An Efficient Stereo Matching Network Using Sequential Feature Fusion
Recent stereo matching networks adopt 4D cost volumes and 3D convolutions for processing those volumes. Although these methods show good performance in terms of accuracy, they have an inherent disadvantage in that they require great deal of computing resources and memory. These requirements limit th...
Saved in:
Published in | Electronics (Basel) Vol. 10; no. 9; p. 1045 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.05.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2079-9292 2079-9292 |
DOI | 10.3390/electronics10091045 |
Cover
Loading…
Abstract | Recent stereo matching networks adopt 4D cost volumes and 3D convolutions for processing those volumes. Although these methods show good performance in terms of accuracy, they have an inherent disadvantage in that they require great deal of computing resources and memory. These requirements limit their applications for mobile environments, which are subject to inherent computing hardware constraints. Both accuracy and consumption of computing resources are important, and improving both at the same time is a non-trivial task. To deal with this problem, we propose a simple yet efficient network, called Sequential Feature Fusion Network (SFFNet) which sequentially generates and processes the cost volume using only 2D convolutions. The main building block of our network is a Sequential Feature Fusion (SFF) module which generates 3D cost volumes to cover a part of the disparity range by shifting and concatenating the target features, and processes the cost volume using 2D convolutions. A series of the SFF modules in our SFFNet are designed to gradually cover the full disparity range. Our method prevents heavy computations and allows for efficient generation of an accurate final disparity map. Various experiments show that our method has an advantage in terms of accuracy versus efficiency compared to other networks. |
---|---|
AbstractList | Recent stereo matching networks adopt 4D cost volumes and 3D convolutions for processing those volumes. Although these methods show good performance in terms of accuracy, they have an inherent disadvantage in that they require great deal of computing resources and memory. These requirements limit their applications for mobile environments, which are subject to inherent computing hardware constraints. Both accuracy and consumption of computing resources are important, and improving both at the same time is a non-trivial task. To deal with this problem, we propose a simple yet efficient network, called Sequential Feature Fusion Network (SFFNet) which sequentially generates and processes the cost volume using only 2D convolutions. The main building block of our network is a Sequential Feature Fusion (SFF) module which generates 3D cost volumes to cover a part of the disparity range by shifting and concatenating the target features, and processes the cost volume using 2D convolutions. A series of the SFF modules in our SFFNet are designed to gradually cover the full disparity range. Our method prevents heavy computations and allows for efficient generation of an accurate final disparity map. Various experiments show that our method has an advantage in terms of accuracy versus efficiency compared to other networks. |
Author | Jeong, Jaecheol Heo, Yong Seok Jeon, Suyeon |
Author_xml | – sequence: 1 givenname: Jaecheol surname: Jeong fullname: Jeong, Jaecheol – sequence: 2 givenname: Suyeon surname: Jeon fullname: Jeon, Suyeon – sequence: 3 givenname: Yong Seok orcidid: 0000-0001-7576-1347 surname: Heo fullname: Heo, Yong Seok |
BookMark | eNp9kEFLAzEQhYMoWGt_gZeA59VJspvdHEttVah6qD0vMTurqWtSkyziv3dLPYiIp3kD35t5vBNy6LxDQs4YXAih4BI7NCl4Z01kAIpBXhyQEYdSZYorfvhDH5NJjBuAHSYqASNyNXV03rbWWHSJrhIG9PROJ_Ni3TO9x_Thwytdx922wvd-oKzu6AJ16gPSRR-td6fkqNVdxMn3HJP1Yv44u8mWD9e3s-kyM4LzlBWApVFYDHFkDrLNsdRgQCIaBVWLgpUSjDY6bzRD1kipgbfNE2NGIm-0GJPz_d1t8EOUmOqN74MbXta84BUvqrwQA6X2lAk-xoBtbWzSaciZgrZdzaDe9Vb_0dvgFb-822DfdPj81_UFy5V3PA |
CitedBy_id | crossref_primary_10_1117_1_JEI_32_5_053030 crossref_primary_10_3390_s22155500 |
Cites_doi | 10.1007/978-3-030-20873-8_2 10.1109/CVPR.2015.7299064 10.1109/TPAMI.2007.1166 10.1007/978-3-030-01249-6_34 10.3390/s90100568 10.1023/A:1014573219977 10.1109/CVPR.2012.6248074 10.1109/ICCV.2013.13 10.1109/CVPR.2016.90 10.1109/ACCESS.2018.2877890 10.1007/978-3-030-01234-2_39 10.1109/ICRA.2019.8794003 10.1023/A:1008160311296 10.1109/ICICEE.2012.450 10.1109/ICCV.2015.169 10.1109/ACCESS.2019.2916035 10.1109/CVPR.2019.00028 10.1109/CVPR.2019.00620 10.3390/rs10111844 10.1109/ICSPC.2007.4728616 10.1109/CVPR.2016.614 10.1109/ICCVW.2017.108 10.1109/CVPR.2018.00567 10.1109/CVPR.2015.7298925 10.1109/ICCV.2017.17 10.1007/s00034-009-9130-7 10.1007/978-3-540-88693-8_57 10.1109/TPAMI.2015.2389824 10.1109/EIT.2019.8834182 10.1109/ICRIS.2018.00018 10.1109/CVPR.2007.383248 10.1007/BFb0028345 10.1007/s11263-015-0816-y 10.1109/CVPR.2016.438 10.1109/ICCV.2015.312 10.1109/3DIMPVT.2011.24 10.1109/TCSVT.2009.2020478 10.1109/CVPR.2017.660 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.3390/electronics10091045 |
DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-9292 |
ExternalDocumentID | 10_3390_electronics10091045 |
GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c322t-50e7c9e52076406f4e7a0c06eec908fe31760caca4da1e1d66a02fdb11c6e2da3 |
IEDL.DBID | BENPR |
ISSN | 2079-9292 |
IngestDate | Sun Jul 13 03:44:39 EDT 2025 Tue Jul 01 02:00:23 EDT 2025 Thu Apr 24 22:53:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c322t-50e7c9e52076406f4e7a0c06eec908fe31760caca4da1e1d66a02fdb11c6e2da3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7576-1347 |
OpenAccessLink | https://www.proquest.com/docview/2528258453?pq-origsite=%requestingapplication% |
PQID | 2528258453 |
PQPubID | 2032404 |
ParticipantIDs | proquest_journals_2528258453 crossref_citationtrail_10_3390_electronics10091045 crossref_primary_10_3390_electronics10091045 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Electronics (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Paszke (ref_45) 2019; 32 Zhang (ref_29) 2009; 19 ref_14 Wu (ref_28) 2019; 7 ref_36 ref_13 ref_35 ref_12 ref_34 Zbontar (ref_7) 2016; 17 ref_11 ref_33 ref_10 ref_32 ref_31 ref_30 ref_19 ref_18 ref_39 ref_38 Bianco (ref_47) 2018; 6 ref_15 Yoo (ref_20) 2009; 28 Sansoni (ref_1) 2009; 9 Scharstein (ref_6) 2002; 47 Birchfield (ref_17) 1999; 35 ref_24 ref_46 ref_23 ref_22 ref_44 ref_21 ref_42 ref_41 ref_40 ref_3 Aboali (ref_25) 2018; 10 ref_2 ref_27 ref_26 ref_9 Russakovsky (ref_43) 2015; 115 ref_8 Hirschmuller (ref_16) 2007; 30 ref_5 ref_4 He (ref_37) 2015; 37 |
References_xml | – ident: ref_46 doi: 10.1007/978-3-030-20873-8_2 – ident: ref_8 doi: 10.1109/CVPR.2015.7299064 – volume: 30 start-page: 328 year: 2007 ident: ref_16 article-title: Stereo processing by semiglobal matching and mutual information publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.1166 – ident: ref_36 doi: 10.1007/978-3-030-01249-6_34 – volume: 9 start-page: 568 year: 2009 ident: ref_1 article-title: State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation publication-title: Sensors doi: 10.3390/s90100568 – volume: 47 start-page: 7 year: 2002 ident: ref_6 article-title: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms publication-title: Int. J. Comput. Vis. doi: 10.1023/A:1014573219977 – ident: ref_34 – ident: ref_41 doi: 10.1109/CVPR.2012.6248074 – ident: ref_26 doi: 10.1109/ICCV.2013.13 – ident: ref_35 doi: 10.1109/CVPR.2016.90 – volume: 6 start-page: 64270 year: 2018 ident: ref_47 article-title: Benchmark Analysis of Representative Deep Neural Network Architectures publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2877890 – ident: ref_39 – ident: ref_30 doi: 10.1007/978-3-030-01234-2_39 – ident: ref_14 – ident: ref_15 doi: 10.1109/ICRA.2019.8794003 – volume: 35 start-page: 269 year: 1999 ident: ref_17 article-title: Depth discontinuities by pixel-to-pixel stereo publication-title: Int. J. Comput. Vis. doi: 10.1023/A:1008160311296 – ident: ref_18 – ident: ref_44 – ident: ref_22 doi: 10.1109/ICICEE.2012.450 – ident: ref_40 doi: 10.1109/ICCV.2015.169 – ident: ref_23 – volume: 7 start-page: 61960 year: 2019 ident: ref_28 article-title: Stereo matching with fusing adaptive support weights publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2916035 – ident: ref_32 doi: 10.1109/CVPR.2019.00028 – ident: ref_31 doi: 10.1109/CVPR.2019.00620 – ident: ref_33 doi: 10.3390/rs10111844 – ident: ref_3 doi: 10.1109/ICSPC.2007.4728616 – ident: ref_9 doi: 10.1109/CVPR.2016.614 – ident: ref_11 doi: 10.1109/ICCVW.2017.108 – ident: ref_13 doi: 10.1109/CVPR.2018.00567 – ident: ref_42 doi: 10.1109/CVPR.2015.7298925 – volume: 17 start-page: 2287 year: 2016 ident: ref_7 article-title: Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches publication-title: J. Mach. Learn. Res. – ident: ref_12 doi: 10.1109/ICCV.2017.17 – volume: 28 start-page: 819 year: 2009 ident: ref_20 article-title: Fast normalized cross-correlation publication-title: Circuits Syst. Signal Process. doi: 10.1007/s00034-009-9130-7 – ident: ref_24 doi: 10.1007/978-3-540-88693-8_57 – volume: 37 start-page: 1904 year: 2015 ident: ref_37 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2389824 – ident: ref_4 doi: 10.1109/EIT.2019.8834182 – ident: ref_5 doi: 10.1109/ICRIS.2018.00018 – ident: ref_19 doi: 10.1109/CVPR.2007.383248 – ident: ref_21 doi: 10.1007/BFb0028345 – volume: 115 start-page: 211 year: 2015 ident: ref_43 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y – ident: ref_10 doi: 10.1109/CVPR.2016.438 – ident: ref_2 doi: 10.1109/ICCV.2015.312 – volume: 10 start-page: 133 year: 2018 ident: ref_25 article-title: A Multistage Hybrid Median Filter Design of Stereo Matching Algorithms on Image Processing publication-title: J. Telecommun. Electron. Comput. Eng. – ident: ref_27 doi: 10.1109/3DIMPVT.2011.24 – volume: 19 start-page: 1073 year: 2009 ident: ref_29 article-title: Cross-based local stereo matching using orthogonal integral images publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2009.2020478 – volume: 32 start-page: 8026 year: 2019 ident: ref_45 article-title: PyTorch: An Imperative Style, High-Performance Deep Learning Library publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_38 doi: 10.1109/CVPR.2017.660 |
SSID | ssj0000913830 |
Score | 2.195221 |
Snippet | Recent stereo matching networks adopt 4D cost volumes and 3D convolutions for processing those volumes. Although these methods show good performance in terms... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 1045 |
SubjectTerms | Accuracy Algorithms Augmented reality Deep learning Matching Methods Modules Neural networks Semantics |
Title | An Efficient Stereo Matching Network Using Sequential Feature Fusion |
URI | https://www.proquest.com/docview/2528258453 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV05T8MwFLZou8CAOEWhVB4YieokvjKhAg0VUitEqdQtcpyXqUpLj5Xfjp24BxLqFEWOl2e_M9_7HkIPIU0pl6nwck6VRyEHT7JMmawViNnCVMhsg_NgyPtj-j5hE1dwWzpY5cYmloY6m2lbI-8EzHZZSsrCp_m3Z6dG2b-rboRGDTWMCZasjhrPveHH57bKYlkvZUgquqHQ5Ped3XSZpW-XiW1k2ndJfy1y6WbiM3Tq4kPcrQ70HB1BcYFO9lgDL9Frt8C9kvnBOAw8MoKBGR4Yk2qLSXhY4bpxiQXAoxIpbbR4im2wt14Ajte2QHaFxnHv66XvuWEInjY6t_IYAaEjYAER3DjhnIJQRBMOoCMiczBxACdaaUUz5YOfca5IkGep72sOQabCa1QvZgXcIJwDMy5K-ErmERWBVkILRtMoS0MO5tFEwUYeiXZM4XZgxTQxGYMVYvKPEJvocbtpXhFlHP68tRF04rRmmezO-Pbw8h06Diy2pAQetlB9tVjDvQkOVmkb1WT81nb3wLwNfnq_YQC_kg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BOQAHxCqWAj7AjQjHsZ3kgBBLq7K0QiwSt-A4kxNqgbZC_BTfyDgLi4S4ccrBcQ7j53kzk1kAdgKZSh2loZdraTyJOXqRygx5rchpizKBcgXO3Z7u3Mnze3U_Ae91LYxLq6x1YqGos4F1MfJ9oVyVZSRVcPj07LmpUe7vaj1Co4TFBb69kss2PDg7pfPdFaLduj3peNVUAc8SeEee4hjaGJUgD57YLJcYGm65RrQxj3IkQtXcGmtkZnz0M60NF3mW-r7VKDIT0HcnYYrMjJhu0dRxq3d1_RnVcV02o4CX7Y2CIOb7X9Nshr5b5q5w6jsF_mSAgtba8zBX2aPsqATQAkxgfxFmv3UpXILToz5rFZ0miKDYDR0EDliXVLgLXrFemUfOitwDdlNkZpPWeGTOuBy_IGuPXUBuGe7-RUwr0OgP-rgKLEdFlBj6JspjGQprQhsqmcZZGmikxxqIWh6JrTqTuwEZjwl5KE6IyS9CXIO9z01PZWOOv19v1oJOqls6TL4wtf738jZMd267l8nlWe9iA2aEy2spkh6b0Bi9jHGTDJNRulWhgcHDfwPwA56g-2w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BkRAcEKvY8QFuRHUc20kOCAFtxVohFolbcJzJqWqBtkL8Gl_HOAuLhLhxysFxDpOXeZ7JmxmA3UCmUkdp6OVaGk9ijl6kMkNRK3LaokygXIHzVVef3svzB_UwAe91LYyTVdY-sXDU2cC6HHlTKFdlGUkVNPNKFnHd6hw-PXtugpT701qP0yghcoFvrxS-DQ_OWvSu94TotO9OTr1qwoBnCcgjT3EMbYxKUDRPzJZLDA23XCPamEc5Erlqbo01MjM--pnWhos8S33fahSZCei5kzAV0t6oAVPH7e71zWeGx3XcjAJetjoKgpg3vybbDH23zF0R1Xc6_MkGBcV15mGuOpuyoxJMCzCB_UWY_daxcAlaR33WLrpOEFmxW3opOGBX5M5dIot1S005K3QI7LZQaZMH6TF30By_IOuMXXJuGe7_xUwr0OgP-rgKLEdF9Bj6JspjGQprQhsqmcZZGmikyxqI2h6JrbqUu2EZvYSiFWfE5BcjrsH-56ansknH37dv1oZOqi92mHzha_3v5R2YJuAll2fdiw2YEU7iUugfN6ExehnjFp1RRul2BQYGj_-Nvw-yUP-Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Stereo+Matching+Network+Using+Sequential+Feature+Fusion&rft.jtitle=Electronics+%28Basel%29&rft.au=Jeong%2C+Jaecheol&rft.au=Jeon%2C+Suyeon&rft.au=Heo%2C+Yong+Seok&rft.date=2021-05-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=10&rft.issue=9&rft.spage=1045&rft_id=info:doi/10.3390%2Felectronics10091045&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics10091045 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |