Poisson Noise Reduction with Non-local PCA

Photon-limited imaging arises when the number of photons collected by a sensor array is small relative to the number of detector elements. Photon limitations are an important concern for many applications such as spectral imaging, night vision, nuclear medicine, and astronomy. Typically a Poisson di...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical imaging and vision Vol. 48; no. 2; pp. 279 - 294
Main Authors Salmon, Joseph, Harmany, Zachary, Deledalle, Charles-Alban, Willett, Rebecca
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.02.2014
Springer Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Photon-limited imaging arises when the number of photons collected by a sensor array is small relative to the number of detector elements. Photon limitations are an important concern for many applications such as spectral imaging, night vision, nuclear medicine, and astronomy. Typically a Poisson distribution is used to model these observations, and the inherent heteroscedasticity of the data combined with standard noise removal methods yields significant artifacts. This paper introduces a novel denoising algorithm for photon-limited images which combines elements of dictionary learning and sparse patch-based representations of images. The method employs both an adaptation of Principal Component Analysis (PCA) for Poisson noise and recently developed sparsity-regularized convex optimization algorithms for photon-limited images. A comprehensive empirical evaluation of the proposed method helps characterize the performance of this approach relative to other state-of-the-art denoising methods. The results reveal that, despite its conceptual simplicity, Poisson PCA-based denoising appears to be highly competitive in very low light regimes.
AbstractList Photon-limited imaging arises when the number of photons collected by a sensor array is small relative to the number of detector elements. Photon limitations are an important concern for many applications such as spectral imaging, night vision, nuclear medicine, and astronomy. Typically a Poisson distribution is used to model these observations, and the inherent heteroscedasticity of the data combined with standard noise removal methods yields significant artifacts. This paper introduces a novel denoising algorithm for photon-limited images which combines elements of dictionary learning and sparse patch-based representations of images. The method employs both an adaptation of Principal Component Analysis (PCA) for Poisson noise and recently developed sparsity-regularized convex optimization algorithms for photon-limited images. A comprehensive empirical evaluation of the proposed method helps characterize the performance of this approach relative to other state-of-the-art denoising methods. The results reveal that, despite its conceptual simplicity, Poisson PCA-based denoising appears to be highly competitive in very low light regimes.
Photon-limited imaging, which arises in applications such as spectral imaging, night vision, nuclear medicine, and astronomy, occurs when the number of photons collected by a sensor is small relative to the desired image resolution. Typically a Poisson distribution is used to model these observations, and the inherent heteroscedasticity of the data combined with standard noise removal methods yields significant artifacts. This paper introduces a novel denoising algorithm for photon-limited images which combines elements of dictionary learning and sparse representations for image patches. The method employs both an adaptation of Principal Component Analysis (PCA) for Poisson noise and recently developed sparsity regularized convex optimization algorithms for photon-limited images. A comprehensive empirical evaluation of the proposed method helps characterize the performance of this approach relative to other state-of-the-art denoising methods. The results reveal that, despite its simplicity, PCA-flavored denoising appears to be highly competitive in very low light regimes.
Author Willett, Rebecca
Salmon, Joseph
Deledalle, Charles-Alban
Harmany, Zachary
Author_xml – sequence: 1
  givenname: Joseph
  surname: Salmon
  fullname: Salmon, Joseph
  email: joseph.salmon@telecom-paristech.fr
  organization: Department LTCI, CNRS UMR 5141, Institut Mines-Télécom, Télécom ParisTech
– sequence: 2
  givenname: Zachary
  surname: Harmany
  fullname: Harmany, Zachary
  organization: Department of Electrical and Computer Engineering, University of Wisconsin-Madison
– sequence: 3
  givenname: Charles-Alban
  surname: Deledalle
  fullname: Deledalle, Charles-Alban
  organization: IMB, CNRS-Université Bordeaux 1
– sequence: 4
  givenname: Rebecca
  surname: Willett
  fullname: Willett, Rebecca
  organization: Department of Electrical and Computer Engineering, Duke University
BackLink https://hal.science/hal-00957837$$DView record in HAL
BookMark eNp9kEtLAzEQgINUsK3-AG-9KkQn7-RYilqhaBE9hzTN2pR1I5ut4r83y4oHD57mwXwzzDdBoyY1AaFzAlcEQF1nAloQDIRh4ExgeYTGRCiGldRshMZgKMfGgDpBk5z3AKApUWN0uU4x59TMHkoMs6ewPfgulvozdrvSbHCdvKtn68X8FB1Xrs7h7CdO0cvtzfNiiVePd_eL-Qp7RmmHqXFbbdxGEs2kMEobJuSG-eC49LCRxuvAK8WFISTQoAQXqqoY0dJzWVI2RRfD3p2r7Xsb31z7ZZOLdjlf2b4HYITSTH2QMkuGWd-mnNtQ_QIEbC_GDmJsEWN7MVYWRv1hfOxc_3TXulj_S9KBzOVK8xpau0-Htiky_oG-AY6odfY
CitedBy_id crossref_primary_10_3390_ma13122773
crossref_primary_10_1007_s10915_024_02668_1
crossref_primary_10_1016_j_image_2022_116916
crossref_primary_10_1002_adfm_202402343
crossref_primary_10_1109_TGRS_2018_2866439
crossref_primary_10_1093_biomet_asz062
crossref_primary_10_1109_TIP_2018_2859044
crossref_primary_10_1126_sciadv_adp4372
crossref_primary_10_1016_j_sigpro_2015_04_020
crossref_primary_10_3390_s16111961
crossref_primary_10_1214_18_AOAS1177
crossref_primary_10_1109_TIP_2018_2811546
crossref_primary_10_1364_OE_26_005541
crossref_primary_10_1016_j_actamat_2019_10_001
crossref_primary_10_1016_j_sigpro_2021_108186
crossref_primary_10_1007_s12204_017_1878_5
crossref_primary_10_1109_TIP_2014_2363735
crossref_primary_10_1214_24_EJS2336
crossref_primary_10_1109_TIP_2018_2819821
crossref_primary_10_1186_s40679_015_0004_8
crossref_primary_10_1016_j_media_2018_03_007
crossref_primary_10_1016_j_neucom_2020_12_117
crossref_primary_10_1109_TCI_2019_2945204
crossref_primary_10_3390_app9040778
crossref_primary_10_3390_math8111907
crossref_primary_10_1002_adma_202410508
crossref_primary_10_2139_ssrn_4109017
crossref_primary_10_1016_j_bspc_2017_05_001
crossref_primary_10_1038_s41598_019_44316_x
crossref_primary_10_1117_1_JMI_4_3_034004
crossref_primary_10_1016_j_sigpro_2017_10_001
crossref_primary_10_3390_app13021034
crossref_primary_10_1016_j_sigpro_2022_108690
crossref_primary_10_1214_21_AOS2061
crossref_primary_10_1016_j_optlaseng_2023_107507
crossref_primary_10_1109_ACCESS_2021_3118608
crossref_primary_10_1021_acsami_9b10630
crossref_primary_10_1109_TCI_2023_3241547
crossref_primary_10_1007_s10489_020_02175_4
crossref_primary_10_1103_PhysRevMaterials_4_065002
crossref_primary_10_1049_ipr2_12112
crossref_primary_10_1109_TSP_2018_2821648
crossref_primary_10_1038_s41598_021_97668_8
crossref_primary_10_3847_2041_8213_aa618c
crossref_primary_10_1007_s11263_021_01481_9
crossref_primary_10_1016_j_mtla_2019_100530
crossref_primary_10_1364_OPTICA_448287
crossref_primary_10_56977_jicce_2023_21_3_208
crossref_primary_10_1007_s11263_021_01466_8
crossref_primary_10_1364_OE_462935
crossref_primary_10_1017_S143192762100773X
crossref_primary_10_1109_TNNLS_2017_2783384
crossref_primary_10_1016_j_jvcir_2019_04_011
crossref_primary_10_1049_iet_rsn_2019_0609
crossref_primary_10_1109_TIP_2019_2912122
crossref_primary_10_1016_j_jvcir_2022_103712
crossref_primary_10_1364_AO_53_007796
crossref_primary_10_1214_21_AOS2074
crossref_primary_10_3390_s19010206
crossref_primary_10_1038_srep20640
crossref_primary_10_1109_TSP_2018_2835403
crossref_primary_10_3233_XST_190469
crossref_primary_10_1016_j_csda_2024_107976
crossref_primary_10_1016_j_ijinfomgt_2016_05_013
crossref_primary_10_1016_j_optlaseng_2021_106641
crossref_primary_10_1109_TCI_2019_2929918
crossref_primary_10_1109_TCI_2021_3111572
crossref_primary_10_1109_LSP_2020_2980373
crossref_primary_10_1364_BOE_10_002869
crossref_primary_10_1137_16M1072930
crossref_primary_10_1109_TIM_2022_3228266
crossref_primary_10_1016_j_anucene_2024_110706
crossref_primary_10_1364_OE_429889
crossref_primary_10_1109_TIP_2015_2417505
crossref_primary_10_1109_TCI_2017_2700203
crossref_primary_10_3847_0004_637X_819_2_160
crossref_primary_10_1214_22_EJP758
crossref_primary_10_1109_TCI_2015_2453093
crossref_primary_10_1137_20M1342124
crossref_primary_10_3389_fonc_2020_00973
crossref_primary_10_1038_s41598_018_23363_w
crossref_primary_10_1016_j_jmva_2019_04_004
crossref_primary_10_1007_s10851_021_01033_3
crossref_primary_10_3390_s18114006
crossref_primary_10_1007_s11042_018_6503_6
crossref_primary_10_29252_jsdp_17_4_139
crossref_primary_10_1186_s40537_019_0281_5
crossref_primary_10_1137_16M1103270
crossref_primary_10_1088_0957_4484_27_36_364001
crossref_primary_10_1007_s11760_015_0806_0
crossref_primary_10_1080_09500340_2019_1648895
crossref_primary_10_1038_s41565_020_0682_9
crossref_primary_10_1007_s11548_016_1434_z
crossref_primary_10_1109_TCI_2017_2669867
crossref_primary_10_1002_adfm_202107017
crossref_primary_10_1109_TIP_2014_2362057
crossref_primary_10_1137_21M1456807
crossref_primary_10_1016_j_patcog_2017_07_023
crossref_primary_10_1016_j_sigpro_2024_109870
crossref_primary_10_1109_TCI_2017_2703900
crossref_primary_10_1002_smll_202300824
crossref_primary_10_1021_acsami_0c02032
crossref_primary_10_1109_TIP_2022_3145160
crossref_primary_10_1007_s10851_017_0742_4
crossref_primary_10_1016_j_jvcir_2016_09_009
crossref_primary_10_1109_TIP_2020_2988139
crossref_primary_10_1016_j_dsp_2015_02_002
crossref_primary_10_1109_TIT_2021_3049171
crossref_primary_10_1109_TIP_2019_2957918
crossref_primary_10_1007_s12221_016_6324_z
crossref_primary_10_1371_journal_pone_0136964
crossref_primary_10_1137_23M1545859
crossref_primary_10_1016_j_measurement_2019_107426
crossref_primary_10_3233_XST_180469
crossref_primary_10_1016_j_chaos_2019_109427
crossref_primary_10_1155_2018_2417939
crossref_primary_10_1038_s41592_025_02595_5
crossref_primary_10_1093_imaiai_iaaa012
crossref_primary_10_1109_ACCESS_2017_2700162
crossref_primary_10_1049_iet_ipr_2018_5941
crossref_primary_10_1109_TIP_2016_2522303
crossref_primary_10_1137_16M1093707
crossref_primary_10_1007_s11760_022_02226_y
crossref_primary_10_1016_j_patcog_2021_108363
crossref_primary_10_1016_j_ultramic_2016_05_005
crossref_primary_10_1016_j_ultramic_2015_10_020
crossref_primary_10_1049_iet_ipr_2018_5145
crossref_primary_10_1002_inf2_12026
crossref_primary_10_1109_TIP_2017_2771471
crossref_primary_10_1109_LSP_2016_2580600
crossref_primary_10_1364_JOSAA_35_001741
crossref_primary_10_1364_OE_27_033120
crossref_primary_10_3847_1538_4357_aab3d3
crossref_primary_10_1016_j_apm_2017_01_009
crossref_primary_10_1016_j_csda_2022_107423
crossref_primary_10_1364_AO_58_005148
crossref_primary_10_1364_OE_26_022773
crossref_primary_10_1038_s41598_022_17360_3
crossref_primary_10_1016_j_image_2021_116299
crossref_primary_10_1007_s11042_019_7408_8
crossref_primary_10_1109_ACCESS_2020_3040319
crossref_primary_10_1017_S143192761600787X
crossref_primary_10_1111_biom_13384
crossref_primary_10_3390_electronics11223751
crossref_primary_10_1016_j_sigpro_2021_108165
crossref_primary_10_1002_adma_202303051
crossref_primary_10_1016_j_jmva_2017_02_009
crossref_primary_10_1142_S021972002250007X
crossref_primary_10_1080_09500340_2018_1506058
crossref_primary_10_1016_j_bbe_2022_05_001
crossref_primary_10_3390_s18041019
crossref_primary_10_1016_j_neucom_2017_09_010
crossref_primary_10_1063_1_4959917
crossref_primary_10_1111_coin_12510
crossref_primary_10_1016_j_jvcir_2018_10_015
crossref_primary_10_1109_JBHI_2020_3024563
crossref_primary_10_1364_OE_383976
crossref_primary_10_1109_TCYB_2017_2713421
crossref_primary_10_1186_s12880_016_0112_5
crossref_primary_10_1155_2015_794586
crossref_primary_10_1002_aenm_202405599
crossref_primary_10_1093_imaiai_iaae036
crossref_primary_10_1016_j_optlaseng_2022_107388
crossref_primary_10_1137_15M1038074
crossref_primary_10_1109_TIP_2017_2753404
crossref_primary_10_1137_22M1516968
crossref_primary_10_1038_s41565_023_01457_5
crossref_primary_10_1109_TIP_2015_2470601
Cites_doi 10.1109/TIP.2012.2202675
10.1109/TSP.2006.881199
10.1137/090756259
10.1088/2041-8205/724/2/L161
10.1137/070703983
10.1109/TIP.2011.2168410
10.1007/s11263-009-0272-7
10.1109/TIP.2007.901238
10.1109/TIP.2012.2210725
10.1109/TSP.2009.2016892
10.1109/TMI.2003.809622
10.1109/TIP.2006.877529
10.1109/TIP.2010.2056693
10.1214/009053604000000076
10.1109/TIP.2008.924386
10.1198/106186006X113430
10.1016/0041-5553(67)90040-7
10.1016/j.patcog.2009.09.023
10.1109/TMI.2009.2033991
10.1017/S0962492912000062
10.1007/978-3-540-87481-2_24
10.1016/j.sigpro.2011.08.011
10.1561/2200000016
10.1137/040616024
10.1145/1401890.1401969
10.4064/cm-3-2-138-146
10.1016/j.artint.2005.06.002
10.1093/biomet/35.3-4.246
ContentType Journal Article
Copyright Springer Science+Business Media New York 2013
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer Science+Business Media New York 2013
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1007/s10851-013-0435-6
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1573-7683
EndPage 294
ExternalDocumentID oai_HAL_hal_00957837v1
10_1007_s10851_013_0435_6
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Y
Z83
Z88
Z8M
Z8N
Z8R
Z8S
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
1XC
ID FETCH-LOGICAL-c322t-29ad89ab6183659789356b3cea46c0b69c8e4f745911e2e75457ff3186c4657f3
IEDL.DBID U2A
ISSN 0924-9907
IngestDate Fri May 09 12:21:35 EDT 2025
Tue Jul 01 03:20:32 EDT 2025
Thu Apr 24 23:00:44 EDT 2025
Fri Feb 21 02:35:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Gradient methods
Newton’s method
Signal representations
Image denoising
PCA
Newton's method
Language English
License http://www.springer.com/tdm
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-29ad89ab6183659789356b3cea46c0b69c8e4f745911e2e75457ff3186c4657f3
ORCID 0000-0002-3181-0634
PageCount 16
ParticipantIDs hal_primary_oai_HAL_hal_00957837v1
crossref_primary_10_1007_s10851_013_0435_6
crossref_citationtrail_10_1007_s10851_013_0435_6
springer_journals_10_1007_s10851_013_0435_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20140200
2014-2-00
2014-02-01
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 2
  year: 2014
  text: 20140200
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
PublicationTitle Journal of mathematical imaging and vision
PublicationTitleAbbrev J Math Imaging Vis
PublicationYear 2014
Publisher Springer US
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Verlag
References Singh, Gordon (CR40) 2008
Deledalle, Denis, Tupin (CR14) 2010
Banerjee, Merugu, Dhillon, Ghosh (CR3) 2005; 6
Kolaczyk, Nowak (CR24) 2004; 32
Boyd, Parikh, Chu, Peleato, Eckstein (CR6) 2011; 3
Lebrun, Colom, Buades, Morel (CR26) 2012; 21
Boulanger, Kervrann, Bouthemy, Elbau, Sibarita, Salamero (CR5) 2010; 29
Kervrann, Boulanger (CR22) 2006; 15
Dabov, Foi, Katkovnik, Egiazarian (CR11) 2007; 16
Chatterjee, Milanfar (CR9) 2011
CR18
Collins, Dasgupta, Schapire (CR10) 2002
Dabov, Foi, Katkovnik, Egiazarian (CR12) 2009
Harmany, Marcia, Willett (CR20) 2012; 21
Singh, Gordon (CR39) 2008
Fisz (CR17) 1955; 3
CR34
Borkowski, Reynolds, Green, Hwang, Petre, Krishnamurthy, Willett (CR4) 2010; 724
Willett, Nowak (CR42) 2003; 22
Willett, Nowak (CR43) 2004
Buades, Coll, Morel (CR8) 2005; 4
Gordon (CR19) 2003
Kolaczyk (CR23) 1999; 9
Willett (CR41) 2006
Mairal, Bach, Ponce, Sapiro, Zisserman (CR30) 2009
Yin, Osher, Goldfarb, Darbon (CR45) 2008; 1
Salmon, Strozecki (CR37) 2012; 92
Zhang, Fadili, Starck (CR46) 2008; 17
Katkovnik, Foi, Egiazarian, Astola (CR21) 2010; 86
Salmon, Deledalle, Willett, Harmany (CR36) 2012
Wright, Nowak, Figueiredo (CR44) 2009; 57
Mäkitalo, Foi (CR32) 2013; 22
Mäkitalo, Foi (CR31) 2011; 20
CR29
Lee, Battle, Raina, Ng (CR27) 2007
Zhang, Dong, Zhang, Shi (CR47) 2010; 43
Figueiredo, Bioucas-Dias (CR16) 2010; 19
Maggioni, Katkovnik, Egiazarian, Foi (CR28) 2013; 22
Anscombe (CR2) 1948; 35
Bregman (CR7) 1967; 7
Deledalle, Salmon, Dalalyan (CR15) 2011
Muresan, Parks (CR33) 2003
Roy, Gordon, Thrun (CR35) 2005; 23
Aharon, Elad, Bruckstein (CR1) 2006; 54
Danielyan, Foi, Katkovnik, Egiazarian (CR13) 2010
Krishnamurthy, Raginsky, Willett (CR25) 2010; 3
Zou, Hastie, Tibshirani (CR48) 2006; 15
Salmon, Willett, Arias-Castro (CR38) 2012
C. Kervrann (435_CR22) 2006; 15
B. Zhang (435_CR46) 2008; 17
A. Banerjee (435_CR3) 2005; 6
A. Danielyan (435_CR13) 2010
K. Dabov (435_CR11) 2007; 16
K. Dabov (435_CR12) 2009
A. Buades (435_CR8) 2005; 4
G.J. Gordon (435_CR19) 2003
S.J. Wright (435_CR44) 2009; 57
P. Chatterjee (435_CR9) 2011
C.-A. Deledalle (435_CR15) 2011
Z. Harmany (435_CR20) 2012; 21
D.D. Muresan (435_CR33) 2003
E.D. Kolaczyk (435_CR23) 1999; 9
K.J. Borkowski (435_CR4) 2010; 724
E.D. Kolaczyk (435_CR24) 2004; 32
M. Collins (435_CR10) 2002
M. Fisz (435_CR17) 1955; 3
M. Lebrun (435_CR26) 2012; 21
H. Zou (435_CR48) 2006; 15
K. Krishnamurthy (435_CR25) 2010; 3
R. Willett (435_CR41) 2006
W. Yin (435_CR45) 2008; 1
M. Aharon (435_CR1) 2006; 54
435_CR29
M.A.T. Figueiredo (435_CR16) 2010; 19
L.M. Bregman (435_CR7) 1967; 7
H. Lee (435_CR27) 2007
M. Mäkitalo (435_CR32) 2013; 22
C.-A. Deledalle (435_CR14) 2010
J. Mairal (435_CR30) 2009
M. Mäkitalo (435_CR31) 2011; 20
J. Boulanger (435_CR5) 2010; 29
N. Roy (435_CR35) 2005; 23
A.P. Singh (435_CR39) 2008
S. Boyd (435_CR6) 2011; 3
J. Salmon (435_CR36) 2012
F.J. Anscombe (435_CR2) 1948; 35
R. Willett (435_CR43) 2004
J. Salmon (435_CR38) 2012
M. Maggioni (435_CR28) 2013; 22
J. Salmon (435_CR37) 2012; 92
A.P. Singh (435_CR40) 2008
R. Willett (435_CR42) 2003; 22
435_CR18
V. Katkovnik (435_CR21) 2010; 86
L. Zhang (435_CR47) 2010; 43
435_CR34
References_xml – start-page: 801
  year: 2007
  end-page: 808
  ident: CR27
  article-title: Efficient sparse coding algorithms
  publication-title: NIPS
– ident: CR18
– volume: 22
  start-page: 91
  year: 2013
  end-page: 103
  ident: CR32
  article-title: Optimal inversion of the generalized Anscombe transformation for Poisson-Gaussian noise
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2202675
– year: 2012
  ident: CR38
  article-title: A two-stage denoising filter: the preprocessed Yaroslavsky filter
  publication-title: SSP
– volume: 54
  start-page: 4311
  issue: 11
  year: 2006
  end-page: 4322
  ident: CR1
  article-title: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2006.881199
– volume: 3
  start-page: 619
  issue: 3
  year: 2010
  end-page: 645
  ident: CR25
  article-title: Multiscale photon-limited spectral image reconstruction
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/090756259
– year: 2009
  ident: CR12
  article-title: BM3D image denoising with shape-adaptive principal component analysis
  publication-title: Proc. Workshop on Signal Processing with Adaptive Sparse Structured Representations (SPARS’09)
– year: 2011
  ident: CR15
  article-title: Image denoising with patch based PCA: local versus global
  publication-title: BMVC
– volume: 724
  year: 2010
  ident: CR4
  article-title: Radioactive Scandium in the youngest galactic supernova remnant G1.9+0.3
  publication-title: Astrophys. J. Lett.
  doi: 10.1088/2041-8205/724/2/L161
– volume: 1
  start-page: 143
  issue: 1
  year: 2008
  end-page: 168
  ident: CR45
  article-title: Bregman iterative algorithms for l1-minimization with applications to compressed sensing
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/070703983
– volume: 21
  start-page: 1084
  issue: 3
  year: 2012
  end-page: 1096
  ident: CR20
  article-title: This is SPIRAL-TAP: sparse poisson intensity reconstruction algorithms—theory and practice
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2168410
– volume: 86
  start-page: 1
  issue: 1
  year: 2010
  end-page: 32
  ident: CR21
  article-title: From local kernel to nonlocal multiple-model image denoising
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-009-0272-7
– ident: CR29
– volume: 16
  start-page: 2080
  issue: 8
  year: 2007
  end-page: 2095
  ident: CR11
  article-title: Image denoising by sparse 3-D transform-domain collaborative filtering
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2007.901238
– volume: 22
  start-page: 119
  year: 2013
  end-page: 133
  ident: CR28
  article-title: A nonlocal transform-domain filter for volumetric data denoising and reconstruction
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2210725
– start-page: 2272
  year: 2009
  end-page: 2279
  ident: CR30
  article-title: Non-local sparse models for image restoration
  publication-title: ICCV
– start-page: 101
  year: 2003
  end-page: 104
  ident: CR33
  article-title: Adaptive principal components and image denoising
  publication-title: ICIP
– start-page: 801
  year: 2010
  end-page: 804
  ident: CR14
  article-title: Poisson NL means: Unsupervised non local means for Poisson noise
  publication-title: ICIP
– volume: 19
  start-page: 3133
  issue: 12
  year: 2010
  end-page: 3145
  ident: CR16
  article-title: Restoration of poissonian images using alternating direction optimization
  publication-title: IEEE Trans. Signal Process.
– volume: 3
  start-page: 138
  year: 1955
  end-page: 146
  ident: CR17
  article-title: The limiting distribution of a function of two independent random variables and its statistical application
  publication-title: Colloq. Math.
– volume: 6
  start-page: 1705
  year: 2005
  end-page: 1749
  ident: CR3
  article-title: Clustering with Bregman divergences
  publication-title: J. Mach. Learn. Res.
– volume: 57
  start-page: 2479
  issue: 7
  year: 2009
  end-page: 2493
  ident: CR44
  article-title: Sparse reconstruction by separable approximation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2009.2016892
– start-page: 593
  year: 2003
  end-page: 600
  ident: CR19
  article-title: Generalized linear models
  publication-title: NIPS
– volume: 22
  start-page: 332
  issue: 3
  year: 2003
  end-page: 350
  ident: CR42
  article-title: Platelets: a multiscale approach for recovering edges and surfaces in photon-limited medical imaging
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2003.809622
– volume: 15
  start-page: 2866
  issue: 10
  year: 2006
  end-page: 2878
  ident: CR22
  article-title: Optimal spatial adaptation for patch-based image denoising
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2006.877529
– volume: 20
  start-page: 99
  issue: 1
  year: 2011
  end-page: 109
  ident: CR31
  article-title: Optimal inversion of the Anscombe transformation in low-count Poisson image denoising
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2056693
– start-page: 617
  year: 2002
  end-page: 624
  ident: CR10
  article-title: A generalization of principal components analysis to the exponential family
  publication-title: NIPS
– volume: 32
  start-page: 500
  issue: 2
  year: 2004
  end-page: 527
  ident: CR24
  article-title: Multiscale likelihood analysis and complexity penalized estimation
  publication-title: Ann. Stat.
  doi: 10.1214/009053604000000076
– volume: 17
  start-page: 1093
  issue: 7
  year: 2008
  end-page: 1108
  ident: CR46
  article-title: Wavelets, ridgelets, and curvelets for Poisson noise removal
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2008.924386
– volume: 35
  start-page: 246
  year: 1948
  end-page: 254
  ident: CR2
  article-title: The transformation of Poisson, binomial and negative-binomial data
  publication-title: Biometrika
– volume: 15
  start-page: 265
  issue: 2
  year: 2006
  end-page: 286
  ident: CR48
  article-title: Sparse principal component analysis
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1198/106186006X113430
– year: 2011
  ident: CR9
  article-title: Patch-based near-optimal image denoising
  publication-title: ICIP
– volume: 9
  start-page: 119
  issue: 1
  year: 1999
  end-page: 135
  ident: CR23
  article-title: Wavelet shrinkage estimation of certain Poisson intensity signals using corrected thresholds
  publication-title: Stat. Sin.
– volume: 7
  start-page: 200
  issue: 3
  year: 1967
  end-page: 217
  ident: CR7
  article-title: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming
  publication-title: Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(67)90040-7
– year: 2012
  ident: CR36
  article-title: Poisson noise reduction with non-local PCA
  publication-title: ICASSP
– ident: CR34
– volume: 43
  start-page: 1531
  issue: 4
  year: 2010
  end-page: 1549
  ident: CR47
  article-title: Two-stage image denoising by principal component analysis with local pixel grouping
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2009.09.023
– volume: 29
  start-page: 442
  issue: 2
  year: 2010
  end-page: 454
  ident: CR5
  article-title: Patch-based nonlocal functional for denoising fluorescence microscopy image sequences
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2033991
– start-page: 261
  year: 2010
  end-page: 266
  ident: CR13
  article-title: Denoising of multispectral images via nonlocal groupwise spectrum-PCA
  publication-title: CGIV2010/MCS’10
– volume: 23
  start-page: 1
  issue: 1
  year: 2005
  end-page: 40
  ident: CR35
  article-title: Finding approximate POMDP solutions through belief compression
  publication-title: J. Artif. Intell. Res.
– year: 2004
  ident: CR43
  article-title: Fast multiresolution photon-limited image reconstruction
  publication-title: Proc. IEEE Int. Sym. Biomedical Imaging—ISBI ’04
– volume: 21
  start-page: 475
  issue: 1
  year: 2012
  end-page: 576
  ident: CR26
  article-title: Secrets of image denoising cuisine
  publication-title: Acta Numer.
  doi: 10.1017/S0962492912000062
– start-page: 358
  year: 2008
  end-page: 373
  ident: CR40
  article-title: A unified view of matrix factorization models
  publication-title: Machine Learning and Knowledge Discovery in Databases
  doi: 10.1007/978-3-540-87481-2_24
– volume: 92
  start-page: 447
  issue: 2
  year: 2012
  end-page: 489
  ident: CR37
  article-title: Patch reprojections for non local methods
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2011.08.011
– year: 2006
  ident: CR41
  article-title: Multiscale analysis of photon-limited astronomical images
  publication-title: Statistical Challenges in Modern Astronomy (SCMA) IV
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  end-page: 122
  ident: CR6
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000016
– volume: 4
  start-page: 490
  issue: 2
  year: 2005
  end-page: 530
  ident: CR8
  article-title: A review of image denoising algorithms, with a new one
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/040616024
– start-page: 650
  year: 2008
  end-page: 658
  ident: CR39
  article-title: Relational learning via collective matrix factorization
  publication-title: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  doi: 10.1145/1401890.1401969
– volume: 32
  start-page: 500
  issue: 2
  year: 2004
  ident: 435_CR24
  publication-title: Ann. Stat.
  doi: 10.1214/009053604000000076
– volume: 9
  start-page: 119
  issue: 1
  year: 1999
  ident: 435_CR23
  publication-title: Stat. Sin.
– volume: 22
  start-page: 91
  year: 2013
  ident: 435_CR32
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2202675
– ident: 435_CR34
– volume: 21
  start-page: 1084
  issue: 3
  year: 2012
  ident: 435_CR20
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2168410
– volume: 29
  start-page: 442
  issue: 2
  year: 2010
  ident: 435_CR5
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2033991
– volume: 17
  start-page: 1093
  issue: 7
  year: 2008
  ident: 435_CR46
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2008.924386
– volume-title: ICIP
  year: 2011
  ident: 435_CR9
– volume: 16
  start-page: 2080
  issue: 8
  year: 2007
  ident: 435_CR11
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2007.901238
– start-page: 261
  volume-title: CGIV2010/MCS’10
  year: 2010
  ident: 435_CR13
– volume: 57
  start-page: 2479
  issue: 7
  year: 2009
  ident: 435_CR44
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2009.2016892
– volume-title: ICASSP
  year: 2012
  ident: 435_CR36
– volume: 724
  year: 2010
  ident: 435_CR4
  publication-title: Astrophys. J. Lett.
  doi: 10.1088/2041-8205/724/2/L161
– start-page: 801
  volume-title: ICIP
  year: 2010
  ident: 435_CR14
– volume: 3
  start-page: 138
  year: 1955
  ident: 435_CR17
  publication-title: Colloq. Math.
  doi: 10.4064/cm-3-2-138-146
– volume: 21
  start-page: 475
  issue: 1
  year: 2012
  ident: 435_CR26
  publication-title: Acta Numer.
  doi: 10.1017/S0962492912000062
– start-page: 358
  volume-title: Machine Learning and Knowledge Discovery in Databases
  year: 2008
  ident: 435_CR40
  doi: 10.1007/978-3-540-87481-2_24
– volume: 15
  start-page: 2866
  issue: 10
  year: 2006
  ident: 435_CR22
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2006.877529
– start-page: 617
  volume-title: NIPS
  year: 2002
  ident: 435_CR10
– start-page: 2272
  volume-title: ICCV
  year: 2009
  ident: 435_CR30
– volume: 22
  start-page: 119
  year: 2013
  ident: 435_CR28
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2210725
– volume-title: SSP
  year: 2012
  ident: 435_CR38
– volume: 6
  start-page: 1705
  year: 2005
  ident: 435_CR3
  publication-title: J. Mach. Learn. Res.
– start-page: 593
  volume-title: NIPS
  year: 2003
  ident: 435_CR19
– volume: 1
  start-page: 143
  issue: 1
  year: 2008
  ident: 435_CR45
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/070703983
– volume: 20
  start-page: 99
  issue: 1
  year: 2011
  ident: 435_CR31
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2056693
– volume: 22
  start-page: 332
  issue: 3
  year: 2003
  ident: 435_CR42
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2003.809622
– volume: 23
  start-page: 1
  issue: 1
  year: 2005
  ident: 435_CR35
  publication-title: J. Artif. Intell. Res.
  doi: 10.1016/j.artint.2005.06.002
– start-page: 101
  volume-title: ICIP
  year: 2003
  ident: 435_CR33
– volume-title: Statistical Challenges in Modern Astronomy (SCMA) IV
  year: 2006
  ident: 435_CR41
– volume: 54
  start-page: 4311
  issue: 11
  year: 2006
  ident: 435_CR1
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2006.881199
– volume: 7
  start-page: 200
  issue: 3
  year: 1967
  ident: 435_CR7
  publication-title: Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(67)90040-7
– volume: 86
  start-page: 1
  issue: 1
  year: 2010
  ident: 435_CR21
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-009-0272-7
– ident: 435_CR29
– volume: 35
  start-page: 246
  year: 1948
  ident: 435_CR2
  publication-title: Biometrika
  doi: 10.1093/biomet/35.3-4.246
– volume: 15
  start-page: 265
  issue: 2
  year: 2006
  ident: 435_CR48
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1198/106186006X113430
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  ident: 435_CR6
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000016
– volume: 92
  start-page: 447
  issue: 2
  year: 2012
  ident: 435_CR37
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2011.08.011
– volume-title: BMVC
  year: 2011
  ident: 435_CR15
– start-page: 650
  volume-title: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  year: 2008
  ident: 435_CR39
  doi: 10.1145/1401890.1401969
– volume: 3
  start-page: 619
  issue: 3
  year: 2010
  ident: 435_CR25
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/090756259
– volume-title: Proc. Workshop on Signal Processing with Adaptive Sparse Structured Representations (SPARS’09)
  year: 2009
  ident: 435_CR12
– volume: 19
  start-page: 3133
  issue: 12
  year: 2010
  ident: 435_CR16
  publication-title: IEEE Trans. Signal Process.
– volume-title: Proc. IEEE Int. Sym. Biomedical Imaging—ISBI ’04
  year: 2004
  ident: 435_CR43
– volume: 4
  start-page: 490
  issue: 2
  year: 2005
  ident: 435_CR8
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/040616024
– ident: 435_CR18
– start-page: 801
  volume-title: NIPS
  year: 2007
  ident: 435_CR27
– volume: 43
  start-page: 1531
  issue: 4
  year: 2010
  ident: 435_CR47
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2009.09.023
SSID ssj0008217
Score 2.501874
Snippet Photon-limited imaging arises when the number of photons collected by a sensor array is small relative to the number of detector elements. Photon limitations...
Photon-limited imaging, which arises in applications such as spectral imaging, night vision, nuclear medicine, and astronomy, occurs when the number of photons...
SourceID hal
crossref
springer
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 279
SubjectTerms Applications of Mathematics
Computer Science
Computer Vision and Pattern Recognition
Image Processing
Image Processing and Computer Vision
Machine Learning
Mathematical Methods in Physics
Signal,Image and Speech Processing
Title Poisson Noise Reduction with Non-local PCA
URI https://link.springer.com/article/10.1007/s10851-013-0435-6
https://hal.science/hal-00957837
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbYdoEDjwFiPKYKcRqK1KZp0h67aWPiMU2ISeNUNWmqHVCH6OD343RteQiQOKVy0xzs2v6cODbAhetIrp1UEOonAWGJUsQPeEyoThylKfdtWSTITvh4xq7n3ry8x51X2e7VkWRhqT9ddkN0QIpuBOjjCW9Ay8PQ3eRxzWhYm1-fFm12bQwsCJpaUR1l_rTEF2fUWJhUyG_noYWbGe3CdokPrXAt0D3Y0FkbdkqsaJWamCOpasdQ0dqwdVeXYM33oTddIk-XmTXBUVv3pkSrEYJldl6RmJHCjVnTQXgAs9HwYTAmZWMEolD_VoQGceIHseSojxwjAsQcHpeu0jHjypY8UL5mqWAeWjJNtUCUJNIUtZcrxvHRPYRmtsz0EViucFFUacKpsplwfYkuHSMO6vBU4jvZAbviUKTKquGmecVT9FHv2DA1QqZGhqkR70Cv_uR5XTLjr8nnyPZ6nil2PQ5vI0Mz6E9g_PzmdOCykkpUqlj--5LH_5p9ApuIgdg6EfsUmquXV32GOGMlu9AKR_3-xIxXjzfDbvGfvQN0a8bt
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbYOAAHHgPEeFaI01CkNu2S9FhNTAW2aUKbtFu0pKk4oA7Rwe_H6dryECBxauWmOdix_TlxbIAr31PMeCknVCQhCRKtiQjZnFCTeNpQJlxVJMiOWDwN7mbdWXmPO6-y3asjycJSf7rshuiAFN0I0McT1oB1xALCLuUpjWrzK2jRZtfFwIKgqeXVUeZPU3xxRo1Hmwr57Ty0cDP9Xdgu8aETrQS6B2sma8FOiRWdUhNzJFXtGCpaC7aGdQnWfB864wXydJE5I3wa58GWaLVCcOzOKxIzUrgxZ9yLDmDav5n0YlI2RiAa9W9JaDhPRDhXDPWRYUSAmKPLlK_NPGDaVSzUwgQpD7poyQw1HFEST1PUXqYDhq_-ITSzRWaOwPG5j6JKE0a1G3BfKHTpGHFQj6UKv6k2uBWHpC6rhtvmFU_yo96xZapEpkrLVMna0Kl_eV6VzPhr8CWyvR5ni13H0UBamkV_HOPnN68N15VUZKli-e9THv9r9AVsxJPhQA5uR_cnsIl4KFglZZ9Cc_nyas4QcyzVebHG3gGCl8bQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbYkBAceAwQ41khTkPR2jRL22M1mAaMaUJM2i1a0lQcUDfRwu_H6YuHAIlTKzftwY7jz43zGeDCdSTXTuwR6kcBYZFSxA_4nFAdOUpT7tsyL5Ad8-GU3c56s7LPaVpVu1dbksWZBsPSlGTdZRR3Px18Q6RA8s4EGO8Jb8AqM4eBcUJPaVgvxT7NW-7amGQQXHa9alvzp098CUyNJ1MW-W1vNA85g23YLLGiFRbG3YEVnbRgq8SNVumVKYqq1gyVrAUb9zUda7oLnckC9btIrDFetfVg6FqNQSzzFxaFCclDmjXph3swHVw_9oekbJJAFPpiRmgwj_xgLjn6JsfsAPFHj0tX6TnjypY8UL5mscd6uKppqj1ETF4coydzxTjeuvvQTBaJPgDL9Vw0Wxxxqmzmub7E8I7ZB3V4LPGZbINdaUiokkHcNLJ4Fh_cx0apApUqjFIFb0OnfmVZ0Gf8Nfgc1V6PM8TXw3AkjMwgQQ9z6TenDZeVVUTpbunvnzz81-gzWJtcDcToZnx3BOsIjVhRn30MzezlVZ8g_MjkaT7F3gF8HMsD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Poisson+Noise+Reduction+with+Non-local+PCA&rft.jtitle=Journal+of+mathematical+imaging+and+vision&rft.au=Salmon%2C+Joseph&rft.au=Harmany%2C+Zachary&rft.au=Deledalle%2C+Charles-Alban&rft.au=Willett%2C+Rebecca&rft.date=2014-02-01&rft.pub=Springer+US&rft.issn=0924-9907&rft.eissn=1573-7683&rft.volume=48&rft.issue=2&rft.spage=279&rft.epage=294&rft_id=info:doi/10.1007%2Fs10851-013-0435-6&rft.externalDocID=10_1007_s10851_013_0435_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-9907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-9907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-9907&client=summon