Migration of gap-opening planets in 3D stellar-irradiated accretion disks
Context. The origin of giant planets at moderate separations ≃1–10 au is still not fully understood because numerical studies of Type II migration in protoplanetary disks often predict a decay of the semi-major axis that is too fast. According to recent 2D simulations, inward migration of a gap-open...
Saved in:
Published in | Astronomy and astrophysics (Berlin) Vol. 642; p. A219 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
EDP Sciences
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Context.
The origin of giant planets at moderate separations ≃1–10 au is still not fully understood because numerical studies of Type II migration in protoplanetary disks often predict a decay of the semi-major axis that is too fast. According to recent 2D simulations, inward migration of a gap-opening planet can be slowed down or even reversed if the outer gap edge becomes heated by irradiation from the central star, and puffed up.
Aims.
Here, we study how stellar irradiation reduces the disk-driven torque and affects migration in more realistic 3D disks.
Methods.
Using 3D hydrodynamic simulations with radiation transfer, we investigated the static torque acting on a single gap-opening planet embedded in a passively heated accretion disk.
Results.
Our simulations confirm that a temperature inversion is established at the irradiated outer gap edge and the local increase of the scale height reduces the magnitude of the negative outer Lindblad torque. However, the temperature excess is smaller than assumed in 2D simulations and the torque reduction only becomes prominent for specific parameters. For the viscosity
α
= 10
−3
, the total torque is reduced for planetary masses ranging from 0.1 to 0.7 Jupiter mass, with the strongest reduction being by a factor of − 0.17 (implying outward migration) for a Saturn-mass planet. For a Jupiter-mass planet, the torque reduction becomes stronger with increasing
α
(the torque is halved when
α
= 5 × 10
−3
).
Conclusions.
We conclude that planets that open moderately wide and deep gaps are subject to the largest torque modifications and their Type II migration can be stalled due to gap edge illumination. We then argue that the torque reduction can help to stabilize the orbits of giant planets forming at ≳ 1 au. |
---|---|
AbstractList | Context.
The origin of giant planets at moderate separations ≃1–10 au is still not fully understood because numerical studies of Type II migration in protoplanetary disks often predict a decay of the semi-major axis that is too fast. According to recent 2D simulations, inward migration of a gap-opening planet can be slowed down or even reversed if the outer gap edge becomes heated by irradiation from the central star, and puffed up.
Aims.
Here, we study how stellar irradiation reduces the disk-driven torque and affects migration in more realistic 3D disks.
Methods.
Using 3D hydrodynamic simulations with radiation transfer, we investigated the static torque acting on a single gap-opening planet embedded in a passively heated accretion disk.
Results.
Our simulations confirm that a temperature inversion is established at the irradiated outer gap edge and the local increase of the scale height reduces the magnitude of the negative outer Lindblad torque. However, the temperature excess is smaller than assumed in 2D simulations and the torque reduction only becomes prominent for specific parameters. For the viscosity
α
= 10
−3
, the total torque is reduced for planetary masses ranging from 0.1 to 0.7 Jupiter mass, with the strongest reduction being by a factor of − 0.17 (implying outward migration) for a Saturn-mass planet. For a Jupiter-mass planet, the torque reduction becomes stronger with increasing
α
(the torque is halved when
α
= 5 × 10
−3
).
Conclusions.
We conclude that planets that open moderately wide and deep gaps are subject to the largest torque modifications and their Type II migration can be stalled due to gap edge illumination. We then argue that the torque reduction can help to stabilize the orbits of giant planets forming at ≳ 1 au. Context. The origin of giant planets at moderate separations ≃1–10 au is still not fully understood because numerical studies of Type II migration in protoplanetary disks often predict a decay of the semi-major axis that is too fast. According to recent 2D simulations, inward migration of a gap-opening planet can be slowed down or even reversed if the outer gap edge becomes heated by irradiation from the central star, and puffed up. Aims. Here, we study how stellar irradiation reduces the disk-driven torque and affects migration in more realistic 3D disks. Methods. Using 3D hydrodynamic simulations with radiation transfer, we investigated the static torque acting on a single gap-opening planet embedded in a passively heated accretion disk. Results. Our simulations confirm that a temperature inversion is established at the irradiated outer gap edge and the local increase of the scale height reduces the magnitude of the negative outer Lindblad torque. However, the temperature excess is smaller than assumed in 2D simulations and the torque reduction only becomes prominent for specific parameters. For the viscosity α = 10−3, the total torque is reduced for planetary masses ranging from 0.1 to 0.7 Jupiter mass, with the strongest reduction being by a factor of − 0.17 (implying outward migration) for a Saturn-mass planet. For a Jupiter-mass planet, the torque reduction becomes stronger with increasing α (the torque is halved when α = 5 × 10−3). Conclusions. We conclude that planets that open moderately wide and deep gaps are subject to the largest torque modifications and their Type II migration can be stalled due to gap edge illumination. We then argue that the torque reduction can help to stabilize the orbits of giant planets forming at ≳ 1 au. |
Author | Chrenko, O. Nesvorný, D. |
Author_xml | – sequence: 1 givenname: O. orcidid: 0000-0001-7215-5026 surname: Chrenko fullname: Chrenko, O. – sequence: 2 givenname: D. surname: Nesvorný fullname: Nesvorný, D. |
BookMark | eNp9kD1PwzAQhi1UJNrCL2CxxBxq-5w4HlH5qlTEArPlJnbkEuxguwP_nrRFHRiYTie9z53eZ4YmPniD0DUlt5SUdEEI4UUFFV0wwgjUsq7P0JRyYAURvJqg6SlxgWYpbceV0RqmaPXiuqizCx4Hizs9FGEw3vkOD732JifsPIZ7nLLpex0LF6Nunc6mxbppojmQrUsf6RKdW90nc_U75-j98eFt-VysX59Wy7t10QBjueCklQ1jVNhalpKBaLkFaSyUoqyEEbJlFYCwGyE2JeVmLAOaMEksayVpKMzRzfHuEMPXzqSstmEX_fhSMV4LWoHkfEzJY6qJIaVorGpcPvTMUbteUaL25tTei9p7USdzIwt_2CG6Tx2__6V-AAM8cDY |
CitedBy_id | crossref_primary_10_1051_0004_6361_202244670 crossref_primary_10_1093_mnras_stad2059 crossref_primary_10_1093_mnras_stab2311 crossref_primary_10_3847_PSJ_ac6bf1 crossref_primary_10_1051_0004_6361_202449739 crossref_primary_10_3847_1538_4357_ac36cd crossref_primary_10_3847_1538_4357_acb81f crossref_primary_10_3847_1538_3881_ad234d crossref_primary_10_1051_0004_6361_202451780 crossref_primary_10_1051_0004_6361_202451554 |
Cites_doi | 10.1088/0004-637X/710/2/1395 10.1051/0004-6361:20065643 10.1093/mnras/stv025 10.3847/0004-637X/817/1/19 10.1088/0004-637X/766/2/81 10.3847/1538-4357/aa8906 10.1051/0004-6361/201016068 10.1086/159157 10.1086/511513 10.1086/344743 10.1051/0004-6361/201424837 10.1051/0004-6361:20020853 10.1093/mnras/stu1715 10.1017/CBO9781139164245 10.1093/mnras/stz3534 10.3847/0067-0049/223/1/11 10.1051/0004-6361/201630147 10.1093/mnras/168.3.603 10.1086/306900 10.1046/j.1365-8711.2000.03605.x 10.1046/j.1365-8711.2000.03466.x 10.1051/0004-6361/201220159 10.1088/2041-8205/788/2/L41 10.1086/323057 10.1051/0004-6361/200912810 10.1086/304869 10.1088/0004-637X/788/1/21 10.1086/427920 10.1038/nature10684 10.1051/0004-6361/201833539 10.1006/icar.1996.5647 10.3847/2041-8213/ab2a0f 10.1051/0004-6361:20077169 10.1051/0004-6361/201118136 10.1093/mnras/stt1475 10.1086/174206 10.1006/icar.1996.0190 10.1086/164653 10.1051/0004-6361:20066304 10.1051/0004-6361:20053238 10.1051/0004-6361/201630056 10.1051/0004-6361/201935334 10.1051/0004-6361/201014000 10.1093/pasj/psw037 10.1051/0004-6361/200913594 10.1086/164426 10.1088/0004-637X/813/2/88 10.1007/s10569-011-9364-0 10.1051/0004-6361/201937048 10.1086/521012 10.1111/j.1365-2966.2009.15782.x 10.1051/0004-6361/201014414 10.1086/379032 10.3847/0004-637X/832/2/105 10.3847/1538-4357/aa943f 10.1051/0004-6361/201118085 10.1086/500967 10.1093/mnras/stv712 10.1088/2041-8205/792/1/L10 10.1086/344437 10.1051/0004-6361/201834071 10.1086/592597 10.1016/0019-1035(86)90182-X 10.3847/1538-4357/aac8d9 10.1086/318345 10.1051/0004-6361/201321499 10.1086/308693 10.1086/429367 10.1051/0004-6361/201322451 10.1051/0004-6361:20079291 10.1088/0004-637X/765/2/84 10.1086/507515 10.1111/j.1365-2966.2006.10488.x 10.1051/0004-6361/201323007 10.1088/0004-637X/772/1/34 10.1093/mnras/sty2336 10.1016/j.icarus.2016.10.017 10.1051/0004-6361/201834489 10.1088/0004-637X/765/2/114 10.1088/0004-637X/804/2/95 10.1086/500356 10.1093/mnras/stu2164 10.1093/mnras/stw1177 10.1051/0004-6361:20052773 10.1086/383119 10.1051/0004-6361/201526463 10.1046/j.1365-8711.1999.02198.x 10.1051/0004-6361/201219127 10.1086/191680 10.1088/0004-637X/774/2/146 10.1051/0004-6361/201935806 10.1086/523667 10.1038/nature10201 10.1051/0004-6361/201527329 10.1051/0004-6361/201220812 10.1016/j.icarus.2005.10.007 |
ContentType | Journal Article |
Copyright | Copyright EDP Sciences Oct 2020 |
Copyright_xml | – notice: Copyright EDP Sciences Oct 2020 |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1051/0004-6361/202038988 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1432-0746 |
ExternalDocumentID | 10_1051_0004_6361_202038988 |
GroupedDBID | -DZ -~X 2.D 23N 2WC 4.4 5GY 5VS 6TJ 85S AACRX AAFNC AAFWJ AAJMC AAOGA AAOTM AAYXX ABDNZ ABDPE ABNSH ABPPZ ABUBZ ABZDU ACACO ACGFS ACNCT ACRPL ACYGS ACYRX ADCOW ADHUB ADIYS ADNMO AEILP AENEX AGQPQ AI. AIZTS ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN AZPVJ CITATION CS3 E.L E3Z EBS EJD F5P FRP GI~ HG6 I09 IL9 LAS MVM OHT OK1 RED RHV RIG RNS SDH SJN TR2 UPT UQL VH1 VOH WH7 XOL ZY4 8FD H8D L7M |
ID | FETCH-LOGICAL-c322t-40d9c2217f8959237d4f39ef357567e79d26337fb77b514e3893a0290f2d90c13 |
ISSN | 0004-6361 |
IngestDate | Sun Jun 29 16:34:28 EDT 2025 Thu Apr 24 23:05:14 EDT 2025 Tue Jul 01 03:53:47 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://www.edpsciences.org/en/authors/copyright-and-licensing |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c322t-40d9c2217f8959237d4f39ef357567e79d26337fb77b514e3893a0290f2d90c13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7215-5026 |
OpenAccessLink | https://www.aanda.org/articles/aa/pdf/2020/10/aa38988-20.pdf |
PQID | 2487163944 |
PQPubID | 1796397 |
ParticipantIDs | proquest_journals_2487163944 crossref_citationtrail_10_1051_0004_6361_202038988 crossref_primary_10_1051_0004_6361_202038988 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Astronomy and astrophysics (Berlin) |
PublicationYear | 2020 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
References | Crida (R20) 2008; 483 Crida (R19) 2006; 181 Ward (R102) 1986; 67 Walsh (R101) 2011; 475 Petersen (R88) 2007; 658 Papaloizou (R86) 2000; 315 Nelson (R82) 2013; 435 Robert (R93) 2018; 617 R21 Dzyurkevich (R28) 2013; 765 Klahr (R50) 2014; 788 Kley (R53) 1989; 208 Ward (R103) 1997; 126 de Val-Borro (R22) 2006; 370 Klahr (R49) 2004; 606 Kolb (R56) 2013; 559 Masset (R75) 2006; 642 Baruteau (R2) 2008; 672 Scardoni (R96) 2020; 492 Terquem (R100) 2008; 689 Jacquet (R42) 2013; 551 Meheut (R78) 2010; 516 Dürmann (R27) 2015; 574 Kanagawa (R48) 2018; 861 Zhu (R105) 2015; 813 Flock (R32) 2019; 630 R33 Flock (R30) 2013; 560 Bitsch (R11) 2019; 623 Lynden-Bell (R70) 1974; 168 Hallam (R39) 2018; 481 Bitsch (R7) 2010; 523 Fu (R37) 2014; 788 Rüdiger (R94) 2002; 391 R104 Bitsch (R9) 2014; 564 Richert (R92) 2015; 804 Takeuchi (R99) 2002; 581 Bell (R3) 1994; 427 Shakura (R97) 1973; 500 Paardekooper (R84) 2006; 459 Hasegawa (R40) 2013; 774 Fedele (R29) 2010; 510 Santerne (R95) 2016; 587 Fromang (R36) 2011; 534 Rein (R90) 2012; 537 Baraffe (R1) 1998; 337 Coleman (R17) 2016; 460 Dobbs-Dixon (R24) 2010; 710 Lovelace (R68) 1999; 513 Fromang (R35) 2006; 457 Coleman (R16) 2014; 445 Dullemond (R26) 2001; 560 Nelson (R81) 2000; 318 Stone (R98) 1992; 80 Jang-Condell (R43) 2013; 772 Koller (R57) 2003; 596 Bitsch (R8) 2013; 549 Lin (R67) 2010; 405 Bitsch (R10) 2015; 582 Manara (R71) 2017; 604 Lesur (R60) 2010; 513 Klahr (R52) 2003; 582 Crida (R18) 2017; 285 Kanagawa (R46) 2015; 448 Birnstiel (R6) 2012; 539 Matsumura (R76) 2005; 618 Ziampras (R106) 2020; 637 Ou (R83) 2007; 667 Cassan (R12) 2012; 481 de Val-Borro (R23) 2007; 471 Flock (R31) 2017; 850 Lubow (R69) 2006; 641 Mulders (R80) 2017; 847 R77 Li (R62) 2000; 533 R79 Kley (R54) 1999; 303 Chiang (R14) 1997; 490 Lambrechts (R58) 2012; 544 Les (R59) 2015; 450 Fressin (R34) 2013; 766 Fung (R38) 2016; 832 Levermore (R61) 1981; 248 Paardekooper (R85) 2010; 401 Duffell (R25) 2014; 792 Li (R63) 2005; 624 Lin (R66) 1986; 309 Benítez-Llambay (R4) 2016; 223 R87 Pollack (R89) 1996; 124 Rein (R91) 2015; 446 Kanagawa (R47) 2016; 68 Kley (R55) 2001; 547 Johansen (R44) 2019; 622 Lin (R64) 2013; 765 Isella (R41) 2005; 438 Masset (R72) 2011; 111 Masset (R73) 2016; 817 Masset (R74) 2006; 652 Béthune (R5) 2017; 600 Chrenko (R15) 2019; 626 R13 Kanagawa (R45) 2019; 879 Klahr (R51) 2006; 445 Lin (R65) 1986; 307 |
References_xml | – ident: R13 – volume: 710 start-page: 1395 year: 2010 ident: R24 publication-title: ApJ doi: 10.1088/0004-637X/710/2/1395 – volume: 457 start-page: 343 year: 2006 ident: R35 publication-title: A&A doi: 10.1051/0004-6361:20065643 – volume: 448 start-page: 994 year: 2015 ident: R46 publication-title: MNRAS doi: 10.1093/mnras/stv025 – volume: 817 start-page: 19 year: 2016 ident: R73 publication-title: ApJ doi: 10.3847/0004-637X/817/1/19 – volume: 766 start-page: 81 year: 2013 ident: R34 publication-title: ApJ doi: 10.1088/0004-637X/766/2/81 – volume: 847 start-page: 31 year: 2017 ident: R80 publication-title: ApJ doi: 10.3847/1538-4357/aa8906 – volume: 534 start-page: A107 year: 2011 ident: R36 publication-title: A&A doi: 10.1051/0004-6361/201016068 – ident: R79 – ident: R104 – volume: 248 start-page: 321 year: 1981 ident: R61 publication-title: ApJ doi: 10.1086/159157 – volume: 658 start-page: 1236 year: 2007 ident: R88 publication-title: ApJ doi: 10.1086/511513 – volume: 582 start-page: 869 year: 2003 ident: R52 publication-title: ApJ doi: 10.1086/344743 – volume: 574 start-page: A52 year: 2015 ident: R27 publication-title: A&A doi: 10.1051/0004-6361/201424837 – volume: 391 start-page: 781 year: 2002 ident: R94 publication-title: A&A doi: 10.1051/0004-6361:20020853 – volume: 445 start-page: 479 year: 2014 ident: R16 publication-title: MNRAS doi: 10.1093/mnras/stu1715 – ident: R33 doi: 10.1017/CBO9781139164245 – volume: 492 start-page: 1318 year: 2020 ident: R96 publication-title: MNRAS doi: 10.1093/mnras/stz3534 – volume: 223 start-page: 11 year: 2016 ident: R4 publication-title: ApJS doi: 10.3847/0067-0049/223/1/11 – volume: 604 start-page: A127 year: 2017 ident: R71 publication-title: A&A doi: 10.1051/0004-6361/201630147 – volume: 168 start-page: 603 year: 1974 ident: R70 publication-title: MNRAS doi: 10.1093/mnras/168.3.603 – volume: 513 start-page: 805 year: 1999 ident: R68 publication-title: ApJ doi: 10.1086/306900 – volume: 318 start-page: 18 year: 2000 ident: R81 publication-title: MNRAS doi: 10.1046/j.1365-8711.2000.03605.x – volume: 315 start-page: 823 year: 2000 ident: R86 publication-title: MNRAS doi: 10.1046/j.1365-8711.2000.03466.x – volume: 549 start-page: A124 year: 2013 ident: R8 publication-title: A&A doi: 10.1051/0004-6361/201220159 – volume: 788 start-page: L41 year: 2014 ident: R37 publication-title: ApJ doi: 10.1088/2041-8205/788/2/L41 – volume: 560 start-page: 957 year: 2001 ident: R26 publication-title: ApJ doi: 10.1086/323057 – volume: 510 start-page: A72 year: 2010 ident: R29 publication-title: A&A doi: 10.1051/0004-6361/200912810 – volume: 490 start-page: 368 year: 1997 ident: R14 publication-title: ApJ doi: 10.1086/304869 – volume: 788 start-page: 21 year: 2014 ident: R50 publication-title: ApJ doi: 10.1088/0004-637X/788/1/21 – volume: 618 start-page: L137 year: 2005 ident: R76 publication-title: ApJ doi: 10.1086/427920 – volume: 481 start-page: 167 year: 2012 ident: R12 publication-title: Nature doi: 10.1038/nature10684 – volume: 617 start-page: A98 year: 2018 ident: R93 publication-title: A&A doi: 10.1051/0004-6361/201833539 – volume: 126 start-page: 261 year: 1997 ident: R103 publication-title: Icarus doi: 10.1006/icar.1996.5647 – volume: 879 start-page: L19 year: 2019 ident: R45 publication-title: ApJ doi: 10.3847/2041-8213/ab2a0f – ident: R87 – volume: 471 start-page: 1043 year: 2007 ident: R23 publication-title: A&A doi: 10.1051/0004-6361:20077169 – volume: 500 start-page: 33 year: 1973 ident: R97 publication-title: A&A – volume: 539 start-page: A148 year: 2012 ident: R6 publication-title: A&A doi: 10.1051/0004-6361/201118136 – volume: 435 start-page: 2610 year: 2013 ident: R82 publication-title: MNRAS doi: 10.1093/mnras/stt1475 – volume: 427 start-page: 987 year: 1994 ident: R3 publication-title: ApJ doi: 10.1086/174206 – volume: 405 start-page: 1473 year: 2010 ident: R67 publication-title: MNRAS – volume: 124 start-page: 62 year: 1996 ident: R89 publication-title: Icarus doi: 10.1006/icar.1996.0190 – volume: 309 start-page: 846 year: 1986 ident: R66 publication-title: ApJ doi: 10.1086/164653 – volume: 459 start-page: L17 year: 2006 ident: R84 publication-title: A&A doi: 10.1051/0004-6361:20066304 – volume: 445 start-page: 747 year: 2006 ident: R51 publication-title: A&A doi: 10.1051/0004-6361:20053238 – volume: 600 start-page: A75 year: 2017 ident: R5 publication-title: A&A doi: 10.1051/0004-6361/201630056 – volume: 626 start-page: A109 year: 2019 ident: R15 publication-title: A&A doi: 10.1051/0004-6361/201935334 – volume: 337 start-page: 403 year: 1998 ident: R1 publication-title: A&A – volume: 516 start-page: A31 year: 2010 ident: R78 publication-title: A&A doi: 10.1051/0004-6361/201014000 – volume: 68 start-page: 43 year: 2016 ident: R47 publication-title: PASJ doi: 10.1093/pasj/psw037 – volume: 513 start-page: A60 year: 2010 ident: R60 publication-title: A&A doi: 10.1051/0004-6361/200913594 – volume: 307 start-page: 395 year: 1986 ident: R65 publication-title: ApJ doi: 10.1086/164426 – volume: 813 start-page: 88 year: 2015 ident: R105 publication-title: ApJ doi: 10.1088/0004-637X/813/2/88 – volume: 111 start-page: 131 year: 2011 ident: R72 publication-title: Celes. Mech. Dyn. Astron. doi: 10.1007/s10569-011-9364-0 – volume: 637 start-page: A50 year: 2020 ident: R106 publication-title: A&A doi: 10.1051/0004-6361/201937048 – volume: 667 start-page: 1220 year: 2007 ident: R83 publication-title: ApJ doi: 10.1086/521012 – volume: 401 start-page: 1950 year: 2010 ident: R85 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.15782.x – volume: 523 start-page: A30 year: 2010 ident: R7 publication-title: A&A doi: 10.1051/0004-6361/201014414 – volume: 596 start-page: L91 year: 2003 ident: R57 publication-title: ApJ doi: 10.1086/379032 – volume: 832 start-page: 105 year: 2016 ident: R38 publication-title: ApJ doi: 10.3847/0004-637X/832/2/105 – volume: 208 start-page: 98 year: 1989 ident: R53 publication-title: A&A – volume: 850 start-page: 131 year: 2017 ident: R31 publication-title: ApJ doi: 10.3847/1538-4357/aa943f – volume: 537 start-page: A128 year: 2012 ident: R90 publication-title: A&A doi: 10.1051/0004-6361/201118085 – volume: 642 start-page: 478 year: 2006 ident: R75 publication-title: ApJ doi: 10.1086/500967 – volume: 450 start-page: 1503 year: 2015 ident: R59 publication-title: MNRAS doi: 10.1093/mnras/stv712 – volume: 792 start-page: L10 year: 2014 ident: R25 publication-title: ApJ doi: 10.1088/2041-8205/792/1/L10 – volume: 581 start-page: 1344 year: 2002 ident: R99 publication-title: ApJ doi: 10.1086/344437 – volume: 622 start-page: A202 year: 2019 ident: R44 publication-title: A&A doi: 10.1051/0004-6361/201834071 – volume: 689 start-page: 532 year: 2008 ident: R100 publication-title: ApJ doi: 10.1086/592597 – volume: 67 start-page: 164 year: 1986 ident: R102 publication-title: Icarus doi: 10.1016/0019-1035(86)90182-X – volume: 861 start-page: 140 year: 2018 ident: R48 publication-title: ApJ doi: 10.3847/1538-4357/aac8d9 – volume: 547 start-page: 457 year: 2001 ident: R55 publication-title: ApJ doi: 10.1086/318345 – volume: 559 start-page: A80 year: 2013 ident: R56 publication-title: A&A doi: 10.1051/0004-6361/201321499 – volume: 533 start-page: 1023 year: 2000 ident: R62 publication-title: ApJ doi: 10.1086/308693 – volume: 624 start-page: 1003 year: 2005 ident: R63 publication-title: ApJ doi: 10.1086/429367 – volume: 560 start-page: A43 year: 2013 ident: R30 publication-title: A&A doi: 10.1051/0004-6361/201322451 – volume: 483 start-page: 325 year: 2008 ident: R20 publication-title: A&A doi: 10.1051/0004-6361:20079291 – volume: 765 start-page: 84 year: 2013 ident: R64 publication-title: ApJ doi: 10.1088/0004-637X/765/2/84 – volume: 652 start-page: 730 year: 2006 ident: R74 publication-title: ApJ doi: 10.1086/507515 – volume: 370 start-page: 529 year: 2006 ident: R22 publication-title: MNRAS doi: 10.1111/j.1365-2966.2006.10488.x – volume: 564 start-page: A135 year: 2014 ident: R9 publication-title: A&A doi: 10.1051/0004-6361/201323007 – volume: 772 start-page: 34 year: 2013 ident: R43 publication-title: ApJ doi: 10.1088/0004-637X/772/1/34 – volume: 481 start-page: 1667 year: 2018 ident: R39 publication-title: MNRAS doi: 10.1093/mnras/sty2336 – volume: 285 start-page: 145 year: 2017 ident: R18 publication-title: Icarus doi: 10.1016/j.icarus.2016.10.017 – ident: R21 – volume: 623 start-page: A88 year: 2019 ident: R11 publication-title: A&A doi: 10.1051/0004-6361/201834489 – volume: 765 start-page: 114 year: 2013 ident: R28 publication-title: ApJ doi: 10.1088/0004-637X/765/2/114 – volume: 804 start-page: 95 year: 2015 ident: R92 publication-title: ApJ doi: 10.1088/0004-637X/804/2/95 – volume: 641 start-page: 526 year: 2006 ident: R69 publication-title: ApJ doi: 10.1086/500356 – volume: 446 start-page: 1424 year: 2015 ident: R91 publication-title: MNRAS doi: 10.1093/mnras/stu2164 – ident: R77 – volume: 460 start-page: 2779 year: 2016 ident: R17 publication-title: MNRAS doi: 10.1093/mnras/stw1177 – volume: 438 start-page: 899 year: 2005 ident: R41 publication-title: A&A doi: 10.1051/0004-6361:20052773 – volume: 606 start-page: 1070 year: 2004 ident: R49 publication-title: ApJ doi: 10.1086/383119 – volume: 582 start-page: A112 year: 2015 ident: R10 publication-title: A&A doi: 10.1051/0004-6361/201526463 – volume: 303 start-page: 696 year: 1999 ident: R54 publication-title: MNRAS doi: 10.1046/j.1365-8711.1999.02198.x – volume: 544 start-page: A32 year: 2012 ident: R58 publication-title: A&A doi: 10.1051/0004-6361/201219127 – volume: 80 start-page: 753 year: 1992 ident: R98 publication-title: ApJS doi: 10.1086/191680 – volume: 774 start-page: 146 year: 2013 ident: R40 publication-title: ApJ doi: 10.1088/0004-637X/774/2/146 – volume: 630 start-page: A147 year: 2019 ident: R32 publication-title: A&A doi: 10.1051/0004-6361/201935806 – volume: 672 start-page: 1054 year: 2008 ident: R2 publication-title: ApJ doi: 10.1086/523667 – volume: 475 start-page: 206 year: 2011 ident: R101 publication-title: Nature doi: 10.1038/nature10201 – volume: 587 start-page: A64 year: 2016 ident: R95 publication-title: A&A doi: 10.1051/0004-6361/201527329 – volume: 551 start-page: A75 year: 2013 ident: R42 publication-title: A&A doi: 10.1051/0004-6361/201220812 – volume: 181 start-page: 587 year: 2006 ident: R19 publication-title: Icarus doi: 10.1016/j.icarus.2005.10.007 |
SSID | ssj0002183 |
Score | 2.4231803 |
Snippet | Context.
The origin of giant planets at moderate separations ≃1–10 au is still not fully understood because numerical studies of Type II migration in... Context. The origin of giant planets at moderate separations ≃1–10 au is still not fully understood because numerical studies of Type II migration in... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | A219 |
SubjectTerms | Accretion disks Extrasolar planets Gas giant planets Irradiation Orbital stability Planet formation Protoplanetary disks Reduction Scale height Simulation Torque |
Title | Migration of gap-opening planets in 3D stellar-irradiated accretion disks |
URI | https://www.proquest.com/docview/2487163944 |
Volume | 642 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiQuCAqohYJ8QFzA2zych49LF9RFKnBopd6ixI9q1ZKtkpQDB347M7bXzVJUUS5R1tpMpP1mx988TcibPNYSZ8IwIbKS8UTFDDYFw5DLa12XtbFxyKMv-eEJ_3yanU4mi1HV0tXQTOXPv_aV_A-qsAa4YpfsHZANQmEB7gFfuALCcP0njI-WZ12gfGf1JcOzsGx7OZawDrbUNZ2_67FTpO7YsutwEgFyzFpKbF-EJ9WyP-_HFHXWY3R89d0NZqrxkwt_2PisG481ih8cYL3euQ24fp2O0k4_Vl2LWfgPc2vWpuPwAviS60K1a5PJWZ66ielT7awkT7Fk1ccOvRnN3ZQsbwhn3hLesNBgBFxJo5OKDSmYDC2FO91vcyL2HztVqB-0mfMsxsw5r1BMFYTcI_cT8Bhs3_fiV9iUkQk6T8i9dz2AKov3w9p-ELJJUjb3aEs8jh-TR95joDMH_xMy0e022Qko0bd0NsJomzz45u6ekkXQD7oydKQf1OsHXbY0ndOb-kGDflCrH8_IyaePxweHzB-dwSRY6IHxSAmZgLtpSpEBhy8UN6nQJgV2nhe6ECrJ07QwTVE0QJk10tY6SkRkEiUiGafPyVa7avUOoSoTkVa5zApuuJSqjPNMAanRTQ10MeK7JFn_VpX0c-XxeJOL6haUdsn78NClG6ty-9f31iBU_v_XVwlHZx8bu1_cTdpL8vBa0_fI1tBd6VdALYfmtVWa33b6bFA |
linkProvider | EDP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Migration+of+gap-opening+planets+in+3D+stellar-irradiated+accretion+disks&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Chrenko%2C+O.&rft.au=Nesvorn%C3%BD%2C+D.&rft.date=2020-10-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=642&rft.spage=A219&rft_id=info:doi/10.1051%2F0004-6361%2F202038988&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_202038988 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon |