Event-Triggered Adaptive Preassigned Finite-Time Consensus Control for Multiagent Systems With Nonlinear Faults
This article investigates a novel neuro-adaptive barrier Lyapunov function (BLF)-based event-triggered preassigned finite-time consensus control with asymptotic tracking for the nonlinear multiagent systems. The proposed approach is designed to broaden the scope of application by considering the hig...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 54; no. 12; pp. 7392 - 7403 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article investigates a novel neuro-adaptive barrier Lyapunov function (BLF)-based event-triggered preassigned finite-time consensus control with asymptotic tracking for the nonlinear multiagent systems. The proposed approach is designed to broaden the scope of application by considering the high-order nonstrict-feedback dynamics of each agent with dynamic uncertainties subject to external disturbances and nonaffine nonlinear faults. A neural network (NN) is employed to approximate the unknown nonlinear terms. By fusing the NNs and Butterworth low-pass filter technique, the issues arising from the nonaffine nonlinear fault are addressed. To save the communication resources, a novel dynamic event-triggered mechanism based on an enhanced switching threshold is suggested. Additionally, a novel concept called the preassigned finite-time performance function (PFTPF) is defined to improve the transient and steady-state performances as well as providing faster response. The key feature of the proposed adaptive BLF-based control based on the bound estimation method is the introduction of a smooth function with decreasing variable which not only ensures that all the signals remain bounded and the synchronization errors are restricted within the PFTPF but also guarantees that the tracking errors asymptotically converge to zero. Finally, an illustrative example is provided to verify the feasibility of the proposed control approach. |
---|---|
AbstractList | This article investigates a novel neuro-adaptive barrier Lyapunov function (BLF)-based event-triggered preassigned finite-time consensus control with asymptotic tracking for the nonlinear multiagent systems. The proposed approach is designed to broaden the scope of application by considering the high-order nonstrict-feedback dynamics of each agent with dynamic uncertainties subject to external disturbances and nonaffine nonlinear faults. A neural network (NN) is employed to approximate the unknown nonlinear terms. By fusing the NNs and Butterworth low-pass filter technique, the issues arising from the nonaffine nonlinear fault are addressed. To save the communication resources, a novel dynamic event-triggered mechanism based on an enhanced switching threshold is suggested. Additionally, a novel concept called the preassigned finite-time performance function (PFTPF) is defined to improve the transient and steady-state performances as well as providing faster response. The key feature of the proposed adaptive BLF-based control based on the bound estimation method is the introduction of a smooth function with decreasing variable which not only ensures that all the signals remain bounded and the synchronization errors are restricted within the PFTPF but also guarantees that the tracking errors asymptotically converge to zero. Finally, an illustrative example is provided to verify the feasibility of the proposed control approach.This article investigates a novel neuro-adaptive barrier Lyapunov function (BLF)-based event-triggered preassigned finite-time consensus control with asymptotic tracking for the nonlinear multiagent systems. The proposed approach is designed to broaden the scope of application by considering the high-order nonstrict-feedback dynamics of each agent with dynamic uncertainties subject to external disturbances and nonaffine nonlinear faults. A neural network (NN) is employed to approximate the unknown nonlinear terms. By fusing the NNs and Butterworth low-pass filter technique, the issues arising from the nonaffine nonlinear fault are addressed. To save the communication resources, a novel dynamic event-triggered mechanism based on an enhanced switching threshold is suggested. Additionally, a novel concept called the preassigned finite-time performance function (PFTPF) is defined to improve the transient and steady-state performances as well as providing faster response. The key feature of the proposed adaptive BLF-based control based on the bound estimation method is the introduction of a smooth function with decreasing variable which not only ensures that all the signals remain bounded and the synchronization errors are restricted within the PFTPF but also guarantees that the tracking errors asymptotically converge to zero. Finally, an illustrative example is provided to verify the feasibility of the proposed control approach. This article investigates a novel neuro-adaptive barrier Lyapunov function (BLF)-based event-triggered preassigned finite-time consensus control with asymptotic tracking for the nonlinear multiagent systems. The proposed approach is designed to broaden the scope of application by considering the high-order nonstrict-feedback dynamics of each agent with dynamic uncertainties subject to external disturbances and nonaffine nonlinear faults. A neural network (NN) is employed to approximate the unknown nonlinear terms. By fusing the NNs and Butterworth low-pass filter technique, the issues arising from the nonaffine nonlinear fault are addressed. To save the communication resources, a novel dynamic event-triggered mechanism based on an enhanced switching threshold is suggested. Additionally, a novel concept called the preassigned finite-time performance function (PFTPF) is defined to improve the transient and steady-state performances as well as providing faster response. The key feature of the proposed adaptive BLF-based control based on the bound estimation method is the introduction of a smooth function with decreasing variable which not only ensures that all the signals remain bounded and the synchronization errors are restricted within the PFTPF but also guarantees that the tracking errors asymptotically converge to zero. Finally, an illustrative example is provided to verify the feasibility of the proposed control approach. |
Author | Salmanpour, Yasaman Cao, Jinde Arefi, Mohammad Mehdi |
Author_xml | – sequence: 1 givenname: Yasaman orcidid: 0009-0005-8172-9745 surname: Salmanpour fullname: Salmanpour, Yasaman email: salmanpouryasaman123@gmail.com organization: Department of Power and Control Engineering, Shiraz University, Shiraz, Iran – sequence: 2 givenname: Mohammad Mehdi orcidid: 0000-0003-3986-8205 surname: Arefi fullname: Arefi, Mohammad Mehdi email: arefi@shirazu.ac.ir organization: Department of Power and Control Engineering, Shiraz University, Shiraz, Iran – sequence: 3 givenname: Jinde orcidid: 0000-0003-3133-7119 surname: Cao fullname: Cao, Jinde email: jdcao@seu.edu.cn organization: School of Mathematics, Southeast University, Nanjing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39264788$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1rFEEQhhuJmBjzAwSROXqZtb8_jnHJRiEmgiviaejpqVlbZnrW7p5A_n162DWIB-tSRfG81fT7vkQnYQqA0GuCV4Rg8367_vFhRTHlK8Y5Y4I-Q2eUSF1TqsTJ0yzVKbpI6RcupcvK6BfolBkqudL6DE1X9xByvY1-t4MIXXXZ2X3291B9iWBT8rtQlhsffIZ660eo1lNIENKclinHaaj6KVaf5yF7uyu3qq8PKcOYqu8-_6xupzD4ADZWG1uQ9Ao97-2Q4OLYz9G3zdV2_bG-ubv-tL68qR2jNNdcctkbZQizGHgLLXOmJ60Cq5wE25W_2Ba0pMR1QnDdOSykUaBbIYwRjp2jd4e7-zj9niHlZvTJwTDYANOcGkYwx0xzLAr69ojO7Qhds49-tPGh-WNSAcgBcHFKKUL_hBDcLFk0SxbNkkVzzKJo1D8a57PNfrHM-uG_yjcHpQeAv16SxQ2F2SOiwZdj |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1109_TCYB_2025_3535867 crossref_primary_10_1016_j_fss_2024_109255 crossref_primary_10_1109_TSMC_2025_3526969 |
Cites_doi | 10.1109/TFUZZ.2008.917301 10.1016/j.physa.2006.08.015 10.1016/j.automatica.2013.03.002 10.1007/s11071-017-4020-1 10.1109/TFUZZ.2013.2260757 10.1016/j.ins.2019.05.051 10.1109/TCYB.2015.2452217 10.1109/TCYB.2021.3049488 10.1109/tnnls.2023.3279890 10.1109/TCYB.2019.2951151 10.1109/tfuzz.2024.3409447 10.1109/TNN.2010.2050601 10.1016/j.automatica.2015.10.034 10.1109/TNSE.2020.3013528 10.1109/TNNLS.2013.2238554 10.1109/TCYB.2017.2749511 10.1109/TSMC.2024.3387441 10.1016/j.automatica.2014.01.003 10.1016/j.automatica.2016.11.019 10.1016/j.automatica.2016.06.008 10.1002/acs.3426 10.1109/tcyb.2024.3365725 10.1109/TCYB.2016.2623898 10.1109/TAC.2011.2174666 10.1007/s11071-021-06564-3 10.1109/TAC.2024.3351947 10.1109/TSMC.2018.2816928 10.1016/j.automatica.2011.02.045 10.1016/j.automatica.2012.05.008 10.1109/TFUZZ.2021.3050847 10.1109/TCYB.2020.2969499 10.1109/TFUZZ.2020.2965890 10.1109/TCYB.2021.3091531 10.1109/TAC.2007.904277 10.1016/j.jfranklin.2022.07.026 10.1016/j.jfranklin.2024.106767 10.1109/TCYB.2022.3209694 10.1109/TCYB.2018.2869084 10.1109/TCYB.2019.2893645 10.1137/S0363012997321358 10.1109/TSMC.2015.2486751 10.1080/00207721.2021.1954719 10.1016/j.automatica.2010.08.003 10.1109/TFUZZ.2020.3048518 10.1109/TFUZZ.2019.2895560 10.1049/iet-cta.2015.0915 10.1049/iet-cta.2017.0875 10.1109/TFUZZ.2023.3306153 10.1109/TFUZZ.2020.3009730 10.1109/TCYB.2021.3049536 10.1109/TCYB.2022.3164048 10.1109/TCST.2013.2291784 10.1109/TCYB.2020.3002242 10.1109/TAC.2015.2444131 10.1109/TFUZZ.2020.2991153 10.1109/TFUZZ.2019.2908771 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
DOI | 10.1109/TCYB.2024.3443352 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 7403 |
ExternalDocumentID | 39264788 10_1109_TCYB_2024_3443352 10679170 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Jiangsu Provincial Scientific Research Center of Applied Mathematics grantid: BK20233002 funderid: 10.13039/501100016017 – fundername: National Natural Science Foundation of China grantid: 12326311 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7X8 |
ID | FETCH-LOGICAL-c322t-4646f97913a0e4beb3c9f1b7ea7c6ead008abe8621cd5548dc05697e8b55995c3 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Fri Jul 11 10:16:33 EDT 2025 Wed Mar 05 02:44:39 EST 2025 Tue Jul 01 00:54:06 EDT 2025 Thu Apr 24 22:57:33 EDT 2025 Wed Aug 27 03:05:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c322t-4646f97913a0e4beb3c9f1b7ea7c6ead008abe8621cd5548dc05697e8b55995c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3986-8205 0009-0005-8172-9745 0000-0003-3133-7119 |
PMID | 39264788 |
PQID | 3104038405 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_TCYB_2024_3443352 pubmed_primary_39264788 crossref_citationtrail_10_1109_TCYB_2024_3443352 ieee_primary_10679170 proquest_miscellaneous_3104038405 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref57 ref12 ref56 ref15 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 Khalil (ref46) 2002 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref48 doi: 10.1109/TFUZZ.2008.917301 – ident: ref5 doi: 10.1016/j.physa.2006.08.015 – ident: ref27 doi: 10.1016/j.automatica.2013.03.002 – ident: ref24 doi: 10.1007/s11071-017-4020-1 – ident: ref32 doi: 10.1109/TFUZZ.2013.2260757 – ident: ref10 doi: 10.1016/j.ins.2019.05.051 – ident: ref52 doi: 10.1109/TCYB.2015.2452217 – ident: ref55 doi: 10.1109/TCYB.2021.3049488 – ident: ref37 doi: 10.1109/tnnls.2023.3279890 – ident: ref29 doi: 10.1109/TCYB.2019.2951151 – ident: ref35 doi: 10.1109/tfuzz.2024.3409447 – ident: ref7 doi: 10.1109/TNN.2010.2050601 – ident: ref56 doi: 10.1016/j.automatica.2015.10.034 – ident: ref21 doi: 10.1109/TNSE.2020.3013528 – ident: ref8 doi: 10.1109/TNNLS.2013.2238554 – ident: ref15 doi: 10.1109/TCYB.2017.2749511 – ident: ref36 doi: 10.1109/TSMC.2024.3387441 – ident: ref1 doi: 10.1016/j.automatica.2014.01.003 – ident: ref12 doi: 10.1016/j.automatica.2016.11.019 – ident: ref45 doi: 10.1016/j.automatica.2016.06.008 – ident: ref11 doi: 10.1002/acs.3426 – ident: ref14 doi: 10.1109/tcyb.2024.3365725 – ident: ref9 doi: 10.1109/TCYB.2016.2623898 – ident: ref26 doi: 10.1109/TAC.2011.2174666 – ident: ref57 doi: 10.1007/s11071-021-06564-3 – ident: ref18 doi: 10.1109/TAC.2024.3351947 – ident: ref53 doi: 10.1109/TSMC.2018.2816928 – ident: ref19 doi: 10.1016/j.automatica.2011.02.045 – ident: ref43 doi: 10.1016/j.automatica.2012.05.008 – ident: ref42 doi: 10.1109/TFUZZ.2021.3050847 – ident: ref54 doi: 10.1109/TCYB.2020.2969499 – ident: ref49 doi: 10.1109/TFUZZ.2020.2965890 – ident: ref38 doi: 10.1109/TCYB.2021.3091531 – ident: ref25 doi: 10.1109/TAC.2007.904277 – ident: ref34 doi: 10.1016/j.jfranklin.2022.07.026 – ident: ref47 doi: 10.1016/j.jfranklin.2024.106767 – ident: ref39 doi: 10.1109/TCYB.2022.3209694 – ident: ref30 doi: 10.1109/TCYB.2018.2869084 – ident: ref41 doi: 10.1109/TCYB.2019.2893645 – ident: ref17 doi: 10.1137/S0363012997321358 – ident: ref40 doi: 10.1109/TSMC.2015.2486751 – ident: ref23 doi: 10.1080/00207721.2021.1954719 – ident: ref4 doi: 10.1016/j.automatica.2010.08.003 – ident: ref22 doi: 10.1109/TFUZZ.2020.3048518 – ident: ref50 doi: 10.1109/TFUZZ.2019.2895560 – ident: ref20 doi: 10.1049/iet-cta.2015.0915 – ident: ref44 doi: 10.1049/iet-cta.2017.0875 – ident: ref31 doi: 10.1109/TFUZZ.2023.3306153 – ident: ref33 doi: 10.1109/TFUZZ.2020.3009730 – ident: ref51 doi: 10.1109/TCYB.2021.3049536 – ident: ref28 doi: 10.1109/TCYB.2022.3164048 – ident: ref2 doi: 10.1109/TCST.2013.2291784 – ident: ref13 doi: 10.1109/TCYB.2020.3002242 – ident: ref3 doi: 10.1109/TAC.2015.2444131 – ident: ref16 doi: 10.1109/TFUZZ.2020.2991153 – volume-title: Nonlinear Systems year: 2002 ident: ref46 – ident: ref6 doi: 10.1109/TFUZZ.2019.2908771 |
SSID | ssj0000816898 |
Score | 2.4087887 |
Snippet | This article investigates a novel neuro-adaptive barrier Lyapunov function (BLF)-based event-triggered preassigned finite-time consensus control with... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7392 |
SubjectTerms | Artificial neural networks Asymptotic tracking control Consensus control Convergence Estimation finite-time consensus control nonaffine nonlinear faults Nonlinear dynamical systems nonlinear multiagent systems (MASs) Stability analysis Switches switching event-triggered control (ETC) |
Title | Event-Triggered Adaptive Preassigned Finite-Time Consensus Control for Multiagent Systems With Nonlinear Faults |
URI | https://ieeexplore.ieee.org/document/10679170 https://www.ncbi.nlm.nih.gov/pubmed/39264788 https://www.proquest.com/docview/3104038405 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9RDoaLiqLiV2riQU2KGytsO6KBEBOJB4x4WtquU6IBAuPiX-97XSFqovHWLO3W5b32_X7t-wA4V1Fk4iz0Odq6jAs0yTwSUnPcCpWWouEHmo4G7vut3qO4GzaHLljdxsIYY6zzmalT097lpxO9oKOya0p3hvQCGfo6MrciWGt1oGIrSNjatw1scIQVobvF9L34enD7fINssCHqgRAUZ1SGDYQGFGkZfTNJtsbK73DTmp3uFvSXEy68Td7qi1zV9cePXI7__qNt2HQAlLULjanAmhnvQMUt8Tm7cHmoL3dh0iFfSD5A_v5CFT1ZO5VT2h3ZA3myk-cHPuyOCLVyCiVhVP2TSmfMqUUe8AwhMbMxvpJCuJjLj86eRvkr6xdZOuSMdSV2mVfhsdsZ3Pa4q8_ANW4DORct0cpinH8gPSMU0nIdZ74KjQx1CzUURSKVQcrk6xRRS5RqRFtxaCJl05zpYA9K48nYHABLI-PFshGEOkuFQVSkvCYClSz2M5GJ0KuBtxRRol3ycqqh8Z5YEuPFCQk4IQEnTsA1uFoNmRaZO_7qXCXhfOlYyKUGZ0tFSHDd0WWKHJvJYp4gLBZegPS4WYP9QkNWo5eKdfjLW4-gTB8vvGKOoZTPFuYEsU2uTq1OfwL2pfIB |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5EQb34ftRnBA8qpN1H2t09VrHUV_FQUU9Lks2qKK2024u_3plsWlRQvIWSXVJmNvNNMt83AIcqjk2SRz7HWJdzgSGZx0Jqjluh0lIEfqjpaOCm02jficuH-oMjq1sujDHGFp-ZKg3tXX7W1yM6KquR3BmmF5ihz2DgrwclXWtypGJ7SNjutwEOOAKLyN1j-l5S6549nmI-GIhqKAQxjeZhFsEBcS3jb0HJdln5HXDawNNahM54yWW9yWt1VKiq_vih5vjv_7QECw6CsmbpM8swZXorsOw-8iE7ckrUx6vQP6dqSN7FDP6JenqyZibfaX9kt1TLTrUf-GPrhXArJzIJo_6f1DxjSCOqgWcIipll-UoicTGnkM7uX4pn1il1OuSAtSROGa7BXeu8e9bmrkMD17gRFFw0RCNPcP2h9IxQmJjrJPdVZGSkG-ijaBKpDCZNvs4Qt8SZRryVRCZWVuhMh-sw3ev3zCawLDZeIoMw0nkmDOIi5dURquSJn4tcRF4FvLGJUu3ky6mLxltq0xgvScnAKRk4dQauwMnkkfdSu-OvyWtknC8TS7tU4GDsCCl-eXSdInumPxqmCIyFF2KCXK_ARukhk6fHjrX1y1v3Ya7dvblOry86V9swTwspa2R2YLoYjMwuIp1C7Vn__gTAI_VL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Event-Triggered+Adaptive+Preassigned+Finite-Time+Consensus+Control+for+Multiagent+Systems+With+Nonlinear+Faults&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Salmanpour%2C+Yasaman&rft.au=Arefi%2C+Mohammad+Mehdi&rft.au=Cao%2C+Jinde&rft.date=2024-12-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=54&rft.issue=12&rft.spage=7392&rft.epage=7403&rft_id=info:doi/10.1109%2FTCYB.2024.3443352&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2024_3443352 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |