Input Impedance Analysis of Wearable Antenna and Experimental Study with Real Human Subjects: Differences between Individual Users
In human body communication (HBC) systems, radio-frequency signals are excited in the human body through a wearable antenna comprised of electrodes that are in contact with the surface of the body. The input impedance characteristics of these antennas are important design parameters for increasing t...
Saved in:
Published in | Electronics (Basel) Vol. 10; no. 10; p. 1152 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
12.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In human body communication (HBC) systems, radio-frequency signals are excited in the human body through a wearable antenna comprised of electrodes that are in contact with the surface of the body. The input impedance characteristics of these antennas are important design parameters for increasing transmission efficiency and reducing signal reflection, similar to other wireless circuits. In this study, we discuss variations of input impedance characteristics of a wearable antenna prototype caused by differences among real human subjects. A realistic human arm model is used for simulations, and the analytical results obtained are compared to measured data obtained from real human subjects, in a range from 1 to 100 MHz. The simulations of input impedance characteristics from antennas worn on the wrists of male and female models with dry and wet skin conditions show that the impedance variation between genders is small. The moisture condition of the skin has little influence on frequencies exceeding several MHz. Measurements with a proto-type wearable antenna and 22 real human subjects reveal that HBC is robust against the variations of individual users from the viewpoint of the voltage standing wave ratio. Moreover, a simplified rectangular prism model is proposed to analyze the thickness of body tissues. Comparisons of measured input impedances indicate that individual differences in impedance are mainly due to differences in the thickness of skin and fat layers. The model also enables us to design the antenna prototype without multiple subject experiments. |
---|---|
AbstractList | In human body communication (HBC) systems, radio-frequency signals are excited in the human body through a wearable antenna comprised of electrodes that are in contact with the surface of the body. The input impedance characteristics of these antennas are important design parameters for increasing transmission efficiency and reducing signal reflection, similar to other wireless circuits. In this study, we discuss variations of input impedance characteristics of a wearable antenna prototype caused by differences among real human subjects. A realistic human arm model is used for simulations, and the analytical results obtained are compared to measured data obtained from real human subjects, in a range from 1 to 100 MHz. The simulations of input impedance characteristics from antennas worn on the wrists of male and female models with dry and wet skin conditions show that the impedance variation between genders is small. The moisture condition of the skin has little influence on frequencies exceeding several MHz. Measurements with a proto-type wearable antenna and 22 real human subjects reveal that HBC is robust against the variations of individual users from the viewpoint of the voltage standing wave ratio. Moreover, a simplified rectangular prism model is proposed to analyze the thickness of body tissues. Comparisons of measured input impedances indicate that individual differences in impedance are mainly due to differences in the thickness of skin and fat layers. The model also enables us to design the antenna prototype without multiple subject experiments. |
Author | Muramatsu, Dairoku Sasaki, Ken |
Author_xml | – sequence: 1 givenname: Dairoku orcidid: 0000-0002-5728-4249 surname: Muramatsu fullname: Muramatsu, Dairoku – sequence: 2 givenname: Ken surname: Sasaki fullname: Sasaki, Ken |
BookMark | eNp9UEtLAzEQDqJgffwCLwHP1Tz20fVW6qtQEKzF4zKbTDBlm12TrNqrv9yIHkTEmcM8-L6Pme-A7LrOISEnnJ1JWbFzbFFF3zmrAmcpeS52yEiwshpXohK7P_p9chzCmqWouJxINiLvc9cPkc43PWpwCunUQbsNNtDO0EcED037uYzoHFBwml699ejtBl2Eli7joLf01cYneo9pvh024OhyaNbppnBBL60x6DEJB9pgfEV0dO60fbF6SPBVQB-OyJ6BNuDxdz0kq-urh9nteHF3M59NF2MlhYhj3jTC6BKy0piiLBttRKGAA5QNm-SFyQQKNKikyRVCZniuJ4XkWlZlVgrO5SE5_dLtffc8YIj1uht8ejfUIpciy1jFioSqvlDKdyF4NLWyEaLtXPRg25qz-tP1-g_XE1f-4vbJKfDbf1kfF9aOOA |
CitedBy_id | crossref_primary_10_1541_ieejeiss_142_625 crossref_primary_10_32604_cmc_2024_047572 |
Cites_doi | 10.3390/s21041431 10.1088/0031-9155/41/11/002 10.1002/adhm.201700024 10.1109/LifeTech52111.2021.9391845 10.1109/MCOM.2009.5350373 10.1016/j.jbi.2015.09.020 10.1109/ECCTD.2015.7300063 10.3390/app8091539 10.1109/MAES.2007.4365865 10.1109/SURV.2012.110112.00192 10.1109/8.686763 10.1109/MEMB.2003.1213624 10.1109/JSSC.2011.2170632 10.1109/TAP.2007.900226 10.1109/SURV.2013.121313.00064 10.1109/TVLSI.2014.2379443 10.5104/jiep.16.528 10.1109/TBME.1976.324601 10.1109/TKDE.2007.1042 10.1038/scientificamerican0991-94 10.1109/TAP.2013.2246534 10.1109/TBME.2018.2879462 10.1109/ICCE.2014.6775949 10.1109/TSMCC.2009.2032660 10.3390/s19184015 10.1097/00006534-195505000-00006 10.1109/ACCESS.2017.2707384 10.1016/S0924-4247(03)00060-8 10.1147/sj.353.0609 10.1109/TBCAS.2017.2695058 10.1088/0031-9155/49/1/001 10.1109/TBCAS.2019.2918323 10.1109/TMTT.2009.2029664 10.1109/JBHI.2015.2448111 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.3390/electronics10101152 |
DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-9292 |
ExternalDocumentID | 10_3390_electronics10101152 |
GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c322t-1bb2fd7a47ff677bdf26ca1aa7b0856f42e2efec3f5cea4f15d8631d397472113 |
IEDL.DBID | BENPR |
ISSN | 2079-9292 |
IngestDate | Fri Jul 25 03:40:49 EDT 2025 Tue Jul 01 02:00:24 EDT 2025 Thu Apr 24 23:06:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c322t-1bb2fd7a47ff677bdf26ca1aa7b0856f42e2efec3f5cea4f15d8631d397472113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5728-4249 |
OpenAccessLink | https://www.proquest.com/docview/2532440906?pq-origsite=%requestingapplication% |
PQID | 2532440906 |
PQPubID | 2032404 |
ParticipantIDs | proquest_journals_2532440906 crossref_citationtrail_10_3390_electronics10101152 crossref_primary_10_3390_electronics10101152 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-12 |
PublicationDateYYYYMMDD | 2021-05-12 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Electronics (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Muramatsu (ref_27) 2014; 26 Cao (ref_11) 2009; 47 Haga (ref_29) 2013; 61 Pernek (ref_4) 2015; 58 ref_13 ref_35 Nakano (ref_38) 1998; 46 ref_34 Nagaoka (ref_36) 2004; 49 Gordon (ref_40) 1976; BME-23 Dissanayake (ref_18) 2009; 57 ref_32 Asada (ref_7) 2003; 22 ref_30 ref_19 ref_17 ref_16 Lara (ref_3) 2013; 15 Wang (ref_22) 2015; 23 Southwood (ref_39) 1955; 15 Bae (ref_20) 2012; 47 Mao (ref_21) 2017; 11 Pantelopoulos (ref_6) 2010; 40 Wang (ref_23) 2016; 20 Salonen (ref_15) 2007; 22 Gabriel (ref_37) 1996; 41 ref_24 ref_1 Ali (ref_9) 2017; 5 Zimmerman (ref_14) 1996; 35 ref_2 Nishida (ref_25) 2019; 13 Muramatsu (ref_26) 2013; 16 Maity (ref_31) 2019; 66 Yin (ref_5) 2008; 20 ref_8 Fujii (ref_28) 2007; 55 Jin (ref_10) 2017; 6 Movassaghi (ref_12) 2014; 16 Hachisuka (ref_33) 2003; 105 |
References_xml | – ident: ref_19 doi: 10.3390/s21041431 – ident: ref_34 – volume: 41 start-page: 2251 year: 1996 ident: ref_37 article-title: The Dielectric Properties of Biological Tissues: II. Measurements in the Frequency Range 10 Hz to 20 GHz publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/41/11/002 – volume: 6 start-page: 1700024 year: 2017 ident: ref_10 article-title: Advanced Materials for Health Monitoring with Skin-Based Wearable Devices publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201700024 – ident: ref_8 doi: 10.1109/LifeTech52111.2021.9391845 – volume: 47 start-page: 84 year: 2009 ident: ref_11 article-title: Enabling Technologies for Wireless Body Area Networks: A Survey and Outlook publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2009.5350373 – volume: 58 start-page: 145 year: 2015 ident: ref_4 article-title: Recognizing the Intensity of Strength Training Exercises with Wearable Sensors publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2015.09.020 – ident: ref_24 doi: 10.1109/ECCTD.2015.7300063 – ident: ref_30 doi: 10.3390/app8091539 – volume: 22 start-page: 18 year: 2007 ident: ref_15 article-title: Effects of Antenna Bending on Input Matching and Impedance Bandwidth publication-title: IEEE Aerosp. Electron. Syst. Mag. doi: 10.1109/MAES.2007.4365865 – ident: ref_16 – volume: 15 start-page: 1192 year: 2013 ident: ref_3 article-title: A Survey on Human Activity Recognition Using Wearable Sensors publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/SURV.2012.110112.00192 – volume: 46 start-page: 788 year: 1998 ident: ref_38 article-title: Realization of Dual-Frequency and Wide-Band VSWR Performances Using Normal-Model Helical and Inverted-F Antennas publication-title: IEEE Trans. Antennas Propagat. doi: 10.1109/8.686763 – volume: 26 start-page: 9 year: 2014 ident: ref_27 article-title: Analytical and Experimental Studies on Human Body Communication between Wristwatch and Handheld Devices Using Muscle Homogenous Phantom at 10 MHz publication-title: Sens. Mater. – volume: 22 start-page: 28 year: 2003 ident: ref_7 article-title: Mobile Monitoring with Wearable Photoplethysmographic Biosensors publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/MEMB.2003.1213624 – volume: 47 start-page: 310 year: 2012 ident: ref_20 article-title: A 0.24-NJ/b Wireless Body-Area-Network Transceiver With Scalable Double-FSK Modulation publication-title: IEEE J. Solid State Circuits doi: 10.1109/JSSC.2011.2170632 – volume: 55 start-page: 2080 year: 2007 ident: ref_28 article-title: Electric Field Distributions of Wearable Devices Using the Human Body as a Transmission Channel publication-title: IEEE Trans. Antennas Propagat. doi: 10.1109/TAP.2007.900226 – volume: 16 start-page: 1658 year: 2014 ident: ref_12 article-title: Wireless Body Area Networks: A Survey publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/SURV.2013.121313.00064 – ident: ref_35 – volume: 23 start-page: 2829 year: 2015 ident: ref_22 article-title: A 5.4-MW 180-Cm Transmission Distance 2.5-Mb/s Advanced Techniques-Based Novel Intrabody Communication Receiver Analog Front End publication-title: IEEE Trans. VLSI Syst. doi: 10.1109/TVLSI.2014.2379443 – volume: 16 start-page: 528 year: 2013 ident: ref_26 article-title: Input Impedance Analysis of a Human Body Communication Transmitter Using a Realistic Human Model and a Simplified Layered Model publication-title: Trans. Jpn. Inst. Electron. Packag. doi: 10.5104/jiep.16.528 – volume: BME-23 start-page: 434 year: 1976 ident: ref_40 article-title: A Mathematical Model of the Human Temperature Regulatory System—Transient Cold Exposure Response publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.1976.324601 – volume: 20 start-page: 1082 year: 2008 ident: ref_5 article-title: Sensor-Based Abnormal Human-Activity Detection publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2007.1042 – ident: ref_1 doi: 10.1038/scientificamerican0991-94 – volume: 61 start-page: 2807 year: 2013 ident: ref_29 article-title: Equivalent Circuit of Intrabody Communication Channels Inducing Conduction Currents Inside the Human Body publication-title: IEEE Trans. Antennas Propagat. doi: 10.1109/TAP.2013.2246534 – volume: 66 start-page: 1791 year: 2019 ident: ref_31 article-title: Bio-Physical Modeling, Characterization, and Optimization of Electro-Quasistatic Human Body Communication publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2879462 – ident: ref_2 – ident: ref_32 doi: 10.1109/ICCE.2014.6775949 – volume: 40 start-page: 1 year: 2010 ident: ref_6 article-title: A Survey on Wearable Sensor-Based Systems for Health Monitoring and Prognosis publication-title: IEEE Trans. Syst. Man Cybern. C doi: 10.1109/TSMCC.2009.2032660 – ident: ref_17 doi: 10.3390/s19184015 – volume: 15 start-page: 423 year: 1955 ident: ref_39 article-title: The Thickness of the Skin publication-title: Plast. Reconstr. Surg. doi: 10.1097/00006534-195505000-00006 – volume: 5 start-page: 9163 year: 2017 ident: ref_9 article-title: Novel Approach to Non-Invasive Blood Glucose Monitoring Based on Transmittance and Refraction of Visible Laser Light publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2707384 – volume: 105 start-page: 109 year: 2003 ident: ref_33 article-title: Development of Wearable Intra-Body Communication Devices publication-title: Sens. Actuators A Phys. doi: 10.1016/S0924-4247(03)00060-8 – volume: 35 start-page: 609 year: 1996 ident: ref_14 article-title: Personal Area Networks: Near-Field Intrabody Communication publication-title: IBM Syst. J. doi: 10.1147/sj.353.0609 – ident: ref_13 – volume: 11 start-page: 1001 year: 2017 ident: ref_21 article-title: A Self-Adaptive Capacitive Compensation Technique for Body Channel Communication publication-title: IEEE Trans. Biomed. Circuits Syst. doi: 10.1109/TBCAS.2017.2695058 – volume: 49 start-page: 1 year: 2004 ident: ref_36 article-title: Development of Realistic High-Resolution Whole-Body Voxel Models of Japanese Adult Males and Females of Average Height and Weight, and Application of Models to Radio-Frequency Electromagnetic-FIeld Dosimetry publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/49/1/001 – volume: 13 start-page: 746 year: 2019 ident: ref_25 article-title: Equivalent Circuit Model Viewed From Receiver Side in Human Body Communication publication-title: IEEE Trans. Biomed. Circuits Syst. doi: 10.1109/TBCAS.2019.2918323 – volume: 57 start-page: 2480 year: 2009 ident: ref_18 article-title: Dielectric Loaded Impedance Matching for Wideband Implanted Antennas publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/TMTT.2009.2029664 – volume: 20 start-page: 1044 year: 2016 ident: ref_23 article-title: Cascaded Network Body Channel Model for Intrabody Communication publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2015.2448111 |
SSID | ssj0000913830 |
Score | 2.229521 |
Snippet | In human body communication (HBC) systems, radio-frequency signals are excited in the human body through a wearable antenna comprised of electrodes that are in... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 1152 |
SubjectTerms | Antenna design Antennas Communications systems Design parameters Electrodes Electromagnetism Females Gender differences Human body Human subjects Input impedance Investigations Males Printed circuit boards Prototypes Radio signals Signal reflection Simulation Skin Skin diseases Thickness Tissues Transmission efficiency Transmitters Voltage standing wave ratios Wearable computers Wearable technology |
Title | Input Impedance Analysis of Wearable Antenna and Experimental Study with Real Human Subjects: Differences between Individual Users |
URI | https://www.proquest.com/docview/2532440906 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07TwJBEN4INFoYnxFFMoWlF7i9vYc2xgcIJhBDJNJd9vZRmQMFChsLf7kzsLwSQ666V3MzO_PN3Oz3MXZlEGRIdBVPKa48gTnSu4mVxlNt_VBnUs1UIjrdqNUXL4Nw4BpuYzdWuYiJs0Cth4p65DUeYurHYqQe3Y0-PVKNor-rTkKjwEoYgpOkyEoPje5rb9llIdbLJKjP6YYCrO9rK3WZsU_8an7IN1PSZkSepZnmAdt3-BDu5wY9ZDsmP2J7a6yBx-y3nY-mE2gj4NVkM1gQi8DQwjt6Lu2GwouIhnMJMtfQWKPxB5oc_Abqv0IPUSLM2viAAYQ6MuNbeHKSKRhAwE1xQXu5bQv6tD3zhPWbjbfHluekFDyFK3bi-VnGrY6liK2N4jjTlkdK-lLGGWKuyApuuLFGBTZURgoyUxIFvg6o3MAaMThlxXyYmzMGQgq0YSACYTEAIOo1CPqUsBIPYXlWZnzxNVPleMZJ7uIjxXqDTJD-Y4Iyu16-NJrTbGx_vLIwU-rW3Dhdecj59tsXbJfTZApxsPIKK06-puYSocUkq7JC0nyuOi_Cs85P4w9hnNZ1 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT4NAEJ5oPagH4zPW5xz0JrEsC6iJMUatxdfB2OgNl32cDK22xvTqD_I3OkOhamK8GU6wQMjOx-w3s_MA2LJEMhRBxdNaaE_SGuntx9rQqXF-aDKliy4R1zdRqy0vHsKHMfiocmE4rLLSiYWiNh3NPvJdEdLST8ZIIzrqPnvcNYp3V6sWGkNYXNrBG5lsvcPklOS7LUTz7O6k5ZVdBTxN4O17fpYJZ2IlY-eiOM6ME5FWvlJxRvQjclJYYZ3VgQu1VZK_eC8KfBMw8yZzKaD3jsOEDOgCZ6Y3z0c-Ha6xuRc0hsWNaLyx-9XLpudzNTc_FD8XwJ_6v1jUmrMwU7JRPB7CZw7GbD4P099qFC7Ae5J3X_uYEL02jBCsyphgx-E9TQjnXtFF4t65QpUbPPvWNAA5TnGA7O3FW-KkWGwaIKkr9v_0DvC0bNBC6grLmDFMRkli2OZk0EVo_8sUL0Et7-R2GVAqSYgJZCAdqRvi2JYoppZO0SGdyOogqtlMdVnVnJtrPKVk3bAI0l9EUIed0UPdYVGPv29fq8SUln94L_3C48rfw5sw2bq7vkqvkpvLVZgSHBPD1V_FGtT6L692nUhNP9sokITw-N_Q_QRQ8hEn |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB6liYTKoaLQqjw7h3LDSry7tgEJVYUkwgUihIjKzV3v41Q5gQQhrv1Z_DpmEjsQCXGLfPJT1s7nmW_G8wD44YhkaIJKYIwwgSIbGRwkxtKu9WFkc20mUyIuevFpX_2-iW5q8FTVwnBaZaUTJ4raDgzHyJsiItNPzkgrbvoyLeKy3f05vA14ghT_aa3GaUwhcuYeH8h9Gx2lbZL1rhDdzvXJaVBOGAgMAXkchHkuvE20SryPkyS3XsRGh1onOVGR2CvhhPPOSB8ZpxW__X4sQyuZhZPrJOm5H6CRsFdUh8Zxp3d5NYvwcMfNfdmatjqS8qDVfJlsMwq5t1sYiXlzOG8NJiauuwKfSm6Kv6Zg-gw1V6zC8quOhWvwPy2G92NMiWxbxgtWTU1w4PEPLQlXYtFBYuKFRl1Y7LwaIYCctfiIHPvFK2KoOPmFgKS8OBo0OsR2Oa6FlBeWGWSYzkrGsM-loV-gv5BF_gr1YlC4b4BKK8KPVFJ5Uj7EuB0RTqO8pk15ka-DqFYzM2WPcx618S8jX4dFkL0hgnXYm900nLb4eP_yrUpMWfm9j7IXdG68f_o7LBFss_O0d7YJHwUnyHArWLEF9fHdvdsmhjPOd0ooIfxdNHqfAQS3Frk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Input+Impedance+Analysis+of+Wearable+Antenna+and+Experimental+Study+with+Real+Human+Subjects%3A+Differences+between+Individual+Users&rft.jtitle=Electronics+%28Basel%29&rft.au=Muramatsu%2C+Dairoku&rft.au=Sasaki%2C+Ken&rft.date=2021-05-12&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=10&rft.issue=10&rft.spage=1152&rft_id=info:doi/10.3390%2Felectronics10101152&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics10101152 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |