Poisson Noise Reduction with Non-local PCA
Photon-limited imaging arises when the number of photons collected by a sensor array is small relative to the number of detector elements. Photon limitations are an important concern for many applications such as spectral imaging, night vision, nuclear medicine, and astronomy. Typically a Poisson di...
Saved in:
Published in | Journal of mathematical imaging and vision Vol. 48; no. 2; pp. 279 - 294 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Boston
Springer US
01.02.2014
Springer Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Photon-limited imaging arises when the number of photons collected by a sensor array is small relative to the number of detector elements. Photon limitations are an important concern for many applications such as spectral imaging, night vision, nuclear medicine, and astronomy. Typically a Poisson distribution is used to model these observations, and the inherent heteroscedasticity of the data combined with standard noise removal methods yields significant artifacts. This paper introduces a novel denoising algorithm for photon-limited images which combines elements of dictionary learning and sparse patch-based representations of images. The method employs both an adaptation of Principal Component Analysis (PCA) for Poisson noise and recently developed sparsity-regularized convex optimization algorithms for photon-limited images. A comprehensive empirical evaluation of the proposed method helps characterize the performance of this approach relative to other state-of-the-art denoising methods. The results reveal that, despite its conceptual simplicity, Poisson PCA-based denoising appears to be highly competitive in very low light regimes. |
---|---|
AbstractList | Photon-limited imaging arises when the number of photons collected by a sensor array is small relative to the number of detector elements. Photon limitations are an important concern for many applications such as spectral imaging, night vision, nuclear medicine, and astronomy. Typically a Poisson distribution is used to model these observations, and the inherent heteroscedasticity of the data combined with standard noise removal methods yields significant artifacts. This paper introduces a novel denoising algorithm for photon-limited images which combines elements of dictionary learning and sparse patch-based representations of images. The method employs both an adaptation of Principal Component Analysis (PCA) for Poisson noise and recently developed sparsity-regularized convex optimization algorithms for photon-limited images. A comprehensive empirical evaluation of the proposed method helps characterize the performance of this approach relative to other state-of-the-art denoising methods. The results reveal that, despite its conceptual simplicity, Poisson PCA-based denoising appears to be highly competitive in very low light regimes. Photon-limited imaging, which arises in applications such as spectral imaging, night vision, nuclear medicine, and astronomy, occurs when the number of photons collected by a sensor is small relative to the desired image resolution. Typically a Poisson distribution is used to model these observations, and the inherent heteroscedasticity of the data combined with standard noise removal methods yields significant artifacts. This paper introduces a novel denoising algorithm for photon-limited images which combines elements of dictionary learning and sparse representations for image patches. The method employs both an adaptation of Principal Component Analysis (PCA) for Poisson noise and recently developed sparsity regularized convex optimization algorithms for photon-limited images. A comprehensive empirical evaluation of the proposed method helps characterize the performance of this approach relative to other state-of-the-art denoising methods. The results reveal that, despite its simplicity, PCA-flavored denoising appears to be highly competitive in very low light regimes. |
Author | Willett, Rebecca Salmon, Joseph Deledalle, Charles-Alban Harmany, Zachary |
Author_xml | – sequence: 1 givenname: Joseph surname: Salmon fullname: Salmon, Joseph email: joseph.salmon@telecom-paristech.fr organization: Department LTCI, CNRS UMR 5141, Institut Mines-Télécom, Télécom ParisTech – sequence: 2 givenname: Zachary surname: Harmany fullname: Harmany, Zachary organization: Department of Electrical and Computer Engineering, University of Wisconsin-Madison – sequence: 3 givenname: Charles-Alban surname: Deledalle fullname: Deledalle, Charles-Alban organization: IMB, CNRS-Université Bordeaux 1 – sequence: 4 givenname: Rebecca surname: Willett fullname: Willett, Rebecca organization: Department of Electrical and Computer Engineering, Duke University |
BackLink | https://hal.science/hal-00957837$$DView record in HAL |
BookMark | eNp9kEtLAzEQgINUsK3-AG-9KkQn7-RYilqhaBE9hzTN2pR1I5ut4r83y4oHD57mwXwzzDdBoyY1AaFzAlcEQF1nAloQDIRh4ExgeYTGRCiGldRshMZgKMfGgDpBk5z3AKApUWN0uU4x59TMHkoMs6ewPfgulvozdrvSbHCdvKtn68X8FB1Xrs7h7CdO0cvtzfNiiVePd_eL-Qp7RmmHqXFbbdxGEs2kMEobJuSG-eC49LCRxuvAK8WFISTQoAQXqqoY0dJzWVI2RRfD3p2r7Xsb31z7ZZOLdjlf2b4HYITSTH2QMkuGWd-mnNtQ_QIEbC_GDmJsEWN7MVYWRv1hfOxc_3TXulj_S9KBzOVK8xpau0-Htiky_oG-AY6odfY |
CitedBy_id | crossref_primary_10_3390_ma13122773 crossref_primary_10_1007_s10915_024_02668_1 crossref_primary_10_1016_j_image_2022_116916 crossref_primary_10_1002_adfm_202402343 crossref_primary_10_1109_TGRS_2018_2866439 crossref_primary_10_1093_biomet_asz062 crossref_primary_10_1109_TIP_2018_2859044 crossref_primary_10_1126_sciadv_adp4372 crossref_primary_10_1016_j_sigpro_2015_04_020 crossref_primary_10_3390_s16111961 crossref_primary_10_1214_18_AOAS1177 crossref_primary_10_1109_TIP_2018_2811546 crossref_primary_10_1364_OE_26_005541 crossref_primary_10_1016_j_actamat_2019_10_001 crossref_primary_10_1016_j_sigpro_2021_108186 crossref_primary_10_1007_s12204_017_1878_5 crossref_primary_10_1109_TIP_2014_2363735 crossref_primary_10_1214_24_EJS2336 crossref_primary_10_1109_TIP_2018_2819821 crossref_primary_10_1186_s40679_015_0004_8 crossref_primary_10_1016_j_media_2018_03_007 crossref_primary_10_1016_j_neucom_2020_12_117 crossref_primary_10_1109_TCI_2019_2945204 crossref_primary_10_3390_app9040778 crossref_primary_10_3390_math8111907 crossref_primary_10_1002_adma_202410508 crossref_primary_10_2139_ssrn_4109017 crossref_primary_10_1016_j_bspc_2017_05_001 crossref_primary_10_1038_s41598_019_44316_x crossref_primary_10_1117_1_JMI_4_3_034004 crossref_primary_10_1016_j_sigpro_2017_10_001 crossref_primary_10_3390_app13021034 crossref_primary_10_1016_j_sigpro_2022_108690 crossref_primary_10_1214_21_AOS2061 crossref_primary_10_1016_j_optlaseng_2023_107507 crossref_primary_10_1109_ACCESS_2021_3118608 crossref_primary_10_1021_acsami_9b10630 crossref_primary_10_1109_TCI_2023_3241547 crossref_primary_10_1007_s10489_020_02175_4 crossref_primary_10_1103_PhysRevMaterials_4_065002 crossref_primary_10_1049_ipr2_12112 crossref_primary_10_1109_TSP_2018_2821648 crossref_primary_10_1038_s41598_021_97668_8 crossref_primary_10_3847_2041_8213_aa618c crossref_primary_10_1007_s11263_021_01481_9 crossref_primary_10_1016_j_mtla_2019_100530 crossref_primary_10_1364_OPTICA_448287 crossref_primary_10_56977_jicce_2023_21_3_208 crossref_primary_10_1007_s11263_021_01466_8 crossref_primary_10_1364_OE_462935 crossref_primary_10_1017_S143192762100773X crossref_primary_10_1109_TNNLS_2017_2783384 crossref_primary_10_1016_j_jvcir_2019_04_011 crossref_primary_10_1049_iet_rsn_2019_0609 crossref_primary_10_1109_TIP_2019_2912122 crossref_primary_10_1016_j_jvcir_2022_103712 crossref_primary_10_1364_AO_53_007796 crossref_primary_10_1214_21_AOS2074 crossref_primary_10_3390_s19010206 crossref_primary_10_1038_srep20640 crossref_primary_10_1109_TSP_2018_2835403 crossref_primary_10_3233_XST_190469 crossref_primary_10_1016_j_csda_2024_107976 crossref_primary_10_1016_j_ijinfomgt_2016_05_013 crossref_primary_10_1016_j_optlaseng_2021_106641 crossref_primary_10_1109_TCI_2019_2929918 crossref_primary_10_1109_TCI_2021_3111572 crossref_primary_10_1109_LSP_2020_2980373 crossref_primary_10_1364_BOE_10_002869 crossref_primary_10_1137_16M1072930 crossref_primary_10_1109_TIM_2022_3228266 crossref_primary_10_1016_j_anucene_2024_110706 crossref_primary_10_1364_OE_429889 crossref_primary_10_1109_TIP_2015_2417505 crossref_primary_10_1109_TCI_2017_2700203 crossref_primary_10_3847_0004_637X_819_2_160 crossref_primary_10_1214_22_EJP758 crossref_primary_10_1109_TCI_2015_2453093 crossref_primary_10_1137_20M1342124 crossref_primary_10_3389_fonc_2020_00973 crossref_primary_10_1038_s41598_018_23363_w crossref_primary_10_1016_j_jmva_2019_04_004 crossref_primary_10_1007_s10851_021_01033_3 crossref_primary_10_3390_s18114006 crossref_primary_10_1007_s11042_018_6503_6 crossref_primary_10_29252_jsdp_17_4_139 crossref_primary_10_1186_s40537_019_0281_5 crossref_primary_10_1137_16M1103270 crossref_primary_10_1088_0957_4484_27_36_364001 crossref_primary_10_1007_s11760_015_0806_0 crossref_primary_10_1080_09500340_2019_1648895 crossref_primary_10_1038_s41565_020_0682_9 crossref_primary_10_1007_s11548_016_1434_z crossref_primary_10_1109_TCI_2017_2669867 crossref_primary_10_1002_adfm_202107017 crossref_primary_10_1109_TIP_2014_2362057 crossref_primary_10_1137_21M1456807 crossref_primary_10_1016_j_patcog_2017_07_023 crossref_primary_10_1016_j_sigpro_2024_109870 crossref_primary_10_1109_TCI_2017_2703900 crossref_primary_10_1002_smll_202300824 crossref_primary_10_1021_acsami_0c02032 crossref_primary_10_1109_TIP_2022_3145160 crossref_primary_10_1007_s10851_017_0742_4 crossref_primary_10_1016_j_jvcir_2016_09_009 crossref_primary_10_1109_TIP_2020_2988139 crossref_primary_10_1016_j_dsp_2015_02_002 crossref_primary_10_1109_TIT_2021_3049171 crossref_primary_10_1109_TIP_2019_2957918 crossref_primary_10_1007_s12221_016_6324_z crossref_primary_10_1371_journal_pone_0136964 crossref_primary_10_1137_23M1545859 crossref_primary_10_1016_j_measurement_2019_107426 crossref_primary_10_3233_XST_180469 crossref_primary_10_1016_j_chaos_2019_109427 crossref_primary_10_1155_2018_2417939 crossref_primary_10_1038_s41592_025_02595_5 crossref_primary_10_1093_imaiai_iaaa012 crossref_primary_10_1109_ACCESS_2017_2700162 crossref_primary_10_1049_iet_ipr_2018_5941 crossref_primary_10_1109_TIP_2016_2522303 crossref_primary_10_1137_16M1093707 crossref_primary_10_1007_s11760_022_02226_y crossref_primary_10_1016_j_patcog_2021_108363 crossref_primary_10_1016_j_ultramic_2016_05_005 crossref_primary_10_1016_j_ultramic_2015_10_020 crossref_primary_10_1049_iet_ipr_2018_5145 crossref_primary_10_1002_inf2_12026 crossref_primary_10_1109_TIP_2017_2771471 crossref_primary_10_1109_LSP_2016_2580600 crossref_primary_10_1364_JOSAA_35_001741 crossref_primary_10_1364_OE_27_033120 crossref_primary_10_3847_1538_4357_aab3d3 crossref_primary_10_1016_j_apm_2017_01_009 crossref_primary_10_1016_j_csda_2022_107423 crossref_primary_10_1364_AO_58_005148 crossref_primary_10_1364_OE_26_022773 crossref_primary_10_1038_s41598_022_17360_3 crossref_primary_10_1016_j_image_2021_116299 crossref_primary_10_1007_s11042_019_7408_8 crossref_primary_10_1109_ACCESS_2020_3040319 crossref_primary_10_1017_S143192761600787X crossref_primary_10_1111_biom_13384 crossref_primary_10_3390_electronics11223751 crossref_primary_10_1016_j_sigpro_2021_108165 crossref_primary_10_1002_adma_202303051 crossref_primary_10_1016_j_jmva_2017_02_009 crossref_primary_10_1142_S021972002250007X crossref_primary_10_1080_09500340_2018_1506058 crossref_primary_10_1016_j_bbe_2022_05_001 crossref_primary_10_3390_s18041019 crossref_primary_10_1016_j_neucom_2017_09_010 crossref_primary_10_1063_1_4959917 crossref_primary_10_1111_coin_12510 crossref_primary_10_1016_j_jvcir_2018_10_015 crossref_primary_10_1109_JBHI_2020_3024563 crossref_primary_10_1364_OE_383976 crossref_primary_10_1109_TCYB_2017_2713421 crossref_primary_10_1186_s12880_016_0112_5 crossref_primary_10_1155_2015_794586 crossref_primary_10_1002_aenm_202405599 crossref_primary_10_1093_imaiai_iaae036 crossref_primary_10_1016_j_optlaseng_2022_107388 crossref_primary_10_1137_15M1038074 crossref_primary_10_1109_TIP_2017_2753404 crossref_primary_10_1137_22M1516968 crossref_primary_10_1038_s41565_023_01457_5 crossref_primary_10_1109_TIP_2015_2470601 |
Cites_doi | 10.1109/TIP.2012.2202675 10.1109/TSP.2006.881199 10.1137/090756259 10.1088/2041-8205/724/2/L161 10.1137/070703983 10.1109/TIP.2011.2168410 10.1007/s11263-009-0272-7 10.1109/TIP.2007.901238 10.1109/TIP.2012.2210725 10.1109/TSP.2009.2016892 10.1109/TMI.2003.809622 10.1109/TIP.2006.877529 10.1109/TIP.2010.2056693 10.1214/009053604000000076 10.1109/TIP.2008.924386 10.1198/106186006X113430 10.1016/0041-5553(67)90040-7 10.1016/j.patcog.2009.09.023 10.1109/TMI.2009.2033991 10.1017/S0962492912000062 10.1007/978-3-540-87481-2_24 10.1016/j.sigpro.2011.08.011 10.1561/2200000016 10.1137/040616024 10.1145/1401890.1401969 10.4064/cm-3-2-138-146 10.1016/j.artint.2005.06.002 10.1093/biomet/35.3-4.246 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2013 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Springer Science+Business Media New York 2013 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC |
DOI | 10.1007/s10851-013-0435-6 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics Computer Science |
EISSN | 1573-7683 |
EndPage | 294 |
ExternalDocumentID | oai_HAL_hal_00957837v1 10_1007_s10851_013_0435_6 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Y Z83 Z88 Z8M Z8N Z8R Z8S Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 1XC |
ID | FETCH-LOGICAL-c322t-29ad89ab6183659789356b3cea46c0b69c8e4f745911e2e75457ff3186c4657f3 |
IEDL.DBID | U2A |
ISSN | 0924-9907 |
IngestDate | Fri May 09 12:21:35 EDT 2025 Tue Jul 01 03:20:32 EDT 2025 Thu Apr 24 23:00:44 EDT 2025 Fri Feb 21 02:35:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Gradient methods Newton’s method Signal representations Image denoising PCA Newton's method |
Language | English |
License | http://www.springer.com/tdm Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c322t-29ad89ab6183659789356b3cea46c0b69c8e4f745911e2e75457ff3186c4657f3 |
ORCID | 0000-0002-3181-0634 |
PageCount | 16 |
ParticipantIDs | hal_primary_oai_HAL_hal_00957837v1 crossref_primary_10_1007_s10851_013_0435_6 crossref_citationtrail_10_1007_s10851_013_0435_6 springer_journals_10_1007_s10851_013_0435_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20140200 2014-2-00 2014-02-01 |
PublicationDateYYYYMMDD | 2014-02-01 |
PublicationDate_xml | – month: 2 year: 2014 text: 20140200 |
PublicationDecade | 2010 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston |
PublicationTitle | Journal of mathematical imaging and vision |
PublicationTitleAbbrev | J Math Imaging Vis |
PublicationYear | 2014 |
Publisher | Springer US Springer Verlag |
Publisher_xml | – name: Springer US – name: Springer Verlag |
References | Singh, Gordon (CR40) 2008 Deledalle, Denis, Tupin (CR14) 2010 Banerjee, Merugu, Dhillon, Ghosh (CR3) 2005; 6 Kolaczyk, Nowak (CR24) 2004; 32 Boyd, Parikh, Chu, Peleato, Eckstein (CR6) 2011; 3 Lebrun, Colom, Buades, Morel (CR26) 2012; 21 Boulanger, Kervrann, Bouthemy, Elbau, Sibarita, Salamero (CR5) 2010; 29 Kervrann, Boulanger (CR22) 2006; 15 Dabov, Foi, Katkovnik, Egiazarian (CR11) 2007; 16 Chatterjee, Milanfar (CR9) 2011 CR18 Collins, Dasgupta, Schapire (CR10) 2002 Dabov, Foi, Katkovnik, Egiazarian (CR12) 2009 Harmany, Marcia, Willett (CR20) 2012; 21 Singh, Gordon (CR39) 2008 Fisz (CR17) 1955; 3 CR34 Borkowski, Reynolds, Green, Hwang, Petre, Krishnamurthy, Willett (CR4) 2010; 724 Willett, Nowak (CR42) 2003; 22 Willett, Nowak (CR43) 2004 Buades, Coll, Morel (CR8) 2005; 4 Gordon (CR19) 2003 Kolaczyk (CR23) 1999; 9 Willett (CR41) 2006 Mairal, Bach, Ponce, Sapiro, Zisserman (CR30) 2009 Yin, Osher, Goldfarb, Darbon (CR45) 2008; 1 Salmon, Strozecki (CR37) 2012; 92 Zhang, Fadili, Starck (CR46) 2008; 17 Katkovnik, Foi, Egiazarian, Astola (CR21) 2010; 86 Salmon, Deledalle, Willett, Harmany (CR36) 2012 Wright, Nowak, Figueiredo (CR44) 2009; 57 Mäkitalo, Foi (CR32) 2013; 22 Mäkitalo, Foi (CR31) 2011; 20 CR29 Lee, Battle, Raina, Ng (CR27) 2007 Zhang, Dong, Zhang, Shi (CR47) 2010; 43 Figueiredo, Bioucas-Dias (CR16) 2010; 19 Maggioni, Katkovnik, Egiazarian, Foi (CR28) 2013; 22 Anscombe (CR2) 1948; 35 Bregman (CR7) 1967; 7 Deledalle, Salmon, Dalalyan (CR15) 2011 Muresan, Parks (CR33) 2003 Roy, Gordon, Thrun (CR35) 2005; 23 Aharon, Elad, Bruckstein (CR1) 2006; 54 Danielyan, Foi, Katkovnik, Egiazarian (CR13) 2010 Krishnamurthy, Raginsky, Willett (CR25) 2010; 3 Zou, Hastie, Tibshirani (CR48) 2006; 15 Salmon, Willett, Arias-Castro (CR38) 2012 C. Kervrann (435_CR22) 2006; 15 B. Zhang (435_CR46) 2008; 17 A. Banerjee (435_CR3) 2005; 6 A. Danielyan (435_CR13) 2010 K. Dabov (435_CR11) 2007; 16 K. Dabov (435_CR12) 2009 A. Buades (435_CR8) 2005; 4 G.J. Gordon (435_CR19) 2003 S.J. Wright (435_CR44) 2009; 57 P. Chatterjee (435_CR9) 2011 C.-A. Deledalle (435_CR15) 2011 Z. Harmany (435_CR20) 2012; 21 D.D. Muresan (435_CR33) 2003 E.D. Kolaczyk (435_CR23) 1999; 9 K.J. Borkowski (435_CR4) 2010; 724 E.D. Kolaczyk (435_CR24) 2004; 32 M. Collins (435_CR10) 2002 M. Fisz (435_CR17) 1955; 3 M. Lebrun (435_CR26) 2012; 21 H. Zou (435_CR48) 2006; 15 K. Krishnamurthy (435_CR25) 2010; 3 R. Willett (435_CR41) 2006 W. Yin (435_CR45) 2008; 1 M. Aharon (435_CR1) 2006; 54 435_CR29 M.A.T. Figueiredo (435_CR16) 2010; 19 L.M. Bregman (435_CR7) 1967; 7 H. Lee (435_CR27) 2007 M. Mäkitalo (435_CR32) 2013; 22 C.-A. Deledalle (435_CR14) 2010 J. Mairal (435_CR30) 2009 M. Mäkitalo (435_CR31) 2011; 20 J. Boulanger (435_CR5) 2010; 29 N. Roy (435_CR35) 2005; 23 A.P. Singh (435_CR39) 2008 S. Boyd (435_CR6) 2011; 3 J. Salmon (435_CR36) 2012 F.J. Anscombe (435_CR2) 1948; 35 R. Willett (435_CR43) 2004 J. Salmon (435_CR38) 2012 M. Maggioni (435_CR28) 2013; 22 J. Salmon (435_CR37) 2012; 92 A.P. Singh (435_CR40) 2008 R. Willett (435_CR42) 2003; 22 435_CR18 V. Katkovnik (435_CR21) 2010; 86 L. Zhang (435_CR47) 2010; 43 435_CR34 |
References_xml | – start-page: 801 year: 2007 end-page: 808 ident: CR27 article-title: Efficient sparse coding algorithms publication-title: NIPS – ident: CR18 – volume: 22 start-page: 91 year: 2013 end-page: 103 ident: CR32 article-title: Optimal inversion of the generalized Anscombe transformation for Poisson-Gaussian noise publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2012.2202675 – year: 2012 ident: CR38 article-title: A two-stage denoising filter: the preprocessed Yaroslavsky filter publication-title: SSP – volume: 54 start-page: 4311 issue: 11 year: 2006 end-page: 4322 ident: CR1 article-title: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2006.881199 – volume: 3 start-page: 619 issue: 3 year: 2010 end-page: 645 ident: CR25 article-title: Multiscale photon-limited spectral image reconstruction publication-title: SIAM J. Imaging Sci. doi: 10.1137/090756259 – year: 2009 ident: CR12 article-title: BM3D image denoising with shape-adaptive principal component analysis publication-title: Proc. Workshop on Signal Processing with Adaptive Sparse Structured Representations (SPARS’09) – year: 2011 ident: CR15 article-title: Image denoising with patch based PCA: local versus global publication-title: BMVC – volume: 724 year: 2010 ident: CR4 article-title: Radioactive Scandium in the youngest galactic supernova remnant G1.9+0.3 publication-title: Astrophys. J. Lett. doi: 10.1088/2041-8205/724/2/L161 – volume: 1 start-page: 143 issue: 1 year: 2008 end-page: 168 ident: CR45 article-title: Bregman iterative algorithms for l1-minimization with applications to compressed sensing publication-title: SIAM J. Imaging Sci. doi: 10.1137/070703983 – volume: 21 start-page: 1084 issue: 3 year: 2012 end-page: 1096 ident: CR20 article-title: This is SPIRAL-TAP: sparse poisson intensity reconstruction algorithms—theory and practice publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2011.2168410 – volume: 86 start-page: 1 issue: 1 year: 2010 end-page: 32 ident: CR21 article-title: From local kernel to nonlocal multiple-model image denoising publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-009-0272-7 – ident: CR29 – volume: 16 start-page: 2080 issue: 8 year: 2007 end-page: 2095 ident: CR11 article-title: Image denoising by sparse 3-D transform-domain collaborative filtering publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2007.901238 – volume: 22 start-page: 119 year: 2013 end-page: 133 ident: CR28 article-title: A nonlocal transform-domain filter for volumetric data denoising and reconstruction publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2012.2210725 – start-page: 2272 year: 2009 end-page: 2279 ident: CR30 article-title: Non-local sparse models for image restoration publication-title: ICCV – start-page: 101 year: 2003 end-page: 104 ident: CR33 article-title: Adaptive principal components and image denoising publication-title: ICIP – start-page: 801 year: 2010 end-page: 804 ident: CR14 article-title: Poisson NL means: Unsupervised non local means for Poisson noise publication-title: ICIP – volume: 19 start-page: 3133 issue: 12 year: 2010 end-page: 3145 ident: CR16 article-title: Restoration of poissonian images using alternating direction optimization publication-title: IEEE Trans. Signal Process. – volume: 3 start-page: 138 year: 1955 end-page: 146 ident: CR17 article-title: The limiting distribution of a function of two independent random variables and its statistical application publication-title: Colloq. Math. – volume: 6 start-page: 1705 year: 2005 end-page: 1749 ident: CR3 article-title: Clustering with Bregman divergences publication-title: J. Mach. Learn. Res. – volume: 57 start-page: 2479 issue: 7 year: 2009 end-page: 2493 ident: CR44 article-title: Sparse reconstruction by separable approximation publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2009.2016892 – start-page: 593 year: 2003 end-page: 600 ident: CR19 article-title: Generalized linear models publication-title: NIPS – volume: 22 start-page: 332 issue: 3 year: 2003 end-page: 350 ident: CR42 article-title: Platelets: a multiscale approach for recovering edges and surfaces in photon-limited medical imaging publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2003.809622 – volume: 15 start-page: 2866 issue: 10 year: 2006 end-page: 2878 ident: CR22 article-title: Optimal spatial adaptation for patch-based image denoising publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2006.877529 – volume: 20 start-page: 99 issue: 1 year: 2011 end-page: 109 ident: CR31 article-title: Optimal inversion of the Anscombe transformation in low-count Poisson image denoising publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2010.2056693 – start-page: 617 year: 2002 end-page: 624 ident: CR10 article-title: A generalization of principal components analysis to the exponential family publication-title: NIPS – volume: 32 start-page: 500 issue: 2 year: 2004 end-page: 527 ident: CR24 article-title: Multiscale likelihood analysis and complexity penalized estimation publication-title: Ann. Stat. doi: 10.1214/009053604000000076 – volume: 17 start-page: 1093 issue: 7 year: 2008 end-page: 1108 ident: CR46 article-title: Wavelets, ridgelets, and curvelets for Poisson noise removal publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2008.924386 – volume: 35 start-page: 246 year: 1948 end-page: 254 ident: CR2 article-title: The transformation of Poisson, binomial and negative-binomial data publication-title: Biometrika – volume: 15 start-page: 265 issue: 2 year: 2006 end-page: 286 ident: CR48 article-title: Sparse principal component analysis publication-title: J. Comput. Graph. Stat. doi: 10.1198/106186006X113430 – year: 2011 ident: CR9 article-title: Patch-based near-optimal image denoising publication-title: ICIP – volume: 9 start-page: 119 issue: 1 year: 1999 end-page: 135 ident: CR23 article-title: Wavelet shrinkage estimation of certain Poisson intensity signals using corrected thresholds publication-title: Stat. Sin. – volume: 7 start-page: 200 issue: 3 year: 1967 end-page: 217 ident: CR7 article-title: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming publication-title: Comput. Math. Math. Phys. doi: 10.1016/0041-5553(67)90040-7 – year: 2012 ident: CR36 article-title: Poisson noise reduction with non-local PCA publication-title: ICASSP – ident: CR34 – volume: 43 start-page: 1531 issue: 4 year: 2010 end-page: 1549 ident: CR47 article-title: Two-stage image denoising by principal component analysis with local pixel grouping publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2009.09.023 – volume: 29 start-page: 442 issue: 2 year: 2010 end-page: 454 ident: CR5 article-title: Patch-based nonlocal functional for denoising fluorescence microscopy image sequences publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2033991 – start-page: 261 year: 2010 end-page: 266 ident: CR13 article-title: Denoising of multispectral images via nonlocal groupwise spectrum-PCA publication-title: CGIV2010/MCS’10 – volume: 23 start-page: 1 issue: 1 year: 2005 end-page: 40 ident: CR35 article-title: Finding approximate POMDP solutions through belief compression publication-title: J. Artif. Intell. Res. – year: 2004 ident: CR43 article-title: Fast multiresolution photon-limited image reconstruction publication-title: Proc. IEEE Int. Sym. Biomedical Imaging—ISBI ’04 – volume: 21 start-page: 475 issue: 1 year: 2012 end-page: 576 ident: CR26 article-title: Secrets of image denoising cuisine publication-title: Acta Numer. doi: 10.1017/S0962492912000062 – start-page: 358 year: 2008 end-page: 373 ident: CR40 article-title: A unified view of matrix factorization models publication-title: Machine Learning and Knowledge Discovery in Databases doi: 10.1007/978-3-540-87481-2_24 – volume: 92 start-page: 447 issue: 2 year: 2012 end-page: 489 ident: CR37 article-title: Patch reprojections for non local methods publication-title: Signal Process. doi: 10.1016/j.sigpro.2011.08.011 – year: 2006 ident: CR41 article-title: Multiscale analysis of photon-limited astronomical images publication-title: Statistical Challenges in Modern Astronomy (SCMA) IV – volume: 3 start-page: 1 issue: 1 year: 2011 end-page: 122 ident: CR6 article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000016 – volume: 4 start-page: 490 issue: 2 year: 2005 end-page: 530 ident: CR8 article-title: A review of image denoising algorithms, with a new one publication-title: Multiscale Model. Simul. doi: 10.1137/040616024 – start-page: 650 year: 2008 end-page: 658 ident: CR39 article-title: Relational learning via collective matrix factorization publication-title: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining doi: 10.1145/1401890.1401969 – volume: 32 start-page: 500 issue: 2 year: 2004 ident: 435_CR24 publication-title: Ann. Stat. doi: 10.1214/009053604000000076 – volume: 9 start-page: 119 issue: 1 year: 1999 ident: 435_CR23 publication-title: Stat. Sin. – volume: 22 start-page: 91 year: 2013 ident: 435_CR32 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2012.2202675 – ident: 435_CR34 – volume: 21 start-page: 1084 issue: 3 year: 2012 ident: 435_CR20 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2011.2168410 – volume: 29 start-page: 442 issue: 2 year: 2010 ident: 435_CR5 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2033991 – volume: 17 start-page: 1093 issue: 7 year: 2008 ident: 435_CR46 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2008.924386 – volume-title: ICIP year: 2011 ident: 435_CR9 – volume: 16 start-page: 2080 issue: 8 year: 2007 ident: 435_CR11 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2007.901238 – start-page: 261 volume-title: CGIV2010/MCS’10 year: 2010 ident: 435_CR13 – volume: 57 start-page: 2479 issue: 7 year: 2009 ident: 435_CR44 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2009.2016892 – volume-title: ICASSP year: 2012 ident: 435_CR36 – volume: 724 year: 2010 ident: 435_CR4 publication-title: Astrophys. J. Lett. doi: 10.1088/2041-8205/724/2/L161 – start-page: 801 volume-title: ICIP year: 2010 ident: 435_CR14 – volume: 3 start-page: 138 year: 1955 ident: 435_CR17 publication-title: Colloq. Math. doi: 10.4064/cm-3-2-138-146 – volume: 21 start-page: 475 issue: 1 year: 2012 ident: 435_CR26 publication-title: Acta Numer. doi: 10.1017/S0962492912000062 – start-page: 358 volume-title: Machine Learning and Knowledge Discovery in Databases year: 2008 ident: 435_CR40 doi: 10.1007/978-3-540-87481-2_24 – volume: 15 start-page: 2866 issue: 10 year: 2006 ident: 435_CR22 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2006.877529 – start-page: 617 volume-title: NIPS year: 2002 ident: 435_CR10 – start-page: 2272 volume-title: ICCV year: 2009 ident: 435_CR30 – volume: 22 start-page: 119 year: 2013 ident: 435_CR28 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2012.2210725 – volume-title: SSP year: 2012 ident: 435_CR38 – volume: 6 start-page: 1705 year: 2005 ident: 435_CR3 publication-title: J. Mach. Learn. Res. – start-page: 593 volume-title: NIPS year: 2003 ident: 435_CR19 – volume: 1 start-page: 143 issue: 1 year: 2008 ident: 435_CR45 publication-title: SIAM J. Imaging Sci. doi: 10.1137/070703983 – volume: 20 start-page: 99 issue: 1 year: 2011 ident: 435_CR31 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2010.2056693 – volume: 22 start-page: 332 issue: 3 year: 2003 ident: 435_CR42 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2003.809622 – volume: 23 start-page: 1 issue: 1 year: 2005 ident: 435_CR35 publication-title: J. Artif. Intell. Res. doi: 10.1016/j.artint.2005.06.002 – start-page: 101 volume-title: ICIP year: 2003 ident: 435_CR33 – volume-title: Statistical Challenges in Modern Astronomy (SCMA) IV year: 2006 ident: 435_CR41 – volume: 54 start-page: 4311 issue: 11 year: 2006 ident: 435_CR1 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2006.881199 – volume: 7 start-page: 200 issue: 3 year: 1967 ident: 435_CR7 publication-title: Comput. Math. Math. Phys. doi: 10.1016/0041-5553(67)90040-7 – volume: 86 start-page: 1 issue: 1 year: 2010 ident: 435_CR21 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-009-0272-7 – ident: 435_CR29 – volume: 35 start-page: 246 year: 1948 ident: 435_CR2 publication-title: Biometrika doi: 10.1093/biomet/35.3-4.246 – volume: 15 start-page: 265 issue: 2 year: 2006 ident: 435_CR48 publication-title: J. Comput. Graph. Stat. doi: 10.1198/106186006X113430 – volume: 3 start-page: 1 issue: 1 year: 2011 ident: 435_CR6 publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000016 – volume: 92 start-page: 447 issue: 2 year: 2012 ident: 435_CR37 publication-title: Signal Process. doi: 10.1016/j.sigpro.2011.08.011 – volume-title: BMVC year: 2011 ident: 435_CR15 – start-page: 650 volume-title: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining year: 2008 ident: 435_CR39 doi: 10.1145/1401890.1401969 – volume: 3 start-page: 619 issue: 3 year: 2010 ident: 435_CR25 publication-title: SIAM J. Imaging Sci. doi: 10.1137/090756259 – volume-title: Proc. Workshop on Signal Processing with Adaptive Sparse Structured Representations (SPARS’09) year: 2009 ident: 435_CR12 – volume: 19 start-page: 3133 issue: 12 year: 2010 ident: 435_CR16 publication-title: IEEE Trans. Signal Process. – volume-title: Proc. IEEE Int. Sym. Biomedical Imaging—ISBI ’04 year: 2004 ident: 435_CR43 – volume: 4 start-page: 490 issue: 2 year: 2005 ident: 435_CR8 publication-title: Multiscale Model. Simul. doi: 10.1137/040616024 – ident: 435_CR18 – start-page: 801 volume-title: NIPS year: 2007 ident: 435_CR27 – volume: 43 start-page: 1531 issue: 4 year: 2010 ident: 435_CR47 publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2009.09.023 |
SSID | ssj0008217 |
Score | 2.501874 |
Snippet | Photon-limited imaging arises when the number of photons collected by a sensor array is small relative to the number of detector elements. Photon limitations... Photon-limited imaging, which arises in applications such as spectral imaging, night vision, nuclear medicine, and astronomy, occurs when the number of photons... |
SourceID | hal crossref springer |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 279 |
SubjectTerms | Applications of Mathematics Computer Science Computer Vision and Pattern Recognition Image Processing Image Processing and Computer Vision Machine Learning Mathematical Methods in Physics Signal,Image and Speech Processing |
Title | Poisson Noise Reduction with Non-local PCA |
URI | https://link.springer.com/article/10.1007/s10851-013-0435-6 https://hal.science/hal-00957837 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbYdoEDjwFiPKYKcRqK1KZp0h67aWPiMU2ISeNUNWmqHVCH6OD343RteQiQOKVy0xzs2v6cODbAhetIrp1UEOonAWGJUsQPeEyoThylKfdtWSTITvh4xq7n3ry8x51X2e7VkWRhqT9ddkN0QIpuBOjjCW9Ay8PQ3eRxzWhYm1-fFm12bQwsCJpaUR1l_rTEF2fUWJhUyG_noYWbGe3CdokPrXAt0D3Y0FkbdkqsaJWamCOpasdQ0dqwdVeXYM33oTddIk-XmTXBUVv3pkSrEYJldl6RmJHCjVnTQXgAs9HwYTAmZWMEolD_VoQGceIHseSojxwjAsQcHpeu0jHjypY8UL5mqWAeWjJNtUCUJNIUtZcrxvHRPYRmtsz0EViucFFUacKpsplwfYkuHSMO6vBU4jvZAbviUKTKquGmecVT9FHv2DA1QqZGhqkR70Cv_uR5XTLjr8nnyPZ6nil2PQ5vI0Mz6E9g_PzmdOCykkpUqlj--5LH_5p9ApuIgdg6EfsUmquXV32GOGMlu9AKR_3-xIxXjzfDbvGfvQN0a8bt |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbYOAAHHgPEeFaI01CkNu2S9FhNTAW2aUKbtFu0pKk4oA7Rwe_H6dryECBxauWmOdix_TlxbIAr31PMeCknVCQhCRKtiQjZnFCTeNpQJlxVJMiOWDwN7mbdWXmPO6-y3asjycJSf7rshuiAFN0I0McT1oB1xALCLuUpjWrzK2jRZtfFwIKgqeXVUeZPU3xxRo1Hmwr57Ty0cDP9Xdgu8aETrQS6B2sma8FOiRWdUhNzJFXtGCpaC7aGdQnWfB864wXydJE5I3wa58GWaLVCcOzOKxIzUrgxZ9yLDmDav5n0YlI2RiAa9W9JaDhPRDhXDPWRYUSAmKPLlK_NPGDaVSzUwgQpD7poyQw1HFEST1PUXqYDhq_-ITSzRWaOwPG5j6JKE0a1G3BfKHTpGHFQj6UKv6k2uBWHpC6rhtvmFU_yo96xZapEpkrLVMna0Kl_eV6VzPhr8CWyvR5ni13H0UBamkV_HOPnN68N15VUZKli-e9THv9r9AVsxJPhQA5uR_cnsIl4KFglZZ9Cc_nyas4QcyzVebHG3gGCl8bQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbYkBAceAwQ41khTkPR2jRL22M1mAaMaUJM2i1a0lQcUDfRwu_H6YuHAIlTKzftwY7jz43zGeDCdSTXTuwR6kcBYZFSxA_4nFAdOUpT7tsyL5Ad8-GU3c56s7LPaVpVu1dbksWZBsPSlGTdZRR3Px18Q6RA8s4EGO8Jb8AqM4eBcUJPaVgvxT7NW-7amGQQXHa9alvzp098CUyNJ1MW-W1vNA85g23YLLGiFRbG3YEVnbRgq8SNVumVKYqq1gyVrAUb9zUda7oLnckC9btIrDFetfVg6FqNQSzzFxaFCclDmjXph3swHVw_9oekbJJAFPpiRmgwj_xgLjn6JsfsAPFHj0tX6TnjypY8UL5mscd6uKppqj1ETF4coydzxTjeuvvQTBaJPgDL9Vw0Wxxxqmzmub7E8I7ZB3V4LPGZbINdaUiokkHcNLJ4Fh_cx0apApUqjFIFb0OnfmVZ0Gf8Nfgc1V6PM8TXw3AkjMwgQQ9z6TenDZeVVUTpbunvnzz81-gzWJtcDcToZnx3BOsIjVhRn30MzezlVZ8g_MjkaT7F3gF8HMsD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Poisson+Noise+Reduction+with+Non-local+PCA&rft.jtitle=Journal+of+mathematical+imaging+and+vision&rft.au=Salmon%2C+Joseph&rft.au=Harmany%2C+Zachary&rft.au=Deledalle%2C+Charles-Alban&rft.au=Willett%2C+Rebecca&rft.date=2014-02-01&rft.pub=Springer+US&rft.issn=0924-9907&rft.eissn=1573-7683&rft.volume=48&rft.issue=2&rft.spage=279&rft.epage=294&rft_id=info:doi/10.1007%2Fs10851-013-0435-6&rft.externalDocID=10_1007_s10851_013_0435_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-9907&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-9907&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-9907&client=summon |