Relational Maneuvering of Leader-Follower Unmanned Aerial Vehicles for Flexible Formation

In this article, we propose a new formation scheme for a leader-follower unmanned aerial vehicle (UAV) system inspired by a human pilot's behavior wherein the formation geometry does not necessarily remain fixed as the vehicles maneuver. In other words, the position and the orientation of the f...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 54; no. 10; pp. 5598 - 5609
Main Authors Kumar Ranjan, Praveen, Sinha, Abhinav, Cao, Yongcan, Casbeer, David, Weintraub, Isaac
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this article, we propose a new formation scheme for a leader-follower unmanned aerial vehicle (UAV) system inspired by a human pilot's behavior wherein the formation geometry does not necessarily remain fixed as the vehicles maneuver. In other words, the position and the orientation of the follower with respect to the leader are subject to change as they maneuver while satisfying some constraints. Our strategy ensures that the follower UAV maintains a desired fixed relative distance with respect to the leader UAV, whereas its orientation with respect to the leader UAV may change to reduce its control effort and provide it with a tactical advantage. We call this new relational maneuvering scheme flexible since the set of feasible positions for the follower UAV is not fixed, as is common in close proximity two-ship formations in air-to-air combat. By assigning the follower UAV's linear and angular velocities as its control inputs, our approach tries to emulate a human pilot's behavior in UAVs by taking anticipatory maneuvers when the leader UAV makes aggressive turns. The proposed flexible-geometry formation scheme is robust to the leader's maneuver changes since the follower UAV's control law does not need the information of the leader's angular speed control and only uses relative measurements. This makes the design lucrative even when the vehicles are heterogeneous, global measurements are unavailable, or if the leader UAV is noncooperative. Finally, we present multiple simulations to highlight the merits of the flexible formation control laws.
AbstractList In this article, we propose a new formation scheme for a leader-follower unmanned aerial vehicle (UAV) system inspired by a human pilot's behavior wherein the formation geometry does not necessarily remain fixed as the vehicles maneuver. In other words, the position and the orientation of the follower with respect to the leader are subject to change as they maneuver while satisfying some constraints. Our strategy ensures that the follower UAV maintains a desired fixed relative distance with respect to the leader UAV, whereas its orientation with respect to the leader UAV may change to reduce its control effort and provide it with a tactical advantage. We call this new relational maneuvering scheme flexible since the set of feasible positions for the follower UAV is not fixed, as is common in close proximity two-ship formations in air-to-air combat. By assigning the follower UAV's linear and angular velocities as its control inputs, our approach tries to emulate a human pilot's behavior in UAVs by taking anticipatory maneuvers when the leader UAV makes aggressive turns. The proposed flexible-geometry formation scheme is robust to the leader's maneuver changes since the follower UAV's control law does not need the information of the leader's angular speed control and only uses relative measurements. This makes the design lucrative even when the vehicles are heterogeneous, global measurements are unavailable, or if the leader UAV is noncooperative. Finally, we present multiple simulations to highlight the merits of the flexible formation control laws.
In this article, we propose a new formation scheme for a leader-follower unmanned aerial vehicle (UAV) system inspired by a human pilot's behavior wherein the formation geometry does not necessarily remain fixed as the vehicles maneuver. In other words, the position and the orientation of the follower with respect to the leader are subject to change as they maneuver while satisfying some constraints. Our strategy ensures that the follower UAV maintains a desired fixed relative distance with respect to the leader UAV, whereas its orientation with respect to the leader UAV may change to reduce its control effort and provide it with a tactical advantage. We call this new relational maneuvering scheme flexible since the set of feasible positions for the follower UAV is not fixed, as is common in close proximity two-ship formations in air-to-air combat. By assigning the follower UAV's linear and angular velocities as its control inputs, our approach tries to emulate a human pilot's behavior in UAVs by taking anticipatory maneuvers when the leader UAV makes aggressive turns. The proposed flexible-geometry formation scheme is robust to the leader's maneuver changes since the follower UAV's control law does not need the information of the leader's angular speed control and only uses relative measurements. This makes the design lucrative even when the vehicles are heterogeneous, global measurements are unavailable, or if the leader UAV is noncooperative. Finally, we present multiple simulations to highlight the merits of the flexible formation control laws.In this article, we propose a new formation scheme for a leader-follower unmanned aerial vehicle (UAV) system inspired by a human pilot's behavior wherein the formation geometry does not necessarily remain fixed as the vehicles maneuver. In other words, the position and the orientation of the follower with respect to the leader are subject to change as they maneuver while satisfying some constraints. Our strategy ensures that the follower UAV maintains a desired fixed relative distance with respect to the leader UAV, whereas its orientation with respect to the leader UAV may change to reduce its control effort and provide it with a tactical advantage. We call this new relational maneuvering scheme flexible since the set of feasible positions for the follower UAV is not fixed, as is common in close proximity two-ship formations in air-to-air combat. By assigning the follower UAV's linear and angular velocities as its control inputs, our approach tries to emulate a human pilot's behavior in UAVs by taking anticipatory maneuvers when the leader UAV makes aggressive turns. The proposed flexible-geometry formation scheme is robust to the leader's maneuver changes since the follower UAV's control law does not need the information of the leader's angular speed control and only uses relative measurements. This makes the design lucrative even when the vehicles are heterogeneous, global measurements are unavailable, or if the leader UAV is noncooperative. Finally, we present multiple simulations to highlight the merits of the flexible formation control laws.
Author Casbeer, David
Kumar Ranjan, Praveen
Weintraub, Isaac
Cao, Yongcan
Sinha, Abhinav
Author_xml – sequence: 1
  givenname: Praveen
  orcidid: 0000-0003-2017-9725
  surname: Kumar Ranjan
  fullname: Kumar Ranjan, Praveen
  email: praveen.ranjan@my.utsa.edu
  organization: Department of Electrical and Computer Engineering, Unmanned Systems Laboratory, The University of Texas at San Antonio, San Antonio, TX, USA
– sequence: 2
  givenname: Abhinav
  orcidid: 0000-0001-6419-2353
  surname: Sinha
  fullname: Sinha, Abhinav
  email: abhinav.sinha@uc.edu
  organization: Department of Aerospace Engineering and Engineering Mechanics, Guidance, Autonomy, Learning, and Control for Intelligent Systems (GALACxIS) Lab, University of Cincinnati, Cincinnati, OH, USA
– sequence: 3
  givenname: Yongcan
  orcidid: 0000-0003-3383-0185
  surname: Cao
  fullname: Cao, Yongcan
  email: yongcan.cao@utsa.edu
  organization: Department of Electrical and Computer Engineering, Unmanned Systems Laboratory, The University of Texas at San Antonio, San Antonio, TX, USA
– sequence: 4
  givenname: David
  orcidid: 0000-0002-7065-7337
  surname: Casbeer
  fullname: Casbeer, David
  email: david.casbeer@us.af.mil
  organization: Control Science Center, U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base, Wright-Patterson AFB, OH, USA
– sequence: 5
  givenname: Isaac
  orcidid: 0000-0003-2209-2500
  surname: Weintraub
  fullname: Weintraub, Isaac
  email: isaac.weintraub.1@us.af.mil
  organization: Control Science Center, U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base, Wright-Patterson AFB, OH, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39137082$$D View this record in MEDLINE/PubMed
BookMark eNp9kM1KJDEUhYM4-P8AgkgtZ1M9-a1UltrYKvQwMKjgqkgltzSSqmhS7ejbm7ZbGVyYzQ2X75yQbxdtDmEAhA4JnhCC1a-r6e3phGLKJ4wzganaQDuUVHVJqRSbn_dKbqODlB5wPnVeqXoLbTNFmMQ13UG3f8Hr0YVB--K3HmDxDNENd0XoijloC7GcBe_DP4jF9dDrYQBbnGQk4zdw74yHVHQhFjMPL671UMxC7N8L99GPTvsEB-u5h65nZ1fTi3L-5_xyejIvDaN0LHnX0U4Sa5QCXktba0W1UFIqZitmWCUVCNFa02rMDee1ZVaA6BTjRLbcsD30c9X7GMPTAtLY9C4Z8D7_JixSw7CidZVrREaP1-ii7cE2j9H1Or42HzoyQFaAiSGlCN0nQnCztN4srTdL683aes7ILxnjxncDY9TOf5s8WiUdAPz3UsW4kIS9ARIAjrc
CODEN ITCEB8
CitedBy_id crossref_primary_10_1016_j_ast_2025_109974
crossref_primary_10_1109_LRA_2025_3528225
crossref_primary_10_1109_TCYB_2025_3532779
crossref_primary_10_1016_j_isatra_2025_01_001
Cites_doi 10.1109/TCYB.2024.3352251
10.1109/TCYB.2021.3063481
10.1109/TCYB.2021.3124827
10.2514/1.7420
10.1109/TCYB.2022.3232507
10.1109/TCST.2019.2892031
10.2514/1.g007057
10.1109/TCYB.2022.3226297
10.1109/TCYB.2023.3290726
10.1109/TCYB.2014.2328659
10.1109/TCYB.2023.3265405
10.1109/TCYB.2022.3165212
10.1109/TCYB.2018.2794139
10.1109/TCNS.2019.2929658
10.1109/TCYB.2023.3248125
10.1016/j.automatica.2008.11.017
10.1109/TCYB.2019.2955543
10.2514/1.27758
10.2514/3.21364
10.1109/TCYB.2017.2684461
10.1109/TCYB.2018.2859422
10.1109/TCYB.2020.2988911
10.1109/TCYB.2023.3246985
10.1109/TCYB.2022.3170580
10.1109/TCYB.2018.2834919
10.1109/TSMC.2021.3049681
10.1109/TIE.2016.2606585
10.1016/j.ast.2018.01.026
10.1109/TAC.2021.3066388
10.1109/TCYB.2020.2978981
10.2514/1.34351
10.2514/1.9605
10.1109/TAC.2020.2986684
10.1016/j.automatica.2012.11.031
10.1109/TCYB.2023.3245139
10.1109/MCS.2016.2558401
10.1515/ama-2017-0026
10.1109/TCYB.2014.2309898
10.1016/j.robot.2016.03.008
10.1109/TASE.2022.3144672
10.2514/1.g005925
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TCYB.2024.3435029
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 5609
ExternalDocumentID 39137082
10_1109_TCYB_2024_3435029
10634571
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Office of Naval Research
  grantid: N00014-19-1-2278
  funderid: 10.13039/100000006
– fundername: Air Force Research Laboratory
  grantid: FA8650-20-2-2419
  funderid: 10.13039/100006602
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7X8
ID FETCH-LOGICAL-c322t-4ff2f71dc99e487d8a92a597793d63c3679e55bdcba04c448d3d5e5f93417b4c3
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Fri Jul 11 02:22:20 EDT 2025
Mon Jul 21 06:02:26 EDT 2025
Thu Apr 24 23:05:03 EDT 2025
Tue Jul 01 00:54:06 EDT 2025
Wed Aug 27 03:03:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-4ff2f71dc99e487d8a92a597793d63c3679e55bdcba04c448d3d5e5f93417b4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2017-9725
0000-0003-3383-0185
0000-0001-6419-2353
0000-0002-7065-7337
0000-0003-2209-2500
PMID 39137082
PQID 3092866795
PQPubID 23479
PageCount 12
ParticipantIDs crossref_primary_10_1109_TCYB_2024_3435029
proquest_miscellaneous_3092866795
ieee_primary_10634571
crossref_citationtrail_10_1109_TCYB_2024_3435029
pubmed_primary_39137082
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
(ref43) 2023
ref31
ref30
ref11
ref33
ref10
ref32
Tee (ref42) 2009; 45
ref2
ref1
ref17
ref39
ref16
ref38
ref18
Shaw (ref41) 1985
Lee (ref19) 2018; 76
ref24
ref23
ref26
ref25
ref20
ref21
ref28
ref27
ref29
ref8
Dehghani (ref22) 2016; 80
ref7
ref4
ref3
ref6
ref5
ref40
Liu (ref9) 2013; 49
References_xml – ident: ref28
  doi: 10.1109/TCYB.2024.3352251
– ident: ref6
  doi: 10.1109/TCYB.2021.3063481
– ident: ref14
  doi: 10.1109/TCYB.2021.3124827
– ident: ref24
  doi: 10.2514/1.7420
– ident: ref25
  doi: 10.1109/TCYB.2022.3232507
– ident: ref40
  doi: 10.1109/TCST.2019.2892031
– ident: ref35
  doi: 10.2514/1.g007057
– ident: ref7
  doi: 10.1109/TCYB.2022.3226297
– ident: ref11
  doi: 10.1109/TCYB.2023.3290726
– ident: ref3
  doi: 10.1109/TCYB.2014.2328659
– ident: ref30
  doi: 10.1109/TCYB.2023.3265405
– ident: ref26
  doi: 10.1109/TCYB.2022.3165212
– ident: ref12
  doi: 10.1109/TCYB.2018.2794139
– ident: ref38
  doi: 10.1109/TCNS.2019.2929658
– ident: ref31
  doi: 10.1109/TCYB.2023.3248125
– volume: 45
  start-page: 918
  issue: 4
  year: 2009
  ident: ref42
  article-title: Barrier Lyapunov functions for the control of output-constrained nonlinear systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2008.11.017
– ident: ref17
  doi: 10.1109/TCYB.2019.2955543
– ident: ref8
  doi: 10.2514/1.27758
– ident: ref16
  doi: 10.2514/3.21364
– ident: ref5
  doi: 10.1109/TCYB.2017.2684461
– ident: ref4
  doi: 10.1109/TCYB.2018.2859422
– ident: ref15
  doi: 10.1109/TCYB.2020.2988911
– ident: ref29
  doi: 10.1109/TCYB.2023.3246985
– ident: ref2
  doi: 10.1109/TCYB.2022.3170580
– ident: ref13
  doi: 10.1109/TCYB.2018.2834919
– ident: ref39
  doi: 10.1109/TSMC.2021.3049681
– ident: ref23
  doi: 10.1109/TIE.2016.2606585
– volume: 76
  start-page: 412
  year: 2018
  ident: ref19
  article-title: Formation flight of unmanned aerial vehicles using track guidance
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2018.01.026
– ident: ref36
  doi: 10.1109/TAC.2021.3066388
– ident: ref18
  doi: 10.1109/TCYB.2020.2978981
– ident: ref33
  doi: 10.2514/1.34351
– ident: ref21
  doi: 10.2514/1.9605
– ident: ref37
  doi: 10.1109/TAC.2020.2986684
– volume: 49
  start-page: 592
  issue: 2
  year: 2013
  ident: ref9
  article-title: Distributed formation control of nonholonomic mobile robots without global position measurements
  publication-title: Automatica
  doi: 10.1016/j.automatica.2012.11.031
– ident: ref27
  doi: 10.1109/TCYB.2023.3245139
– volume-title: Tactics Maneuvering
  year: 1985
  ident: ref41
  article-title: Fighter combat
– ident: ref10
  doi: 10.1109/MCS.2016.2558401
– ident: ref32
  doi: 10.1515/ama-2017-0026
– ident: ref1
  doi: 10.1109/TCYB.2014.2309898
– volume-title: L3Harris Technology: FVR-90 Airframe
  year: 2023
  ident: ref43
– volume: 80
  start-page: 69
  year: 2016
  ident: ref22
  article-title: Communication free leader–follower formation control of unmanned aircraft systems
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2016.03.008
– ident: ref20
  doi: 10.1109/TASE.2022.3144672
– ident: ref34
  doi: 10.2514/1.g005925
SSID ssj0000816898
Score 2.4144392
Snippet In this article, we propose a new formation scheme for a leader-follower unmanned aerial vehicle (UAV) system inspired by a human pilot's behavior wherein the...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5598
SubjectTerms Autonomous aerial vehicles
Formation control
Geometry
leader-follower formation
Line-of-sight propagation
relational maneuvering
unmanned aerial vehicle (UAV)
Vehicular ad hoc networks
Title Relational Maneuvering of Leader-Follower Unmanned Aerial Vehicles for Flexible Formation
URI https://ieeexplore.ieee.org/document/10634571
https://www.ncbi.nlm.nih.gov/pubmed/39137082
https://www.proquest.com/docview/3092866795
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT-QwDI2AExdYlq9ZdlGQOABSh0yTtM2RRVQICU4MglPVJK6QGDoIphz49dhpO1qQQHvLIWmbPLuxE_uZsX2ZKCcs2MhZqyNVGR3Z1KsoK4Vx2qID4ig5-fIqOR-ri1t92yWrh1wYAAjBZzCkZrjL91PX0FEZangilaaM8UX03NpkrfmBSqggEWrfxtiI0KxIu1vMkTDH16d3f9EbjNVQooEgYmILlWYkU5HFH7akUGPla3MzbDv5KrvqP7iNNnkYNjM7dG-fuBz_e0Y_2EpngPKTVmLW2ALUP9lap-Iv_KDjoT5cZ3d9oBx2vyxraF4DbSGfVrwtzBnlKERUZY2P68eSftj8JAg0v4H7EG7H0STmOXFu2gnwvE-U3GDj_Oz69DzqKjFEDhV-hhhWcZWOvDMG0MPxWWnikpjrjPSJdDJJDWhtvbOlUA49Pi-9Bl0Z3CNTq5zcZEv1tIZtxo2SPss8ANolCtzIEj-PNiUNMz52AyZ6MArX0ZRTtYxJEdwVYQqCsiAoiw7KATuaD3lqOTq-67xBMPzTsUVgwPZ6yAvUMLo2wZWdNi-FFCbOEpyiHrCtVhbmo3sR-vXFU3fYMr28jf77zZZmzw38QStmZneD9L4DpNDqOA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQOcCF0gewvGqkHgpStl4_kvhYKqJt6e5pF7WnKLYnQqJkK7rhwK9nxklWBamIWw52ZOebyczYM98wdqhS7YUDl3jnTKJraxKXBZ3klbDeOAxAPBUnz-bpdKnPL81lX6wea2EAICafwZge411-WPmWjspQw1OlDVWMP0TDb2RXrrU5Uok9JGL3W4kPCToWWX-PORH2eHF69RHjQanHCl0EIYkvVNmJykQu_zBKscvK_Q5nNDzFNpsPS-7yTb6N27Ub-19_sTn-956esie9C8pPOpnZYQ-g2WU7vZLf8qOeifr9HrsaUuVw-KxqoP0ZiQv5quZda86kQDGiPmt82Xyv6JfNT6JI8y_wNSbccXSKeUGsm-4aeDGUSu6zZfFpcTpN-l4MiUeVXyOKtayzSfDWAsY4Ia-srIi7zqqQKq_SzIIxLnhXCe0x5gsqGDC1RSuZOe3VM7bVrBp4wbjVKuR5AEDPRIOfOGLoMbaiaTZIP2JiAKP0PVE59cu4LmPAImxJUJYEZdlDOWIfNlNuOpaOfw3eJxjuDOwQGLF3A-Ql6hhdnOCXXbW3pRJW5ilu0YzY804WNrMHEXp5z1sP2KPpYnZRXpzNP79ij2khXS7ga7a1_tHCG_Rp1u5tlOTfCoLtgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relational+Maneuvering+of+Leader-Follower+Unmanned+Aerial+Vehicles+for+Flexible+Formation&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Kumar+Ranjan%2C+Praveen&rft.au=Sinha%2C+Abhinav&rft.au=Cao%2C+Yongcan&rft.au=Casbeer%2C+David&rft.date=2024-10-01&rft.eissn=2168-2275&rft.volume=54&rft.issue=10&rft.spage=5598&rft_id=info:doi/10.1109%2FTCYB.2024.3435029&rft_id=info%3Apmid%2F39137082&rft.externalDocID=39137082
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon