Relational Maneuvering of Leader-Follower Unmanned Aerial Vehicles for Flexible Formation
In this article, we propose a new formation scheme for a leader-follower unmanned aerial vehicle (UAV) system inspired by a human pilot's behavior wherein the formation geometry does not necessarily remain fixed as the vehicles maneuver. In other words, the position and the orientation of the f...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 54; no. 10; pp. 5598 - 5609 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this article, we propose a new formation scheme for a leader-follower unmanned aerial vehicle (UAV) system inspired by a human pilot's behavior wherein the formation geometry does not necessarily remain fixed as the vehicles maneuver. In other words, the position and the orientation of the follower with respect to the leader are subject to change as they maneuver while satisfying some constraints. Our strategy ensures that the follower UAV maintains a desired fixed relative distance with respect to the leader UAV, whereas its orientation with respect to the leader UAV may change to reduce its control effort and provide it with a tactical advantage. We call this new relational maneuvering scheme flexible since the set of feasible positions for the follower UAV is not fixed, as is common in close proximity two-ship formations in air-to-air combat. By assigning the follower UAV's linear and angular velocities as its control inputs, our approach tries to emulate a human pilot's behavior in UAVs by taking anticipatory maneuvers when the leader UAV makes aggressive turns. The proposed flexible-geometry formation scheme is robust to the leader's maneuver changes since the follower UAV's control law does not need the information of the leader's angular speed control and only uses relative measurements. This makes the design lucrative even when the vehicles are heterogeneous, global measurements are unavailable, or if the leader UAV is noncooperative. Finally, we present multiple simulations to highlight the merits of the flexible formation control laws. |
---|---|
AbstractList | In this article, we propose a new formation scheme for a leader-follower unmanned aerial vehicle (UAV) system inspired by a human pilot's behavior wherein the formation geometry does not necessarily remain fixed as the vehicles maneuver. In other words, the position and the orientation of the follower with respect to the leader are subject to change as they maneuver while satisfying some constraints. Our strategy ensures that the follower UAV maintains a desired fixed relative distance with respect to the leader UAV, whereas its orientation with respect to the leader UAV may change to reduce its control effort and provide it with a tactical advantage. We call this new relational maneuvering scheme flexible since the set of feasible positions for the follower UAV is not fixed, as is common in close proximity two-ship formations in air-to-air combat. By assigning the follower UAV's linear and angular velocities as its control inputs, our approach tries to emulate a human pilot's behavior in UAVs by taking anticipatory maneuvers when the leader UAV makes aggressive turns. The proposed flexible-geometry formation scheme is robust to the leader's maneuver changes since the follower UAV's control law does not need the information of the leader's angular speed control and only uses relative measurements. This makes the design lucrative even when the vehicles are heterogeneous, global measurements are unavailable, or if the leader UAV is noncooperative. Finally, we present multiple simulations to highlight the merits of the flexible formation control laws. In this article, we propose a new formation scheme for a leader-follower unmanned aerial vehicle (UAV) system inspired by a human pilot's behavior wherein the formation geometry does not necessarily remain fixed as the vehicles maneuver. In other words, the position and the orientation of the follower with respect to the leader are subject to change as they maneuver while satisfying some constraints. Our strategy ensures that the follower UAV maintains a desired fixed relative distance with respect to the leader UAV, whereas its orientation with respect to the leader UAV may change to reduce its control effort and provide it with a tactical advantage. We call this new relational maneuvering scheme flexible since the set of feasible positions for the follower UAV is not fixed, as is common in close proximity two-ship formations in air-to-air combat. By assigning the follower UAV's linear and angular velocities as its control inputs, our approach tries to emulate a human pilot's behavior in UAVs by taking anticipatory maneuvers when the leader UAV makes aggressive turns. The proposed flexible-geometry formation scheme is robust to the leader's maneuver changes since the follower UAV's control law does not need the information of the leader's angular speed control and only uses relative measurements. This makes the design lucrative even when the vehicles are heterogeneous, global measurements are unavailable, or if the leader UAV is noncooperative. Finally, we present multiple simulations to highlight the merits of the flexible formation control laws.In this article, we propose a new formation scheme for a leader-follower unmanned aerial vehicle (UAV) system inspired by a human pilot's behavior wherein the formation geometry does not necessarily remain fixed as the vehicles maneuver. In other words, the position and the orientation of the follower with respect to the leader are subject to change as they maneuver while satisfying some constraints. Our strategy ensures that the follower UAV maintains a desired fixed relative distance with respect to the leader UAV, whereas its orientation with respect to the leader UAV may change to reduce its control effort and provide it with a tactical advantage. We call this new relational maneuvering scheme flexible since the set of feasible positions for the follower UAV is not fixed, as is common in close proximity two-ship formations in air-to-air combat. By assigning the follower UAV's linear and angular velocities as its control inputs, our approach tries to emulate a human pilot's behavior in UAVs by taking anticipatory maneuvers when the leader UAV makes aggressive turns. The proposed flexible-geometry formation scheme is robust to the leader's maneuver changes since the follower UAV's control law does not need the information of the leader's angular speed control and only uses relative measurements. This makes the design lucrative even when the vehicles are heterogeneous, global measurements are unavailable, or if the leader UAV is noncooperative. Finally, we present multiple simulations to highlight the merits of the flexible formation control laws. |
Author | Casbeer, David Kumar Ranjan, Praveen Weintraub, Isaac Cao, Yongcan Sinha, Abhinav |
Author_xml | – sequence: 1 givenname: Praveen orcidid: 0000-0003-2017-9725 surname: Kumar Ranjan fullname: Kumar Ranjan, Praveen email: praveen.ranjan@my.utsa.edu organization: Department of Electrical and Computer Engineering, Unmanned Systems Laboratory, The University of Texas at San Antonio, San Antonio, TX, USA – sequence: 2 givenname: Abhinav orcidid: 0000-0001-6419-2353 surname: Sinha fullname: Sinha, Abhinav email: abhinav.sinha@uc.edu organization: Department of Aerospace Engineering and Engineering Mechanics, Guidance, Autonomy, Learning, and Control for Intelligent Systems (GALACxIS) Lab, University of Cincinnati, Cincinnati, OH, USA – sequence: 3 givenname: Yongcan orcidid: 0000-0003-3383-0185 surname: Cao fullname: Cao, Yongcan email: yongcan.cao@utsa.edu organization: Department of Electrical and Computer Engineering, Unmanned Systems Laboratory, The University of Texas at San Antonio, San Antonio, TX, USA – sequence: 4 givenname: David orcidid: 0000-0002-7065-7337 surname: Casbeer fullname: Casbeer, David email: david.casbeer@us.af.mil organization: Control Science Center, U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base, Wright-Patterson AFB, OH, USA – sequence: 5 givenname: Isaac orcidid: 0000-0003-2209-2500 surname: Weintraub fullname: Weintraub, Isaac email: isaac.weintraub.1@us.af.mil organization: Control Science Center, U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base, Wright-Patterson AFB, OH, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39137082$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kM1KJDEUhYM4-P8AgkgtZ1M9-a1UltrYKvQwMKjgqkgltzSSqmhS7ejbm7ZbGVyYzQ2X75yQbxdtDmEAhA4JnhCC1a-r6e3phGLKJ4wzganaQDuUVHVJqRSbn_dKbqODlB5wPnVeqXoLbTNFmMQ13UG3f8Hr0YVB--K3HmDxDNENd0XoijloC7GcBe_DP4jF9dDrYQBbnGQk4zdw74yHVHQhFjMPL671UMxC7N8L99GPTvsEB-u5h65nZ1fTi3L-5_xyejIvDaN0LHnX0U4Sa5QCXktba0W1UFIqZitmWCUVCNFa02rMDee1ZVaA6BTjRLbcsD30c9X7GMPTAtLY9C4Z8D7_JixSw7CidZVrREaP1-ii7cE2j9H1Or42HzoyQFaAiSGlCN0nQnCztN4srTdL683aes7ILxnjxncDY9TOf5s8WiUdAPz3UsW4kIS9ARIAjrc |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1016_j_ast_2025_109974 crossref_primary_10_1109_LRA_2025_3528225 crossref_primary_10_1109_TCYB_2025_3532779 crossref_primary_10_1016_j_isatra_2025_01_001 |
Cites_doi | 10.1109/TCYB.2024.3352251 10.1109/TCYB.2021.3063481 10.1109/TCYB.2021.3124827 10.2514/1.7420 10.1109/TCYB.2022.3232507 10.1109/TCST.2019.2892031 10.2514/1.g007057 10.1109/TCYB.2022.3226297 10.1109/TCYB.2023.3290726 10.1109/TCYB.2014.2328659 10.1109/TCYB.2023.3265405 10.1109/TCYB.2022.3165212 10.1109/TCYB.2018.2794139 10.1109/TCNS.2019.2929658 10.1109/TCYB.2023.3248125 10.1016/j.automatica.2008.11.017 10.1109/TCYB.2019.2955543 10.2514/1.27758 10.2514/3.21364 10.1109/TCYB.2017.2684461 10.1109/TCYB.2018.2859422 10.1109/TCYB.2020.2988911 10.1109/TCYB.2023.3246985 10.1109/TCYB.2022.3170580 10.1109/TCYB.2018.2834919 10.1109/TSMC.2021.3049681 10.1109/TIE.2016.2606585 10.1016/j.ast.2018.01.026 10.1109/TAC.2021.3066388 10.1109/TCYB.2020.2978981 10.2514/1.34351 10.2514/1.9605 10.1109/TAC.2020.2986684 10.1016/j.automatica.2012.11.031 10.1109/TCYB.2023.3245139 10.1109/MCS.2016.2558401 10.1515/ama-2017-0026 10.1109/TCYB.2014.2309898 10.1016/j.robot.2016.03.008 10.1109/TASE.2022.3144672 10.2514/1.g005925 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
DOI | 10.1109/TCYB.2024.3435029 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 5609 |
ExternalDocumentID | 39137082 10_1109_TCYB_2024_3435029 10634571 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Office of Naval Research grantid: N00014-19-1-2278 funderid: 10.13039/100000006 – fundername: Air Force Research Laboratory grantid: FA8650-20-2-2419 funderid: 10.13039/100006602 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7X8 |
ID | FETCH-LOGICAL-c322t-4ff2f71dc99e487d8a92a597793d63c3679e55bdcba04c448d3d5e5f93417b4c3 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Fri Jul 11 02:22:20 EDT 2025 Mon Jul 21 06:02:26 EDT 2025 Thu Apr 24 23:05:03 EDT 2025 Tue Jul 01 00:54:06 EDT 2025 Wed Aug 27 03:03:28 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c322t-4ff2f71dc99e487d8a92a597793d63c3679e55bdcba04c448d3d5e5f93417b4c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2017-9725 0000-0003-3383-0185 0000-0001-6419-2353 0000-0002-7065-7337 0000-0003-2209-2500 |
PMID | 39137082 |
PQID | 3092866795 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_TCYB_2024_3435029 proquest_miscellaneous_3092866795 ieee_primary_10634571 crossref_citationtrail_10_1109_TCYB_2024_3435029 pubmed_primary_39137082 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 (ref43) 2023 ref31 ref30 ref11 ref33 ref10 ref32 Tee (ref42) 2009; 45 ref2 ref1 ref17 ref39 ref16 ref38 ref18 Shaw (ref41) 1985 Lee (ref19) 2018; 76 ref24 ref23 ref26 ref25 ref20 ref21 ref28 ref27 ref29 ref8 Dehghani (ref22) 2016; 80 ref7 ref4 ref3 ref6 ref5 ref40 Liu (ref9) 2013; 49 |
References_xml | – ident: ref28 doi: 10.1109/TCYB.2024.3352251 – ident: ref6 doi: 10.1109/TCYB.2021.3063481 – ident: ref14 doi: 10.1109/TCYB.2021.3124827 – ident: ref24 doi: 10.2514/1.7420 – ident: ref25 doi: 10.1109/TCYB.2022.3232507 – ident: ref40 doi: 10.1109/TCST.2019.2892031 – ident: ref35 doi: 10.2514/1.g007057 – ident: ref7 doi: 10.1109/TCYB.2022.3226297 – ident: ref11 doi: 10.1109/TCYB.2023.3290726 – ident: ref3 doi: 10.1109/TCYB.2014.2328659 – ident: ref30 doi: 10.1109/TCYB.2023.3265405 – ident: ref26 doi: 10.1109/TCYB.2022.3165212 – ident: ref12 doi: 10.1109/TCYB.2018.2794139 – ident: ref38 doi: 10.1109/TCNS.2019.2929658 – ident: ref31 doi: 10.1109/TCYB.2023.3248125 – volume: 45 start-page: 918 issue: 4 year: 2009 ident: ref42 article-title: Barrier Lyapunov functions for the control of output-constrained nonlinear systems publication-title: Automatica doi: 10.1016/j.automatica.2008.11.017 – ident: ref17 doi: 10.1109/TCYB.2019.2955543 – ident: ref8 doi: 10.2514/1.27758 – ident: ref16 doi: 10.2514/3.21364 – ident: ref5 doi: 10.1109/TCYB.2017.2684461 – ident: ref4 doi: 10.1109/TCYB.2018.2859422 – ident: ref15 doi: 10.1109/TCYB.2020.2988911 – ident: ref29 doi: 10.1109/TCYB.2023.3246985 – ident: ref2 doi: 10.1109/TCYB.2022.3170580 – ident: ref13 doi: 10.1109/TCYB.2018.2834919 – ident: ref39 doi: 10.1109/TSMC.2021.3049681 – ident: ref23 doi: 10.1109/TIE.2016.2606585 – volume: 76 start-page: 412 year: 2018 ident: ref19 article-title: Formation flight of unmanned aerial vehicles using track guidance publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2018.01.026 – ident: ref36 doi: 10.1109/TAC.2021.3066388 – ident: ref18 doi: 10.1109/TCYB.2020.2978981 – ident: ref33 doi: 10.2514/1.34351 – ident: ref21 doi: 10.2514/1.9605 – ident: ref37 doi: 10.1109/TAC.2020.2986684 – volume: 49 start-page: 592 issue: 2 year: 2013 ident: ref9 article-title: Distributed formation control of nonholonomic mobile robots without global position measurements publication-title: Automatica doi: 10.1016/j.automatica.2012.11.031 – ident: ref27 doi: 10.1109/TCYB.2023.3245139 – volume-title: Tactics Maneuvering year: 1985 ident: ref41 article-title: Fighter combat – ident: ref10 doi: 10.1109/MCS.2016.2558401 – ident: ref32 doi: 10.1515/ama-2017-0026 – ident: ref1 doi: 10.1109/TCYB.2014.2309898 – volume-title: L3Harris Technology: FVR-90 Airframe year: 2023 ident: ref43 – volume: 80 start-page: 69 year: 2016 ident: ref22 article-title: Communication free leader–follower formation control of unmanned aircraft systems publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2016.03.008 – ident: ref20 doi: 10.1109/TASE.2022.3144672 – ident: ref34 doi: 10.2514/1.g005925 |
SSID | ssj0000816898 |
Score | 2.4144392 |
Snippet | In this article, we propose a new formation scheme for a leader-follower unmanned aerial vehicle (UAV) system inspired by a human pilot's behavior wherein the... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5598 |
SubjectTerms | Autonomous aerial vehicles Formation control Geometry leader-follower formation Line-of-sight propagation relational maneuvering unmanned aerial vehicle (UAV) Vehicular ad hoc networks |
Title | Relational Maneuvering of Leader-Follower Unmanned Aerial Vehicles for Flexible Formation |
URI | https://ieeexplore.ieee.org/document/10634571 https://www.ncbi.nlm.nih.gov/pubmed/39137082 https://www.proquest.com/docview/3092866795 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT-QwDI2AExdYlq9ZdlGQOABSh0yTtM2RRVQICU4MglPVJK6QGDoIphz49dhpO1qQQHvLIWmbPLuxE_uZsX2ZKCcs2MhZqyNVGR3Z1KsoK4Vx2qID4ig5-fIqOR-ri1t92yWrh1wYAAjBZzCkZrjL91PX0FEZangilaaM8UX03NpkrfmBSqggEWrfxtiI0KxIu1vMkTDH16d3f9EbjNVQooEgYmILlWYkU5HFH7akUGPla3MzbDv5KrvqP7iNNnkYNjM7dG-fuBz_e0Y_2EpngPKTVmLW2ALUP9lap-Iv_KDjoT5cZ3d9oBx2vyxraF4DbSGfVrwtzBnlKERUZY2P68eSftj8JAg0v4H7EG7H0STmOXFu2gnwvE-U3GDj_Oz69DzqKjFEDhV-hhhWcZWOvDMG0MPxWWnikpjrjPSJdDJJDWhtvbOlUA49Pi-9Bl0Z3CNTq5zcZEv1tIZtxo2SPss8ANolCtzIEj-PNiUNMz52AyZ6MArX0ZRTtYxJEdwVYQqCsiAoiw7KATuaD3lqOTq-67xBMPzTsUVgwPZ6yAvUMLo2wZWdNi-FFCbOEpyiHrCtVhbmo3sR-vXFU3fYMr28jf77zZZmzw38QStmZneD9L4DpNDqOA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQOcCF0gewvGqkHgpStl4_kvhYKqJt6e5pF7WnKLYnQqJkK7rhwK9nxklWBamIWw52ZOebyczYM98wdqhS7YUDl3jnTKJraxKXBZ3klbDeOAxAPBUnz-bpdKnPL81lX6wea2EAICafwZge411-WPmWjspQw1OlDVWMP0TDb2RXrrU5Uok9JGL3W4kPCToWWX-PORH2eHF69RHjQanHCl0EIYkvVNmJykQu_zBKscvK_Q5nNDzFNpsPS-7yTb6N27Ub-19_sTn-956esie9C8pPOpnZYQ-g2WU7vZLf8qOeifr9HrsaUuVw-KxqoP0ZiQv5quZda86kQDGiPmt82Xyv6JfNT6JI8y_wNSbccXSKeUGsm-4aeDGUSu6zZfFpcTpN-l4MiUeVXyOKtayzSfDWAsY4Ia-srIi7zqqQKq_SzIIxLnhXCe0x5gsqGDC1RSuZOe3VM7bVrBp4wbjVKuR5AEDPRIOfOGLoMbaiaTZIP2JiAKP0PVE59cu4LmPAImxJUJYEZdlDOWIfNlNuOpaOfw3eJxjuDOwQGLF3A-Ql6hhdnOCXXbW3pRJW5ilu0YzY804WNrMHEXp5z1sP2KPpYnZRXpzNP79ij2khXS7ga7a1_tHCG_Rp1u5tlOTfCoLtgg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relational+Maneuvering+of+Leader-Follower+Unmanned+Aerial+Vehicles+for+Flexible+Formation&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Kumar+Ranjan%2C+Praveen&rft.au=Sinha%2C+Abhinav&rft.au=Cao%2C+Yongcan&rft.au=Casbeer%2C+David&rft.date=2024-10-01&rft.eissn=2168-2275&rft.volume=54&rft.issue=10&rft.spage=5598&rft_id=info:doi/10.1109%2FTCYB.2024.3435029&rft_id=info%3Apmid%2F39137082&rft.externalDocID=39137082 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |