonly used tensor decomposition algorithms include CP-decomposition (which seeks a diagonal core) and Tucker-decomposition (which seeks a dense core). Naturally, Tucker maintains more information, but due to the denseness of the core, it also is subject to exponential memory growth with the number of tensor modes. Tensor train (TT) decomposition addresses this problem by seeking a sequence of three-mode cores: but unfortunately, currently, there are no guidelines to select the decomposition sequence. In this paper, we propose a GTT method for guiding the tensor train in selecting the decomposition sequence. GTT leverages the data characteristics (including number of modes, length of the individual modes, density, distribution of mutual information, and distribution of entropy) as well as the target decomposition rank to pick a decomposition order that will preserve information. Experiments with various data sets demonstrate that GTT effectively guides the TT-decomposition process towards decomposition sequences that better preserve accuracy. •We identify significant relationships among various data characteristics and the accuracies of different tensor train decomposition orders.•We propose four order selection strategies, (a) aggregate mutual information (AMI), (b) path mutual information (PMI), (c) inverse entropy (IE), and (d) number of parameters (NP), for tensor train decomposition.•We show that good tensor train orders can be selected through a hybrid (HYB) strategy that takes into account multiple characteristics of the 15 given categorical-valued data set and 3 given continuous-valued data set.
AbstractList The demand for searching, querying multimedia data such as image, video and audio is omnipresent, how to effectively access data for various applications is a critical task. Nevertheless, these data usually are encoded as multi-dimensional arrays, or tensor, and traditional data mining techniques might be limited due to the curse of dimensionality. Tensor decomposition is proposed to alleviate this issue. Commonly used tensor decomposition algorithms include CP-decomposition (which seeks a diagonal core) and Tucker-decomposition (which seeks a dense core). Naturally, Tucker maintains more information, but due to the denseness of the core, it also is subject to exponential memory growth with the number of tensor modes. Tensor train (TT) decomposition addresses this problem by seeking a sequence of three-mode cores: but unfortunately, currently, there are no guidelines to select the decomposition sequence. In this paper, we propose a GTT method for guiding the tensor train in selecting the decomposition sequence. GTT leverages the data characteristics (including number of modes, length of the individual modes, density, distribution of mutual information, and distribution of entropy) as well as the target decomposition rank to pick a decomposition order that will preserve information. Experiments with various data sets demonstrate that GTT effectively guides the TT-decomposition process towards decomposition sequences that better preserve accuracy.
The demand for searching, querying multimedia data such as image, video and audio is omnipresent, how to effectively access data for various applications is a critical task. Nevertheless, these data usually are encoded as multi-dimensional arrays, or tensor, and traditional data mining techniques might be limited due to the curse of dimensionality. Tensor decomposition is proposed to alleviate this issue. Commonly used tensor decomposition algorithms include CP-decomposition (which seeks a diagonal core) and Tucker-decomposition (which seeks a dense core). Naturally, Tucker maintains more information, but due to the denseness of the core, it also is subject to exponential memory growth with the number of tensor modes. Tensor train (TT) decomposition addresses this problem by seeking a sequence of three-mode cores: but unfortunately, currently, there are no guidelines to select the decomposition sequence. In this paper, we propose a GTT method for guiding the tensor train in selecting the decomposition sequence. GTT leverages the data characteristics (including number of modes, length of the individual modes, density, distribution of mutual information, and distribution of entropy) as well as the target decomposition rank to pick a decomposition order that will preserve information. Experiments with various data sets demonstrate that GTT effectively guides the TT-decomposition process towards decomposition sequences that better preserve accuracy. •We identify significant relationships among various data characteristics and the accuracies of different tensor train decomposition orders.•We propose four order selection strategies, (a) aggregate mutual information (AMI), (b) path mutual information (PMI), (c) inverse entropy (IE), and (d) number of parameters (NP), for tensor train decomposition.•We show that good tensor train orders can be selected through a hybrid (HYB) strategy that takes into account multiple characteristics of the 15 given categorical-valued data set and 3 given continuous-valued data set.
ArticleNumber 102047
Author Sapino, Maria Luisa
Li, Mao-Lin
Candan, K. Selçuk
Author_xml – sequence: 1
  givenname: Mao-Lin
  orcidid: 0000-0003-0134-4115
  surname: Li
  fullname: Li, Mao-Lin
  email: maolinli@asu.edu
  organization: Arizona State University, Tempe AZ, USA
– sequence: 2
  givenname: K. Selçuk
  surname: Candan
  fullname: Candan, K. Selçuk
  email: candan@asu.edu
  organization: Arizona State University, Tempe AZ, USA
– sequence: 3
  givenname: Maria Luisa
  orcidid: 0000-0002-7621-3753
  surname: Sapino
  fullname: Sapino, Maria Luisa
  email: mlsapino@di.unito.it
  organization: University of Turino, Turino, Italy
BookMark eNp9kM1LAzEQxYNUsFXvHhc8b83HbrLbmxStQqGXeg7TZLbN0m5qkhb8792lngQ9DW94vxnem5BR5zsk5IHRKaNMPrVTF6ecct5LTgt1RcasUiKXVMkRGVNBZV4IVd-QSYwtpZSXdT0mq8V6PcuWeMYAW9dtMwsJMrODACZhcDE5E7PGh2x7cnYwpB1mCbvYr1IA12UWjT8cfXTJ-e6OXDewj3j_M2_Jx-vLev6WL1eL9_nzMjeC85SXTAi2ActsRQVA3XBVcCmV2kgG0JRQNRLqYmNtBVg2YqMq2ZRMFtQoSw2KW_J4uXsM_vOEMenWn0LXv9RcVrVihZBV76IXlwk-xoCNPgZ3gPClGdVDbbrVrif62vSlth6RvxDjEgzRhrT7_8DZBcQ-9tlh0NE47AxaF9Akbb37G_4GhsaIMg
CitedBy_id crossref_primary_10_1109_TIM_2025_3545986
Cites_doi 10.1007/BF02310791
10.1137/17M1140480
10.1109/ICDE.2015.7113355
10.1145/2339530.2339583
10.1103/PhysRevE.69.066138
10.1137/07070111X
10.1016/S0004-3702(97)00043-X
10.1109/ICDM.2002.1183893
10.1007/BF02289464
10.1016/j.neucom.2010.06.030
10.1002/j.1538-7305.1948.tb01338.x
10.1137/090752286
10.1103/PhysRev.106.620
ContentType Journal Article
Copyright 2022
Copyright Elsevier Science Ltd. Sep 2022
Copyright_xml – notice: 2022
– notice: Copyright Elsevier Science Ltd. Sep 2022
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.is.2022.102047
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1873-6076
ExternalDocumentID 10_1016_j_is_2022_102047
S0306437922000424
GrantInformation_xml – fundername: pCAR: Discovering and Leveraging Plausibly Causal (p-causal) Relationships to Understand Complex Dynamic Systems
  grantid: NSF#1909555
– fundername: BIGDATA: Discovering Context-Sensitive Impact in Complex Systems
  grantid: NSF#1633381
– fundername: NSF
– fundername: DataStorm: A Data Enabled System for End-to-End Disaster Planning and Response
  grantid: NSF#1610282
– fundername: FourCmodeling
  grantid: 690817
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
13V
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
63O
7-5
71M
77K
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABTAH
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HAMUX
HF~
HLZ
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SSV
SSZ
T5K
TN5
UHS
VH1
WUQ
XSW
ZCG
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
8FD
E3H
EFKBS
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c322t-51331bad1d803aa9f27426677b61aaf5a8f6a94bdd8ae5f3b786f51640c7d0ce3
IEDL.DBID .~1
ISSN 0306-4379
IngestDate Fri Jul 25 03:49:15 EDT 2025
Thu Apr 24 23:12:53 EDT 2025
Tue Jul 01 04:11:58 EDT 2025
Fri Feb 23 02:39:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Low-rank embedding
Order selection
Tensor train decomposition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-51331bad1d803aa9f27426677b61aaf5a8f6a94bdd8ae5f3b786f51640c7d0ce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7621-3753
0000-0003-0134-4115
PQID 2689714368
PQPubID 2035446
ParticipantIDs proquest_journals_2689714368
crossref_primary_10_1016_j_is_2022_102047
crossref_citationtrail_10_1016_j_is_2022_102047
elsevier_sciencedirect_doi_10_1016_j_is_2022_102047
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Information systems (Oxford)
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References I. Jeon, E.E. Papalexakis, U. Kang, C. Faloutsos, Haten2: Billion-scale tensor decompositions, in: 2015 IEEE 31st ICDE, 2015, pp. 1047–1058.
Zhao, Zhou, Xie, Zhang, Cichocki (b12) 2016
Ko, Lin, Li, Wong (b9) 2019
Li, Yu, Batselier (b20) 2019
R. Harshman, Foundations of the Parafac Procedure: Models and Conditions for an Explanatory Multi-Modal Factor Analysis, UCLA Working Papers in Phonetics, Vol. 16, 1970.
Mickelin, Karaman (b21) 2018
Imaizumi, Maehara, Hayashi (b27) 2017
Batselier (b22) 2018
Kohavi, John (b23) 1997; 97
Yu, Liu (b24) 2003
Huang, Candan, Sapino (b18) 2016
Li, Candan, Sapino (b13) 2020; vol. 12440
Shannon (b29) 1948; 27
Kraskov, Stögbauer, Grassberger (b32) 2004; 69
Dash, Liu, Yao (b26) 1997
Oseledets (b6) 2011; 33
Chen, Jin, Kang, Feng, Yan (b8) 2018
Dua, Graff (b11) 2017
Kozachenko, Leonenko (b31) 1987; 23
Carroll, Chang (b1) 1970; 35
Kolda, Bader (b14) 2009; 51
U. Kang, E.E. Papalexakis, A. Harpale, C. Faloutsos, Gigatensor: scaling tensor analysis up by 100 times - algorithms and discoveries, in: KDD, 2012.
Novikov, Trofimov, Oseledets (b10) 2016
T. Kolda, B. Bader, The TOPHITS model for higher-order web link analysis, in: Proceedings of Link Analysis, Counterterrorism and Security 2006, 2006.
Yamaguchi, Hayashi (b5) 2017
Han, Kamber, Pei (b28) 2011
M. Dash, K. Choi, P. Scheuermann, Huan Liu, Feature selection for clustering - a filter solution, in: 2002 IEEE ICDM, 2002. Proceedings, 2002, pp. 115–122.
Batselier, Yu, Daniel, Wong (b19) 2018; 39
Phan, Cichocki (b15) 2011; 74
Jaynes (b30) 1957; 106
Novikov, Podoprikhin, Osokin, Vetrov (b7) 2015
Tucker (b3) 1966; 31
Chen (10.1016/j.is.2022.102047_b8) 2018
Yamaguchi (10.1016/j.is.2022.102047_b5) 2017
Han (10.1016/j.is.2022.102047_b28) 2011
Mickelin (10.1016/j.is.2022.102047_b21) 2018
Tucker (10.1016/j.is.2022.102047_b3) 1966; 31
Yu (10.1016/j.is.2022.102047_b24) 2003
10.1016/j.is.2022.102047_b25
Jaynes (10.1016/j.is.2022.102047_b30) 1957; 106
Kraskov (10.1016/j.is.2022.102047_b32) 2004; 69
Phan (10.1016/j.is.2022.102047_b15) 2011; 74
Huang (10.1016/j.is.2022.102047_b18) 2016
Dash (10.1016/j.is.2022.102047_b26) 1997
Li (10.1016/j.is.2022.102047_b20) 2019
Carroll (10.1016/j.is.2022.102047_b1) 1970; 35
Li (10.1016/j.is.2022.102047_b13) 2020; vol. 12440
Batselier (10.1016/j.is.2022.102047_b19) 2018; 39
10.1016/j.is.2022.102047_b2
10.1016/j.is.2022.102047_b4
Novikov (10.1016/j.is.2022.102047_b7) 2015
Kolda (10.1016/j.is.2022.102047_b14) 2009; 51
Batselier (10.1016/j.is.2022.102047_b22) 2018
Ko (10.1016/j.is.2022.102047_b9) 2019
Shannon (10.1016/j.is.2022.102047_b29) 1948; 27
Zhao (10.1016/j.is.2022.102047_b12) 2016
10.1016/j.is.2022.102047_b16
Imaizumi (10.1016/j.is.2022.102047_b27) 2017
Novikov (10.1016/j.is.2022.102047_b10) 2016
10.1016/j.is.2022.102047_b17
Oseledets (10.1016/j.is.2022.102047_b6) 2011; 33
Kohavi (10.1016/j.is.2022.102047_b23) 1997; 97
Kozachenko (10.1016/j.is.2022.102047_b31) 1987; 23
Dua (10.1016/j.is.2022.102047_b11) 2017
References_xml – volume: vol. 12440
  start-page: 187
  year: 2020
  end-page: 202
  ident: b13
  article-title: [GTT:] Guiding the tensor train decomposition
  publication-title: Similarity Search and Applications - 13th International Conference
– reference: M. Dash, K. Choi, P. Scheuermann, Huan Liu, Feature selection for clustering - a filter solution, in: 2002 IEEE ICDM, 2002. Proceedings, 2002, pp. 115–122.
– reference: U. Kang, E.E. Papalexakis, A. Harpale, C. Faloutsos, Gigatensor: scaling tensor analysis up by 100 times - algorithms and discoveries, in: KDD, 2012.
– year: 2019
  ident: b20
  article-title: Faster tensor train decomposition for sparse data
– volume: 51
  start-page: 455
  year: 2009
  end-page: 500
  ident: b14
  article-title: Tensor decompositions and applications
  publication-title: SIAM Rev.
– start-page: 532
  year: 1997
  end-page: 539
  ident: b26
  article-title: Dimensionality reduction of unsupervised data
  publication-title: Proceedings Ninth IEEE International Conference on Tools with Artificial Intelligence
– volume: 74
  start-page: 1970
  year: 2011
  end-page: 1984
  ident: b15
  article-title: Parafac algorithms for large-scale problems
  publication-title: Neurocomputing
– year: 2018
  ident: b21
  article-title: Tensor ring decomposition
– start-page: 635
  year: 2018
  end-page: 641
  ident: b8
  article-title: Sharing residual units through collective tensor factorization to improve deep neural networks
  publication-title: IJCAI-18
– year: 2017
  ident: b11
  article-title: UCI machine learning repository
– reference: R. Harshman, Foundations of the Parafac Procedure: Models and Conditions for an Explanatory Multi-Modal Factor Analysis, UCLA Working Papers in Phonetics, Vol. 16, 1970.
– reference: T. Kolda, B. Bader, The TOPHITS model for higher-order web link analysis, in: Proceedings of Link Analysis, Counterterrorism and Security 2006, 2006.
– start-page: 856
  year: 2003
  end-page: 863
  ident: b24
  article-title: Feature selection for high-dimensional data: A fast correlation-based filter solution
  publication-title: Proceedings, Twentieth International Conference on Machine Learning, Vol. 2
– volume: 27
  start-page: 379
  year: 1948
  end-page: 423
  ident: b29
  article-title: A mathematical theory of communication
  publication-title: Bell Syst. Tech. J.
– start-page: 1394
  year: 2019
  end-page: 1400
  ident: b9
  article-title: Misc: Mixed strategies crowdsourcing
  publication-title: IJCAI-19
– volume: 35
  start-page: 283
  year: 1970
  end-page: 319
  ident: b1
  article-title: Analysis of individual differences in multidimensional scaling via an n-way generalization of eckart-young decomposition
  publication-title: Psychometrika
– volume: 31
  start-page: 279
  year: 1966
  end-page: 311
  ident: b3
  article-title: Some mathematical notes on three-mode factor analysis
  publication-title: Psychometrika
– volume: 39
  start-page: 1221
  year: 2018
  end-page: 1244
  ident: b19
  article-title: Computing low-rank approximations of large-scale matrices with the tensor network randomized svd
  publication-title: SIAM J. Matrix Anal. Appl.
– year: 2018
  ident: b22
  article-title: The trouble with tensor ring decompositions
– volume: 33
  start-page: 2295
  year: 2011
  end-page: 2317
  ident: b6
  article-title: Tensor-train decomposition
  publication-title: SIAM J. Sci. Comput.
– start-page: 1221
  year: 2016
  end-page: 1230
  ident: b18
  article-title: Bicp: Block-incremental cp decomposition with update sensitive refinement
  publication-title: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management
– year: 2011
  ident: b28
  article-title: Data mining: Concepts and techniques
  publication-title: Morgan Kaufmann Series in Data Management Systems
– start-page: 3930
  year: 2017
  end-page: 3939
  ident: b27
  article-title: On tensor train rank minimization : Statistical efficiency and scalable algorithm
  publication-title: Advances in Neural Information Processing Systems 30
– volume: 23
  start-page: 95
  year: 1987
  end-page: 101
  ident: b31
  article-title: Sample estimate of the entropy of a random vector
  publication-title: Probl. Inf. Transm.
– volume: 69
  year: 2004
  ident: b32
  article-title: Estimating mutual information
  publication-title: Phys. Rev. E
– year: 2016
  ident: b12
  article-title: Tensor ring decomposition
– start-page: 442
  year: 2015
  end-page: 450
  ident: b7
  article-title: Tensorizing neural networks
  publication-title: Proceedings of the 28th International Conference on Neural Information Processing Systems, Vol. 1
– year: 2016
  ident: b10
  article-title: Exponential machines
– volume: 97
  start-page: 273
  year: 1997
  end-page: 324
  ident: b23
  article-title: Wrappers for feature subset selection
  publication-title: Artificial Intelligence
– volume: 106
  start-page: 620
  year: 1957
  end-page: 630
  ident: b30
  article-title: Information theory and statistical mechanics
  publication-title: Phys. Rev.
– start-page: 3217
  year: 2017
  end-page: 3223
  ident: b5
  article-title: Tensor decomposition with missing indices
  publication-title: Proceedings of the 26th International Joint Conference on Artificial Intelligence
– reference: I. Jeon, E.E. Papalexakis, U. Kang, C. Faloutsos, Haten2: Billion-scale tensor decompositions, in: 2015 IEEE 31st ICDE, 2015, pp. 1047–1058.
– volume: 35
  start-page: 283
  issue: 3
  year: 1970
  ident: 10.1016/j.is.2022.102047_b1
  article-title: Analysis of individual differences in multidimensional scaling via an n-way generalization of eckart-young decomposition
  publication-title: Psychometrika
  doi: 10.1007/BF02310791
– year: 2016
  ident: 10.1016/j.is.2022.102047_b10
– volume: 39
  start-page: 1221
  issue: 3
  year: 2018
  ident: 10.1016/j.is.2022.102047_b19
  article-title: Computing low-rank approximations of large-scale matrices with the tensor network randomized svd
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/17M1140480
– year: 2019
  ident: 10.1016/j.is.2022.102047_b20
– year: 2017
  ident: 10.1016/j.is.2022.102047_b11
– start-page: 532
  year: 1997
  ident: 10.1016/j.is.2022.102047_b26
  article-title: Dimensionality reduction of unsupervised data
– ident: 10.1016/j.is.2022.102047_b17
  doi: 10.1109/ICDE.2015.7113355
– year: 2016
  ident: 10.1016/j.is.2022.102047_b12
– volume: 23
  start-page: 95
  issue: 1–2
  year: 1987
  ident: 10.1016/j.is.2022.102047_b31
  article-title: Sample estimate of the entropy of a random vector
  publication-title: Probl. Inf. Transm.
– ident: 10.1016/j.is.2022.102047_b16
  doi: 10.1145/2339530.2339583
– start-page: 856
  year: 2003
  ident: 10.1016/j.is.2022.102047_b24
  article-title: Feature selection for high-dimensional data: A fast correlation-based filter solution
– volume: 69
  year: 2004
  ident: 10.1016/j.is.2022.102047_b32
  article-title: Estimating mutual information
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.69.066138
– year: 2018
  ident: 10.1016/j.is.2022.102047_b22
– ident: 10.1016/j.is.2022.102047_b2
– start-page: 635
  year: 2018
  ident: 10.1016/j.is.2022.102047_b8
  article-title: Sharing residual units through collective tensor factorization to improve deep neural networks
– ident: 10.1016/j.is.2022.102047_b4
– start-page: 3930
  year: 2017
  ident: 10.1016/j.is.2022.102047_b27
  article-title: On tensor train rank minimization : Statistical efficiency and scalable algorithm
– volume: 51
  start-page: 455
  issue: 3
  year: 2009
  ident: 10.1016/j.is.2022.102047_b14
  article-title: Tensor decompositions and applications
  publication-title: SIAM Rev.
  doi: 10.1137/07070111X
– volume: 97
  start-page: 273
  issue: 1
  year: 1997
  ident: 10.1016/j.is.2022.102047_b23
  article-title: Wrappers for feature subset selection
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(97)00043-X
– start-page: 1394
  year: 2019
  ident: 10.1016/j.is.2022.102047_b9
  article-title: Misc: Mixed strategies crowdsourcing
– year: 2018
  ident: 10.1016/j.is.2022.102047_b21
– start-page: 3217
  year: 2017
  ident: 10.1016/j.is.2022.102047_b5
  article-title: Tensor decomposition with missing indices
– ident: 10.1016/j.is.2022.102047_b25
  doi: 10.1109/ICDM.2002.1183893
– volume: vol. 12440
  start-page: 187
  year: 2020
  ident: 10.1016/j.is.2022.102047_b13
  article-title: [GTT:] Guiding the tensor train decomposition
– volume: 31
  start-page: 279
  issue: 3
  year: 1966
  ident: 10.1016/j.is.2022.102047_b3
  article-title: Some mathematical notes on three-mode factor analysis
  publication-title: Psychometrika
  doi: 10.1007/BF02289464
– volume: 74
  start-page: 1970
  issue: 11
  year: 2011
  ident: 10.1016/j.is.2022.102047_b15
  article-title: Parafac algorithms for large-scale problems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.06.030
– start-page: 442
  year: 2015
  ident: 10.1016/j.is.2022.102047_b7
  article-title: Tensorizing neural networks
– volume: 27
  start-page: 379
  issue: 3
  year: 1948
  ident: 10.1016/j.is.2022.102047_b29
  article-title: A mathematical theory of communication
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– start-page: 1221
  year: 2016
  ident: 10.1016/j.is.2022.102047_b18
  article-title: Bicp: Block-incremental cp decomposition with update sensitive refinement
– volume: 33
  start-page: 2295
  issue: 5
  year: 2011
  ident: 10.1016/j.is.2022.102047_b6
  article-title: Tensor-train decomposition
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090752286
– year: 2011
  ident: 10.1016/j.is.2022.102047_b28
  article-title: Data mining: Concepts and techniques
– volume: 106
  start-page: 620
  issue: 4
  year: 1957
  ident: 10.1016/j.is.2022.102047_b30
  article-title: Information theory and statistical mechanics
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.106.620
SSID ssj0002599
Score 2.3361566
Snippet The demand for searching, querying multimedia data such as image, video and audio is omnipresent, how to effectively access data for various applications is a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102047
SubjectTerms Algorithms
Audio data
Data mining
Decomposition
Information systems
Low-rank embedding
Mathematical analysis
Multimedia
Order selection
Tensor train decomposition
Tensors
Title GTT: Leveraging data characteristics for guiding the tensor train decomposition
URI https://dx.doi.org/10.1016/j.is.2022.102047
https://www.proquest.com/docview/2689714368
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8MgFCbLvOjBH1PjdC4cvHio_Qml3pbFOXVOo1uyG4FCTY2Zi25X_3Z5LVVnzA6emlJoCDze-wgf30PoJExNlJVMgPKj2aBIqhzpx9rxMiKkJJrS4iLt7ZD2x9H1hExqqFvdhQFapfX9pU8vvLUtce1ourM8dx8B7YKaXgC3TaIANEGjKAYrP_v4pnkYeJ-UJwnUgdr2qLLkeOUg2B0EoF_gQYKVv0PTLyddRJ7eNtq0kBF3yl7toJqeNtBWlY4B29XZQBs_tAV30d3laHSOB9qYapGICAMXFKfL-szYQFb8tMghgGEDBTHw2U1RkTgCKw2Ec8vq2kPj3sWo23ds9gQnNYt07kDiFl8K5SvmhUIkGRzKUhrHkvpCmKlgGRVJJJViQpMslDGjGTG7Jy-NlZfqcB_Vp69TfYBwIJUfeDTTGQsiSURCPJWS2IAFA8dMOGsitxo4nlppcejoC684ZM88f-cw1Lwc6iY6_WoxK2U1VtQNq7ngS6bBjddf0apVTRu3y9J8pyyBhO-UHf7rp0doHd5KjlkL1edvC31sQMlctgura6O1TvdhcA_Pq5v-8BMJh-Bw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7xGICBRwHxxgMLQ2iejsOGEKVAWwaKxGbZsYOCUKmgrPx27hKHlxADq2NH1tl391n-_B3AQZRjltVCkfIjHlA0N54OUuv5RaK0Tizn1UPa_oB3b-PLu-RuCk6btzBEq3Sxv47pVbR2LW1nzfa4LNs3hHZJTS-k1yZxGE_DbIzuS2UMjt4-eR6I77P6KoF71N3dVdYkr5IUu8OQBAx8qrDye276EaWr1NNZhkWHGdlJPa0VmLKjFiw19RiYc88WLHwRF1yF6_Ph8Jj1LO7VqhIRIzIoy78LNDPErOz-taQMxhALMiK0Y1NVOYIZS4xzR-tag9vO2fC067nyCV6OXjrxqHJLoJUJjPAjpbKCbmU5T1PNA6VwLUTBVRZrY4SySRHpVPAiweOTn6fGz220DjOjp5HdABZqE4Q-L2whwlgnKkt8kycpogXEY5jPNqHdGE7mTlucJvooGxLZgyxfJJla1qbehMOPEeNaV-OPvlGzFvLb3pAY9v8YtdMsm3R-id-5yKjiOxdb__rpPsx1h_2e7F0MrrZhPqQcT8KPYgdmJs-vdhcRykTvVTvwHUEa4HA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GTT%3A+Leveraging+data+characteristics+for+guiding+the+tensor+train+decomposition&rft.jtitle=Information+systems+%28Oxford%29&rft.au=Li%2C+Mao-Lin&rft.au=Candan%2C+K.+Sel%C3%A7uk&rft.au=Sapino%2C+Maria+Luisa&rft.date=2022-09-01&rft.issn=0306-4379&rft.volume=108&rft.spage=102047&rft_id=info:doi/10.1016%2Fj.is.2022.102047&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_is_2022_102047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4379&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4379&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4379&client=summon