Effects of cooling rate and stabilization annealing on fatigue behavior of β-processed Ti-6Al-4V alloys

The effects of stabilization annealing and cooling rate on high cycle fatigue (HCF) and fatigue crack propagation (FCP) behaviors of β-processed Ti64 alloys were examined. After β-process heating above β transus, two different cooling rates of air cooling (β-annealing) and water quenching (β-quenchi...

Full description

Saved in:
Bibliographic Details
Published inMetals and materials international Vol. 23; no. 4; pp. 648 - 659
Main Authors Seo, Wongyu, Jeong, Daeho, Lee, Dongjun, Sung, Hyokyung, Kwon, Yongnam, Kim, Sangshik
Format Journal Article
LanguageEnglish
Published Seoul The Korean Institute of Metals and Materials 01.07.2017
대한금속·재료학회
Subjects
Online AccessGet full text
ISSN1598-9623
2005-4149
DOI10.1007/s12540-017-6730-9

Cover

Abstract The effects of stabilization annealing and cooling rate on high cycle fatigue (HCF) and fatigue crack propagation (FCP) behaviors of β-processed Ti64 alloys were examined. After β-process heating above β transus, two different cooling rates of air cooling (β-annealing) and water quenching (β-quenching) were utilized. Selected specimens were then underwent stabilization annealing. The tensile tests, HCF and FCP tests on conducted on the β-processed Ti64 specimens with and without stabilization annealing. No notable microstructural and mechanical changes with stabilization annealing was observed for the β-annealed Ti64 alloys. However, significant effect of stabilization annealing was found on the FCP behavior of β-quenched Ti64 alloys, which appeared to be related to the built-up of residual stress after quenching. The mechanical behavior of β-processed Ti64 alloys with and with stabilization annealing was discussed based on the micrographic examination, including crack growth path and crack nucleation site, and fractographic analysis.
AbstractList The effects of stabilization annealing and cooling rate on high cycle fatigue (HCF) and fatigue crack propagation(FCP) behaviors of β-processed Ti64 alloys were examined. After β-process heating above β transus, two differentcooling rates of air cooling (β-annealing) and water quenching (β-quenching) were utilized. Selected specimenswere then underwent stabilization annealing. The tensile tests, HCF and FCP tests on conducted on the β-processed Ti64 specimens with and without stabilization annealing. No notable microstructural and mechanicalchanges with stabilization annealing was observed for the β-annealed Ti64 alloys. However, significant effect ofstabilization annealing was found on the FCP behavior of β-quenched Ti64 alloys, which appeared to be related tothe built-up of residual stress after quenching. The mechanical behavior of β-processed Ti64 alloys with and withstabilization annealing was discussed based on the micrographic examination, including crack growth path andcrack nucleation site, and fractographic analysis. KCI Citation Count: 0
The effects of stabilization annealing and cooling rate on high cycle fatigue (HCF) and fatigue crack propagation (FCP) behaviors of β-processed Ti64 alloys were examined. After β-process heating above β transus, two different cooling rates of air cooling (β-annealing) and water quenching (β-quenching) were utilized. Selected specimens were then underwent stabilization annealing. The tensile tests, HCF and FCP tests on conducted on the β-processed Ti64 specimens with and without stabilization annealing. No notable microstructural and mechanical changes with stabilization annealing was observed for the β-annealed Ti64 alloys. However, significant effect of stabilization annealing was found on the FCP behavior of β-quenched Ti64 alloys, which appeared to be related to the built-up of residual stress after quenching. The mechanical behavior of β-processed Ti64 alloys with and with stabilization annealing was discussed based on the micrographic examination, including crack growth path and crack nucleation site, and fractographic analysis.
Author Kim, Sangshik
Jeong, Daeho
Seo, Wongyu
Sung, Hyokyung
Lee, Dongjun
Kwon, Yongnam
Author_xml – sequence: 1
  givenname: Wongyu
  surname: Seo
  fullname: Seo, Wongyu
  organization: Department of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University
– sequence: 2
  givenname: Daeho
  surname: Jeong
  fullname: Jeong, Daeho
  organization: Department of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University
– sequence: 3
  givenname: Dongjun
  surname: Lee
  fullname: Lee, Dongjun
  organization: Department of Materials Processing, Korea Institute of Materials Science
– sequence: 4
  givenname: Hyokyung
  surname: Sung
  fullname: Sung, Hyokyung
  organization: Department of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University
– sequence: 5
  givenname: Yongnam
  surname: Kwon
  fullname: Kwon, Yongnam
  organization: Department of Materials Processing, Korea Institute of Materials Science
– sequence: 6
  givenname: Sangshik
  surname: Kim
  fullname: Kim, Sangshik
  email: sang@gnu.ac.kr
  organization: Department of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002243955$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kMtKAzEUhoMoWC8P4G62LqInl5lplkXqBQRBqttwmklqdEwkmQr1sXwQn8m0deWiq59z-L9z4Dsi-yEGS8gZgwsG0F5mxmsJFFhLm1YAVXtkxAFqKplU-2TEajWmquHikBzl_ArQMMH4iLxMnbNmyFV0lYmx92FRJRxshaGr8oBz3_svHHwMZRMsbgplcGW3WNpqbl_w08e05n--6UeKxuZsu2rmaTPpqXyusO_jKp-QA4d9tqd_eUyerqezq1t6_3BzdzW5p0ZwPlAJjI1RyG6umFGM87ESbVM3JZlokbfGdkIAuHmHzjjXASrZKmzGiLVyXByT8-3dkJx-M15H9JtcRP2W9ORxdqeZBAApS5dtuybFnJN1-iP5d0wrzUCvteqtVl206rVWrQrT_mOMHzaChoS-30nyLZnLl7CwSb_GZQpFxg7oF7TEjjo
CitedBy_id crossref_primary_10_1016_j_msea_2021_141194
crossref_primary_10_1016_j_matlet_2020_128800
crossref_primary_10_1007_s12540_017_7303_7
crossref_primary_10_1007_s12540_021_01087_3
crossref_primary_10_1016_j_ijfatigue_2018_02_013
crossref_primary_10_1016_j_msea_2022_142729
crossref_primary_10_3365_KJMM_2018_56_12_845
crossref_primary_10_4028_www_scientific_net_MSF_946_984
crossref_primary_10_1007_s12540_018_0031_9
crossref_primary_10_3390_ma13030500
crossref_primary_10_1016_j_ijfatigue_2022_107179
crossref_primary_10_3390_ma15124067
crossref_primary_10_1016_j_ijfatigue_2018_12_020
crossref_primary_10_1007_s12540_018_0156_x
Cites_doi 10.1590/S1517-70762010000200038
10.2320/matertrans.46.1681
10.1016/S0921-5093(01)01990-6
10.1007/s12540-016-6041-6
10.1007/s10853-012-6673-y
10.1016/S0921-5093(97)00778-8
10.31399/asm.tb.ttg2.9781627082693
10.1007/PL00020374
10.21236/ADA033874
10.7449/1984/Superalloys_1984_731_740
10.1520/STP35884S
10.1016/S0924-0136(96)00030-1
10.1007/s11661-013-1809-5
10.1361/105994902770344312
10.1007/s12540-015-4397-7
10.1007/s11661-013-2012-4
10.1016/0013-7944(83)90149-2
10.31399/asm.tb.tpmpa.9781627083188
10.1007/s11661-003-0300-0
10.1179/095066079790136381
10.1016/j.msea.2008.11.018
10.3365/KJMM.2014.53.3.169
10.1007/BF02661812
10.1007/BF02644046
10.1007/s12540-015-1004-x
10.1016/S1359-6454(97)00338-8
10.1007/s10853-007-1630-x
ContentType Journal Article
Copyright The Korean Institute of Metals and Materials and Springer Science+Business Media B.V. 2017
Copyright_xml – notice: The Korean Institute of Metals and Materials and Springer Science+Business Media B.V. 2017
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s12540-017-6730-9
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2005-4149
EndPage 659
ExternalDocumentID oai_kci_go_kr_ARTI_1400044
10_1007_s12540_017_6730_9
GroupedDBID -EM
06D
0R~
0VY
123
1N0
2.D
203
29M
2JY
2KG
2VQ
30V
4.4
406
408
40D
5VS
67Z
8FE
8FG
96X
9ZL
AAAVM
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
BA0
BENPR
BGLVJ
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZB
HZ~
I0C
IKXTQ
IWAJR
IXC
IXD
I~X
J-C
J0Z
JBSCW
JZLTJ
KB.
KOV
KVFHK
LLZTM
MA-
MZR
N2Q
NDZJH
NPVJJ
NQJWS
O9-
O93
O9G
O9I
O9J
P19
P2P
P9N
PDBOC
PT4
PT5
Q2X
R89
R9I
RLLFE
ROL
RSV
S1Z
S26
S27
S28
S3B
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
T16
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
W4F
WK8
Z45
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z83
Z85
ZMTXR
ZZE
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ACYCR
ID FETCH-LOGICAL-c322t-40118a34db91c91228937656289137a27ced3300fbdafcffd0a9479a68aa59f23
IEDL.DBID AGYKE
ISSN 1598-9623
IngestDate Sun Mar 09 07:53:31 EDT 2025
Thu Apr 24 22:58:47 EDT 2025
Tue Jul 01 01:15:20 EDT 2025
Fri Feb 21 02:33:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords residual stress
fatigue
microstructure
Ti-6Al-4V
mechanical properties
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-40118a34db91c91228937656289137a27ced3300fbdafcffd0a9479a68aa59f23
PageCount 12
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_1400044
crossref_primary_10_1007_s12540_017_6730_9
crossref_citationtrail_10_1007_s12540_017_6730_9
springer_journals_10_1007_s12540_017_6730_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170700
2017-7-00
2017-07
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 7
  year: 2017
  text: 20170700
PublicationDecade 2010
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
PublicationTitle Metals and materials international
PublicationTitleAbbrev Met. Mater. Int
PublicationYear 2017
Publisher The Korean Institute of Metals and Materials
대한금속·재료학회
Publisher_xml – name: The Korean Institute of Metals and Materials
– name: 대한금속·재료학회
References GangloffR. P.SomerdayB. P.Gaseous Hydrogen Embrittlement of Materials in Energy Technologies: The Problem, Its Characterisation and Effects on Particular Alloy Classe2012Amsterdam, NetherlandsElsevier97010.1533/9780857093899
DonachieM. J.Titanium: A Technical Guide2000Ohio, USAASM International58
WelschG.BoyerR.CollingsE. W.Materials Properties Handbook: Titanium Alloys1993Ohio, USAASM International484
WanhillR.BarterS.Fatigue of Beta Processed and Beta Heat-Treated Titanium Alloys2011Berlin, GermanySpringer Science & Business Media1
MoritaT.HatsuokaK.IizukaT.KawasakiK.Mater. Trans.200546168110.2320/matertrans.46.1681
PedersonR.Microstructure and Phase Transformation of Ti-6Al-4V2002Luleå, SwedenLuleå University of technology1012
YoderG. R.CooleyL. A.CrookerT. W.Metall. Mater. Trans. A19789141310.1007/BF02661812
JeongD. H.SungH. K.KwonY. N.KimS. S.Met. Mater. Int.20162259410.1007/s12540-016-6041-6
LütjeringG.WilliamsJ. C.Titanium2013Berlin, GermanySpringer Science & Business Media218
BaniaP. J.BidwellL. R.HallJ. A.EylonD.ChakrabartiA. K.Titanium and Titanium Alloys, Scientific and Technological Aspects1982New York, USAPlenum Press663
ASTM Standard E466Standard Practice for Conduction Force Controlled Constant Amplitude Axial Fatigue test of Metallic Materials2002USAAnnual Book of ASTM Standards
BirkbeckG.InckleA. E.WaldronG. W. J.J. Mater. Sci.1971631910.1007/PL00020374
WelschG.BoyerR.CollingsE. W.Materials Properties Handbook: Titanium Alloys1993Ohio, USAASM International6
JeongD. H.LeeS. G.JangW. K.ChoiJ. K.KimY. J.KimS. S.Metall. Mater. Trans. A201344460110.1007/s11661-013-1809-5
SeoW. G.JeongD. H.KwonY. N.LeeD. J.KimS. S.Proc. 30th Conference on Advanced Structural Materials2016Pohang, KoreaKorean Inst. Met. Mater.96
ZiajaW.SieniawskiJ.KubiakK.MotykaM.Inżynieria Materiałowa200122981
EzugwuE. O.WangZ. M.J. Mater. Process. Technol.19976826210.1016/S0924-0136(96)00030-1
DonachielM. J.JrHeat Treating Titanium and Its Alloys1993Ohio, USAHeat Treating Progress, ASM International49
GammonL. M.BriggsR. D.PackardJ. M.BatsonK. W.BoyerR.DombyC. W.Volume 9: Metallography and Microstructures1985Ohio, USAASM Iternational899
ASTM Standard E647Standard Test Method for Measurement of Fatigue Crack Growth Rates2000USAAnnual Book of ASTM Standards
YoderG. R.CooleyL. A.CrookerT. W.A Micromechanistic Interpretation of Cyclic Crack-Growth Behavior in a Beta-Annealed Ti-6Al-4V Alloy1976Washington DC, USANaval Research Lab
GaydaJ.MinerR. V.GabbT. P.Superalloys 1984: Proc. 5th International Symposium on Superalloys1984Warrendale, USAMetallurgical Society of AIME73110.7449/1984/Superalloys_1984_731_740
HongS. J.KimS. S.LeeC. G.KimS. J.J. Mater. Sci.200742988810.1007/s10853-007-1630-x
LütjeringG.Mat. Sci. Eng. A19982433210.1016/S0921-5093(97)00778-8
ChandlerH.Heat Treater's Guide: Practices and Procedures for Nonferrous Alloys1996Ohio, USAASM International459
HenryS. D.Fatigue Data Book: Light Structural Alloys1994Ohio, USAASM International264
IvanovaS. G.BiedermanR. R.SissonR. D.Jr.J. Mater. Eng. Perform.20021122610.1361/105994902770344312
JeongD. H.ParkT. D.LeeJ. S.KimS. S.Met. Mater. Int.20152145310.1007/s12540-015-4397-7
FroesF. H.Titanium: Physical Metallurgy, Processing, and Applications2015Ohio, USAASM International94
KimM. J.KimG.-Y.EuhK. J.RhyimY.-M.LeeK.-A.Korean J. Met. Mater.20155316910.3365/KJMM.2014.53.3.169
JungD. H.KwonJ. K.WooN. S.KimY. J.GotoM.KimS. S.Metall. Mater. Trans. A20144565410.1007/s11661-013-2012-4
IvasishinO. M.SemiatinS. L.MarkovskyP. E.ShevchenkoS. V.UlshinS. V.Mat. Sci. Eng. A20023378810.1016/S0921-5093(01)01990-6
AndradeA.MorcelliA.LoboR.Revista Matéria20101536410.1590/S1517-70762010000200038
EylonD.PierceC. M.Metall. Mater. Trans. A1976711110.1007/BF02644046
MackayT. L.AlperinB. J.BhattD. D.Eng. Fract. Mech.19831840310.1016/0013-7944(83)90149-2
RitchieR. O.Int. Met. Reviews19792420510.1179/095066079790136381
RuppenJ.BhowalP.EylonD.McEvilyA. J.Fatigue Mechanisms, ASTM STP 6751979Philadelphia, USAAmerican Society for Testing and Materials4710.1520/STP35884S
KimS.-H.KimK.-Si.ChoK. S.EuhK. J.RhyimY. M.LeeK.-A.Korean J. Met. Mater.20155396
CampbellF. C.JrManufacturing Technology for Aerospace Structural Materials2011Amsterdam, NetherlandsElsevier152
JeongD. H.LeeS. G.SeoI. S.YooJ. Y.KimS. S.Met. Mater. Int.2015212210.1007/s12540-015-1004-x
SemiatinS. L.KnisleyS. L.FaginP. N.ZhangF.BarkerD. R.Metall. Mater. Trans. A200334237710.1007/s11661-003-0300-0
PilchakA. L.PorterW. J.JohnR.J. Mater. Sci.201247723510.1007/s10853-012-6673-y
VenkateshB. D.ChenD. L.BholeS. D.Mat. Sci. Eng. A200950611710.1016/j.msea.2008.11.018
RandleV.Acta Mater.199846145910.1016/S1359-6454(97)00338-8
AnilR. K. P.AjinM. J.AjinS.ChristoJ. D.Nived SankarN.BimalkumarP.Int. J. Mech. Eng. Tech.20156116
RajanT. V.SharmaC. P.SharmaA.Heat Treatment: Principles and Techniques2011New Delhi, IndiaPHI Learning Pvt. Ltd.305
S.-H. Kim (6730_CR40) 2015; 53
G. Welsch (6730_CR9) 1993
G. Welsch (6730_CR19) 1993
T. L. Mackay (6730_CR26) 1983; 18
W. G. Seo (6730_CR46) 2016
ASTM Standard E647 (6730_CR21) 2000
L. M. Gammon (6730_CR16) 1985
A. L. Pilchak (6730_CR44) 2012; 47
R. P. Gangloff (6730_CR7) 2012
M. J. Donachie (6730_CR13) 2000
G. Lütjering (6730_CR34) 2013
F. C. Campbell Jr (6730_CR10) 2011
E. O. Ezugwu (6730_CR1) 1997; 68
R. K. P. Anil (6730_CR14) 2015; 6
J. Gayda (6730_CR27) 1984
H. Chandler (6730_CR3) 1996
D. H. Jung (6730_CR22) 2014; 45
R. O. Ritchie (6730_CR25) 1979; 24
D. Eylon (6730_CR35) 1976; 7
D. H. Jeong (6730_CR42) 2015; 21
M. J. Donachiel Jr (6730_CR12) 1993
T. V. Rajan (6730_CR18) 2011
G. R. Yoder (6730_CR8) 1978; 9
F. H. Froes (6730_CR17) 2015
P. J. Bania (6730_CR36) 1982
G. R. Yoder (6730_CR11) 1976
W. Ziaja (6730_CR33) 2001; 22
S. L. Semiatin (6730_CR31) 2003; 34
A. Andrade (6730_CR2) 2010; 15
O. M. Ivasishin (6730_CR32) 2002; 337
S. G. Ivanova (6730_CR39) 2002; 11
R. Wanhill (6730_CR6) 2011
T. Morita (6730_CR30) 2005; 46
R. Pederson (6730_CR15) 2002
V. Randle (6730_CR43) 1998; 46
ASTM Standard E466 (6730_CR20) 2002
G. Birkbeck (6730_CR28) 1971; 6
D. H. Jeong (6730_CR38) 2016; 22
S. J. Hong (6730_CR45) 2007; 42
B. D. Venkatesh (6730_CR29) 2009; 506
M. J. Kim (6730_CR41) 2015; 53
S. D. Henry (6730_CR4) 1994
G. Lütjering (6730_CR5) 1998; 243
D. H. Jeong (6730_CR23) 2013; 44
J. Ruppen (6730_CR37) 1979
D. H. Jeong (6730_CR24) 2015; 21
References_xml – reference: BaniaP. J.BidwellL. R.HallJ. A.EylonD.ChakrabartiA. K.Titanium and Titanium Alloys, Scientific and Technological Aspects1982New York, USAPlenum Press663
– reference: FroesF. H.Titanium: Physical Metallurgy, Processing, and Applications2015Ohio, USAASM International94
– reference: ChandlerH.Heat Treater's Guide: Practices and Procedures for Nonferrous Alloys1996Ohio, USAASM International459
– reference: RajanT. V.SharmaC. P.SharmaA.Heat Treatment: Principles and Techniques2011New Delhi, IndiaPHI Learning Pvt. Ltd.305
– reference: MoritaT.HatsuokaK.IizukaT.KawasakiK.Mater. Trans.200546168110.2320/matertrans.46.1681
– reference: JeongD. H.LeeS. G.SeoI. S.YooJ. Y.KimS. S.Met. Mater. Int.2015212210.1007/s12540-015-1004-x
– reference: HongS. J.KimS. S.LeeC. G.KimS. J.J. Mater. Sci.200742988810.1007/s10853-007-1630-x
– reference: KimM. J.KimG.-Y.EuhK. J.RhyimY.-M.LeeK.-A.Korean J. Met. Mater.20155316910.3365/KJMM.2014.53.3.169
– reference: IvanovaS. G.BiedermanR. R.SissonR. D.Jr.J. Mater. Eng. Perform.20021122610.1361/105994902770344312
– reference: CampbellF. C.JrManufacturing Technology for Aerospace Structural Materials2011Amsterdam, NetherlandsElsevier152
– reference: BirkbeckG.InckleA. E.WaldronG. W. J.J. Mater. Sci.1971631910.1007/PL00020374
– reference: EylonD.PierceC. M.Metall. Mater. Trans. A1976711110.1007/BF02644046
– reference: AnilR. K. P.AjinM. J.AjinS.ChristoJ. D.Nived SankarN.BimalkumarP.Int. J. Mech. Eng. Tech.20156116
– reference: DonachielM. J.JrHeat Treating Titanium and Its Alloys1993Ohio, USAHeat Treating Progress, ASM International49
– reference: LütjeringG.Mat. Sci. Eng. A19982433210.1016/S0921-5093(97)00778-8
– reference: SemiatinS. L.KnisleyS. L.FaginP. N.ZhangF.BarkerD. R.Metall. Mater. Trans. A200334237710.1007/s11661-003-0300-0
– reference: GaydaJ.MinerR. V.GabbT. P.Superalloys 1984: Proc. 5th International Symposium on Superalloys1984Warrendale, USAMetallurgical Society of AIME73110.7449/1984/Superalloys_1984_731_740
– reference: PedersonR.Microstructure and Phase Transformation of Ti-6Al-4V2002Luleå, SwedenLuleå University of technology1012
– reference: GammonL. M.BriggsR. D.PackardJ. M.BatsonK. W.BoyerR.DombyC. W.Volume 9: Metallography and Microstructures1985Ohio, USAASM Iternational899
– reference: KimS.-H.KimK.-Si.ChoK. S.EuhK. J.RhyimY. M.LeeK.-A.Korean J. Met. Mater.20155396
– reference: RandleV.Acta Mater.199846145910.1016/S1359-6454(97)00338-8
– reference: AndradeA.MorcelliA.LoboR.Revista Matéria20101536410.1590/S1517-70762010000200038
– reference: MackayT. L.AlperinB. J.BhattD. D.Eng. Fract. Mech.19831840310.1016/0013-7944(83)90149-2
– reference: IvasishinO. M.SemiatinS. L.MarkovskyP. E.ShevchenkoS. V.UlshinS. V.Mat. Sci. Eng. A20023378810.1016/S0921-5093(01)01990-6
– reference: WelschG.BoyerR.CollingsE. W.Materials Properties Handbook: Titanium Alloys1993Ohio, USAASM International6
– reference: WelschG.BoyerR.CollingsE. W.Materials Properties Handbook: Titanium Alloys1993Ohio, USAASM International484
– reference: ASTM Standard E466Standard Practice for Conduction Force Controlled Constant Amplitude Axial Fatigue test of Metallic Materials2002USAAnnual Book of ASTM Standards
– reference: JeongD. H.ParkT. D.LeeJ. S.KimS. S.Met. Mater. Int.20152145310.1007/s12540-015-4397-7
– reference: JeongD. H.SungH. K.KwonY. N.KimS. S.Met. Mater. Int.20162259410.1007/s12540-016-6041-6
– reference: PilchakA. L.PorterW. J.JohnR.J. Mater. Sci.201247723510.1007/s10853-012-6673-y
– reference: JeongD. H.LeeS. G.JangW. K.ChoiJ. K.KimY. J.KimS. S.Metall. Mater. Trans. A201344460110.1007/s11661-013-1809-5
– reference: RuppenJ.BhowalP.EylonD.McEvilyA. J.Fatigue Mechanisms, ASTM STP 6751979Philadelphia, USAAmerican Society for Testing and Materials4710.1520/STP35884S
– reference: LütjeringG.WilliamsJ. C.Titanium2013Berlin, GermanySpringer Science & Business Media218
– reference: YoderG. R.CooleyL. A.CrookerT. W.A Micromechanistic Interpretation of Cyclic Crack-Growth Behavior in a Beta-Annealed Ti-6Al-4V Alloy1976Washington DC, USANaval Research Lab
– reference: ASTM Standard E647Standard Test Method for Measurement of Fatigue Crack Growth Rates2000USAAnnual Book of ASTM Standards
– reference: YoderG. R.CooleyL. A.CrookerT. W.Metall. Mater. Trans. A19789141310.1007/BF02661812
– reference: EzugwuE. O.WangZ. M.J. Mater. Process. Technol.19976826210.1016/S0924-0136(96)00030-1
– reference: RitchieR. O.Int. Met. Reviews19792420510.1179/095066079790136381
– reference: GangloffR. P.SomerdayB. P.Gaseous Hydrogen Embrittlement of Materials in Energy Technologies: The Problem, Its Characterisation and Effects on Particular Alloy Classe2012Amsterdam, NetherlandsElsevier97010.1533/9780857093899
– reference: ZiajaW.SieniawskiJ.KubiakK.MotykaM.Inżynieria Materiałowa200122981
– reference: HenryS. D.Fatigue Data Book: Light Structural Alloys1994Ohio, USAASM International264
– reference: JungD. H.KwonJ. K.WooN. S.KimY. J.GotoM.KimS. S.Metall. Mater. Trans. A20144565410.1007/s11661-013-2012-4
– reference: DonachieM. J.Titanium: A Technical Guide2000Ohio, USAASM International58
– reference: WanhillR.BarterS.Fatigue of Beta Processed and Beta Heat-Treated Titanium Alloys2011Berlin, GermanySpringer Science & Business Media1
– reference: VenkateshB. D.ChenD. L.BholeS. D.Mat. Sci. Eng. A200950611710.1016/j.msea.2008.11.018
– reference: SeoW. G.JeongD. H.KwonY. N.LeeD. J.KimS. S.Proc. 30th Conference on Advanced Structural Materials2016Pohang, KoreaKorean Inst. Met. Mater.96
– volume: 15
  start-page: 364
  year: 2010
  ident: 6730_CR2
  publication-title: Revista Matéria
  doi: 10.1590/S1517-70762010000200038
– volume-title: Standard Practice for Conduction Force Controlled Constant Amplitude Axial Fatigue test of Metallic Materials
  year: 2002
  ident: 6730_CR20
– volume: 46
  start-page: 1681
  year: 2005
  ident: 6730_CR30
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.46.1681
– volume: 337
  start-page: 88
  year: 2002
  ident: 6730_CR32
  publication-title: Mat. Sci. Eng. A
  doi: 10.1016/S0921-5093(01)01990-6
– volume: 22
  start-page: 594
  year: 2016
  ident: 6730_CR38
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-016-6041-6
– volume: 47
  start-page: 7235
  year: 2012
  ident: 6730_CR44
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-012-6673-y
– volume: 6
  start-page: 116
  year: 2015
  ident: 6730_CR14
  publication-title: Int. J. Mech. Eng. Tech.
– start-page: 899
  volume-title: Volume 9: Metallography and Microstructures
  year: 1985
  ident: 6730_CR16
– volume: 243
  start-page: 32
  year: 1998
  ident: 6730_CR5
  publication-title: Mat. Sci. Eng. A
  doi: 10.1016/S0921-5093(97)00778-8
– start-page: 58
  volume-title: Titanium: A Technical Guide
  year: 2000
  ident: 6730_CR13
  doi: 10.31399/asm.tb.ttg2.9781627082693
– volume: 6
  start-page: 319
  year: 1971
  ident: 6730_CR28
  publication-title: J. Mater. Sci.
  doi: 10.1007/PL00020374
– start-page: 484
  volume-title: Materials Properties Handbook: Titanium Alloys
  year: 1993
  ident: 6730_CR9
– volume-title: A Micromechanistic Interpretation of Cyclic Crack-Growth Behavior in a Beta-Annealed Ti-6Al-4V Alloy
  year: 1976
  ident: 6730_CR11
  doi: 10.21236/ADA033874
– start-page: 731
  volume-title: Superalloys 1984: Proc. 5th International Symposium on Superalloys
  year: 1984
  ident: 6730_CR27
  doi: 10.7449/1984/Superalloys_1984_731_740
– start-page: 152
  volume-title: Manufacturing Technology for Aerospace Structural Materials
  year: 2011
  ident: 6730_CR10
– volume-title: Standard Test Method for Measurement of Fatigue Crack Growth Rates
  year: 2000
  ident: 6730_CR21
– volume: 53
  start-page: 96
  year: 2015
  ident: 6730_CR40
  publication-title: Korean J. Met. Mater.
– start-page: 970
  volume-title: Gaseous Hydrogen Embrittlement of Materials in Energy Technologies: The Problem, Its Characterisation and Effects on Particular Alloy Classe
  year: 2012
  ident: 6730_CR7
– start-page: 47
  volume-title: Fatigue Mechanisms, ASTM STP 675
  year: 1979
  ident: 6730_CR37
  doi: 10.1520/STP35884S
– start-page: 1
  volume-title: Fatigue of Beta Processed and Beta Heat-Treated Titanium Alloys
  year: 2011
  ident: 6730_CR6
– volume: 68
  start-page: 262
  year: 1997
  ident: 6730_CR1
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/S0924-0136(96)00030-1
– volume: 44
  start-page: 4601
  year: 2013
  ident: 6730_CR23
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-013-1809-5
– start-page: 6
  volume-title: Materials Properties Handbook: Titanium Alloys
  year: 1993
  ident: 6730_CR19
– volume: 11
  start-page: 226
  year: 2002
  ident: 6730_CR39
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1361/105994902770344312
– start-page: 218
  volume-title: Titanium
  year: 2013
  ident: 6730_CR34
– volume: 21
  start-page: 453
  year: 2015
  ident: 6730_CR42
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-015-4397-7
– volume: 45
  start-page: 654
  year: 2014
  ident: 6730_CR22
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-013-2012-4
– volume: 18
  start-page: 403
  year: 1983
  ident: 6730_CR26
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/0013-7944(83)90149-2
– start-page: 94
  volume-title: Titanium: Physical Metallurgy, Processing, and Applications
  year: 2015
  ident: 6730_CR17
  doi: 10.31399/asm.tb.tpmpa.9781627083188
– volume: 34
  start-page: 2377
  year: 2003
  ident: 6730_CR31
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-003-0300-0
– volume: 24
  start-page: 205
  year: 1979
  ident: 6730_CR25
  publication-title: Int. Met. Reviews
  doi: 10.1179/095066079790136381
– start-page: 264
  volume-title: Fatigue Data Book: Light Structural Alloys
  year: 1994
  ident: 6730_CR4
– volume: 22
  start-page: 981
  year: 2001
  ident: 6730_CR33
  publication-title: Inżynieria Materiałowa
– start-page: 305
  volume-title: Heat Treatment: Principles and Techniques
  year: 2011
  ident: 6730_CR18
– volume: 506
  start-page: 117
  year: 2009
  ident: 6730_CR29
  publication-title: Mat. Sci. Eng. A
  doi: 10.1016/j.msea.2008.11.018
– start-page: 663
  volume-title: Titanium and Titanium Alloys, Scientific and Technological Aspects
  year: 1982
  ident: 6730_CR36
– start-page: 10
  volume-title: Microstructure and Phase Transformation of Ti-6Al-4V
  year: 2002
  ident: 6730_CR15
– volume: 53
  start-page: 169
  year: 2015
  ident: 6730_CR41
  publication-title: Korean J. Met. Mater.
  doi: 10.3365/KJMM.2014.53.3.169
– start-page: 96
  volume-title: Proc. 30th Conference on Advanced Structural Materials
  year: 2016
  ident: 6730_CR46
– volume: 9
  start-page: 1413
  year: 1978
  ident: 6730_CR8
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/BF02661812
– start-page: 459
  volume-title: Heat Treater's Guide: Practices and Procedures for Nonferrous Alloys
  year: 1996
  ident: 6730_CR3
– volume: 7
  start-page: 111
  year: 1976
  ident: 6730_CR35
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/BF02644046
– start-page: 49
  volume-title: Heat Treating Titanium and Its Alloys
  year: 1993
  ident: 6730_CR12
– volume: 21
  start-page: 22
  year: 2015
  ident: 6730_CR24
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-015-1004-x
– volume: 46
  start-page: 1459
  year: 1998
  ident: 6730_CR43
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(97)00338-8
– volume: 42
  start-page: 9888
  year: 2007
  ident: 6730_CR45
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-007-1630-x
SSID ssj0061312
Score 2.1743727
Snippet The effects of stabilization annealing and cooling rate on high cycle fatigue (HCF) and fatigue crack propagation (FCP) behaviors of β-processed Ti64 alloys...
The effects of stabilization annealing and cooling rate on high cycle fatigue (HCF) and fatigue crack propagation(FCP) behaviors of β-processed Ti64 alloys...
SourceID nrf
crossref
springer
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 648
SubjectTerms Characterization and Evaluation of Materials
Chemistry and Materials Science
Engineering Thermodynamics
Heat and Mass Transfer
Machines
Magnetic Materials
Magnetism
Manufacturing
Materials Science
Metallic Materials
Processes
Solid Mechanics
재료공학
Title Effects of cooling rate and stabilization annealing on fatigue behavior of β-processed Ti-6Al-4V alloys
URI https://link.springer.com/article/10.1007/s12540-017-6730-9
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002243955
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Metals and Materials International, 2017, 23(4), , pp.648-659
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB6RcIFDKQXUFIos1BNo0a73EfsYqgBtBapQguBkee11iII2KI9D-Vn8EH4TM_soFAoSp9VatrXrGXtm9M18BvgmJNqsLKTq9iAuAxQhtPRi4VI_IQ-7YNs_OU2O-9HPi_iiquOe1tnuNSRZnNSPxW6cQHw6VRNUS082YDEOhBRNWOwcXf7q1gcwGqgS5Iwl7mU07zWY-b9J_jFHjXziXiCihaE5XIFe_Yllfslofz5L983tM_bGd_7DR_hQOZ6sU2rKKixk-SdYfkJHuAZXJZXxlI0dM2O6zWfAiEmC6dwy9CIpj7as2sSWHD1M6oAvDtsG84zVJf80_v7OuylrEDLLekMv6Vx70TkjmP_PdB36h93e92OvuonBM7jhZyhDjEN0GNlUBkYGnJOXg54gJ5CzrXnbZDYMfd-lVjvjnPW1jNpSJ0LrWDoebkAzH-fZZ2BhO3SB8G1iiWtLhKlJ0SU0UWxlpIXmLfBrgShT0ZTTbRnX6pFgmRZR4SJSUpqvZAt2_w65KTk63uq8g1JWIzNUxKxNz8FYjSYK44cfGAgVEHcL9mr5qWpPT1-f8su7em_CEicFKFJ-t6A5m8yzr-jYzNLtSpHxedA9_X22DY0-7zwAuUftvw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV25TgMxELVIKIACcYpwWogKtNLGe8QuI0SUQJIqQeksr70OUaJNlKPgt_gQvomZPTjEIVGt1rJdjI951pt5Q8gVF-CzYg-z26tB9kDhXAkn4DZyQ0TYqdp-pxs2-_79IBjkedyLItq9oCTTm_oj2Y0hiY-3agjb0hElsg5YgGPZgj6rF9cvuKeM4gwEnGRw7gWV-dMUX5xRKZnbb3xo6mYaO2Q7x4e0ni3oLlmLkz2y9Uk1cJ88ZYrDCzq1VE-x6M6QouADVYmhAPYw3DVLroSWBIAgdoAfC23DVUyLzHwc__rizLJUgdjQ3sgJ6xPHf6TIxj8vDki_cde7bTp5wQRHw7lcgqnhuaA830SiqkWVMQQjANgYcpE1xWo6Np7nujYyymprjauEXxMq5EoFwjLvkJSTaRIfEerVPFvlrgkNSmJxL9IRIDftB0b4iitWIW5hOalzNXEsajGRHzrIaGwJxsbYMVeKCrl-HzLLpDT-6nwJyyHHeiRRABu_w6kczyXA_Ba8V1ImukJuitWS-dFb_D7l8b96X5CNZq_Tlu1W9-GEbDLcNGmU7ikpL-er-AywyDI6T_feG5NV0VU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSAgOiFWU1UKcQFETZ2l8rICqZak4tKg3y7HjUrVKqy4HfosP4ZuYyUJBLBKnKJbtgz32POvNvCHkPOTgs2IXs9sdP3ughKHklh-ayA4QYadq-w-toNHxbrt-N69zOi2i3QtKMstpQJWmZFYZa1NZJL4xJPTxhg3ARC2-TFbgNnbQ0DusVlzF4KoyutPncKrB0Re05k9TfHFMy8nEfONGU5dT3yQbOVaktWxzt8hSnGyT9U8KgjvkOVMfntKRoWqEBXh6FMUfqEw0BeCHoa9ZoiW0JAAKsQP8GGjrzWNaZOnj-LdXa5ylDcSatvtWUBta3hNFZv5luks69Zv2VcPKiydYCs7oDJYdng7S9XTEHcUdxhCYAHhjyEtWJauqWLuubZtIS6OM0bbkXpXLIJTS54a5e6SUjJJ4n1C36hontHWgUR4rdCMVAYpTnq-5J0PJysQuVk6oXFkcC1wMxUITGRdbwGJjHJkteJlcfAwZZ7Iaf3U-g-0QA9UXKIaN395IDCYCIH8T3i4pK10ml8VuifwYTn-f8uBfvU_J6uN1Xdw3W3eHZI2hzaQBu0ekNJvM42OAJbPoJDW9d_Lu1ZE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+cooling+rate+and+stabilization+annealing+on+fatigue+behavior+of+%CE%B2-processed+Ti-6Al-4V+alloys&rft.jtitle=Metals+and+materials+international&rft.au=Seo%2C+Wongyu&rft.au=Jeong%2C+Daeho&rft.au=Lee%2C+Dongjun&rft.au=Sung%2C+Hyokyung&rft.date=2017-07-01&rft.issn=1598-9623&rft.eissn=2005-4149&rft.volume=23&rft.issue=4&rft.spage=648&rft.epage=659&rft_id=info:doi/10.1007%2Fs12540-017-6730-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12540_017_6730_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-9623&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-9623&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-9623&client=summon