Safety-Preserving Lyapunov-Based Model Predictive Rendezvous Control for Heterogeneous Marine Vehicles Subject to External Disturbances

This article investigates the cooperative rendezvous control problem for perturbed heterogeneous marine systems composed of an autonomous underwater vehicle (AUV) and an autonomous surface vehicle (ASV). A novel Lyapunov-based model predictive control (LMPC) framework is presented to accomplish safe...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 54; no. 9; pp. 5244 - 5256
Main Authors Jia, Zehua, Zhang, Kunwu, Shi, Yang, Zhang, Weidong
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article investigates the cooperative rendezvous control problem for perturbed heterogeneous marine systems composed of an autonomous underwater vehicle (AUV) and an autonomous surface vehicle (ASV). A novel Lyapunov-based model predictive control (LMPC) framework is presented to accomplish safe and precise rendezvous under input limitations and external disturbances. First, by incorporating the prescribed performance control (PPC) technique into the LMPC framework, we transform the original ascending state of the AUV into a self-constrained state, which serves as the decision variable of the model predictive control (MPC) optimization problem. Then, PPC-aided auxiliary control laws based on disturbance observers (DOBs) are designed to establish a robust contractive constraint to provide stability margins. Combining the LMPC with the PPC technique makes the original state-constrained problem an equivalent state-constraint-free problem. By addressing the MPC problem for the equivalent unconstrained system, the proposed method preserves the rendezvous safety. With the robust contractive constraint, the proposed safety-preserving LMPC (SP-LMPC) controller can inherit robustness and stability from the robust auxiliary control laws. Furthermore, theoretical analyses are conducted to assess recursive feasibility and closed-loop stability. With comprehensive theoretical support, the proposed method provides a new framework to simultaneously address state constraints and disturbances for highly nonlinear marine systems. Finally, simulations and comparisons are conducted to demonstrate the effectiveness and advantages of the proposed algorithm.
AbstractList This article investigates the cooperative rendezvous control problem for perturbed heterogeneous marine systems composed of an autonomous underwater vehicle (AUV) and an autonomous surface vehicle (ASV). A novel Lyapunov-based model predictive control (LMPC) framework is presented to accomplish safe and precise rendezvous under input limitations and external disturbances. First, by incorporating the prescribed performance control (PPC) technique into the LMPC framework, we transform the original ascending state of the AUV into a self-constrained state, which serves as the decision variable of the model predictive control (MPC) optimization problem. Then, PPC-aided auxiliary control laws based on disturbance observers (DOBs) are designed to establish a robust contractive constraint to provide stability margins. Combining the LMPC with the PPC technique makes the original state-constrained problem an equivalent state-constraint-free problem. By addressing the MPC problem for the equivalent unconstrained system, the proposed method preserves the rendezvous safety. With the robust contractive constraint, the proposed safety-preserving LMPC (SP-LMPC) controller can inherit robustness and stability from the robust auxiliary control laws. Furthermore, theoretical analyses are conducted to assess recursive feasibility and closed-loop stability. With comprehensive theoretical support, the proposed method provides a new framework to simultaneously address state constraints and disturbances for highly nonlinear marine systems. Finally, simulations and comparisons are conducted to demonstrate the effectiveness and advantages of the proposed algorithm.This article investigates the cooperative rendezvous control problem for perturbed heterogeneous marine systems composed of an autonomous underwater vehicle (AUV) and an autonomous surface vehicle (ASV). A novel Lyapunov-based model predictive control (LMPC) framework is presented to accomplish safe and precise rendezvous under input limitations and external disturbances. First, by incorporating the prescribed performance control (PPC) technique into the LMPC framework, we transform the original ascending state of the AUV into a self-constrained state, which serves as the decision variable of the model predictive control (MPC) optimization problem. Then, PPC-aided auxiliary control laws based on disturbance observers (DOBs) are designed to establish a robust contractive constraint to provide stability margins. Combining the LMPC with the PPC technique makes the original state-constrained problem an equivalent state-constraint-free problem. By addressing the MPC problem for the equivalent unconstrained system, the proposed method preserves the rendezvous safety. With the robust contractive constraint, the proposed safety-preserving LMPC (SP-LMPC) controller can inherit robustness and stability from the robust auxiliary control laws. Furthermore, theoretical analyses are conducted to assess recursive feasibility and closed-loop stability. With comprehensive theoretical support, the proposed method provides a new framework to simultaneously address state constraints and disturbances for highly nonlinear marine systems. Finally, simulations and comparisons are conducted to demonstrate the effectiveness and advantages of the proposed algorithm.
This article investigates the cooperative rendezvous control problem for perturbed heterogeneous marine systems composed of an autonomous underwater vehicle (AUV) and an autonomous surface vehicle (ASV). A novel Lyapunov-based model predictive control (LMPC) framework is presented to accomplish safe and precise rendezvous under input limitations and external disturbances. First, by incorporating the prescribed performance control (PPC) technique into the LMPC framework, we transform the original ascending state of the AUV into a self-constrained state, which serves as the decision variable of the model predictive control (MPC) optimization problem. Then, PPC-aided auxiliary control laws based on disturbance observers (DOBs) are designed to establish a robust contractive constraint to provide stability margins. Combining the LMPC with the PPC technique makes the original state-constrained problem an equivalent state-constraint-free problem. By addressing the MPC problem for the equivalent unconstrained system, the proposed method preserves the rendezvous safety. With the robust contractive constraint, the proposed safety-preserving LMPC (SP-LMPC) controller can inherit robustness and stability from the robust auxiliary control laws. Furthermore, theoretical analyses are conducted to assess recursive feasibility and closed-loop stability. With comprehensive theoretical support, the proposed method provides a new framework to simultaneously address state constraints and disturbances for highly nonlinear marine systems. Finally, simulations and comparisons are conducted to demonstrate the effectiveness and advantages of the proposed algorithm.
Author Shi, Yang
Zhang, Kunwu
Zhang, Weidong
Jia, Zehua
Author_xml – sequence: 1
  givenname: Zehua
  orcidid: 0000-0001-9936-5883
  surname: Jia
  fullname: Jia, Zehua
  email: zhjia@hainanu.edu.cn
  organization: School of Information and Communication Engineering, Hainan University, Haikou, China
– sequence: 2
  givenname: Kunwu
  orcidid: 0000-0002-2734-5813
  surname: Zhang
  fullname: Zhang, Kunwu
  email: kunwu@uvic.ca
  organization: Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
– sequence: 3
  givenname: Yang
  orcidid: 0000-0003-1337-5322
  surname: Shi
  fullname: Shi, Yang
  email: yshi@uvic.ca
  organization: Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
– sequence: 4
  givenname: Weidong
  orcidid: 0000-0002-4700-1276
  surname: Zhang
  fullname: Zhang, Weidong
  email: wdzhang@sjtu.edu.cn
  organization: School of Information and Communication Engineering, Hainan University, Haikou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38568764$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1uEzEUhS1UREvpAyAh5GU3E_yTGdtLGgqtlApECxKrkce-Lq4mdrA9UcML8NrMNKFCLPDmWj7fub665zk6CDEAQi8pmVFK1JubxbezGSNsPuNcCEXVE3TEaCMrxkR98HhvxCE6yfmOjEeOT0o-Q4dc1o0UzfwI_brWDsq2-pQgQ9r4cIuXW70eQtxUZzqDxVfRQo9H3XpT_AbwZwgWfm7ikPEihpJij11M-AIKpHgLASblSicfAH-F7970kPH10N2BKbhEfH4_gkH3-J3PZUidDgbyC_TU6T7Dyb4eoy_vz28WF9Xy44fLxdtlZThjpZq7riYMSGOE6CxrrHK8FloZcI51tVCk4ZoaB9ZS0RnnJHe0NtJaZ2vdKX6MTnd91yn-GCCXduWzgb7XD3O3nHBOKGF8Ql_v0aFbgW3Xya902rZ_ljcCdAeYFHNO4B4RStopo3bKqJ0yavcZjR7xj8f4ooufFql9_1_nq53TA8BfP82lUpLx39Clok8
CODEN ITCEB8
CitedBy_id crossref_primary_10_1109_TCYB_2024_3474714
crossref_primary_10_1016_j_oceaneng_2024_119114
crossref_primary_10_1002_rnc_7895
Cites_doi 10.1007/s10514-014-9400-5
10.1109/tsmc.2024.3354893
10.1016/j.oceaneng.2021.108834
10.1016/j.conengprac.2020.104655
10.1109/TRO.2014.2305791
10.1109/TMECH.2021.3055450
10.1109/TIE.2016.2589921
10.1109/TAC.2015.2444131
10.1007/s11424-021-0150-0
10.1002/9781119994138
10.1109/TAES.2017.2767958
10.1109/TCYB.2019.2931770
10.1109/tii.2023.3331772
10.1002/asjc.2620
10.1109/TSMC.2022.3148295
10.1109/ECC.2014.6862566
10.1007/978-981-99-6498-7_29
10.1109/CDC.2017.8264069
10.1016/j.neucom.2013.01.010
10.1109/TNSE.2023.3237256
10.1016/j.oceaneng.2020.108283
10.1016/j.oceaneng.2021.109010
10.1109/TCYB.2019.2914717
10.1109/TCYB.2020.3044883
10.1109/tnnls.2022.3141419
10.1016/j.oceaneng.2022.111268
10.1109/TCST.2011.2181513
10.1109/IWCMC51323.2021.9498821
10.3182/20110828-6-IT-1002.02969
10.1016/j.isatra.2019.04.035
10.1109/TSMC.2019.2946127
10.2514/6.2019-1169
10.1016/j.automatica.2017.12.048
10.1109/TFUZZ.2022.3200730
10.1109/TPDS.2010.88
10.1109/LRA.2019.2896899
10.1016/j.arcontrol.2021.10.008
10.1109/JOE.2018.2809018
10.1016/j.automatica.2004.10.006
10.1109/JAS.2022.106016
10.1109/TAC.2008.929402
10.1109/TCYB.2018.2834919
10.1109/TIE.2017.2779442
10.1109/TII.2020.3004343
10.1109/JOE.2017.2777638
10.1109/AUV.2004.1431188
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TCYB.2024.3377919
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 5256
ExternalDocumentID 38568764
10_1109_TCYB_2024_3377919
10489982
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: U2141234
  funderid: 10.13039/501100001809
– fundername: China Scholarship Council
  funderid: 10.13039/501100004543
– fundername: Hainan Province Science and Technology Special Fund
  grantid: ZDYF2024GXJS003
– fundername: National Science and Technology Major Project
  grantid: 2022ZD0119901
  funderid: 10.13039/501100018537
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7X8
ID FETCH-LOGICAL-c322t-4fb502e06c77bd26d9f357a9ceff2b579063a1cfedd17bcff83f15c8ddfd5ab93
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Fri Jul 11 10:10:04 EDT 2025
Wed Feb 19 02:06:50 EST 2025
Tue Jul 01 00:54:06 EDT 2025
Thu Apr 24 22:55:43 EDT 2025
Wed Aug 27 03:03:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-4fb502e06c77bd26d9f357a9ceff2b579063a1cfedd17bcff83f15c8ddfd5ab93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1337-5322
0000-0001-9936-5883
0000-0002-2734-5813
0000-0002-4700-1276
PMID 38568764
PQID 3033010239
PQPubID 23479
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TCYB_2024_3377919
proquest_miscellaneous_3033010239
crossref_primary_10_1109_TCYB_2024_3377919
ieee_primary_10489982
pubmed_primary_38568764
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Fossen (ref41) 2002
Proctor (ref45) 2014
ref24
ref46
ref23
ref26
ref48
ref25
ref47
ref20
ref42
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – year: 2002
  ident: ref41
  publication-title: Marine Control Systems
– ident: ref12
  doi: 10.1007/s10514-014-9400-5
– ident: ref23
  doi: 10.1109/tsmc.2024.3354893
– ident: ref28
  doi: 10.1016/j.oceaneng.2021.108834
– ident: ref30
  doi: 10.1016/j.conengprac.2020.104655
– ident: ref42
  doi: 10.1109/TRO.2014.2305791
– ident: ref14
  doi: 10.1109/TMECH.2021.3055450
– ident: ref22
  doi: 10.1109/TIE.2016.2589921
– ident: ref26
  doi: 10.1109/TAC.2015.2444131
– ident: ref35
  doi: 10.1007/s11424-021-0150-0
– ident: ref44
  doi: 10.1002/9781119994138
– ident: ref13
  doi: 10.1109/TAES.2017.2767958
– ident: ref31
  doi: 10.1109/TCYB.2019.2931770
– ident: ref40
  doi: 10.1109/tii.2023.3331772
– ident: ref29
  doi: 10.1002/asjc.2620
– ident: ref8
  doi: 10.1109/TSMC.2022.3148295
– ident: ref37
  doi: 10.1109/ECC.2014.6862566
– ident: ref21
  doi: 10.1007/978-981-99-6498-7_29
– ident: ref17
  doi: 10.1109/CDC.2017.8264069
– ident: ref5
  doi: 10.1016/j.neucom.2013.01.010
– ident: ref10
  doi: 10.1109/TNSE.2023.3237256
– ident: ref9
  doi: 10.1016/j.oceaneng.2020.108283
– ident: ref24
  doi: 10.1016/j.oceaneng.2021.109010
– ident: ref27
  doi: 10.1109/TCYB.2019.2914717
– ident: ref7
  doi: 10.1109/TCYB.2020.3044883
– ident: ref6
  doi: 10.1109/tnnls.2022.3141419
– ident: ref19
  doi: 10.1016/j.oceaneng.2022.111268
– ident: ref47
  doi: 10.1109/TCST.2011.2181513
– ident: ref38
  doi: 10.1109/IWCMC51323.2021.9498821
– ident: ref4
  doi: 10.3182/20110828-6-IT-1002.02969
– ident: ref33
  doi: 10.1016/j.isatra.2019.04.035
– ident: ref25
  doi: 10.1109/TSMC.2019.2946127
– year: 2014
  ident: ref45
  article-title: Semi-autonomous guidance and control of a Saab seaEye falcon ROV
– ident: ref18
  doi: 10.2514/6.2019-1169
– ident: ref39
  doi: 10.1016/j.automatica.2017.12.048
– ident: ref36
  doi: 10.1109/TFUZZ.2022.3200730
– ident: ref2
  doi: 10.1109/TPDS.2010.88
– ident: ref3
  doi: 10.1109/LRA.2019.2896899
– ident: ref15
  doi: 10.1016/j.arcontrol.2021.10.008
– ident: ref43
  doi: 10.1109/JOE.2018.2809018
– ident: ref46
  doi: 10.1016/j.automatica.2004.10.006
– ident: ref16
  doi: 10.1109/JAS.2022.106016
– ident: ref32
  doi: 10.1109/TAC.2008.929402
– ident: ref34
  doi: 10.1109/TCYB.2018.2834919
– ident: ref20
  doi: 10.1109/TIE.2017.2779442
– ident: ref11
  doi: 10.1109/TII.2020.3004343
– ident: ref48
  doi: 10.1109/JOE.2017.2777638
– ident: ref1
  doi: 10.1109/AUV.2004.1431188
SSID ssj0000816898
Score 2.4533827
Snippet This article investigates the cooperative rendezvous control problem for perturbed heterogeneous marine systems composed of an autonomous underwater vehicle...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5244
SubjectTerms Autonomous surface vehicles (ASVs)
Autonomous underwater vehicles
autonomous underwater vehicles (AUVs)
collision avoidance
cooperative control
Lyapunov-based model predictive control (LMPC)
Marine vehicles
Optimization
Predictive control
Robustness
Safety
Sea surface
Underactuated surface vessels
Title Safety-Preserving Lyapunov-Based Model Predictive Rendezvous Control for Heterogeneous Marine Vehicles Subject to External Disturbances
URI https://ieeexplore.ieee.org/document/10489982
https://www.ncbi.nlm.nih.gov/pubmed/38568764
https://www.proquest.com/docview/3033010239
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxELaAUy-F0LQN0MqVOADSpvvybnyEAIoQ5MCjoqeVn4CIdhHZRQp_gL_NjNeJaCWq3ix5va_5PJ6xZ74hZBsUXhZzdHJCJNW2mQmEkjaQjCeWIx2LcAGy42x0lZ5cs2ufrO5yYYwxLvjM9LHpzvJ1pRrcKoMZnqJ7ABp3GTy3NllrsaHiKki42rcxNAIwK3J_ihmF_Ofl8PcBeINx2k-QYi9CttBkwDJQBukfS5KrsfK-uemWneNVMp6_cBttct9vatlXz39xOf73F62Rj94ApfstYjpkyZTrpOOn-JTueB7q3U_k5UJYU88CjNJAjVLe0NOZeGjK6ik4gMVPUyykNqHQr--c2qTnuKH-_FQ1UzpsY-ApGMV0hDE3FUDVYM-ZwIxD-svcupA8CroLN4NoXdEjz0lNDwF9zaNESE675Or46HI4CnzdhkCBeqhB4pKFsQkzledSx5nmNmG54MpYG0uWczCLRKSs0TrKpbJ2kNiIqYHWVjMhefKZrJRVab4Siom9HCnKwGpKlUglUybVkWPJS2MZ9Ug4F12hPKk51taYFM65CXmBgi9Q8IUXfI_sLYY8tIwe_7q4i0J7c2Errx75MQdIAfMRD1mE-4cFmAQJ8vQlMPZLi5zF6DngNt656yb5gA9vQ9i2yEr92JhvYPPU8rvD-ivrjPw8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFLWqsoANUCgwQKmRQAKkDIkTJ-MFCzptNaXTLmCKyir4CYgqqTpJq-kP8BX8Ct_Wex3PCJDKrhK7SIknkefcl318LiHPwOHlTGCRE6OotsttJLVykeIidQLlWKQnyO7no4Ps3SE_XCI_F2dhrLWefGb7eOn38k2tW1wqAwvPsDxggUO5a2dnUKFN3-xswt_5nLHtrclwFIUmApEGrDbwesVjZuNcF4UyLDfCpbyQQlvnmOKFgBgtE-2sMUmhtHOD1CVcD4xxhkuFWkvg4a9BosFZdzxssYTje1b4brsMLiJIZIqwb5rE4vVk-GkD6k-W9VMU9UtQnzQd8BzcT_ZHEPRdXS5PcH2g275Ffs2nqOO3fO-3jerr87_UI__bObxNboYUm77tbGKFLNnqDlkJTmxKXwSl7Zd3yY8P0tlmFiEPBX1m9YWOZ_K4rerTaAPCu6HYKu6Iwn3zzQcG-h63DM5P63ZKhx3Ln0LaT0fIKqrBGC3e2ZN4ppJ-tF896ZCCd8blLtrUdCuobtNNsK_2RKHRTVfJwZVMyD2yXNWVfUAoHl0WKMIGeWGmZaa4tplJvA5gxlTSI_EcKqUOsu3YPeSo9OVbLEoEWolAKwPQeuTVYshxp1nyr4dXESS_Pdjho0eezgFZgsfBbSTp57CEpCdFJcIUxt7vkLoYPQf4w0t-dZ1cH032xuV4Z3_3EbmBH9IR9h6T5eaktWuQ4TXqibczSj5fNSgvAPx5Xhc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Safety-Preserving+Lyapunov-Based+Model+Predictive+Rendezvous+Control+for+Heterogeneous+Marine+Vehicles+Subject+to+External+Disturbances&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Jia%2C+Zehua&rft.au=Zhang%2C+Kunwu&rft.au=Shi%2C+Yang&rft.au=Zhang%2C+Weidong&rft.date=2024-09-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=54&rft.issue=9&rft.spage=5244&rft.epage=5256&rft_id=info:doi/10.1109%2FTCYB.2024.3377919&rft_id=info%3Apmid%2F38568764&rft.externalDocID=10489982
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon