An Efficient Stereo Matching Network Using Sequential Feature Fusion

Recent stereo matching networks adopt 4D cost volumes and 3D convolutions for processing those volumes. Although these methods show good performance in terms of accuracy, they have an inherent disadvantage in that they require great deal of computing resources and memory. These requirements limit th...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 10; no. 9; p. 1045
Main Authors Jeong, Jaecheol, Jeon, Suyeon, Heo, Yong Seok
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2021
Subjects
Online AccessGet full text
ISSN2079-9292
2079-9292
DOI10.3390/electronics10091045

Cover

Loading…
Abstract Recent stereo matching networks adopt 4D cost volumes and 3D convolutions for processing those volumes. Although these methods show good performance in terms of accuracy, they have an inherent disadvantage in that they require great deal of computing resources and memory. These requirements limit their applications for mobile environments, which are subject to inherent computing hardware constraints. Both accuracy and consumption of computing resources are important, and improving both at the same time is a non-trivial task. To deal with this problem, we propose a simple yet efficient network, called Sequential Feature Fusion Network (SFFNet) which sequentially generates and processes the cost volume using only 2D convolutions. The main building block of our network is a Sequential Feature Fusion (SFF) module which generates 3D cost volumes to cover a part of the disparity range by shifting and concatenating the target features, and processes the cost volume using 2D convolutions. A series of the SFF modules in our SFFNet are designed to gradually cover the full disparity range. Our method prevents heavy computations and allows for efficient generation of an accurate final disparity map. Various experiments show that our method has an advantage in terms of accuracy versus efficiency compared to other networks.
AbstractList Recent stereo matching networks adopt 4D cost volumes and 3D convolutions for processing those volumes. Although these methods show good performance in terms of accuracy, they have an inherent disadvantage in that they require great deal of computing resources and memory. These requirements limit their applications for mobile environments, which are subject to inherent computing hardware constraints. Both accuracy and consumption of computing resources are important, and improving both at the same time is a non-trivial task. To deal with this problem, we propose a simple yet efficient network, called Sequential Feature Fusion Network (SFFNet) which sequentially generates and processes the cost volume using only 2D convolutions. The main building block of our network is a Sequential Feature Fusion (SFF) module which generates 3D cost volumes to cover a part of the disparity range by shifting and concatenating the target features, and processes the cost volume using 2D convolutions. A series of the SFF modules in our SFFNet are designed to gradually cover the full disparity range. Our method prevents heavy computations and allows for efficient generation of an accurate final disparity map. Various experiments show that our method has an advantage in terms of accuracy versus efficiency compared to other networks.
Author Jeong, Jaecheol
Heo, Yong Seok
Jeon, Suyeon
Author_xml – sequence: 1
  givenname: Jaecheol
  surname: Jeong
  fullname: Jeong, Jaecheol
– sequence: 2
  givenname: Suyeon
  surname: Jeon
  fullname: Jeon, Suyeon
– sequence: 3
  givenname: Yong Seok
  orcidid: 0000-0001-7576-1347
  surname: Heo
  fullname: Heo, Yong Seok
BookMark eNp9kEFLAzEQhYMoWGt_gZeA59VJspvdHEttVah6qD0vMTurqWtSkyziv3dLPYiIp3kD35t5vBNy6LxDQs4YXAih4BI7NCl4Z01kAIpBXhyQEYdSZYorfvhDH5NJjBuAHSYqASNyNXV03rbWWHSJrhIG9PROJ_Ni3TO9x_Thwytdx922wvd-oKzu6AJ16gPSRR-td6fkqNVdxMn3HJP1Yv44u8mWD9e3s-kyM4LzlBWApVFYDHFkDrLNsdRgQCIaBVWLgpUSjDY6bzRD1kipgbfNE2NGIm-0GJPz_d1t8EOUmOqN74MbXta84BUvqrwQA6X2lAk-xoBtbWzSaciZgrZdzaDe9Vb_0dvgFb-822DfdPj81_UFy5V3PA
CitedBy_id crossref_primary_10_1117_1_JEI_32_5_053030
crossref_primary_10_3390_s22155500
Cites_doi 10.1007/978-3-030-20873-8_2
10.1109/CVPR.2015.7299064
10.1109/TPAMI.2007.1166
10.1007/978-3-030-01249-6_34
10.3390/s90100568
10.1023/A:1014573219977
10.1109/CVPR.2012.6248074
10.1109/ICCV.2013.13
10.1109/CVPR.2016.90
10.1109/ACCESS.2018.2877890
10.1007/978-3-030-01234-2_39
10.1109/ICRA.2019.8794003
10.1023/A:1008160311296
10.1109/ICICEE.2012.450
10.1109/ICCV.2015.169
10.1109/ACCESS.2019.2916035
10.1109/CVPR.2019.00028
10.1109/CVPR.2019.00620
10.3390/rs10111844
10.1109/ICSPC.2007.4728616
10.1109/CVPR.2016.614
10.1109/ICCVW.2017.108
10.1109/CVPR.2018.00567
10.1109/CVPR.2015.7298925
10.1109/ICCV.2017.17
10.1007/s00034-009-9130-7
10.1007/978-3-540-88693-8_57
10.1109/TPAMI.2015.2389824
10.1109/EIT.2019.8834182
10.1109/ICRIS.2018.00018
10.1109/CVPR.2007.383248
10.1007/BFb0028345
10.1007/s11263-015-0816-y
10.1109/CVPR.2016.438
10.1109/ICCV.2015.312
10.1109/3DIMPVT.2011.24
10.1109/TCSVT.2009.2020478
10.1109/CVPR.2017.660
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/electronics10091045
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID 10_3390_electronics10091045
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c322t-50e7c9e52076406f4e7a0c06eec908fe31760caca4da1e1d66a02fdb11c6e2da3
IEDL.DBID BENPR
ISSN 2079-9292
IngestDate Sun Jul 13 03:44:39 EDT 2025
Tue Jul 01 02:00:23 EDT 2025
Thu Apr 24 22:53:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-50e7c9e52076406f4e7a0c06eec908fe31760caca4da1e1d66a02fdb11c6e2da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7576-1347
OpenAccessLink https://www.proquest.com/docview/2528258453?pq-origsite=%requestingapplication%
PQID 2528258453
PQPubID 2032404
ParticipantIDs proquest_journals_2528258453
crossref_citationtrail_10_3390_electronics10091045
crossref_primary_10_3390_electronics10091045
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Paszke (ref_45) 2019; 32
Zhang (ref_29) 2009; 19
ref_14
Wu (ref_28) 2019; 7
ref_36
ref_13
ref_35
ref_12
ref_34
Zbontar (ref_7) 2016; 17
ref_11
ref_33
ref_10
ref_32
ref_31
ref_30
ref_19
ref_18
ref_39
ref_38
Bianco (ref_47) 2018; 6
ref_15
Yoo (ref_20) 2009; 28
Sansoni (ref_1) 2009; 9
Scharstein (ref_6) 2002; 47
Birchfield (ref_17) 1999; 35
ref_24
ref_46
ref_23
ref_22
ref_44
ref_21
ref_42
ref_41
ref_40
ref_3
Aboali (ref_25) 2018; 10
ref_2
ref_27
ref_26
ref_9
Russakovsky (ref_43) 2015; 115
ref_8
Hirschmuller (ref_16) 2007; 30
ref_5
ref_4
He (ref_37) 2015; 37
References_xml – ident: ref_46
  doi: 10.1007/978-3-030-20873-8_2
– ident: ref_8
  doi: 10.1109/CVPR.2015.7299064
– volume: 30
  start-page: 328
  year: 2007
  ident: ref_16
  article-title: Stereo processing by semiglobal matching and mutual information
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.1166
– ident: ref_36
  doi: 10.1007/978-3-030-01249-6_34
– volume: 9
  start-page: 568
  year: 2009
  ident: ref_1
  article-title: State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation
  publication-title: Sensors
  doi: 10.3390/s90100568
– volume: 47
  start-page: 7
  year: 2002
  ident: ref_6
  article-title: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/A:1014573219977
– ident: ref_34
– ident: ref_41
  doi: 10.1109/CVPR.2012.6248074
– ident: ref_26
  doi: 10.1109/ICCV.2013.13
– ident: ref_35
  doi: 10.1109/CVPR.2016.90
– volume: 6
  start-page: 64270
  year: 2018
  ident: ref_47
  article-title: Benchmark Analysis of Representative Deep Neural Network Architectures
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2877890
– ident: ref_39
– ident: ref_30
  doi: 10.1007/978-3-030-01234-2_39
– ident: ref_14
– ident: ref_15
  doi: 10.1109/ICRA.2019.8794003
– volume: 35
  start-page: 269
  year: 1999
  ident: ref_17
  article-title: Depth discontinuities by pixel-to-pixel stereo
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/A:1008160311296
– ident: ref_18
– ident: ref_44
– ident: ref_22
  doi: 10.1109/ICICEE.2012.450
– ident: ref_40
  doi: 10.1109/ICCV.2015.169
– ident: ref_23
– volume: 7
  start-page: 61960
  year: 2019
  ident: ref_28
  article-title: Stereo matching with fusing adaptive support weights
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2916035
– ident: ref_32
  doi: 10.1109/CVPR.2019.00028
– ident: ref_31
  doi: 10.1109/CVPR.2019.00620
– ident: ref_33
  doi: 10.3390/rs10111844
– ident: ref_3
  doi: 10.1109/ICSPC.2007.4728616
– ident: ref_9
  doi: 10.1109/CVPR.2016.614
– ident: ref_11
  doi: 10.1109/ICCVW.2017.108
– ident: ref_13
  doi: 10.1109/CVPR.2018.00567
– ident: ref_42
  doi: 10.1109/CVPR.2015.7298925
– volume: 17
  start-page: 2287
  year: 2016
  ident: ref_7
  article-title: Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches
  publication-title: J. Mach. Learn. Res.
– ident: ref_12
  doi: 10.1109/ICCV.2017.17
– volume: 28
  start-page: 819
  year: 2009
  ident: ref_20
  article-title: Fast normalized cross-correlation
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-009-9130-7
– ident: ref_24
  doi: 10.1007/978-3-540-88693-8_57
– volume: 37
  start-page: 1904
  year: 2015
  ident: ref_37
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389824
– ident: ref_4
  doi: 10.1109/EIT.2019.8834182
– ident: ref_5
  doi: 10.1109/ICRIS.2018.00018
– ident: ref_19
  doi: 10.1109/CVPR.2007.383248
– ident: ref_21
  doi: 10.1007/BFb0028345
– volume: 115
  start-page: 211
  year: 2015
  ident: ref_43
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– ident: ref_10
  doi: 10.1109/CVPR.2016.438
– ident: ref_2
  doi: 10.1109/ICCV.2015.312
– volume: 10
  start-page: 133
  year: 2018
  ident: ref_25
  article-title: A Multistage Hybrid Median Filter Design of Stereo Matching Algorithms on Image Processing
  publication-title: J. Telecommun. Electron. Comput. Eng.
– ident: ref_27
  doi: 10.1109/3DIMPVT.2011.24
– volume: 19
  start-page: 1073
  year: 2009
  ident: ref_29
  article-title: Cross-based local stereo matching using orthogonal integral images
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2009.2020478
– volume: 32
  start-page: 8026
  year: 2019
  ident: ref_45
  article-title: PyTorch: An Imperative Style, High-Performance Deep Learning Library
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_38
  doi: 10.1109/CVPR.2017.660
SSID ssj0000913830
Score 2.195221
Snippet Recent stereo matching networks adopt 4D cost volumes and 3D convolutions for processing those volumes. Although these methods show good performance in terms...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1045
SubjectTerms Accuracy
Algorithms
Augmented reality
Deep learning
Matching
Methods
Modules
Neural networks
Semantics
Title An Efficient Stereo Matching Network Using Sequential Feature Fusion
URI https://www.proquest.com/docview/2528258453
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV05T8MwFLZou8CAOEWhVB4YieokvjKhAg0VUitEqdQtcpyXqUpLj5Xfjp24BxLqFEWOl2e_M9_7HkIPIU0pl6nwck6VRyEHT7JMmawViNnCVMhsg_NgyPtj-j5hE1dwWzpY5cYmloY6m2lbI-8EzHZZSsrCp_m3Z6dG2b-rboRGDTWMCZasjhrPveHH57bKYlkvZUgquqHQ5Ped3XSZpW-XiW1k2ndJfy1y6WbiM3Tq4kPcrQ70HB1BcYFO9lgDL9Frt8C9kvnBOAw8MoKBGR4Yk2qLSXhY4bpxiQXAoxIpbbR4im2wt14Ajte2QHaFxnHv66XvuWEInjY6t_IYAaEjYAER3DjhnIJQRBMOoCMiczBxACdaaUUz5YOfca5IkGep72sOQabCa1QvZgXcIJwDMy5K-ErmERWBVkILRtMoS0MO5tFEwUYeiXZM4XZgxTQxGYMVYvKPEJvocbtpXhFlHP68tRF04rRmmezO-Pbw8h06Diy2pAQetlB9tVjDvQkOVmkb1WT81nb3wLwNfnq_YQC_kg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BOQAHxCqWAj7AjQjHsZ3kgBBLq7K0QiwSt-A4kxNqgbZC_BTfyDgLi4S4ccrBcQ7j53kzk1kAdgKZSh2loZdraTyJOXqRygx5rchpizKBcgXO3Z7u3Mnze3U_Ae91LYxLq6x1YqGos4F1MfJ9oVyVZSRVcPj07LmpUe7vaj1Co4TFBb69kss2PDg7pfPdFaLduj3peNVUAc8SeEee4hjaGJUgD57YLJcYGm65RrQxj3IkQtXcGmtkZnz0M60NF3mW-r7VKDIT0HcnYYrMjJhu0dRxq3d1_RnVcV02o4CX7Y2CIOb7X9Nshr5b5q5w6jsF_mSAgtba8zBX2aPsqATQAkxgfxFmv3UpXILToz5rFZ0miKDYDR0EDliXVLgLXrFemUfOitwDdlNkZpPWeGTOuBy_IGuPXUBuGe7-RUwr0OgP-rgKLEdFlBj6JspjGQprQhsqmcZZGmikxxqIWh6JrTqTuwEZjwl5KE6IyS9CXIO9z01PZWOOv19v1oJOqls6TL4wtf738jZMd267l8nlWe9iA2aEy2spkh6b0Bi9jHGTDJNRulWhgcHDfwPwA56g-2w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BkRAcEKvY8QFuRHUc20kOCAFtxVohFolbcJzJqWqBtkL8Gl_HOAuLhLhxysFxDpOXeZ7JmxmA3UCmUkdp6OVaGk9ijl6kMkNRK3LaokygXIHzVVef3svzB_UwAe91LYyTVdY-sXDU2cC6HHlTKFdlGUkVNPNKFnHd6hw-PXtugpT701qP0yghcoFvrxS-DQ_OWvSu94TotO9OTr1qwoBnCcgjT3EMbYxKUDRPzJZLDA23XCPamEc5Erlqbo01MjM--pnWhos8S33fahSZCei5kzAV0t6oAVPH7e71zWeGx3XcjAJetjoKgpg3vybbDH23zF0R1Xc6_MkGBcV15mGuOpuyoxJMCzCB_UWY_daxcAlaR33WLrpOEFmxW3opOGBX5M5dIot1S005K3QI7LZQaZMH6TF30By_IOuMXXJuGe7_xUwr0OgP-rgKLEdF9Bj6JspjGQprQhsqmcZZGmikyxqI2h6JrbqUu2EZvYSiFWfE5BcjrsH-56ansknH37dv1oZOqi92mHzha_3v5R2YJuAll2fdiw2YEU7iUugfN6ExehnjFp1RRul2BQYGj_-Nvw-yUP-Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Stereo+Matching+Network+Using+Sequential+Feature+Fusion&rft.jtitle=Electronics+%28Basel%29&rft.au=Jeong%2C+Jaecheol&rft.au=Jeon%2C+Suyeon&rft.au=Heo%2C+Yong+Seok&rft.date=2021-05-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=10&rft.issue=9&rft.spage=1045&rft_id=info:doi/10.3390%2Felectronics10091045&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics10091045
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon