A skin-interfaced wireless wearable device and data analytics approach for sleep-stage and disorder detection
Accurate identification of sleep stages and disorders is crucial for maintaining health, preventing chronic conditions, and improving diagnosis and treatment. Direct respiratory measurements, as key biomarkers, are missing in traditional wrist- or finger-worn wearables, which thus limit their precis...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 122; no. 23; p. e2501220122 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
10.06.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.2501220122 |
Cover
Loading…
Abstract | Accurate identification of sleep stages and disorders is crucial for maintaining health, preventing chronic conditions, and improving diagnosis and treatment. Direct respiratory measurements, as key biomarkers, are missing in traditional wrist- or finger-worn wearables, which thus limit their precision in detection of sleep stages and sleep disorders. By contrast, this work introduces a simple, multimodal, skin-integrated, energy-efficient mechanoacoustic sensor capable of synchronized cardiac and respiratory measurements. The mechanical design enhances sensitivity and durability, enabling continuous, wireless monitoring of essential vital signs (respiration rate, heart rate and corresponding variability, temperature) and various physical activities. Systematic physiology-based analytics involving explainable machine learning allows both precise sleep characterization and transparent tracking of each factor’s contribution, demonstrating the dominance of respiration, as validated through a diverse range of human subjects, both healthy and with sleep disorders. This methodology enables cost-effective, clinical-quality sleep tracking with minimal user effort, suitable for home and clinical use. |
---|---|
AbstractList | Accurate identification of sleep stages and disorders is crucial for maintaining health, preventing chronic conditions, and improving diagnosis and treatment. Direct respiratory measurements, as key biomarkers, are missing in traditional wrist- or finger-worn wearables, which thus limit their precision in detection of sleep stages and sleep disorders. By contrast, this work introduces a simple, multimodal, skin-integrated, energy-efficient mechanoacoustic sensor capable of synchronized cardiac and respiratory measurements. The mechanical design enhances sensitivity and durability, enabling continuous, wireless monitoring of essential vital signs (respiration rate, heart rate and corresponding variability, temperature) and various physical activities. Systematic physiology-based analytics involving explainable machine learning allows both precise sleep characterization and transparent tracking of each factor's contribution, demonstrating the dominance of respiration, as validated through a diverse range of human subjects, both healthy and with sleep disorders. This methodology enables cost-effective, clinical-quality sleep tracking with minimal user effort, suitable for home and clinical use. Accurate identification of sleep stages and disorders is crucial for maintaining health, preventing chronic conditions, and improving diagnosis and treatment. Direct respiratory measurements, as key biomarkers, are missing in traditional wrist- or finger-worn wearables, which thus limit their precision in detection of sleep stages and sleep disorders. By contrast, this work introduces a simple, multimodal, skin-integrated, energy-efficient mechanoacoustic sensor capable of synchronized cardiac and respiratory measurements. The mechanical design enhances sensitivity and durability, enabling continuous, wireless monitoring of essential vital signs (respiration rate, heart rate and corresponding variability, temperature) and various physical activities. Systematic physiology-based analytics involving explainable machine learning allows both precise sleep characterization and transparent tracking of each factor's contribution, demonstrating the dominance of respiration, as validated through a diverse range of human subjects, both healthy and with sleep disorders. This methodology enables cost-effective, clinical-quality sleep tracking with minimal user effort, suitable for home and clinical use.Accurate identification of sleep stages and disorders is crucial for maintaining health, preventing chronic conditions, and improving diagnosis and treatment. Direct respiratory measurements, as key biomarkers, are missing in traditional wrist- or finger-worn wearables, which thus limit their precision in detection of sleep stages and sleep disorders. By contrast, this work introduces a simple, multimodal, skin-integrated, energy-efficient mechanoacoustic sensor capable of synchronized cardiac and respiratory measurements. The mechanical design enhances sensitivity and durability, enabling continuous, wireless monitoring of essential vital signs (respiration rate, heart rate and corresponding variability, temperature) and various physical activities. Systematic physiology-based analytics involving explainable machine learning allows both precise sleep characterization and transparent tracking of each factor's contribution, demonstrating the dominance of respiration, as validated through a diverse range of human subjects, both healthy and with sleep disorders. This methodology enables cost-effective, clinical-quality sleep tracking with minimal user effort, suitable for home and clinical use. |
Author | Duan, Shiyuan Shin, Hee-Sup Arafa, Hany Rogers, John A. Trueb, Jacob Gu, Jianyu Carr, Andrew N. Huang, Yonggang Tzavelis, Andreas Davies, Charles R. Li, Xiuyuan Du, Yayun |
Author_xml | – sequence: 1 givenname: Yayun orcidid: 0000-0001-5361-0783 surname: Du fullname: Du, Yayun – sequence: 2 givenname: Jianyu surname: Gu fullname: Gu, Jianyu – sequence: 3 givenname: Shiyuan surname: Duan fullname: Duan, Shiyuan – sequence: 4 givenname: Jacob surname: Trueb fullname: Trueb, Jacob – sequence: 5 givenname: Andreas surname: Tzavelis fullname: Tzavelis, Andreas – sequence: 6 givenname: Hee-Sup surname: Shin fullname: Shin, Hee-Sup – sequence: 7 givenname: Hany orcidid: 0000-0003-3191-8212 surname: Arafa fullname: Arafa, Hany – sequence: 8 givenname: Xiuyuan surname: Li fullname: Li, Xiuyuan – sequence: 9 givenname: Yonggang orcidid: 0000-0002-0483-8359 surname: Huang fullname: Huang, Yonggang – sequence: 10 givenname: Andrew N. orcidid: 0000-0003-1676-8033 surname: Carr fullname: Carr, Andrew N. – sequence: 11 givenname: Charles R. surname: Davies fullname: Davies, Charles R. – sequence: 12 givenname: John A. orcidid: 0000-0002-2980-3961 surname: Rogers fullname: Rogers, John A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40478868$$D View this record in MEDLINE/PubMed |
BookMark | eNpd0T1P5DAQBmALcYLdvavpkCUamizjj9hOiRBfEtI1d3U0a0_AkE2CnQXx7y8LC0hXWOPi8WjG75ztd31HjB0JWAqw6mzoMC9lCULK7dljMwGVKIyuYJ_NAKQtnJb6kM1zfgSAqnRwwA41aOuccTO2Puf5KXZF7EZKDXoK_DUmailn_kqYcNUSD_QSPXHsAg844nTB9m2MPnMchtSjf-BNn3huiYYij3i_szH3KVCa3o_kx9h3P9mPBttMv3Z1wf5eXf65uCnufl_fXpzfFV5JORaavAxkGls6b0EiaidCY8UKAzltKlUCBuOkld4YWiGoCgVpUL4RZAHVgp1-9J2me95QHut1zJ7aFjvqN7lWUpiytELZiZ78Rx_7TZoWfFcVSOOmxgt2vFOb1ZpCPaS4xvRWf37kBM4-gE99zomaLyKg3kZVb6Oqv6NS_wCG0ob7 |
Cites_doi | 10.1016/j.sleep.2015.10.001 10.3389/fphys.2013.00026 10.1126/sciadv.abg3092 10.5665/sleep.3230 10.1136/thx.37.11.840 10.3390/brainsci12020233 10.3390/s22166317 10.1007/s11517-006-0119-0 10.1098/rsta.2020.0254 10.1042/cs0910201 10.1016/j.isci.2023.106184 10.1016/j.bspc.2014.08.001 10.1093/sleep/zsx097 10.1152/ajpheart.00405.2000 10.1038/s41598-019-49703-y 10.1111/j.1365-2869.2011.00944.x 10.1145/2939672.2939785 10.1126/sciadv.adg9671 10.1016/j.smrv.2020.101305 10.1113/JP270053 10.3389/fphys.2012.00141 10.2147/NSS.S286070 10.2196/50983 10.3390/s17071685 10.1073/pnas.2026610118 10.1161/CIR.0000000000001078 10.1126/sciadv.abo0537 10.3389/fpsyg.2014.01040 10.1161/01.CIR.93.5.1043 10.1145/3659595 10.3389/fnins.2017.00461 10.1016/j.asoc.2020.106912 10.1038/s41746-019-0210-1 10.1093/sleep/zsaa291 10.1016/j.autneu.2019.01.007 10.1016/j.sleep.2021.03.022 10.1109/CVPR.2016.90 10.1016/S0378-4371(02)01383-3 10.5664/jcsm.6576 10.1371/journal.pbio.0030178 10.3389/fpubh.2017.00258 10.1038/s41551-019-0480-6 10.1046/j.1365-2869.2001.00263.x 10.1007/s11325-021-02493-y 10.1046/j.1365-2281.2001.00306.x 10.1038/s41746-020-0291-x 10.1016/B0-72-160797-7/50009-4 10.1016/j.bspc.2014.05.002 10.3389/fneur.2015.00123 10.1093/sleep/30.7.913 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences 2025 |
Copyright_xml | – notice: Copyright National Academy of Sciences 2025 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 |
DOI | 10.1073/pnas.2501220122 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
ExternalDocumentID | 40478868 10_1073_pnas_2501220122 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Querrey-Simpson Institute for Bioelectronics grantid: NA |
GroupedDBID | --- -DZ -~X .55 0R~ 123 2FS 2WC 4.4 5RE 5VS 85S AACGO AAFWJ AANCE AAYXX ABOCM ABPLY ABPPZ ABTLG ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AFFNX AFHIN AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CITATION CS3 D0L DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 JLS JSG KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SJN TAE TN5 UKR WH7 WOQ X7M XSW Y6R YKV YSK ZCA ~02 ~KM CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 YBH 7X8 |
ID | FETCH-LOGICAL-c322t-4ec2de6f758c702aa481df71bade8469350ad68272c66eba039a1e403cf1e70a3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Fri Sep 05 15:56:00 EDT 2025 Fri Jul 25 09:27:10 EDT 2025 Thu Jun 19 02:16:01 EDT 2025 Thu Jul 03 08:38:50 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | sleep wearable technologies machine learning |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c322t-4ec2de6f758c702aa481df71bade8469350ad68272c66eba039a1e403cf1e70a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1676-8033 0000-0001-5361-0783 0000-0002-0483-8359 0000-0003-3191-8212 0000-0002-2980-3961 |
OpenAccessLink | https://doi.org/10.1073/pnas.2501220122 |
PMID | 40478868 |
PQID | 3219026840 |
PQPubID | 42026 |
ParticipantIDs | proquest_miscellaneous_3216557137 proquest_journals_3219026840 pubmed_primary_40478868 crossref_primary_10_1073_pnas_2501220122 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-10 2025-Jun-10 20250610 |
PublicationDateYYYYMMDD | 2025-06-10 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2025 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_9_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_51_2 Shapley L. S. (e_1_3_4_50_2) 1953 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 Beattie Z. (e_1_3_4_11_2) 2017; 38 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 Redmon J. (e_1_3_4_37_2) 2016 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_52_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 Orozco-Duque A. (e_1_3_4_28_2) 2015; 36 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_56_2 e_1_3_4_18_2 e_1_3_4_39_2 Han F. (e_1_3_4_16_2) 2024; 8 |
References_xml | – ident: e_1_3_4_32_2 doi: 10.1016/j.sleep.2015.10.001 – ident: e_1_3_4_57_2 – ident: e_1_3_4_48_2 doi: 10.3389/fphys.2013.00026 – ident: e_1_3_4_23_2 doi: 10.1126/sciadv.abg3092 – ident: e_1_3_4_41_2 doi: 10.5665/sleep.3230 – ident: e_1_3_4_30_2 doi: 10.1136/thx.37.11.840 – ident: e_1_3_4_5_2 doi: 10.3390/brainsci12020233 – ident: e_1_3_4_18_2 – ident: e_1_3_4_7_2 doi: 10.3390/s22166317 – ident: e_1_3_4_20_2 doi: 10.1007/s11517-006-0119-0 – start-page: 779 year: 2016 ident: e_1_3_4_37_2 article-title: You only look once: Unified, real-time object detection publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – ident: e_1_3_4_29_2 doi: 10.1098/rsta.2020.0254 – ident: e_1_3_4_39_2 doi: 10.1042/cs0910201 – ident: e_1_3_4_44_2 doi: 10.1016/j.isci.2023.106184 – ident: e_1_3_4_31_2 doi: 10.1016/j.bspc.2014.08.001 – ident: e_1_3_4_10_2 doi: 10.1093/sleep/zsx097 – ident: e_1_3_4_38_2 doi: 10.1152/ajpheart.00405.2000 – ident: e_1_3_4_47_2 doi: 10.1038/s41598-019-49703-y – ident: e_1_3_4_45_2 doi: 10.1111/j.1365-2869.2011.00944.x – ident: e_1_3_4_49_2 doi: 10.1145/2939672.2939785 – ident: e_1_3_4_2_2 doi: 10.1126/sciadv.adg9671 – ident: e_1_3_4_52_2 doi: 10.1016/j.smrv.2020.101305 – ident: e_1_3_4_43_2 doi: 10.1113/JP270053 – ident: e_1_3_4_27_2 doi: 10.3389/fphys.2012.00141 – ident: e_1_3_4_12_2 doi: 10.2147/NSS.S286070 – ident: e_1_3_4_17_2 doi: 10.2196/50983 – ident: e_1_3_4_15_2 doi: 10.3390/s17071685 – ident: e_1_3_4_21_2 doi: 10.1073/pnas.2026610118 – ident: e_1_3_4_3_2 – ident: e_1_3_4_1_2 doi: 10.1161/CIR.0000000000001078 – ident: e_1_3_4_22_2 doi: 10.1126/sciadv.abo0537 – ident: e_1_3_4_25_2 doi: 10.3389/fpsyg.2014.01040 – ident: e_1_3_4_36_2 doi: 10.1161/01.CIR.93.5.1043 – volume: 8 start-page: 1 year: 2024 ident: e_1_3_4_16_2 article-title: Earsleep: In-ear acoustic-based physical and physiological activity recognition for sleep stage detection publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. doi: 10.1145/3659595 – ident: e_1_3_4_33_2 doi: 10.3389/fnins.2017.00461 – ident: e_1_3_4_56_2 doi: 10.1016/j.asoc.2020.106912 – ident: e_1_3_4_13_2 doi: 10.1038/s41746-019-0210-1 – ident: e_1_3_4_6_2 doi: 10.1093/sleep/zsaa291 – ident: e_1_3_4_24_2 doi: 10.1016/j.autneu.2019.01.007 – ident: e_1_3_4_8_2 doi: 10.1016/j.sleep.2021.03.022 – ident: e_1_3_4_55_2 doi: 10.1109/CVPR.2016.90 – volume: 36 start-page: 2269 year: 2015 ident: e_1_3_4_28_2 article-title: Multifractal analysis for grading complex fractionated electrograms in atrial fibrillation publication-title: Phys. Physiol. – volume: 38 start-page: 1968 year: 2017 ident: e_1_3_4_11_2 article-title: Estimation of sleep stages in a healthy adult population from optical plethysmography and accelerometer signals publication-title: Phys. Physiol. – ident: e_1_3_4_26_2 doi: 10.1016/S0378-4371(02)01383-3 – ident: e_1_3_4_4_2 doi: 10.5664/jcsm.6576 – ident: e_1_3_4_54_2 doi: 10.1371/journal.pbio.0030178 – ident: e_1_3_4_19_2 doi: 10.3389/fpubh.2017.00258 – ident: e_1_3_4_14_2 doi: 10.1038/s41551-019-0480-6 – ident: e_1_3_4_40_2 doi: 10.1046/j.1365-2869.2001.00263.x – ident: e_1_3_4_46_2 doi: 10.1007/s11325-021-02493-y – ident: e_1_3_4_35_2 doi: 10.1046/j.1365-2281.2001.00306.x – volume-title: International Joint Conferences on Artificial Intelligence Organization year: 1953 ident: e_1_3_4_50_2 – ident: e_1_3_4_9_2 doi: 10.1038/s41746-020-0291-x – ident: e_1_3_4_51_2 doi: 10.1016/B0-72-160797-7/50009-4 – ident: e_1_3_4_34_2 doi: 10.1016/j.bspc.2014.05.002 – ident: e_1_3_4_53_2 doi: 10.3389/fneur.2015.00123 – ident: e_1_3_4_42_2 doi: 10.1093/sleep/30.7.913 |
SSID | ssj0009580 |
Score | 2.4803267 |
Snippet | Accurate identification of sleep stages and disorders is crucial for maintaining health, preventing chronic conditions, and improving diagnosis and treatment.... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database |
StartPage | e2501220122 |
SubjectTerms | Adult Biomarkers Chronic conditions Data Analytics Energy efficiency Female Heart rate Heart Rate - physiology Humans Machine Learning Male Monitoring, Physiologic - instrumentation Monitoring, Physiologic - methods Polysomnography - instrumentation Respiration Respiratory Rate Sleep Sleep disorders Sleep Stages - physiology Sleep Wake Disorders - diagnosis Sleep Wake Disorders - physiopathology Tracking Wearable Electronic Devices Wearable technology Wireless Technology - instrumentation Wrist |
Title | A skin-interfaced wireless wearable device and data analytics approach for sleep-stage and disorder detection |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40478868 https://www.proquest.com/docview/3219026840 https://www.proquest.com/docview/3216557137 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZB6MvY901Wzc02ENHUGdLtmU_ht1KYaEPKeTNyIq8hrVOqG1G9if2l3d0s72shW1gjJGObdD5_PlIOheE3sScijhToAFJYxKVkSBpKiLCRMZVWdJYljoa-cssOTmPThfxYjT6OfBaapviWP64Ma7kf7QKbaBXHSX7D5rtHgoNcA36hTNoGM5_pePppP62qohO-XBdCmk8yXURFCCv74BgHxW1ckEB2hsULsTl1uZmdunEjadhfanUhoCp-NXJuqyccH9jvLWqoRl71v32au9kMPOritM-RsURRz0hk7NZX_H4Q2uIX2zbDpmfTdMpYHXb9mJucfZitW17EM-vW1VYB1-5LoarFgADXe7HbsAoy7RgqJAksrVCOyqmdIA5ygbMqsBWg-7AifzB_EBVulxxJerjmyVBdZsrA4RIZyRKbTWfnWTbvusOukth3mFqgSzCQRbnNPD5oTh7t_O2fXTP3_-7lXPL1MWYMPMH6L6be-CpBdIBGqnqITrwSsJHLgX520foaop3kIU9srBHFrbIwoAWrJGFO2RhjywMyMIDZFlZhyzcIesxOv_0cf7-hLjCHEQC_zckUpIuVVLCXFPygAoRwayn5GEB-AJ7NmNxIJZJSjmVSaIKEbBMhCoKmCxDxQPBnqC9al2pZwiDeSv1znimwiwCqiiAO-AIMhUvVZyyMTryA5lvbP6V3PhNcJbr4c_74R-jQz_QuftI65zBHzkwGY3G6HXXDRSq98VEpdatkUnimIeMj9FTq6DuXV6hz2_teYH2e4Afor0GvoKXYKg2xSsDnl-sbpQi |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+skin-interfaced+wireless+wearable+device+and+data+analytics+approach+for+sleep-stage+and+disorder+detection&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Du%2C+Yayun&rft.au=Gu%2C+Jianyu&rft.au=Duan%2C+Shiyuan&rft.au=Trueb%2C+Jacob&rft.date=2025-06-10&rft.eissn=1091-6490&rft.volume=122&rft.issue=23&rft.spage=e2501220122&rft_id=info:doi/10.1073%2Fpnas.2501220122&rft_id=info%3Apmid%2F40478868&rft.externalDocID=40478868 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |