Event-Triggered Adaptive Preassigned Finite-Time Consensus Control for Multiagent Systems With Nonlinear Faults

This article investigates a novel neuro-adaptive barrier Lyapunov function (BLF)-based event-triggered preassigned finite-time consensus control with asymptotic tracking for the nonlinear multiagent systems. The proposed approach is designed to broaden the scope of application by considering the hig...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 54; no. 12; pp. 7392 - 7403
Main Authors Salmanpour, Yasaman, Arefi, Mohammad Mehdi, Cao, Jinde
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article investigates a novel neuro-adaptive barrier Lyapunov function (BLF)-based event-triggered preassigned finite-time consensus control with asymptotic tracking for the nonlinear multiagent systems. The proposed approach is designed to broaden the scope of application by considering the high-order nonstrict-feedback dynamics of each agent with dynamic uncertainties subject to external disturbances and nonaffine nonlinear faults. A neural network (NN) is employed to approximate the unknown nonlinear terms. By fusing the NNs and Butterworth low-pass filter technique, the issues arising from the nonaffine nonlinear fault are addressed. To save the communication resources, a novel dynamic event-triggered mechanism based on an enhanced switching threshold is suggested. Additionally, a novel concept called the preassigned finite-time performance function (PFTPF) is defined to improve the transient and steady-state performances as well as providing faster response. The key feature of the proposed adaptive BLF-based control based on the bound estimation method is the introduction of a smooth function with decreasing variable which not only ensures that all the signals remain bounded and the synchronization errors are restricted within the PFTPF but also guarantees that the tracking errors asymptotically converge to zero. Finally, an illustrative example is provided to verify the feasibility of the proposed control approach.
AbstractList This article investigates a novel neuro-adaptive barrier Lyapunov function (BLF)-based event-triggered preassigned finite-time consensus control with asymptotic tracking for the nonlinear multiagent systems. The proposed approach is designed to broaden the scope of application by considering the high-order nonstrict-feedback dynamics of each agent with dynamic uncertainties subject to external disturbances and nonaffine nonlinear faults. A neural network (NN) is employed to approximate the unknown nonlinear terms. By fusing the NNs and Butterworth low-pass filter technique, the issues arising from the nonaffine nonlinear fault are addressed. To save the communication resources, a novel dynamic event-triggered mechanism based on an enhanced switching threshold is suggested. Additionally, a novel concept called the preassigned finite-time performance function (PFTPF) is defined to improve the transient and steady-state performances as well as providing faster response. The key feature of the proposed adaptive BLF-based control based on the bound estimation method is the introduction of a smooth function with decreasing variable which not only ensures that all the signals remain bounded and the synchronization errors are restricted within the PFTPF but also guarantees that the tracking errors asymptotically converge to zero. Finally, an illustrative example is provided to verify the feasibility of the proposed control approach.This article investigates a novel neuro-adaptive barrier Lyapunov function (BLF)-based event-triggered preassigned finite-time consensus control with asymptotic tracking for the nonlinear multiagent systems. The proposed approach is designed to broaden the scope of application by considering the high-order nonstrict-feedback dynamics of each agent with dynamic uncertainties subject to external disturbances and nonaffine nonlinear faults. A neural network (NN) is employed to approximate the unknown nonlinear terms. By fusing the NNs and Butterworth low-pass filter technique, the issues arising from the nonaffine nonlinear fault are addressed. To save the communication resources, a novel dynamic event-triggered mechanism based on an enhanced switching threshold is suggested. Additionally, a novel concept called the preassigned finite-time performance function (PFTPF) is defined to improve the transient and steady-state performances as well as providing faster response. The key feature of the proposed adaptive BLF-based control based on the bound estimation method is the introduction of a smooth function with decreasing variable which not only ensures that all the signals remain bounded and the synchronization errors are restricted within the PFTPF but also guarantees that the tracking errors asymptotically converge to zero. Finally, an illustrative example is provided to verify the feasibility of the proposed control approach.
This article investigates a novel neuro-adaptive barrier Lyapunov function (BLF)-based event-triggered preassigned finite-time consensus control with asymptotic tracking for the nonlinear multiagent systems. The proposed approach is designed to broaden the scope of application by considering the high-order nonstrict-feedback dynamics of each agent with dynamic uncertainties subject to external disturbances and nonaffine nonlinear faults. A neural network (NN) is employed to approximate the unknown nonlinear terms. By fusing the NNs and Butterworth low-pass filter technique, the issues arising from the nonaffine nonlinear fault are addressed. To save the communication resources, a novel dynamic event-triggered mechanism based on an enhanced switching threshold is suggested. Additionally, a novel concept called the preassigned finite-time performance function (PFTPF) is defined to improve the transient and steady-state performances as well as providing faster response. The key feature of the proposed adaptive BLF-based control based on the bound estimation method is the introduction of a smooth function with decreasing variable which not only ensures that all the signals remain bounded and the synchronization errors are restricted within the PFTPF but also guarantees that the tracking errors asymptotically converge to zero. Finally, an illustrative example is provided to verify the feasibility of the proposed control approach.
Author Salmanpour, Yasaman
Cao, Jinde
Arefi, Mohammad Mehdi
Author_xml – sequence: 1
  givenname: Yasaman
  orcidid: 0009-0005-8172-9745
  surname: Salmanpour
  fullname: Salmanpour, Yasaman
  email: salmanpouryasaman123@gmail.com
  organization: Department of Power and Control Engineering, Shiraz University, Shiraz, Iran
– sequence: 2
  givenname: Mohammad Mehdi
  orcidid: 0000-0003-3986-8205
  surname: Arefi
  fullname: Arefi, Mohammad Mehdi
  email: arefi@shirazu.ac.ir
  organization: Department of Power and Control Engineering, Shiraz University, Shiraz, Iran
– sequence: 3
  givenname: Jinde
  orcidid: 0000-0003-3133-7119
  surname: Cao
  fullname: Cao, Jinde
  email: jdcao@seu.edu.cn
  organization: School of Mathematics, Southeast University, Nanjing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39264788$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1rFEEQhhuJmBjzAwSROXqZtb8_jnHJRiEmgiviaejpqVlbZnrW7p5A_n162DWIB-tSRfG81fT7vkQnYQqA0GuCV4Rg8367_vFhRTHlK8Y5Y4I-Q2eUSF1TqsTJ0yzVKbpI6RcupcvK6BfolBkqudL6DE1X9xByvY1-t4MIXXXZ2X3291B9iWBT8rtQlhsffIZ660eo1lNIENKclinHaaj6KVaf5yF7uyu3qq8PKcOYqu8-_6xupzD4ADZWG1uQ9Ao97-2Q4OLYz9G3zdV2_bG-ubv-tL68qR2jNNdcctkbZQizGHgLLXOmJ60Cq5wE25W_2Ba0pMR1QnDdOSykUaBbIYwRjp2jd4e7-zj9niHlZvTJwTDYANOcGkYwx0xzLAr69ojO7Qhds49-tPGh-WNSAcgBcHFKKUL_hBDcLFk0SxbNkkVzzKJo1D8a57PNfrHM-uG_yjcHpQeAv16SxQ2F2SOiwZdj
CODEN ITCEB8
CitedBy_id crossref_primary_10_1109_TCYB_2025_3535867
crossref_primary_10_1016_j_fss_2024_109255
crossref_primary_10_1109_TSMC_2025_3526969
Cites_doi 10.1109/TFUZZ.2008.917301
10.1016/j.physa.2006.08.015
10.1016/j.automatica.2013.03.002
10.1007/s11071-017-4020-1
10.1109/TFUZZ.2013.2260757
10.1016/j.ins.2019.05.051
10.1109/TCYB.2015.2452217
10.1109/TCYB.2021.3049488
10.1109/tnnls.2023.3279890
10.1109/TCYB.2019.2951151
10.1109/tfuzz.2024.3409447
10.1109/TNN.2010.2050601
10.1016/j.automatica.2015.10.034
10.1109/TNSE.2020.3013528
10.1109/TNNLS.2013.2238554
10.1109/TCYB.2017.2749511
10.1109/TSMC.2024.3387441
10.1016/j.automatica.2014.01.003
10.1016/j.automatica.2016.11.019
10.1016/j.automatica.2016.06.008
10.1002/acs.3426
10.1109/tcyb.2024.3365725
10.1109/TCYB.2016.2623898
10.1109/TAC.2011.2174666
10.1007/s11071-021-06564-3
10.1109/TAC.2024.3351947
10.1109/TSMC.2018.2816928
10.1016/j.automatica.2011.02.045
10.1016/j.automatica.2012.05.008
10.1109/TFUZZ.2021.3050847
10.1109/TCYB.2020.2969499
10.1109/TFUZZ.2020.2965890
10.1109/TCYB.2021.3091531
10.1109/TAC.2007.904277
10.1016/j.jfranklin.2022.07.026
10.1016/j.jfranklin.2024.106767
10.1109/TCYB.2022.3209694
10.1109/TCYB.2018.2869084
10.1109/TCYB.2019.2893645
10.1137/S0363012997321358
10.1109/TSMC.2015.2486751
10.1080/00207721.2021.1954719
10.1016/j.automatica.2010.08.003
10.1109/TFUZZ.2020.3048518
10.1109/TFUZZ.2019.2895560
10.1049/iet-cta.2015.0915
10.1049/iet-cta.2017.0875
10.1109/TFUZZ.2023.3306153
10.1109/TFUZZ.2020.3009730
10.1109/TCYB.2021.3049536
10.1109/TCYB.2022.3164048
10.1109/TCST.2013.2291784
10.1109/TCYB.2020.3002242
10.1109/TAC.2015.2444131
10.1109/TFUZZ.2020.2991153
10.1109/TFUZZ.2019.2908771
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TCYB.2024.3443352
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 7403
ExternalDocumentID 39264788
10_1109_TCYB_2024_3443352
10679170
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Jiangsu Provincial Scientific Research Center of Applied Mathematics
  grantid: BK20233002
  funderid: 10.13039/501100016017
– fundername: National Natural Science Foundation of China
  grantid: 12326311
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7X8
ID FETCH-LOGICAL-c322t-4646f97913a0e4beb3c9f1b7ea7c6ead008abe8621cd5548dc05697e8b55995c3
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Fri Jul 11 10:16:33 EDT 2025
Wed Mar 05 02:44:39 EST 2025
Tue Jul 01 00:54:06 EDT 2025
Thu Apr 24 22:57:33 EDT 2025
Wed Aug 27 03:05:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-4646f97913a0e4beb3c9f1b7ea7c6ead008abe8621cd5548dc05697e8b55995c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3986-8205
0009-0005-8172-9745
0000-0003-3133-7119
PMID 39264788
PQID 3104038405
PQPubID 23479
PageCount 12
ParticipantIDs crossref_primary_10_1109_TCYB_2024_3443352
pubmed_primary_39264788
crossref_citationtrail_10_1109_TCYB_2024_3443352
ieee_primary_10679170
proquest_miscellaneous_3104038405
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref12
ref56
ref15
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
Khalil (ref46) 2002
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref48
  doi: 10.1109/TFUZZ.2008.917301
– ident: ref5
  doi: 10.1016/j.physa.2006.08.015
– ident: ref27
  doi: 10.1016/j.automatica.2013.03.002
– ident: ref24
  doi: 10.1007/s11071-017-4020-1
– ident: ref32
  doi: 10.1109/TFUZZ.2013.2260757
– ident: ref10
  doi: 10.1016/j.ins.2019.05.051
– ident: ref52
  doi: 10.1109/TCYB.2015.2452217
– ident: ref55
  doi: 10.1109/TCYB.2021.3049488
– ident: ref37
  doi: 10.1109/tnnls.2023.3279890
– ident: ref29
  doi: 10.1109/TCYB.2019.2951151
– ident: ref35
  doi: 10.1109/tfuzz.2024.3409447
– ident: ref7
  doi: 10.1109/TNN.2010.2050601
– ident: ref56
  doi: 10.1016/j.automatica.2015.10.034
– ident: ref21
  doi: 10.1109/TNSE.2020.3013528
– ident: ref8
  doi: 10.1109/TNNLS.2013.2238554
– ident: ref15
  doi: 10.1109/TCYB.2017.2749511
– ident: ref36
  doi: 10.1109/TSMC.2024.3387441
– ident: ref1
  doi: 10.1016/j.automatica.2014.01.003
– ident: ref12
  doi: 10.1016/j.automatica.2016.11.019
– ident: ref45
  doi: 10.1016/j.automatica.2016.06.008
– ident: ref11
  doi: 10.1002/acs.3426
– ident: ref14
  doi: 10.1109/tcyb.2024.3365725
– ident: ref9
  doi: 10.1109/TCYB.2016.2623898
– ident: ref26
  doi: 10.1109/TAC.2011.2174666
– ident: ref57
  doi: 10.1007/s11071-021-06564-3
– ident: ref18
  doi: 10.1109/TAC.2024.3351947
– ident: ref53
  doi: 10.1109/TSMC.2018.2816928
– ident: ref19
  doi: 10.1016/j.automatica.2011.02.045
– ident: ref43
  doi: 10.1016/j.automatica.2012.05.008
– ident: ref42
  doi: 10.1109/TFUZZ.2021.3050847
– ident: ref54
  doi: 10.1109/TCYB.2020.2969499
– ident: ref49
  doi: 10.1109/TFUZZ.2020.2965890
– ident: ref38
  doi: 10.1109/TCYB.2021.3091531
– ident: ref25
  doi: 10.1109/TAC.2007.904277
– ident: ref34
  doi: 10.1016/j.jfranklin.2022.07.026
– ident: ref47
  doi: 10.1016/j.jfranklin.2024.106767
– ident: ref39
  doi: 10.1109/TCYB.2022.3209694
– ident: ref30
  doi: 10.1109/TCYB.2018.2869084
– ident: ref41
  doi: 10.1109/TCYB.2019.2893645
– ident: ref17
  doi: 10.1137/S0363012997321358
– ident: ref40
  doi: 10.1109/TSMC.2015.2486751
– ident: ref23
  doi: 10.1080/00207721.2021.1954719
– ident: ref4
  doi: 10.1016/j.automatica.2010.08.003
– ident: ref22
  doi: 10.1109/TFUZZ.2020.3048518
– ident: ref50
  doi: 10.1109/TFUZZ.2019.2895560
– ident: ref20
  doi: 10.1049/iet-cta.2015.0915
– ident: ref44
  doi: 10.1049/iet-cta.2017.0875
– ident: ref31
  doi: 10.1109/TFUZZ.2023.3306153
– ident: ref33
  doi: 10.1109/TFUZZ.2020.3009730
– ident: ref51
  doi: 10.1109/TCYB.2021.3049536
– ident: ref28
  doi: 10.1109/TCYB.2022.3164048
– ident: ref2
  doi: 10.1109/TCST.2013.2291784
– ident: ref13
  doi: 10.1109/TCYB.2020.3002242
– ident: ref3
  doi: 10.1109/TAC.2015.2444131
– ident: ref16
  doi: 10.1109/TFUZZ.2020.2991153
– volume-title: Nonlinear Systems
  year: 2002
  ident: ref46
– ident: ref6
  doi: 10.1109/TFUZZ.2019.2908771
SSID ssj0000816898
Score 2.4087887
Snippet This article investigates a novel neuro-adaptive barrier Lyapunov function (BLF)-based event-triggered preassigned finite-time consensus control with...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7392
SubjectTerms Artificial neural networks
Asymptotic tracking control
Consensus control
Convergence
Estimation
finite-time consensus control
nonaffine nonlinear faults
Nonlinear dynamical systems
nonlinear multiagent systems (MASs)
Stability analysis
Switches
switching event-triggered control (ETC)
Title Event-Triggered Adaptive Preassigned Finite-Time Consensus Control for Multiagent Systems With Nonlinear Faults
URI https://ieeexplore.ieee.org/document/10679170
https://www.ncbi.nlm.nih.gov/pubmed/39264788
https://www.proquest.com/docview/3104038405
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9RDoaLiqLiV2riQU2KGytsO6KBEBOJB4x4WtquU6IBAuPiX-97XSFqovHWLO3W5b32_X7t-wA4V1Fk4iz0Odq6jAs0yTwSUnPcCpWWouEHmo4G7vut3qO4GzaHLljdxsIYY6zzmalT097lpxO9oKOya0p3hvQCGfo6MrciWGt1oGIrSNjatw1scIQVobvF9L34enD7fINssCHqgRAUZ1SGDYQGFGkZfTNJtsbK73DTmp3uFvSXEy68Td7qi1zV9cePXI7__qNt2HQAlLULjanAmhnvQMUt8Tm7cHmoL3dh0iFfSD5A_v5CFT1ZO5VT2h3ZA3myk-cHPuyOCLVyCiVhVP2TSmfMqUUe8AwhMbMxvpJCuJjLj86eRvkr6xdZOuSMdSV2mVfhsdsZ3Pa4q8_ANW4DORct0cpinH8gPSMU0nIdZ74KjQx1CzUURSKVQcrk6xRRS5RqRFtxaCJl05zpYA9K48nYHABLI-PFshGEOkuFQVSkvCYClSz2M5GJ0KuBtxRRol3ycqqh8Z5YEuPFCQk4IQEnTsA1uFoNmRaZO_7qXCXhfOlYyKUGZ0tFSHDd0WWKHJvJYp4gLBZegPS4WYP9QkNWo5eKdfjLW4-gTB8vvGKOoZTPFuYEsU2uTq1OfwL2pfIB
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5EQb34ftRnBA8qpN1H2t09VrHUV_FQUU9Lks2qKK2024u_3plsWlRQvIWSXVJmNvNNMt83AIcqjk2SRz7HWJdzgSGZx0Jqjluh0lIEfqjpaOCm02jficuH-oMjq1sujDHGFp-ZKg3tXX7W1yM6KquR3BmmF5ihz2DgrwclXWtypGJ7SNjutwEOOAKLyN1j-l5S6549nmI-GIhqKAQxjeZhFsEBcS3jb0HJdln5HXDawNNahM54yWW9yWt1VKiq_vih5vjv_7QECw6CsmbpM8swZXorsOw-8iE7ckrUx6vQP6dqSN7FDP6JenqyZibfaX9kt1TLTrUf-GPrhXArJzIJo_6f1DxjSCOqgWcIipll-UoicTGnkM7uX4pn1il1OuSAtSROGa7BXeu8e9bmrkMD17gRFFw0RCNPcP2h9IxQmJjrJPdVZGSkG-ijaBKpDCZNvs4Qt8SZRryVRCZWVuhMh-sw3ev3zCawLDZeIoMw0nkmDOIi5dURquSJn4tcRF4FvLGJUu3ky6mLxltq0xgvScnAKRk4dQauwMnkkfdSu-OvyWtknC8TS7tU4GDsCCl-eXSdInumPxqmCIyFF2KCXK_ARukhk6fHjrX1y1v3Ya7dvblOry86V9swTwspa2R2YLoYjMwuIp1C7Vn__gTAI_VL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Event-Triggered+Adaptive+Preassigned+Finite-Time+Consensus+Control+for+Multiagent+Systems+With+Nonlinear+Faults&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Salmanpour%2C+Yasaman&rft.au=Arefi%2C+Mohammad+Mehdi&rft.au=Cao%2C+Jinde&rft.date=2024-12-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=54&rft.issue=12&rft.spage=7392&rft.epage=7403&rft_id=info:doi/10.1109%2FTCYB.2024.3443352&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2024_3443352
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon