A skin-interfaced wireless wearable device and data analytics approach for sleep-stage and disorder detection

Accurate identification of sleep stages and disorders is crucial for maintaining health, preventing chronic conditions, and improving diagnosis and treatment. Direct respiratory measurements, as key biomarkers, are missing in traditional wrist- or finger-worn wearables, which thus limit their precis...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 122; no. 23; p. e2501220122
Main Authors Du, Yayun, Gu, Jianyu, Duan, Shiyuan, Trueb, Jacob, Tzavelis, Andreas, Shin, Hee-Sup, Arafa, Hany, Li, Xiuyuan, Huang, Yonggang, Carr, Andrew N., Davies, Charles R., Rogers, John A.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 10.06.2025
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.2501220122

Cover

Loading…
Abstract Accurate identification of sleep stages and disorders is crucial for maintaining health, preventing chronic conditions, and improving diagnosis and treatment. Direct respiratory measurements, as key biomarkers, are missing in traditional wrist- or finger-worn wearables, which thus limit their precision in detection of sleep stages and sleep disorders. By contrast, this work introduces a simple, multimodal, skin-integrated, energy-efficient mechanoacoustic sensor capable of synchronized cardiac and respiratory measurements. The mechanical design enhances sensitivity and durability, enabling continuous, wireless monitoring of essential vital signs (respiration rate, heart rate and corresponding variability, temperature) and various physical activities. Systematic physiology-based analytics involving explainable machine learning allows both precise sleep characterization and transparent tracking of each factor’s contribution, demonstrating the dominance of respiration, as validated through a diverse range of human subjects, both healthy and with sleep disorders. This methodology enables cost-effective, clinical-quality sleep tracking with minimal user effort, suitable for home and clinical use.
AbstractList Accurate identification of sleep stages and disorders is crucial for maintaining health, preventing chronic conditions, and improving diagnosis and treatment. Direct respiratory measurements, as key biomarkers, are missing in traditional wrist- or finger-worn wearables, which thus limit their precision in detection of sleep stages and sleep disorders. By contrast, this work introduces a simple, multimodal, skin-integrated, energy-efficient mechanoacoustic sensor capable of synchronized cardiac and respiratory measurements. The mechanical design enhances sensitivity and durability, enabling continuous, wireless monitoring of essential vital signs (respiration rate, heart rate and corresponding variability, temperature) and various physical activities. Systematic physiology-based analytics involving explainable machine learning allows both precise sleep characterization and transparent tracking of each factor's contribution, demonstrating the dominance of respiration, as validated through a diverse range of human subjects, both healthy and with sleep disorders. This methodology enables cost-effective, clinical-quality sleep tracking with minimal user effort, suitable for home and clinical use.
Accurate identification of sleep stages and disorders is crucial for maintaining health, preventing chronic conditions, and improving diagnosis and treatment. Direct respiratory measurements, as key biomarkers, are missing in traditional wrist- or finger-worn wearables, which thus limit their precision in detection of sleep stages and sleep disorders. By contrast, this work introduces a simple, multimodal, skin-integrated, energy-efficient mechanoacoustic sensor capable of synchronized cardiac and respiratory measurements. The mechanical design enhances sensitivity and durability, enabling continuous, wireless monitoring of essential vital signs (respiration rate, heart rate and corresponding variability, temperature) and various physical activities. Systematic physiology-based analytics involving explainable machine learning allows both precise sleep characterization and transparent tracking of each factor's contribution, demonstrating the dominance of respiration, as validated through a diverse range of human subjects, both healthy and with sleep disorders. This methodology enables cost-effective, clinical-quality sleep tracking with minimal user effort, suitable for home and clinical use.Accurate identification of sleep stages and disorders is crucial for maintaining health, preventing chronic conditions, and improving diagnosis and treatment. Direct respiratory measurements, as key biomarkers, are missing in traditional wrist- or finger-worn wearables, which thus limit their precision in detection of sleep stages and sleep disorders. By contrast, this work introduces a simple, multimodal, skin-integrated, energy-efficient mechanoacoustic sensor capable of synchronized cardiac and respiratory measurements. The mechanical design enhances sensitivity and durability, enabling continuous, wireless monitoring of essential vital signs (respiration rate, heart rate and corresponding variability, temperature) and various physical activities. Systematic physiology-based analytics involving explainable machine learning allows both precise sleep characterization and transparent tracking of each factor's contribution, demonstrating the dominance of respiration, as validated through a diverse range of human subjects, both healthy and with sleep disorders. This methodology enables cost-effective, clinical-quality sleep tracking with minimal user effort, suitable for home and clinical use.
Author Duan, Shiyuan
Shin, Hee-Sup
Arafa, Hany
Rogers, John A.
Trueb, Jacob
Gu, Jianyu
Carr, Andrew N.
Huang, Yonggang
Tzavelis, Andreas
Davies, Charles R.
Li, Xiuyuan
Du, Yayun
Author_xml – sequence: 1
  givenname: Yayun
  orcidid: 0000-0001-5361-0783
  surname: Du
  fullname: Du, Yayun
– sequence: 2
  givenname: Jianyu
  surname: Gu
  fullname: Gu, Jianyu
– sequence: 3
  givenname: Shiyuan
  surname: Duan
  fullname: Duan, Shiyuan
– sequence: 4
  givenname: Jacob
  surname: Trueb
  fullname: Trueb, Jacob
– sequence: 5
  givenname: Andreas
  surname: Tzavelis
  fullname: Tzavelis, Andreas
– sequence: 6
  givenname: Hee-Sup
  surname: Shin
  fullname: Shin, Hee-Sup
– sequence: 7
  givenname: Hany
  orcidid: 0000-0003-3191-8212
  surname: Arafa
  fullname: Arafa, Hany
– sequence: 8
  givenname: Xiuyuan
  surname: Li
  fullname: Li, Xiuyuan
– sequence: 9
  givenname: Yonggang
  orcidid: 0000-0002-0483-8359
  surname: Huang
  fullname: Huang, Yonggang
– sequence: 10
  givenname: Andrew N.
  orcidid: 0000-0003-1676-8033
  surname: Carr
  fullname: Carr, Andrew N.
– sequence: 11
  givenname: Charles R.
  surname: Davies
  fullname: Davies, Charles R.
– sequence: 12
  givenname: John A.
  orcidid: 0000-0002-2980-3961
  surname: Rogers
  fullname: Rogers, John A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40478868$$D View this record in MEDLINE/PubMed
BookMark eNpd0T1P5DAQBmALcYLdvavpkCUamizjj9hOiRBfEtI1d3U0a0_AkE2CnQXx7y8LC0hXWOPi8WjG75ztd31HjB0JWAqw6mzoMC9lCULK7dljMwGVKIyuYJ_NAKQtnJb6kM1zfgSAqnRwwA41aOuccTO2Puf5KXZF7EZKDXoK_DUmailn_kqYcNUSD_QSPXHsAg844nTB9m2MPnMchtSjf-BNn3huiYYij3i_szH3KVCa3o_kx9h3P9mPBttMv3Z1wf5eXf65uCnufl_fXpzfFV5JORaavAxkGls6b0EiaidCY8UKAzltKlUCBuOkld4YWiGoCgVpUL4RZAHVgp1-9J2me95QHut1zJ7aFjvqN7lWUpiytELZiZ78Rx_7TZoWfFcVSOOmxgt2vFOb1ZpCPaS4xvRWf37kBM4-gE99zomaLyKg3kZVb6Oqv6NS_wCG0ob7
Cites_doi 10.1016/j.sleep.2015.10.001
10.3389/fphys.2013.00026
10.1126/sciadv.abg3092
10.5665/sleep.3230
10.1136/thx.37.11.840
10.3390/brainsci12020233
10.3390/s22166317
10.1007/s11517-006-0119-0
10.1098/rsta.2020.0254
10.1042/cs0910201
10.1016/j.isci.2023.106184
10.1016/j.bspc.2014.08.001
10.1093/sleep/zsx097
10.1152/ajpheart.00405.2000
10.1038/s41598-019-49703-y
10.1111/j.1365-2869.2011.00944.x
10.1145/2939672.2939785
10.1126/sciadv.adg9671
10.1016/j.smrv.2020.101305
10.1113/JP270053
10.3389/fphys.2012.00141
10.2147/NSS.S286070
10.2196/50983
10.3390/s17071685
10.1073/pnas.2026610118
10.1161/CIR.0000000000001078
10.1126/sciadv.abo0537
10.3389/fpsyg.2014.01040
10.1161/01.CIR.93.5.1043
10.1145/3659595
10.3389/fnins.2017.00461
10.1016/j.asoc.2020.106912
10.1038/s41746-019-0210-1
10.1093/sleep/zsaa291
10.1016/j.autneu.2019.01.007
10.1016/j.sleep.2021.03.022
10.1109/CVPR.2016.90
10.1016/S0378-4371(02)01383-3
10.5664/jcsm.6576
10.1371/journal.pbio.0030178
10.3389/fpubh.2017.00258
10.1038/s41551-019-0480-6
10.1046/j.1365-2869.2001.00263.x
10.1007/s11325-021-02493-y
10.1046/j.1365-2281.2001.00306.x
10.1038/s41746-020-0291-x
10.1016/B0-72-160797-7/50009-4
10.1016/j.bspc.2014.05.002
10.3389/fneur.2015.00123
10.1093/sleep/30.7.913
ContentType Journal Article
Copyright Copyright National Academy of Sciences 2025
Copyright_xml – notice: Copyright National Academy of Sciences 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
DOI 10.1073/pnas.2501220122
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 40478868
10_1073_pnas_2501220122
Genre Journal Article
GrantInformation_xml – fundername: Querrey-Simpson Institute for Bioelectronics
  grantid: NA
GroupedDBID ---
-DZ
-~X
.55
0R~
123
2FS
2WC
4.4
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYXX
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AFFNX
AFHIN
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CITATION
CS3
D0L
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
JLS
JSG
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SJN
TAE
TN5
UKR
WH7
WOQ
X7M
XSW
Y6R
YKV
YSK
ZCA
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
YBH
7X8
ID FETCH-LOGICAL-c322t-4ec2de6f758c702aa481df71bade8469350ad68272c66eba039a1e403cf1e70a3
ISSN 0027-8424
1091-6490
IngestDate Fri Sep 05 15:56:00 EDT 2025
Fri Jul 25 09:27:10 EDT 2025
Thu Jun 19 02:16:01 EDT 2025
Thu Jul 03 08:38:50 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords sleep
wearable technologies
machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c322t-4ec2de6f758c702aa481df71bade8469350ad68272c66eba039a1e403cf1e70a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1676-8033
0000-0001-5361-0783
0000-0002-0483-8359
0000-0003-3191-8212
0000-0002-2980-3961
OpenAccessLink https://doi.org/10.1073/pnas.2501220122
PMID 40478868
PQID 3219026840
PQPubID 42026
ParticipantIDs proquest_miscellaneous_3216557137
proquest_journals_3219026840
pubmed_primary_40478868
crossref_primary_10_1073_pnas_2501220122
PublicationCentury 2000
PublicationDate 2025-06-10
2025-Jun-10
20250610
PublicationDateYYYYMMDD 2025-06-10
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-10
  day: 10
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2025
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_9_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_51_2
Shapley L. S. (e_1_3_4_50_2) 1953
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_32_2
Beattie Z. (e_1_3_4_11_2) 2017; 38
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
Redmon J. (e_1_3_4_37_2) 2016
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_52_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
Orozco-Duque A. (e_1_3_4_28_2) 2015; 36
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_56_2
e_1_3_4_18_2
e_1_3_4_39_2
Han F. (e_1_3_4_16_2) 2024; 8
References_xml – ident: e_1_3_4_32_2
  doi: 10.1016/j.sleep.2015.10.001
– ident: e_1_3_4_57_2
– ident: e_1_3_4_48_2
  doi: 10.3389/fphys.2013.00026
– ident: e_1_3_4_23_2
  doi: 10.1126/sciadv.abg3092
– ident: e_1_3_4_41_2
  doi: 10.5665/sleep.3230
– ident: e_1_3_4_30_2
  doi: 10.1136/thx.37.11.840
– ident: e_1_3_4_5_2
  doi: 10.3390/brainsci12020233
– ident: e_1_3_4_18_2
– ident: e_1_3_4_7_2
  doi: 10.3390/s22166317
– ident: e_1_3_4_20_2
  doi: 10.1007/s11517-006-0119-0
– start-page: 779
  year: 2016
  ident: e_1_3_4_37_2
  article-title: You only look once: Unified, real-time object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– ident: e_1_3_4_29_2
  doi: 10.1098/rsta.2020.0254
– ident: e_1_3_4_39_2
  doi: 10.1042/cs0910201
– ident: e_1_3_4_44_2
  doi: 10.1016/j.isci.2023.106184
– ident: e_1_3_4_31_2
  doi: 10.1016/j.bspc.2014.08.001
– ident: e_1_3_4_10_2
  doi: 10.1093/sleep/zsx097
– ident: e_1_3_4_38_2
  doi: 10.1152/ajpheart.00405.2000
– ident: e_1_3_4_47_2
  doi: 10.1038/s41598-019-49703-y
– ident: e_1_3_4_45_2
  doi: 10.1111/j.1365-2869.2011.00944.x
– ident: e_1_3_4_49_2
  doi: 10.1145/2939672.2939785
– ident: e_1_3_4_2_2
  doi: 10.1126/sciadv.adg9671
– ident: e_1_3_4_52_2
  doi: 10.1016/j.smrv.2020.101305
– ident: e_1_3_4_43_2
  doi: 10.1113/JP270053
– ident: e_1_3_4_27_2
  doi: 10.3389/fphys.2012.00141
– ident: e_1_3_4_12_2
  doi: 10.2147/NSS.S286070
– ident: e_1_3_4_17_2
  doi: 10.2196/50983
– ident: e_1_3_4_15_2
  doi: 10.3390/s17071685
– ident: e_1_3_4_21_2
  doi: 10.1073/pnas.2026610118
– ident: e_1_3_4_3_2
– ident: e_1_3_4_1_2
  doi: 10.1161/CIR.0000000000001078
– ident: e_1_3_4_22_2
  doi: 10.1126/sciadv.abo0537
– ident: e_1_3_4_25_2
  doi: 10.3389/fpsyg.2014.01040
– ident: e_1_3_4_36_2
  doi: 10.1161/01.CIR.93.5.1043
– volume: 8
  start-page: 1
  year: 2024
  ident: e_1_3_4_16_2
  article-title: Earsleep: In-ear acoustic-based physical and physiological activity recognition for sleep stage detection
  publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.
  doi: 10.1145/3659595
– ident: e_1_3_4_33_2
  doi: 10.3389/fnins.2017.00461
– ident: e_1_3_4_56_2
  doi: 10.1016/j.asoc.2020.106912
– ident: e_1_3_4_13_2
  doi: 10.1038/s41746-019-0210-1
– ident: e_1_3_4_6_2
  doi: 10.1093/sleep/zsaa291
– ident: e_1_3_4_24_2
  doi: 10.1016/j.autneu.2019.01.007
– ident: e_1_3_4_8_2
  doi: 10.1016/j.sleep.2021.03.022
– ident: e_1_3_4_55_2
  doi: 10.1109/CVPR.2016.90
– volume: 36
  start-page: 2269
  year: 2015
  ident: e_1_3_4_28_2
  article-title: Multifractal analysis for grading complex fractionated electrograms in atrial fibrillation
  publication-title: Phys. Physiol.
– volume: 38
  start-page: 1968
  year: 2017
  ident: e_1_3_4_11_2
  article-title: Estimation of sleep stages in a healthy adult population from optical plethysmography and accelerometer signals
  publication-title: Phys. Physiol.
– ident: e_1_3_4_26_2
  doi: 10.1016/S0378-4371(02)01383-3
– ident: e_1_3_4_4_2
  doi: 10.5664/jcsm.6576
– ident: e_1_3_4_54_2
  doi: 10.1371/journal.pbio.0030178
– ident: e_1_3_4_19_2
  doi: 10.3389/fpubh.2017.00258
– ident: e_1_3_4_14_2
  doi: 10.1038/s41551-019-0480-6
– ident: e_1_3_4_40_2
  doi: 10.1046/j.1365-2869.2001.00263.x
– ident: e_1_3_4_46_2
  doi: 10.1007/s11325-021-02493-y
– ident: e_1_3_4_35_2
  doi: 10.1046/j.1365-2281.2001.00306.x
– volume-title: International Joint Conferences on Artificial Intelligence Organization
  year: 1953
  ident: e_1_3_4_50_2
– ident: e_1_3_4_9_2
  doi: 10.1038/s41746-020-0291-x
– ident: e_1_3_4_51_2
  doi: 10.1016/B0-72-160797-7/50009-4
– ident: e_1_3_4_34_2
  doi: 10.1016/j.bspc.2014.05.002
– ident: e_1_3_4_53_2
  doi: 10.3389/fneur.2015.00123
– ident: e_1_3_4_42_2
  doi: 10.1093/sleep/30.7.913
SSID ssj0009580
Score 2.4803267
Snippet Accurate identification of sleep stages and disorders is crucial for maintaining health, preventing chronic conditions, and improving diagnosis and treatment....
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
StartPage e2501220122
SubjectTerms Adult
Biomarkers
Chronic conditions
Data Analytics
Energy efficiency
Female
Heart rate
Heart Rate - physiology
Humans
Machine Learning
Male
Monitoring, Physiologic - instrumentation
Monitoring, Physiologic - methods
Polysomnography - instrumentation
Respiration
Respiratory Rate
Sleep
Sleep disorders
Sleep Stages - physiology
Sleep Wake Disorders - diagnosis
Sleep Wake Disorders - physiopathology
Tracking
Wearable Electronic Devices
Wearable technology
Wireless Technology - instrumentation
Wrist
Title A skin-interfaced wireless wearable device and data analytics approach for sleep-stage and disorder detection
URI https://www.ncbi.nlm.nih.gov/pubmed/40478868
https://www.proquest.com/docview/3219026840
https://www.proquest.com/docview/3216557137
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZB6MvY901Wzc02ENHUGdLtmU_ht1KYaEPKeTNyIq8hrVOqG1G9if2l3d0s72shW1gjJGObdD5_PlIOheE3sScijhToAFJYxKVkSBpKiLCRMZVWdJYljoa-cssOTmPThfxYjT6OfBaapviWP64Ma7kf7QKbaBXHSX7D5rtHgoNcA36hTNoGM5_pePppP62qohO-XBdCmk8yXURFCCv74BgHxW1ckEB2hsULsTl1uZmdunEjadhfanUhoCp-NXJuqyccH9jvLWqoRl71v32au9kMPOritM-RsURRz0hk7NZX_H4Q2uIX2zbDpmfTdMpYHXb9mJucfZitW17EM-vW1VYB1-5LoarFgADXe7HbsAoy7RgqJAksrVCOyqmdIA5ygbMqsBWg-7AifzB_EBVulxxJerjmyVBdZsrA4RIZyRKbTWfnWTbvusOukth3mFqgSzCQRbnNPD5oTh7t_O2fXTP3_-7lXPL1MWYMPMH6L6be-CpBdIBGqnqITrwSsJHLgX520foaop3kIU9srBHFrbIwoAWrJGFO2RhjywMyMIDZFlZhyzcIesxOv_0cf7-hLjCHEQC_zckUpIuVVLCXFPygAoRwayn5GEB-AJ7NmNxIJZJSjmVSaIKEbBMhCoKmCxDxQPBnqC9al2pZwiDeSv1znimwiwCqiiAO-AIMhUvVZyyMTryA5lvbP6V3PhNcJbr4c_74R-jQz_QuftI65zBHzkwGY3G6HXXDRSq98VEpdatkUnimIeMj9FTq6DuXV6hz2_teYH2e4Afor0GvoKXYKg2xSsDnl-sbpQi
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+skin-interfaced+wireless+wearable+device+and+data+analytics+approach+for+sleep-stage+and+disorder+detection&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Du%2C+Yayun&rft.au=Gu%2C+Jianyu&rft.au=Duan%2C+Shiyuan&rft.au=Trueb%2C+Jacob&rft.date=2025-06-10&rft.eissn=1091-6490&rft.volume=122&rft.issue=23&rft.spage=e2501220122&rft_id=info:doi/10.1073%2Fpnas.2501220122&rft_id=info%3Apmid%2F40478868&rft.externalDocID=40478868
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon