Migration of gap-opening planets in 3D stellar-irradiated accretion disks

Context. The origin of giant planets at moderate separations ≃1–10 au is still not fully understood because numerical studies of Type II migration in protoplanetary disks often predict a decay of the semi-major axis that is too fast. According to recent 2D simulations, inward migration of a gap-open...

Full description

Saved in:
Bibliographic Details
Published inAstronomy and astrophysics (Berlin) Vol. 642; p. A219
Main Authors Chrenko, O., Nesvorný, D.
Format Journal Article
LanguageEnglish
Published Heidelberg EDP Sciences 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Context. The origin of giant planets at moderate separations ≃1–10 au is still not fully understood because numerical studies of Type II migration in protoplanetary disks often predict a decay of the semi-major axis that is too fast. According to recent 2D simulations, inward migration of a gap-opening planet can be slowed down or even reversed if the outer gap edge becomes heated by irradiation from the central star, and puffed up. Aims. Here, we study how stellar irradiation reduces the disk-driven torque and affects migration in more realistic 3D disks. Methods. Using 3D hydrodynamic simulations with radiation transfer, we investigated the static torque acting on a single gap-opening planet embedded in a passively heated accretion disk. Results. Our simulations confirm that a temperature inversion is established at the irradiated outer gap edge and the local increase of the scale height reduces the magnitude of the negative outer Lindblad torque. However, the temperature excess is smaller than assumed in 2D simulations and the torque reduction only becomes prominent for specific parameters. For the viscosity α = 10 −3 , the total torque is reduced for planetary masses ranging from 0.1 to 0.7 Jupiter mass, with the strongest reduction being by a factor of − 0.17 (implying outward migration) for a Saturn-mass planet. For a Jupiter-mass planet, the torque reduction becomes stronger with increasing α (the torque is halved when α = 5 × 10 −3 ). Conclusions. We conclude that planets that open moderately wide and deep gaps are subject to the largest torque modifications and their Type II migration can be stalled due to gap edge illumination. We then argue that the torque reduction can help to stabilize the orbits of giant planets forming at ≳ 1 au.
AbstractList Context. The origin of giant planets at moderate separations ≃1–10 au is still not fully understood because numerical studies of Type II migration in protoplanetary disks often predict a decay of the semi-major axis that is too fast. According to recent 2D simulations, inward migration of a gap-opening planet can be slowed down or even reversed if the outer gap edge becomes heated by irradiation from the central star, and puffed up. Aims. Here, we study how stellar irradiation reduces the disk-driven torque and affects migration in more realistic 3D disks. Methods. Using 3D hydrodynamic simulations with radiation transfer, we investigated the static torque acting on a single gap-opening planet embedded in a passively heated accretion disk. Results. Our simulations confirm that a temperature inversion is established at the irradiated outer gap edge and the local increase of the scale height reduces the magnitude of the negative outer Lindblad torque. However, the temperature excess is smaller than assumed in 2D simulations and the torque reduction only becomes prominent for specific parameters. For the viscosity α = 10 −3 , the total torque is reduced for planetary masses ranging from 0.1 to 0.7 Jupiter mass, with the strongest reduction being by a factor of − 0.17 (implying outward migration) for a Saturn-mass planet. For a Jupiter-mass planet, the torque reduction becomes stronger with increasing α (the torque is halved when α = 5 × 10 −3 ). Conclusions. We conclude that planets that open moderately wide and deep gaps are subject to the largest torque modifications and their Type II migration can be stalled due to gap edge illumination. We then argue that the torque reduction can help to stabilize the orbits of giant planets forming at ≳ 1 au.
Context. The origin of giant planets at moderate separations ≃1–10 au is still not fully understood because numerical studies of Type II migration in protoplanetary disks often predict a decay of the semi-major axis that is too fast. According to recent 2D simulations, inward migration of a gap-opening planet can be slowed down or even reversed if the outer gap edge becomes heated by irradiation from the central star, and puffed up. Aims. Here, we study how stellar irradiation reduces the disk-driven torque and affects migration in more realistic 3D disks. Methods. Using 3D hydrodynamic simulations with radiation transfer, we investigated the static torque acting on a single gap-opening planet embedded in a passively heated accretion disk. Results. Our simulations confirm that a temperature inversion is established at the irradiated outer gap edge and the local increase of the scale height reduces the magnitude of the negative outer Lindblad torque. However, the temperature excess is smaller than assumed in 2D simulations and the torque reduction only becomes prominent for specific parameters. For the viscosity α = 10−3, the total torque is reduced for planetary masses ranging from 0.1 to 0.7 Jupiter mass, with the strongest reduction being by a factor of − 0.17 (implying outward migration) for a Saturn-mass planet. For a Jupiter-mass planet, the torque reduction becomes stronger with increasing α (the torque is halved when α = 5 × 10−3). Conclusions. We conclude that planets that open moderately wide and deep gaps are subject to the largest torque modifications and their Type II migration can be stalled due to gap edge illumination. We then argue that the torque reduction can help to stabilize the orbits of giant planets forming at ≳ 1 au.
Author Chrenko, O.
Nesvorný, D.
Author_xml – sequence: 1
  givenname: O.
  orcidid: 0000-0001-7215-5026
  surname: Chrenko
  fullname: Chrenko, O.
– sequence: 2
  givenname: D.
  surname: Nesvorný
  fullname: Nesvorný, D.
BookMark eNp9kD1PwzAQhi1UJNrCL2CxxBxq-5w4HlH5qlTEArPlJnbkEuxguwP_nrRFHRiYTie9z53eZ4YmPniD0DUlt5SUdEEI4UUFFV0wwgjUsq7P0JRyYAURvJqg6SlxgWYpbceV0RqmaPXiuqizCx4Hizs9FGEw3vkOD732JifsPIZ7nLLpex0LF6Nunc6mxbppojmQrUsf6RKdW90nc_U75-j98eFt-VysX59Wy7t10QBjueCklQ1jVNhalpKBaLkFaSyUoqyEEbJlFYCwGyE2JeVmLAOaMEksayVpKMzRzfHuEMPXzqSstmEX_fhSMV4LWoHkfEzJY6qJIaVorGpcPvTMUbteUaL25tTei9p7USdzIwt_2CG6Tx2__6V-AAM8cDY
CitedBy_id crossref_primary_10_1051_0004_6361_202244670
crossref_primary_10_1093_mnras_stad2059
crossref_primary_10_1093_mnras_stab2311
crossref_primary_10_3847_PSJ_ac6bf1
crossref_primary_10_1051_0004_6361_202449739
crossref_primary_10_3847_1538_4357_ac36cd
crossref_primary_10_3847_1538_4357_acb81f
crossref_primary_10_3847_1538_3881_ad234d
crossref_primary_10_1051_0004_6361_202451780
crossref_primary_10_1051_0004_6361_202451554
Cites_doi 10.1088/0004-637X/710/2/1395
10.1051/0004-6361:20065643
10.1093/mnras/stv025
10.3847/0004-637X/817/1/19
10.1088/0004-637X/766/2/81
10.3847/1538-4357/aa8906
10.1051/0004-6361/201016068
10.1086/159157
10.1086/511513
10.1086/344743
10.1051/0004-6361/201424837
10.1051/0004-6361:20020853
10.1093/mnras/stu1715
10.1017/CBO9781139164245
10.1093/mnras/stz3534
10.3847/0067-0049/223/1/11
10.1051/0004-6361/201630147
10.1093/mnras/168.3.603
10.1086/306900
10.1046/j.1365-8711.2000.03605.x
10.1046/j.1365-8711.2000.03466.x
10.1051/0004-6361/201220159
10.1088/2041-8205/788/2/L41
10.1086/323057
10.1051/0004-6361/200912810
10.1086/304869
10.1088/0004-637X/788/1/21
10.1086/427920
10.1038/nature10684
10.1051/0004-6361/201833539
10.1006/icar.1996.5647
10.3847/2041-8213/ab2a0f
10.1051/0004-6361:20077169
10.1051/0004-6361/201118136
10.1093/mnras/stt1475
10.1086/174206
10.1006/icar.1996.0190
10.1086/164653
10.1051/0004-6361:20066304
10.1051/0004-6361:20053238
10.1051/0004-6361/201630056
10.1051/0004-6361/201935334
10.1051/0004-6361/201014000
10.1093/pasj/psw037
10.1051/0004-6361/200913594
10.1086/164426
10.1088/0004-637X/813/2/88
10.1007/s10569-011-9364-0
10.1051/0004-6361/201937048
10.1086/521012
10.1111/j.1365-2966.2009.15782.x
10.1051/0004-6361/201014414
10.1086/379032
10.3847/0004-637X/832/2/105
10.3847/1538-4357/aa943f
10.1051/0004-6361/201118085
10.1086/500967
10.1093/mnras/stv712
10.1088/2041-8205/792/1/L10
10.1086/344437
10.1051/0004-6361/201834071
10.1086/592597
10.1016/0019-1035(86)90182-X
10.3847/1538-4357/aac8d9
10.1086/318345
10.1051/0004-6361/201321499
10.1086/308693
10.1086/429367
10.1051/0004-6361/201322451
10.1051/0004-6361:20079291
10.1088/0004-637X/765/2/84
10.1086/507515
10.1111/j.1365-2966.2006.10488.x
10.1051/0004-6361/201323007
10.1088/0004-637X/772/1/34
10.1093/mnras/sty2336
10.1016/j.icarus.2016.10.017
10.1051/0004-6361/201834489
10.1088/0004-637X/765/2/114
10.1088/0004-637X/804/2/95
10.1086/500356
10.1093/mnras/stu2164
10.1093/mnras/stw1177
10.1051/0004-6361:20052773
10.1086/383119
10.1051/0004-6361/201526463
10.1046/j.1365-8711.1999.02198.x
10.1051/0004-6361/201219127
10.1086/191680
10.1088/0004-637X/774/2/146
10.1051/0004-6361/201935806
10.1086/523667
10.1038/nature10201
10.1051/0004-6361/201527329
10.1051/0004-6361/201220812
10.1016/j.icarus.2005.10.007
ContentType Journal Article
Copyright Copyright EDP Sciences Oct 2020
Copyright_xml – notice: Copyright EDP Sciences Oct 2020
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1051/0004-6361/202038988
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1432-0746
ExternalDocumentID 10_1051_0004_6361_202038988
GroupedDBID -DZ
-~X
2.D
23N
2WC
4.4
5GY
5VS
6TJ
85S
AACRX
AAFNC
AAFWJ
AAJMC
AAOGA
AAOTM
AAYXX
ABDNZ
ABDPE
ABNSH
ABPPZ
ABUBZ
ABZDU
ACACO
ACGFS
ACNCT
ACRPL
ACYGS
ACYRX
ADCOW
ADHUB
ADIYS
ADNMO
AEILP
AENEX
AGQPQ
AI.
AIZTS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZPVJ
CITATION
CS3
E.L
E3Z
EBS
EJD
F5P
FRP
GI~
HG6
I09
IL9
LAS
MVM
OHT
OK1
RED
RHV
RIG
RNS
SDH
SJN
TR2
UPT
UQL
VH1
VOH
WH7
XOL
ZY4
8FD
H8D
L7M
ID FETCH-LOGICAL-c322t-40d9c2217f8959237d4f39ef357567e79d26337fb77b514e3893a0290f2d90c13
ISSN 0004-6361
IngestDate Sun Jun 29 16:34:28 EDT 2025
Thu Apr 24 23:05:14 EDT 2025
Tue Jul 01 03:53:47 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://www.edpsciences.org/en/authors/copyright-and-licensing
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c322t-40d9c2217f8959237d4f39ef357567e79d26337fb77b514e3893a0290f2d90c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7215-5026
OpenAccessLink https://www.aanda.org/articles/aa/pdf/2020/10/aa38988-20.pdf
PQID 2487163944
PQPubID 1796397
ParticipantIDs proquest_journals_2487163944
crossref_citationtrail_10_1051_0004_6361_202038988
crossref_primary_10_1051_0004_6361_202038988
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Astronomy and astrophysics (Berlin)
PublicationYear 2020
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Crida (R20) 2008; 483
Crida (R19) 2006; 181
Ward (R102) 1986; 67
Walsh (R101) 2011; 475
Petersen (R88) 2007; 658
Papaloizou (R86) 2000; 315
Nelson (R82) 2013; 435
Robert (R93) 2018; 617
R21
Dzyurkevich (R28) 2013; 765
Klahr (R50) 2014; 788
Kley (R53) 1989; 208
Ward (R103) 1997; 126
de Val-Borro (R22) 2006; 370
Klahr (R49) 2004; 606
Kolb (R56) 2013; 559
Masset (R75) 2006; 642
Baruteau (R2) 2008; 672
Scardoni (R96) 2020; 492
Terquem (R100) 2008; 689
Jacquet (R42) 2013; 551
Meheut (R78) 2010; 516
Dürmann (R27) 2015; 574
Kanagawa (R48) 2018; 861
Zhu (R105) 2015; 813
Flock (R32) 2019; 630
R33
Flock (R30) 2013; 560
Bitsch (R11) 2019; 623
Lynden-Bell (R70) 1974; 168
Hallam (R39) 2018; 481
Bitsch (R7) 2010; 523
Fu (R37) 2014; 788
Rüdiger (R94) 2002; 391
R104
Bitsch (R9) 2014; 564
Richert (R92) 2015; 804
Takeuchi (R99) 2002; 581
Bell (R3) 1994; 427
Shakura (R97) 1973; 500
Paardekooper (R84) 2006; 459
Hasegawa (R40) 2013; 774
Fedele (R29) 2010; 510
Santerne (R95) 2016; 587
Fromang (R36) 2011; 534
Rein (R90) 2012; 537
Baraffe (R1) 1998; 337
Coleman (R17) 2016; 460
Dobbs-Dixon (R24) 2010; 710
Lovelace (R68) 1999; 513
Fromang (R35) 2006; 457
Coleman (R16) 2014; 445
Dullemond (R26) 2001; 560
Nelson (R81) 2000; 318
Stone (R98) 1992; 80
Jang-Condell (R43) 2013; 772
Koller (R57) 2003; 596
Bitsch (R8) 2013; 549
Lin (R67) 2010; 405
Bitsch (R10) 2015; 582
Manara (R71) 2017; 604
Lesur (R60) 2010; 513
Klahr (R52) 2003; 582
Crida (R18) 2017; 285
Kanagawa (R46) 2015; 448
Birnstiel (R6) 2012; 539
Matsumura (R76) 2005; 618
Ziampras (R106) 2020; 637
Ou (R83) 2007; 667
Cassan (R12) 2012; 481
de Val-Borro (R23) 2007; 471
Flock (R31) 2017; 850
Lubow (R69) 2006; 641
Mulders (R80) 2017; 847
R77
Li (R62) 2000; 533
R79
Kley (R54) 1999; 303
Chiang (R14) 1997; 490
Lambrechts (R58) 2012; 544
Les (R59) 2015; 450
Fressin (R34) 2013; 766
Fung (R38) 2016; 832
Levermore (R61) 1981; 248
Paardekooper (R85) 2010; 401
Duffell (R25) 2014; 792
Li (R63) 2005; 624
Lin (R66) 1986; 309
Benítez-Llambay (R4) 2016; 223
R87
Pollack (R89) 1996; 124
Rein (R91) 2015; 446
Kanagawa (R47) 2016; 68
Kley (R55) 2001; 547
Johansen (R44) 2019; 622
Lin (R64) 2013; 765
Isella (R41) 2005; 438
Masset (R72) 2011; 111
Masset (R73) 2016; 817
Masset (R74) 2006; 652
Béthune (R5) 2017; 600
Chrenko (R15) 2019; 626
R13
Kanagawa (R45) 2019; 879
Klahr (R51) 2006; 445
Lin (R65) 1986; 307
References_xml – ident: R13
– volume: 710
  start-page: 1395
  year: 2010
  ident: R24
  publication-title: ApJ
  doi: 10.1088/0004-637X/710/2/1395
– volume: 457
  start-page: 343
  year: 2006
  ident: R35
  publication-title: A&A
  doi: 10.1051/0004-6361:20065643
– volume: 448
  start-page: 994
  year: 2015
  ident: R46
  publication-title: MNRAS
  doi: 10.1093/mnras/stv025
– volume: 817
  start-page: 19
  year: 2016
  ident: R73
  publication-title: ApJ
  doi: 10.3847/0004-637X/817/1/19
– volume: 766
  start-page: 81
  year: 2013
  ident: R34
  publication-title: ApJ
  doi: 10.1088/0004-637X/766/2/81
– volume: 847
  start-page: 31
  year: 2017
  ident: R80
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa8906
– volume: 534
  start-page: A107
  year: 2011
  ident: R36
  publication-title: A&A
  doi: 10.1051/0004-6361/201016068
– ident: R79
– ident: R104
– volume: 248
  start-page: 321
  year: 1981
  ident: R61
  publication-title: ApJ
  doi: 10.1086/159157
– volume: 658
  start-page: 1236
  year: 2007
  ident: R88
  publication-title: ApJ
  doi: 10.1086/511513
– volume: 582
  start-page: 869
  year: 2003
  ident: R52
  publication-title: ApJ
  doi: 10.1086/344743
– volume: 574
  start-page: A52
  year: 2015
  ident: R27
  publication-title: A&A
  doi: 10.1051/0004-6361/201424837
– volume: 391
  start-page: 781
  year: 2002
  ident: R94
  publication-title: A&A
  doi: 10.1051/0004-6361:20020853
– volume: 445
  start-page: 479
  year: 2014
  ident: R16
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1715
– ident: R33
  doi: 10.1017/CBO9781139164245
– volume: 492
  start-page: 1318
  year: 2020
  ident: R96
  publication-title: MNRAS
  doi: 10.1093/mnras/stz3534
– volume: 223
  start-page: 11
  year: 2016
  ident: R4
  publication-title: ApJS
  doi: 10.3847/0067-0049/223/1/11
– volume: 604
  start-page: A127
  year: 2017
  ident: R71
  publication-title: A&A
  doi: 10.1051/0004-6361/201630147
– volume: 168
  start-page: 603
  year: 1974
  ident: R70
  publication-title: MNRAS
  doi: 10.1093/mnras/168.3.603
– volume: 513
  start-page: 805
  year: 1999
  ident: R68
  publication-title: ApJ
  doi: 10.1086/306900
– volume: 318
  start-page: 18
  year: 2000
  ident: R81
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2000.03605.x
– volume: 315
  start-page: 823
  year: 2000
  ident: R86
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2000.03466.x
– volume: 549
  start-page: A124
  year: 2013
  ident: R8
  publication-title: A&A
  doi: 10.1051/0004-6361/201220159
– volume: 788
  start-page: L41
  year: 2014
  ident: R37
  publication-title: ApJ
  doi: 10.1088/2041-8205/788/2/L41
– volume: 560
  start-page: 957
  year: 2001
  ident: R26
  publication-title: ApJ
  doi: 10.1086/323057
– volume: 510
  start-page: A72
  year: 2010
  ident: R29
  publication-title: A&A
  doi: 10.1051/0004-6361/200912810
– volume: 490
  start-page: 368
  year: 1997
  ident: R14
  publication-title: ApJ
  doi: 10.1086/304869
– volume: 788
  start-page: 21
  year: 2014
  ident: R50
  publication-title: ApJ
  doi: 10.1088/0004-637X/788/1/21
– volume: 618
  start-page: L137
  year: 2005
  ident: R76
  publication-title: ApJ
  doi: 10.1086/427920
– volume: 481
  start-page: 167
  year: 2012
  ident: R12
  publication-title: Nature
  doi: 10.1038/nature10684
– volume: 617
  start-page: A98
  year: 2018
  ident: R93
  publication-title: A&A
  doi: 10.1051/0004-6361/201833539
– volume: 126
  start-page: 261
  year: 1997
  ident: R103
  publication-title: Icarus
  doi: 10.1006/icar.1996.5647
– volume: 879
  start-page: L19
  year: 2019
  ident: R45
  publication-title: ApJ
  doi: 10.3847/2041-8213/ab2a0f
– ident: R87
– volume: 471
  start-page: 1043
  year: 2007
  ident: R23
  publication-title: A&A
  doi: 10.1051/0004-6361:20077169
– volume: 500
  start-page: 33
  year: 1973
  ident: R97
  publication-title: A&A
– volume: 539
  start-page: A148
  year: 2012
  ident: R6
  publication-title: A&A
  doi: 10.1051/0004-6361/201118136
– volume: 435
  start-page: 2610
  year: 2013
  ident: R82
  publication-title: MNRAS
  doi: 10.1093/mnras/stt1475
– volume: 427
  start-page: 987
  year: 1994
  ident: R3
  publication-title: ApJ
  doi: 10.1086/174206
– volume: 405
  start-page: 1473
  year: 2010
  ident: R67
  publication-title: MNRAS
– volume: 124
  start-page: 62
  year: 1996
  ident: R89
  publication-title: Icarus
  doi: 10.1006/icar.1996.0190
– volume: 309
  start-page: 846
  year: 1986
  ident: R66
  publication-title: ApJ
  doi: 10.1086/164653
– volume: 459
  start-page: L17
  year: 2006
  ident: R84
  publication-title: A&A
  doi: 10.1051/0004-6361:20066304
– volume: 445
  start-page: 747
  year: 2006
  ident: R51
  publication-title: A&A
  doi: 10.1051/0004-6361:20053238
– volume: 600
  start-page: A75
  year: 2017
  ident: R5
  publication-title: A&A
  doi: 10.1051/0004-6361/201630056
– volume: 626
  start-page: A109
  year: 2019
  ident: R15
  publication-title: A&A
  doi: 10.1051/0004-6361/201935334
– volume: 337
  start-page: 403
  year: 1998
  ident: R1
  publication-title: A&A
– volume: 516
  start-page: A31
  year: 2010
  ident: R78
  publication-title: A&A
  doi: 10.1051/0004-6361/201014000
– volume: 68
  start-page: 43
  year: 2016
  ident: R47
  publication-title: PASJ
  doi: 10.1093/pasj/psw037
– volume: 513
  start-page: A60
  year: 2010
  ident: R60
  publication-title: A&A
  doi: 10.1051/0004-6361/200913594
– volume: 307
  start-page: 395
  year: 1986
  ident: R65
  publication-title: ApJ
  doi: 10.1086/164426
– volume: 813
  start-page: 88
  year: 2015
  ident: R105
  publication-title: ApJ
  doi: 10.1088/0004-637X/813/2/88
– volume: 111
  start-page: 131
  year: 2011
  ident: R72
  publication-title: Celes. Mech. Dyn. Astron.
  doi: 10.1007/s10569-011-9364-0
– volume: 637
  start-page: A50
  year: 2020
  ident: R106
  publication-title: A&A
  doi: 10.1051/0004-6361/201937048
– volume: 667
  start-page: 1220
  year: 2007
  ident: R83
  publication-title: ApJ
  doi: 10.1086/521012
– volume: 401
  start-page: 1950
  year: 2010
  ident: R85
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15782.x
– volume: 523
  start-page: A30
  year: 2010
  ident: R7
  publication-title: A&A
  doi: 10.1051/0004-6361/201014414
– volume: 596
  start-page: L91
  year: 2003
  ident: R57
  publication-title: ApJ
  doi: 10.1086/379032
– volume: 832
  start-page: 105
  year: 2016
  ident: R38
  publication-title: ApJ
  doi: 10.3847/0004-637X/832/2/105
– volume: 208
  start-page: 98
  year: 1989
  ident: R53
  publication-title: A&A
– volume: 850
  start-page: 131
  year: 2017
  ident: R31
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa943f
– volume: 537
  start-page: A128
  year: 2012
  ident: R90
  publication-title: A&A
  doi: 10.1051/0004-6361/201118085
– volume: 642
  start-page: 478
  year: 2006
  ident: R75
  publication-title: ApJ
  doi: 10.1086/500967
– volume: 450
  start-page: 1503
  year: 2015
  ident: R59
  publication-title: MNRAS
  doi: 10.1093/mnras/stv712
– volume: 792
  start-page: L10
  year: 2014
  ident: R25
  publication-title: ApJ
  doi: 10.1088/2041-8205/792/1/L10
– volume: 581
  start-page: 1344
  year: 2002
  ident: R99
  publication-title: ApJ
  doi: 10.1086/344437
– volume: 622
  start-page: A202
  year: 2019
  ident: R44
  publication-title: A&A
  doi: 10.1051/0004-6361/201834071
– volume: 689
  start-page: 532
  year: 2008
  ident: R100
  publication-title: ApJ
  doi: 10.1086/592597
– volume: 67
  start-page: 164
  year: 1986
  ident: R102
  publication-title: Icarus
  doi: 10.1016/0019-1035(86)90182-X
– volume: 861
  start-page: 140
  year: 2018
  ident: R48
  publication-title: ApJ
  doi: 10.3847/1538-4357/aac8d9
– volume: 547
  start-page: 457
  year: 2001
  ident: R55
  publication-title: ApJ
  doi: 10.1086/318345
– volume: 559
  start-page: A80
  year: 2013
  ident: R56
  publication-title: A&A
  doi: 10.1051/0004-6361/201321499
– volume: 533
  start-page: 1023
  year: 2000
  ident: R62
  publication-title: ApJ
  doi: 10.1086/308693
– volume: 624
  start-page: 1003
  year: 2005
  ident: R63
  publication-title: ApJ
  doi: 10.1086/429367
– volume: 560
  start-page: A43
  year: 2013
  ident: R30
  publication-title: A&A
  doi: 10.1051/0004-6361/201322451
– volume: 483
  start-page: 325
  year: 2008
  ident: R20
  publication-title: A&A
  doi: 10.1051/0004-6361:20079291
– volume: 765
  start-page: 84
  year: 2013
  ident: R64
  publication-title: ApJ
  doi: 10.1088/0004-637X/765/2/84
– volume: 652
  start-page: 730
  year: 2006
  ident: R74
  publication-title: ApJ
  doi: 10.1086/507515
– volume: 370
  start-page: 529
  year: 2006
  ident: R22
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.10488.x
– volume: 564
  start-page: A135
  year: 2014
  ident: R9
  publication-title: A&A
  doi: 10.1051/0004-6361/201323007
– volume: 772
  start-page: 34
  year: 2013
  ident: R43
  publication-title: ApJ
  doi: 10.1088/0004-637X/772/1/34
– volume: 481
  start-page: 1667
  year: 2018
  ident: R39
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2336
– volume: 285
  start-page: 145
  year: 2017
  ident: R18
  publication-title: Icarus
  doi: 10.1016/j.icarus.2016.10.017
– ident: R21
– volume: 623
  start-page: A88
  year: 2019
  ident: R11
  publication-title: A&A
  doi: 10.1051/0004-6361/201834489
– volume: 765
  start-page: 114
  year: 2013
  ident: R28
  publication-title: ApJ
  doi: 10.1088/0004-637X/765/2/114
– volume: 804
  start-page: 95
  year: 2015
  ident: R92
  publication-title: ApJ
  doi: 10.1088/0004-637X/804/2/95
– volume: 641
  start-page: 526
  year: 2006
  ident: R69
  publication-title: ApJ
  doi: 10.1086/500356
– volume: 446
  start-page: 1424
  year: 2015
  ident: R91
  publication-title: MNRAS
  doi: 10.1093/mnras/stu2164
– ident: R77
– volume: 460
  start-page: 2779
  year: 2016
  ident: R17
  publication-title: MNRAS
  doi: 10.1093/mnras/stw1177
– volume: 438
  start-page: 899
  year: 2005
  ident: R41
  publication-title: A&A
  doi: 10.1051/0004-6361:20052773
– volume: 606
  start-page: 1070
  year: 2004
  ident: R49
  publication-title: ApJ
  doi: 10.1086/383119
– volume: 582
  start-page: A112
  year: 2015
  ident: R10
  publication-title: A&A
  doi: 10.1051/0004-6361/201526463
– volume: 303
  start-page: 696
  year: 1999
  ident: R54
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.1999.02198.x
– volume: 544
  start-page: A32
  year: 2012
  ident: R58
  publication-title: A&A
  doi: 10.1051/0004-6361/201219127
– volume: 80
  start-page: 753
  year: 1992
  ident: R98
  publication-title: ApJS
  doi: 10.1086/191680
– volume: 774
  start-page: 146
  year: 2013
  ident: R40
  publication-title: ApJ
  doi: 10.1088/0004-637X/774/2/146
– volume: 630
  start-page: A147
  year: 2019
  ident: R32
  publication-title: A&A
  doi: 10.1051/0004-6361/201935806
– volume: 672
  start-page: 1054
  year: 2008
  ident: R2
  publication-title: ApJ
  doi: 10.1086/523667
– volume: 475
  start-page: 206
  year: 2011
  ident: R101
  publication-title: Nature
  doi: 10.1038/nature10201
– volume: 587
  start-page: A64
  year: 2016
  ident: R95
  publication-title: A&A
  doi: 10.1051/0004-6361/201527329
– volume: 551
  start-page: A75
  year: 2013
  ident: R42
  publication-title: A&A
  doi: 10.1051/0004-6361/201220812
– volume: 181
  start-page: 587
  year: 2006
  ident: R19
  publication-title: Icarus
  doi: 10.1016/j.icarus.2005.10.007
SSID ssj0002183
Score 2.4231803
Snippet Context. The origin of giant planets at moderate separations ≃1–10 au is still not fully understood because numerical studies of Type II migration in...
Context. The origin of giant planets at moderate separations ≃1–10 au is still not fully understood because numerical studies of Type II migration in...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage A219
SubjectTerms Accretion disks
Extrasolar planets
Gas giant planets
Irradiation
Orbital stability
Planet formation
Protoplanetary disks
Reduction
Scale height
Simulation
Torque
Title Migration of gap-opening planets in 3D stellar-irradiated accretion disks
URI https://www.proquest.com/docview/2487163944
Volume 642
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiQuCAqohYJ8QFzA2zych49LF9RFKnBopd6ixI9q1ZKtkpQDB347M7bXzVJUUS5R1tpMpP1mx988TcibPNYSZ8IwIbKS8UTFDDYFw5DLa12XtbFxyKMv-eEJ_3yanU4mi1HV0tXQTOXPv_aV_A-qsAa4YpfsHZANQmEB7gFfuALCcP0njI-WZ12gfGf1JcOzsGx7OZawDrbUNZ2_67FTpO7YsutwEgFyzFpKbF-EJ9WyP-_HFHXWY3R89d0NZqrxkwt_2PisG481ih8cYL3euQ24fp2O0k4_Vl2LWfgPc2vWpuPwAviS60K1a5PJWZ66ielT7awkT7Fk1ccOvRnN3ZQsbwhn3hLesNBgBFxJo5OKDSmYDC2FO91vcyL2HztVqB-0mfMsxsw5r1BMFYTcI_cT8Bhs3_fiV9iUkQk6T8i9dz2AKov3w9p-ELJJUjb3aEs8jh-TR95joDMH_xMy0e022Qko0bd0NsJomzz45u6ekkXQD7oydKQf1OsHXbY0ndOb-kGDflCrH8_IyaePxweHzB-dwSRY6IHxSAmZgLtpSpEBhy8UN6nQJgV2nhe6ECrJ07QwTVE0QJk10tY6SkRkEiUiGafPyVa7avUOoSoTkVa5zApuuJSqjPNMAanRTQ10MeK7JFn_VpX0c-XxeJOL6haUdsn78NClG6ty-9f31iBU_v_XVwlHZx8bu1_cTdpL8vBa0_fI1tBd6VdALYfmtVWa33b6bFA
linkProvider EDP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Migration+of+gap-opening+planets+in+3D+stellar-irradiated+accretion+disks&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Chrenko%2C+O.&rft.au=Nesvorn%C3%BD%2C+D.&rft.date=2020-10-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=642&rft.spage=A219&rft_id=info:doi/10.1051%2F0004-6361%2F202038988&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_202038988
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon