Safety-Preserving Lyapunov-Based Model Predictive Rendezvous Control for Heterogeneous Marine Vehicles Subject to External Disturbances
This article investigates the cooperative rendezvous control problem for perturbed heterogeneous marine systems composed of an autonomous underwater vehicle (AUV) and an autonomous surface vehicle (ASV). A novel Lyapunov-based model predictive control (LMPC) framework is presented to accomplish safe...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 54; no. 9; pp. 5244 - 5256 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article investigates the cooperative rendezvous control problem for perturbed heterogeneous marine systems composed of an autonomous underwater vehicle (AUV) and an autonomous surface vehicle (ASV). A novel Lyapunov-based model predictive control (LMPC) framework is presented to accomplish safe and precise rendezvous under input limitations and external disturbances. First, by incorporating the prescribed performance control (PPC) technique into the LMPC framework, we transform the original ascending state of the AUV into a self-constrained state, which serves as the decision variable of the model predictive control (MPC) optimization problem. Then, PPC-aided auxiliary control laws based on disturbance observers (DOBs) are designed to establish a robust contractive constraint to provide stability margins. Combining the LMPC with the PPC technique makes the original state-constrained problem an equivalent state-constraint-free problem. By addressing the MPC problem for the equivalent unconstrained system, the proposed method preserves the rendezvous safety. With the robust contractive constraint, the proposed safety-preserving LMPC (SP-LMPC) controller can inherit robustness and stability from the robust auxiliary control laws. Furthermore, theoretical analyses are conducted to assess recursive feasibility and closed-loop stability. With comprehensive theoretical support, the proposed method provides a new framework to simultaneously address state constraints and disturbances for highly nonlinear marine systems. Finally, simulations and comparisons are conducted to demonstrate the effectiveness and advantages of the proposed algorithm. |
---|---|
AbstractList | This article investigates the cooperative rendezvous control problem for perturbed heterogeneous marine systems composed of an autonomous underwater vehicle (AUV) and an autonomous surface vehicle (ASV). A novel Lyapunov-based model predictive control (LMPC) framework is presented to accomplish safe and precise rendezvous under input limitations and external disturbances. First, by incorporating the prescribed performance control (PPC) technique into the LMPC framework, we transform the original ascending state of the AUV into a self-constrained state, which serves as the decision variable of the model predictive control (MPC) optimization problem. Then, PPC-aided auxiliary control laws based on disturbance observers (DOBs) are designed to establish a robust contractive constraint to provide stability margins. Combining the LMPC with the PPC technique makes the original state-constrained problem an equivalent state-constraint-free problem. By addressing the MPC problem for the equivalent unconstrained system, the proposed method preserves the rendezvous safety. With the robust contractive constraint, the proposed safety-preserving LMPC (SP-LMPC) controller can inherit robustness and stability from the robust auxiliary control laws. Furthermore, theoretical analyses are conducted to assess recursive feasibility and closed-loop stability. With comprehensive theoretical support, the proposed method provides a new framework to simultaneously address state constraints and disturbances for highly nonlinear marine systems. Finally, simulations and comparisons are conducted to demonstrate the effectiveness and advantages of the proposed algorithm.This article investigates the cooperative rendezvous control problem for perturbed heterogeneous marine systems composed of an autonomous underwater vehicle (AUV) and an autonomous surface vehicle (ASV). A novel Lyapunov-based model predictive control (LMPC) framework is presented to accomplish safe and precise rendezvous under input limitations and external disturbances. First, by incorporating the prescribed performance control (PPC) technique into the LMPC framework, we transform the original ascending state of the AUV into a self-constrained state, which serves as the decision variable of the model predictive control (MPC) optimization problem. Then, PPC-aided auxiliary control laws based on disturbance observers (DOBs) are designed to establish a robust contractive constraint to provide stability margins. Combining the LMPC with the PPC technique makes the original state-constrained problem an equivalent state-constraint-free problem. By addressing the MPC problem for the equivalent unconstrained system, the proposed method preserves the rendezvous safety. With the robust contractive constraint, the proposed safety-preserving LMPC (SP-LMPC) controller can inherit robustness and stability from the robust auxiliary control laws. Furthermore, theoretical analyses are conducted to assess recursive feasibility and closed-loop stability. With comprehensive theoretical support, the proposed method provides a new framework to simultaneously address state constraints and disturbances for highly nonlinear marine systems. Finally, simulations and comparisons are conducted to demonstrate the effectiveness and advantages of the proposed algorithm. This article investigates the cooperative rendezvous control problem for perturbed heterogeneous marine systems composed of an autonomous underwater vehicle (AUV) and an autonomous surface vehicle (ASV). A novel Lyapunov-based model predictive control (LMPC) framework is presented to accomplish safe and precise rendezvous under input limitations and external disturbances. First, by incorporating the prescribed performance control (PPC) technique into the LMPC framework, we transform the original ascending state of the AUV into a self-constrained state, which serves as the decision variable of the model predictive control (MPC) optimization problem. Then, PPC-aided auxiliary control laws based on disturbance observers (DOBs) are designed to establish a robust contractive constraint to provide stability margins. Combining the LMPC with the PPC technique makes the original state-constrained problem an equivalent state-constraint-free problem. By addressing the MPC problem for the equivalent unconstrained system, the proposed method preserves the rendezvous safety. With the robust contractive constraint, the proposed safety-preserving LMPC (SP-LMPC) controller can inherit robustness and stability from the robust auxiliary control laws. Furthermore, theoretical analyses are conducted to assess recursive feasibility and closed-loop stability. With comprehensive theoretical support, the proposed method provides a new framework to simultaneously address state constraints and disturbances for highly nonlinear marine systems. Finally, simulations and comparisons are conducted to demonstrate the effectiveness and advantages of the proposed algorithm. |
Author | Shi, Yang Zhang, Kunwu Zhang, Weidong Jia, Zehua |
Author_xml | – sequence: 1 givenname: Zehua orcidid: 0000-0001-9936-5883 surname: Jia fullname: Jia, Zehua email: zhjia@hainanu.edu.cn organization: School of Information and Communication Engineering, Hainan University, Haikou, China – sequence: 2 givenname: Kunwu orcidid: 0000-0002-2734-5813 surname: Zhang fullname: Zhang, Kunwu email: kunwu@uvic.ca organization: Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada – sequence: 3 givenname: Yang orcidid: 0000-0003-1337-5322 surname: Shi fullname: Shi, Yang email: yshi@uvic.ca organization: Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada – sequence: 4 givenname: Weidong orcidid: 0000-0002-4700-1276 surname: Zhang fullname: Zhang, Weidong email: wdzhang@sjtu.edu.cn organization: School of Information and Communication Engineering, Hainan University, Haikou, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38568764$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1uEzEUhS1UREvpAyAh5GU3E_yTGdtLGgqtlApECxKrkce-Lq4mdrA9UcML8NrMNKFCLPDmWj7fub665zk6CDEAQi8pmVFK1JubxbezGSNsPuNcCEXVE3TEaCMrxkR98HhvxCE6yfmOjEeOT0o-Q4dc1o0UzfwI_brWDsq2-pQgQ9r4cIuXW70eQtxUZzqDxVfRQo9H3XpT_AbwZwgWfm7ikPEihpJij11M-AIKpHgLASblSicfAH-F7970kPH10N2BKbhEfH4_gkH3-J3PZUidDgbyC_TU6T7Dyb4eoy_vz28WF9Xy44fLxdtlZThjpZq7riYMSGOE6CxrrHK8FloZcI51tVCk4ZoaB9ZS0RnnJHe0NtJaZ2vdKX6MTnd91yn-GCCXduWzgb7XD3O3nHBOKGF8Ql_v0aFbgW3Xya902rZ_ljcCdAeYFHNO4B4RStopo3bKqJ0yavcZjR7xj8f4ooufFql9_1_nq53TA8BfP82lUpLx39Clok8 |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1109_TCYB_2024_3474714 crossref_primary_10_1016_j_oceaneng_2024_119114 crossref_primary_10_1002_rnc_7895 |
Cites_doi | 10.1007/s10514-014-9400-5 10.1109/tsmc.2024.3354893 10.1016/j.oceaneng.2021.108834 10.1016/j.conengprac.2020.104655 10.1109/TRO.2014.2305791 10.1109/TMECH.2021.3055450 10.1109/TIE.2016.2589921 10.1109/TAC.2015.2444131 10.1007/s11424-021-0150-0 10.1002/9781119994138 10.1109/TAES.2017.2767958 10.1109/TCYB.2019.2931770 10.1109/tii.2023.3331772 10.1002/asjc.2620 10.1109/TSMC.2022.3148295 10.1109/ECC.2014.6862566 10.1007/978-981-99-6498-7_29 10.1109/CDC.2017.8264069 10.1016/j.neucom.2013.01.010 10.1109/TNSE.2023.3237256 10.1016/j.oceaneng.2020.108283 10.1016/j.oceaneng.2021.109010 10.1109/TCYB.2019.2914717 10.1109/TCYB.2020.3044883 10.1109/tnnls.2022.3141419 10.1016/j.oceaneng.2022.111268 10.1109/TCST.2011.2181513 10.1109/IWCMC51323.2021.9498821 10.3182/20110828-6-IT-1002.02969 10.1016/j.isatra.2019.04.035 10.1109/TSMC.2019.2946127 10.2514/6.2019-1169 10.1016/j.automatica.2017.12.048 10.1109/TFUZZ.2022.3200730 10.1109/TPDS.2010.88 10.1109/LRA.2019.2896899 10.1016/j.arcontrol.2021.10.008 10.1109/JOE.2018.2809018 10.1016/j.automatica.2004.10.006 10.1109/JAS.2022.106016 10.1109/TAC.2008.929402 10.1109/TCYB.2018.2834919 10.1109/TIE.2017.2779442 10.1109/TII.2020.3004343 10.1109/JOE.2017.2777638 10.1109/AUV.2004.1431188 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
DOI | 10.1109/TCYB.2024.3377919 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 5256 |
ExternalDocumentID | 38568764 10_1109_TCYB_2024_3377919 10489982 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: U2141234 funderid: 10.13039/501100001809 – fundername: China Scholarship Council funderid: 10.13039/501100004543 – fundername: Hainan Province Science and Technology Special Fund grantid: ZDYF2024GXJS003 – fundername: National Science and Technology Major Project grantid: 2022ZD0119901 funderid: 10.13039/501100018537 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7X8 |
ID | FETCH-LOGICAL-c322t-4fb502e06c77bd26d9f357a9ceff2b579063a1cfedd17bcff83f15c8ddfd5ab93 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Fri Jul 11 10:10:04 EDT 2025 Wed Feb 19 02:06:50 EST 2025 Tue Jul 01 00:54:06 EDT 2025 Thu Apr 24 22:55:43 EDT 2025 Wed Aug 27 03:03:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c322t-4fb502e06c77bd26d9f357a9ceff2b579063a1cfedd17bcff83f15c8ddfd5ab93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1337-5322 0000-0001-9936-5883 0000-0002-2734-5813 0000-0002-4700-1276 |
PMID | 38568764 |
PQID | 3033010239 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1109_TCYB_2024_3377919 proquest_miscellaneous_3033010239 crossref_primary_10_1109_TCYB_2024_3377919 ieee_primary_10489982 pubmed_primary_38568764 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Fossen (ref41) 2002 Proctor (ref45) 2014 ref24 ref46 ref23 ref26 ref48 ref25 ref47 ref20 ref42 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – year: 2002 ident: ref41 publication-title: Marine Control Systems – ident: ref12 doi: 10.1007/s10514-014-9400-5 – ident: ref23 doi: 10.1109/tsmc.2024.3354893 – ident: ref28 doi: 10.1016/j.oceaneng.2021.108834 – ident: ref30 doi: 10.1016/j.conengprac.2020.104655 – ident: ref42 doi: 10.1109/TRO.2014.2305791 – ident: ref14 doi: 10.1109/TMECH.2021.3055450 – ident: ref22 doi: 10.1109/TIE.2016.2589921 – ident: ref26 doi: 10.1109/TAC.2015.2444131 – ident: ref35 doi: 10.1007/s11424-021-0150-0 – ident: ref44 doi: 10.1002/9781119994138 – ident: ref13 doi: 10.1109/TAES.2017.2767958 – ident: ref31 doi: 10.1109/TCYB.2019.2931770 – ident: ref40 doi: 10.1109/tii.2023.3331772 – ident: ref29 doi: 10.1002/asjc.2620 – ident: ref8 doi: 10.1109/TSMC.2022.3148295 – ident: ref37 doi: 10.1109/ECC.2014.6862566 – ident: ref21 doi: 10.1007/978-981-99-6498-7_29 – ident: ref17 doi: 10.1109/CDC.2017.8264069 – ident: ref5 doi: 10.1016/j.neucom.2013.01.010 – ident: ref10 doi: 10.1109/TNSE.2023.3237256 – ident: ref9 doi: 10.1016/j.oceaneng.2020.108283 – ident: ref24 doi: 10.1016/j.oceaneng.2021.109010 – ident: ref27 doi: 10.1109/TCYB.2019.2914717 – ident: ref7 doi: 10.1109/TCYB.2020.3044883 – ident: ref6 doi: 10.1109/tnnls.2022.3141419 – ident: ref19 doi: 10.1016/j.oceaneng.2022.111268 – ident: ref47 doi: 10.1109/TCST.2011.2181513 – ident: ref38 doi: 10.1109/IWCMC51323.2021.9498821 – ident: ref4 doi: 10.3182/20110828-6-IT-1002.02969 – ident: ref33 doi: 10.1016/j.isatra.2019.04.035 – ident: ref25 doi: 10.1109/TSMC.2019.2946127 – year: 2014 ident: ref45 article-title: Semi-autonomous guidance and control of a Saab seaEye falcon ROV – ident: ref18 doi: 10.2514/6.2019-1169 – ident: ref39 doi: 10.1016/j.automatica.2017.12.048 – ident: ref36 doi: 10.1109/TFUZZ.2022.3200730 – ident: ref2 doi: 10.1109/TPDS.2010.88 – ident: ref3 doi: 10.1109/LRA.2019.2896899 – ident: ref15 doi: 10.1016/j.arcontrol.2021.10.008 – ident: ref43 doi: 10.1109/JOE.2018.2809018 – ident: ref46 doi: 10.1016/j.automatica.2004.10.006 – ident: ref16 doi: 10.1109/JAS.2022.106016 – ident: ref32 doi: 10.1109/TAC.2008.929402 – ident: ref34 doi: 10.1109/TCYB.2018.2834919 – ident: ref20 doi: 10.1109/TIE.2017.2779442 – ident: ref11 doi: 10.1109/TII.2020.3004343 – ident: ref48 doi: 10.1109/JOE.2017.2777638 – ident: ref1 doi: 10.1109/AUV.2004.1431188 |
SSID | ssj0000816898 |
Score | 2.4533827 |
Snippet | This article investigates the cooperative rendezvous control problem for perturbed heterogeneous marine systems composed of an autonomous underwater vehicle... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5244 |
SubjectTerms | Autonomous surface vehicles (ASVs) Autonomous underwater vehicles autonomous underwater vehicles (AUVs) collision avoidance cooperative control Lyapunov-based model predictive control (LMPC) Marine vehicles Optimization Predictive control Robustness Safety Sea surface Underactuated surface vessels |
Title | Safety-Preserving Lyapunov-Based Model Predictive Rendezvous Control for Heterogeneous Marine Vehicles Subject to External Disturbances |
URI | https://ieeexplore.ieee.org/document/10489982 https://www.ncbi.nlm.nih.gov/pubmed/38568764 https://www.proquest.com/docview/3033010239 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxELaAUy-F0LQN0MqVOADSpvvybnyEAIoQ5MCjoqeVn4CIdhHZRQp_gL_NjNeJaCWq3ix5va_5PJ6xZ74hZBsUXhZzdHJCJNW2mQmEkjaQjCeWIx2LcAGy42x0lZ5cs2ufrO5yYYwxLvjM9LHpzvJ1pRrcKoMZnqJ7ABp3GTy3NllrsaHiKki42rcxNAIwK3J_ihmF_Ofl8PcBeINx2k-QYi9CttBkwDJQBukfS5KrsfK-uemWneNVMp6_cBttct9vatlXz39xOf73F62Rj94ApfstYjpkyZTrpOOn-JTueB7q3U_k5UJYU88CjNJAjVLe0NOZeGjK6ik4gMVPUyykNqHQr--c2qTnuKH-_FQ1UzpsY-ApGMV0hDE3FUDVYM-ZwIxD-svcupA8CroLN4NoXdEjz0lNDwF9zaNESE675Or46HI4CnzdhkCBeqhB4pKFsQkzledSx5nmNmG54MpYG0uWczCLRKSs0TrKpbJ2kNiIqYHWVjMhefKZrJRVab4Siom9HCnKwGpKlUglUybVkWPJS2MZ9Ug4F12hPKk51taYFM65CXmBgi9Q8IUXfI_sLYY8tIwe_7q4i0J7c2Errx75MQdIAfMRD1mE-4cFmAQJ8vQlMPZLi5zF6DngNt656yb5gA9vQ9i2yEr92JhvYPPU8rvD-ivrjPw8 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFLWqsoANUCgwQKmRQAKkDIkTJ-MFCzptNaXTLmCKyir4CYgqqTpJq-kP8BX8Ct_Wex3PCJDKrhK7SIknkefcl318LiHPwOHlTGCRE6OotsttJLVykeIidQLlWKQnyO7no4Ps3SE_XCI_F2dhrLWefGb7eOn38k2tW1wqAwvPsDxggUO5a2dnUKFN3-xswt_5nLHtrclwFIUmApEGrDbwesVjZuNcF4UyLDfCpbyQQlvnmOKFgBgtE-2sMUmhtHOD1CVcD4xxhkuFWkvg4a9BosFZdzxssYTje1b4brsMLiJIZIqwb5rE4vVk-GkD6k-W9VMU9UtQnzQd8BzcT_ZHEPRdXS5PcH2g275Ffs2nqOO3fO-3jerr87_UI__bObxNboYUm77tbGKFLNnqDlkJTmxKXwSl7Zd3yY8P0tlmFiEPBX1m9YWOZ_K4rerTaAPCu6HYKu6Iwn3zzQcG-h63DM5P63ZKhx3Ln0LaT0fIKqrBGC3e2ZN4ppJ-tF896ZCCd8blLtrUdCuobtNNsK_2RKHRTVfJwZVMyD2yXNWVfUAoHl0WKMIGeWGmZaa4tplJvA5gxlTSI_EcKqUOsu3YPeSo9OVbLEoEWolAKwPQeuTVYshxp1nyr4dXESS_Pdjho0eezgFZgsfBbSTp57CEpCdFJcIUxt7vkLoYPQf4w0t-dZ1cH032xuV4Z3_3EbmBH9IR9h6T5eaktWuQ4TXqibczSj5fNSgvAPx5Xhc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Safety-Preserving+Lyapunov-Based+Model+Predictive+Rendezvous+Control+for+Heterogeneous+Marine+Vehicles+Subject+to+External+Disturbances&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Jia%2C+Zehua&rft.au=Zhang%2C+Kunwu&rft.au=Shi%2C+Yang&rft.au=Zhang%2C+Weidong&rft.date=2024-09-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=54&rft.issue=9&rft.spage=5244&rft.epage=5256&rft_id=info:doi/10.1109%2FTCYB.2024.3377919&rft_id=info%3Apmid%2F38568764&rft.externalDocID=10489982 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |