Numerical simulations of shear-induced consecutive coronal mass ejections

Context. It is widely accepted that photospheric shearing motions play an important role in triggering the initiation of coronal mass ejections (CMEs). Even so, there are events for which the source signatures are difficult to locate, while the CMEs can be clearly observed in coronagraph data. These...

Full description

Saved in:
Bibliographic Details
Published inAstronomy and astrophysics (Berlin) Vol. 637; p. A77
Main Authors Talpeanu, D.-C., Chané, E., Poedts, S., D’Huys, E., Mierla, M., Roussev, I., Hosteaux, S.
Format Journal Article
LanguageEnglish
Published Heidelberg EDP Sciences 01.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Context. It is widely accepted that photospheric shearing motions play an important role in triggering the initiation of coronal mass ejections (CMEs). Even so, there are events for which the source signatures are difficult to locate, while the CMEs can be clearly observed in coronagraph data. These events are therefore called ‘stealth’ CMEs. They are of particular interest to space weather forecasters, since eruptions are usually discarded from arrival predictions if they appear to be backsided, which means not presenting any clear low-coronal signatures on the visible solar disc. Such assumptions are not valid for stealth CMEs since they can originate from the front side of the Sun and be Earth-directed, but they remain undetected and can therefore trigger unpredicted geomagnetic storms. Aims. We numerically model and investigate the effects of shearing motion variations onto the resulting eruptions and we focus in particular on obtaining a stealth CME in the trailing current sheet of a previous ejection. Methods. We used the 2.5D magnetohydrodynamics package of the code MPI-AMRVAC to numerically simulate consecutive CMEs by imposing shearing motions onto the inner boundary, which represents, in our case, the low corona. The initial magnetic configuration consists of a triple arcade structure embedded into a bimodal solar wind, and the sheared polarity inversion line is found in the southern loop system. The mesh was continuously adapted through a refinement method that applies to current carrying structures, allowing us to easily track the CMEs in high resolution, without resolving the grid in the entire domain. We also compared the obtained eruptions with the observed directions of propagation, determined using a forward modelling reconstruction technique based on a graduated cylindrical shell geometry, of an initial multiple coronal mass ejection (MCME) event that occurred in September 2009. We further analysed the simulated ejections by tracking the centre of their flux ropes in latitude and their total speed. Radial Poynting flux computation was employed as well to follow the evolution of electromagnetic energy introduced into the system. Results. Changes within 1% in the shearing speed result in three different scenarios for the second CME, although the preceding eruption seems insusceptible to such small variations. Depending on the applied shearing speed, we thus obtain a failed eruption, a stealth, or a CME driven by the imposed shear, as the second ejection. The dynamics of all eruptions are compared with the observed directions of propagation of an MCME event and a good correlation is achieved. The Poynting flux analysis reveals the temporal variation of the important steps of eruptions. Conclusions. For the first time, a stealth CME is simulated in the aftermath of a first eruption, originating from an asymmetric streamer configuration, through changes in the applied shearing speed, indicating it is not necessary for a closed streamer to exist high in the corona for such an event to occur. We also emphasise the high sensitivity of the corona to small changes in motions at the photosphere, or in our simulations, at the low corona.
AbstractList Context. It is widely accepted that photospheric shearing motions play an important role in triggering the initiation of coronal mass ejections (CMEs). Even so, there are events for which the source signatures are difficult to locate, while the CMEs can be clearly observed in coronagraph data. These events are therefore called ‘stealth’ CMEs. They are of particular interest to space weather forecasters, since eruptions are usually discarded from arrival predictions if they appear to be backsided, which means not presenting any clear low-coronal signatures on the visible solar disc. Such assumptions are not valid for stealth CMEs since they can originate from the front side of the Sun and be Earth-directed, but they remain undetected and can therefore trigger unpredicted geomagnetic storms. Aims. We numerically model and investigate the effects of shearing motion variations onto the resulting eruptions and we focus in particular on obtaining a stealth CME in the trailing current sheet of a previous ejection. Methods. We used the 2.5D magnetohydrodynamics package of the code MPI-AMRVAC to numerically simulate consecutive CMEs by imposing shearing motions onto the inner boundary, which represents, in our case, the low corona. The initial magnetic configuration consists of a triple arcade structure embedded into a bimodal solar wind, and the sheared polarity inversion line is found in the southern loop system. The mesh was continuously adapted through a refinement method that applies to current carrying structures, allowing us to easily track the CMEs in high resolution, without resolving the grid in the entire domain. We also compared the obtained eruptions with the observed directions of propagation, determined using a forward modelling reconstruction technique based on a graduated cylindrical shell geometry, of an initial multiple coronal mass ejection (MCME) event that occurred in September 2009. We further analysed the simulated ejections by tracking the centre of their flux ropes in latitude and their total speed. Radial Poynting flux computation was employed as well to follow the evolution of electromagnetic energy introduced into the system. Results. Changes within 1% in the shearing speed result in three different scenarios for the second CME, although the preceding eruption seems insusceptible to such small variations. Depending on the applied shearing speed, we thus obtain a failed eruption, a stealth, or a CME driven by the imposed shear, as the second ejection. The dynamics of all eruptions are compared with the observed directions of propagation of an MCME event and a good correlation is achieved. The Poynting flux analysis reveals the temporal variation of the important steps of eruptions. Conclusions. For the first time, a stealth CME is simulated in the aftermath of a first eruption, originating from an asymmetric streamer configuration, through changes in the applied shearing speed, indicating it is not necessary for a closed streamer to exist high in the corona for such an event to occur. We also emphasise the high sensitivity of the corona to small changes in motions at the photosphere, or in our simulations, at the low corona.
Context. It is widely accepted that photospheric shearing motions play an important role in triggering the initiation of coronal mass ejections (CMEs). Even so, there are events for which the source signatures are difficult to locate, while the CMEs can be clearly observed in coronagraph data. These events are therefore called ‘stealth’ CMEs. They are of particular interest to space weather forecasters, since eruptions are usually discarded from arrival predictions if they appear to be backsided, which means not presenting any clear low-coronal signatures on the visible solar disc. Such assumptions are not valid for stealth CMEs since they can originate from the front side of the Sun and be Earth-directed, but they remain undetected and can therefore trigger unpredicted geomagnetic storms. Aims. We numerically model and investigate the effects of shearing motion variations onto the resulting eruptions and we focus in particular on obtaining a stealth CME in the trailing current sheet of a previous ejection. Methods. We used the 2.5D magnetohydrodynamics package of the code MPI-AMRVAC to numerically simulate consecutive CMEs by imposing shearing motions onto the inner boundary, which represents, in our case, the low corona. The initial magnetic configuration consists of a triple arcade structure embedded into a bimodal solar wind, and the sheared polarity inversion line is found in the southern loop system. The mesh was continuously adapted through a refinement method that applies to current carrying structures, allowing us to easily track the CMEs in high resolution, without resolving the grid in the entire domain. We also compared the obtained eruptions with the observed directions of propagation, determined using a forward modelling reconstruction technique based on a graduated cylindrical shell geometry, of an initial multiple coronal mass ejection (MCME) event that occurred in September 2009. We further analysed the simulated ejections by tracking the centre of their flux ropes in latitude and their total speed. Radial Poynting flux computation was employed as well to follow the evolution of electromagnetic energy introduced into the system. Results. Changes within 1% in the shearing speed result in three different scenarios for the second CME, although the preceding eruption seems insusceptible to such small variations. Depending on the applied shearing speed, we thus obtain a failed eruption, a stealth, or a CME driven by the imposed shear, as the second ejection. The dynamics of all eruptions are compared with the observed directions of propagation of an MCME event and a good correlation is achieved. The Poynting flux analysis reveals the temporal variation of the important steps of eruptions. Conclusions. For the first time, a stealth CME is simulated in the aftermath of a first eruption, originating from an asymmetric streamer configuration, through changes in the applied shearing speed, indicating it is not necessary for a closed streamer to exist high in the corona for such an event to occur. We also emphasise the high sensitivity of the corona to small changes in motions at the photosphere, or in our simulations, at the low corona.
Author Roussev, I.
Chané, E.
D’Huys, E.
Poedts, S.
Talpeanu, D.-C.
Mierla, M.
Hosteaux, S.
Author_xml – sequence: 1
  givenname: D.-C.
  orcidid: 0000-0002-9311-9021
  surname: Talpeanu
  fullname: Talpeanu, D.-C.
– sequence: 2
  givenname: E.
  orcidid: 0000-0001-5953-0370
  surname: Chané
  fullname: Chané, E.
– sequence: 3
  givenname: S.
  orcidid: 0000-0002-1743-0651
  surname: Poedts
  fullname: Poedts, S.
– sequence: 4
  givenname: E.
  orcidid: 0000-0002-2914-2040
  surname: D’Huys
  fullname: D’Huys, E.
– sequence: 5
  givenname: M.
  orcidid: 0000-0003-4105-7364
  surname: Mierla
  fullname: Mierla, M.
– sequence: 6
  givenname: I.
  orcidid: 0000-0002-4459-0060
  surname: Roussev
  fullname: Roussev, I.
– sequence: 7
  givenname: S.
  surname: Hosteaux
  fullname: Hosteaux, S.
BookMark eNo9kE1Lw0AQhhepYFv9BV4CnmP3q7vZoxQ_CkUvel4mmwkmJNm6mwj-ezdWOpeZd3jfYXhWZDH4AQm5ZfSe0S3bUEplroRiG045FVpqfUGWTAqeUy3VgizPjiuyirFNkrNCLMn-deoxNA66LDb91MHY-CFmvs7iJ0LIm6GaHFaZS1t009h8Y5qDH1KghxgzbNH9Za7JZQ1dxJv_viYfT4_vu5f88Pa83z0ccic4H3O2TVXWpqxMhShVgWB0KY3ilQZFldZAGVWmdlAiaBDMOOGYgZpLk6RYk7vT3WPwXxPG0bZ-CumfaLksNGOFpEVyiZPLBR9jwNoeQ9ND-LGM2pmZnYnYmYg9MxO_FIxg3g
CitedBy_id crossref_primary_10_1051_0004_6361_202141977
crossref_primary_10_1007_s11214_021_00857_0
crossref_primary_10_3847_1538_4357_aca52c
crossref_primary_10_1051_0004_6361_202243150
crossref_primary_10_3389_fspas_2021_695966
Cites_doi 10.1029/2003JA010150
10.1007/s11207-016-0988-9
10.1086/162799
10.1088/0004-637X/760/1/81
10.1086/308640
10.1007/s11214-008-9341-4
10.1051/0004-6361/201935894
10.1007/s11207-014-0552-4
10.1007/s11214-007-9277-0
10.1088/0004-637X/722/1/289
10.1029/2000JA000005
10.1029/2000JA900093
10.1007/s11214-006-6541-7
10.1086/376982
10.1088/0004-637X/701/1/283
10.1051/0004-6361/201832976
10.1086/508254
10.1088/0004-637X/744/1/66
10.3847/1538-4365/aaa6c8
10.1051/0004-6361:200811022
10.1051/0004-6361/201730893
10.1016/j.jcp.2011.01.020
10.1086/160379
10.1007/s11207-009-9346-5
10.1086/520493
10.1088/0004-637X/691/2/1222
10.1086/524732
10.1051/0004-6361:20041676
10.1088/0067-0049/194/2/33
10.1051/0004-6361:20054262
10.1007/s11207-011-9881-8
10.1086/309275
10.1088/0004-637X/795/1/49
10.1051/0004-6361:20053802
10.1029/94JA02731
10.1088/0067-0049/214/1/4
10.3847/1538-4357/aa6caa
10.1007/s11207-012-0217-0
10.1117/12.506877
10.1006/jcph.2001.6961
10.1086/187711
10.1086/509913
10.1117/12.460267
10.1007/s11207-017-1147-7
ContentType Journal Article
Copyright Copyright EDP Sciences May 2020
Copyright_xml – notice: Copyright EDP Sciences May 2020
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1051/0004-6361/202037477
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1432-0746
ExternalDocumentID 10_1051_0004_6361_202037477
GroupedDBID -DZ
-~X
2.D
23N
2WC
4.4
5GY
5VS
6TJ
85S
AACRX
AAFNC
AAFWJ
AAJMC
AAOTM
AAYXX
ABDNZ
ABPPZ
ABTAH
ABUBZ
ABZDU
ACACO
ACGFS
ACNCT
ACYGS
ACYRX
ADCOW
ADHUB
ADIYS
AEILP
AENEX
AI.
AIZTS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZPVJ
CITATION
CS3
E.L
E3Z
EBS
EJD
F5P
FRP
G8K
GI~
HG6
I09
IL9
LAS
MVM
OHT
OK1
RED
RHV
RIG
RNP
RNS
RSV
SDH
SJN
SOJ
TR2
UPT
UQL
VH1
VOH
WH7
XOL
ZY4
8FD
H8D
L7M
ID FETCH-LOGICAL-c322t-15555bf9bd9dee468ea97b4962d7a60677a01069fcabea7a319c3c19af2497a33
ISSN 0004-6361
IngestDate Thu Oct 10 15:57:00 EDT 2024
Thu Sep 12 17:52:46 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c322t-15555bf9bd9dee468ea97b4962d7a60677a01069fcabea7a319c3c19af2497a33
ORCID 0000-0002-9311-9021
0000-0002-2914-2040
0000-0003-4105-7364
0000-0002-1743-0651
0000-0001-5953-0370
0000-0002-4459-0060
OpenAccessLink https://www.aanda.org/articles/aa/pdf/2020/05/aa37477-20.pdf
PQID 2487118408
PQPubID 1796397
ParticipantIDs proquest_journals_2487118408
crossref_primary_10_1051_0004_6361_202037477
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Astronomy and astrophysics (Berlin)
PublicationYear 2020
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Kaiser (R18) 2008; 136
Chae (R5) 2000; 533
Hosteaux (R14) 2019; 632
Pevtsov (R31) 2012; 277
Porth (R32) 2014; 214
Malherbe (R26) 1983; 119
Hosteaux (R13) 2018; 620
Riley (R33) 2007; 655
Athay (R3) 1985; 288
Thernisien (R37) 2006; 652
Forbes (R11) 2000; 105
Howard (R16) 2008; 136
Karpen (R19) 2012; 760
Robbrecht (R34) 2009; 691
Van der Holst (R41) 2006; 121
Nitta (R30) 2017; 292
Robbrecht (R35) 2009; 701
Kilpua (R21) 2014; 289
Webb (R45) 2016; 291
R28
Xia (R47) 2018; 234
Keppens (R20) 2012; 231
Athay (R2) 1982; 261
Groth (R12) 2000; 105
Van der Holst (R42) 2007; 671
Jacobs (R17) 2005; 430
Alzate (R1) 2017; 840
Thernisien (R38) 2009; 256
Webb (R43) 1995; 100
Dedner (R8) 2002; 175
Howard (R15) 2013; 285
DeVore (R9) 2000; 539
Linker (R23) 1995; 438
Thompson (R39) 2006; 449
Manchester (R27) 2007; 666
Webb (R44) 2012; 9
Ko (R22) 2003; 594
Thompson (R40) 2003; 4853
Chané (R6) 2006; 447
D’Huys (R10) 2014; 795
Chané (R7) 2008; 492
Bemporad (R4) 2012; 281
Thernisien (R36) 2011; 194
Lynch (R24) 2016; 121
Ma (R25) 2010; 722
Zuccarello (R48) 2012; 744
Müller (R29) 2017; 606
Wuelser (R46) 2004; 5171
References_xml – volume: 281
  start-page: 223
  year: 2012
  ident: R4
  publication-title: Sol. Phys.
  contributor:
    fullname: Bemporad
– ident: R28
  doi: 10.1029/2003JA010150
– volume: 291
  start-page: 3725
  year: 2016
  ident: R45
  publication-title: Sol. Phys.
  doi: 10.1007/s11207-016-0988-9
  contributor:
    fullname: Webb
– volume: 288
  start-page: 363
  year: 1985
  ident: R3
  publication-title: ApJ
  doi: 10.1086/162799
  contributor:
    fullname: Athay
– volume: 760
  start-page: 81
  year: 2012
  ident: R19
  publication-title: ApJ
  doi: 10.1088/0004-637X/760/1/81
  contributor:
    fullname: Karpen
– volume: 119
  start-page: 197
  year: 1983
  ident: R26
  publication-title: A&A
  contributor:
    fullname: Malherbe
– volume: 533
  start-page: 535
  year: 2000
  ident: R5
  publication-title: ApJ
  doi: 10.1086/308640
  contributor:
    fullname: Chae
– volume: 136
  start-page: 67
  year: 2008
  ident: R16
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-008-9341-4
  contributor:
    fullname: Howard
– volume: 632
  start-page: A89
  year: 2019
  ident: R14
  publication-title: A&A
  doi: 10.1051/0004-6361/201935894
  contributor:
    fullname: Hosteaux
– volume: 289
  start-page: 3773
  year: 2014
  ident: R21
  publication-title: Sol. Phys.
  doi: 10.1007/s11207-014-0552-4
  contributor:
    fullname: Kilpua
– volume: 136
  start-page: 5
  year: 2008
  ident: R18
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-007-9277-0
  contributor:
    fullname: Kaiser
– volume: 722
  start-page: 289
  year: 2010
  ident: R25
  publication-title: ApJ
  doi: 10.1088/0004-637X/722/1/289
  contributor:
    fullname: Ma
– volume: 105
  start-page: 23153
  year: 2000
  ident: R11
  publication-title: J. Geophys. Res.: Space Phys.
  doi: 10.1029/2000JA000005
  contributor:
    fullname: Forbes
– volume: 105
  start-page: 25053
  year: 2000
  ident: R12
  publication-title: J. Geophys. Res.
  doi: 10.1029/2000JA900093
  contributor:
    fullname: Groth
– volume: 121
  start-page: 91
  year: 2006
  ident: R41
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-006-6541-7
  contributor:
    fullname: Van der Holst
– volume: 121
  start-page: 677
  year: 2016
  ident: R24
  publication-title: J. Geophys. Res.: Space Phys.
  contributor:
    fullname: Lynch
– volume: 594
  start-page: 1068
  year: 2003
  ident: R22
  publication-title: ApJ
  doi: 10.1086/376982
  contributor:
    fullname: Ko
– volume: 701
  start-page: 283
  year: 2009
  ident: R35
  publication-title: ApJ
  doi: 10.1088/0004-637X/701/1/283
  contributor:
    fullname: Robbrecht
– volume: 620
  start-page: A57
  year: 2018
  ident: R13
  publication-title: A&A
  doi: 10.1051/0004-6361/201832976
  contributor:
    fullname: Hosteaux
– volume: 652
  start-page: 763
  year: 2006
  ident: R37
  publication-title: ApJ
  doi: 10.1086/508254
  contributor:
    fullname: Thernisien
– volume: 744
  start-page: 66
  year: 2012
  ident: R48
  publication-title: ApJ
  doi: 10.1088/0004-637X/744/1/66
  contributor:
    fullname: Zuccarello
– volume: 234
  start-page: 30
  year: 2018
  ident: R47
  publication-title: ApJS
  doi: 10.3847/1538-4365/aaa6c8
  contributor:
    fullname: Xia
– volume: 492
  start-page: L29
  year: 2008
  ident: R7
  publication-title: A&A
  doi: 10.1051/0004-6361:200811022
  contributor:
    fullname: Chané
– volume: 606
  start-page: A10
  year: 2017
  ident: R29
  publication-title: A&A
  doi: 10.1051/0004-6361/201730893
  contributor:
    fullname: Müller
– volume: 231
  start-page: 718
  year: 2012
  ident: R20
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.01.020
  contributor:
    fullname: Keppens
– volume: 261
  start-page: 684
  year: 1982
  ident: R2
  publication-title: ApJ
  doi: 10.1086/160379
  contributor:
    fullname: Athay
– volume: 256
  start-page: 111
  year: 2009
  ident: R38
  publication-title: Sol. Phys.
  doi: 10.1007/s11207-009-9346-5
  contributor:
    fullname: Thernisien
– volume: 666
  start-page: 532
  year: 2007
  ident: R27
  publication-title: ApJ
  doi: 10.1086/520493
  contributor:
    fullname: Manchester
– volume: 691
  start-page: 1222
  year: 2009
  ident: R34
  publication-title: ApJ
  doi: 10.1088/0004-637X/691/2/1222
  contributor:
    fullname: Robbrecht
– volume: 671
  start-page: L77
  year: 2007
  ident: R42
  publication-title: ApJ
  doi: 10.1086/524732
  contributor:
    fullname: Van der Holst
– volume: 430
  start-page: 1099
  year: 2005
  ident: R17
  publication-title: A&A
  doi: 10.1051/0004-6361:20041676
  contributor:
    fullname: Jacobs
– volume: 194
  start-page: 33
  year: 2011
  ident: R36
  publication-title: ApJS
  doi: 10.1088/0067-0049/194/2/33
  contributor:
    fullname: Thernisien
– volume: 449
  start-page: 791
  year: 2006
  ident: R39
  publication-title: A&A
  doi: 10.1051/0004-6361:20054262
  contributor:
    fullname: Thompson
– volume: 277
  start-page: 185
  year: 2012
  ident: R31
  publication-title: Sol. Phys.
  doi: 10.1007/s11207-011-9881-8
  contributor:
    fullname: Pevtsov
– volume: 539
  start-page: 954
  year: 2000
  ident: R9
  publication-title: ApJ
  doi: 10.1086/309275
  contributor:
    fullname: DeVore
– volume: 795
  start-page: 49
  year: 2014
  ident: R10
  publication-title: ApJ
  doi: 10.1088/0004-637X/795/1/49
  contributor:
    fullname: D’Huys
– volume: 447
  start-page: 727
  year: 2006
  ident: R6
  publication-title: A&A
  doi: 10.1051/0004-6361:20053802
  contributor:
    fullname: Chané
– volume: 9
  start-page: 3
  year: 2012
  ident: R44
  publication-title: Liv. Rev. Sol. Phys.
  contributor:
    fullname: Webb
– volume: 100
  start-page: 5853
  year: 1995
  ident: R43
  publication-title: J. Geophys. Res.
  doi: 10.1029/94JA02731
  contributor:
    fullname: Webb
– volume: 214
  start-page: 4
  year: 2014
  ident: R32
  publication-title: ApJS
  doi: 10.1088/0067-0049/214/1/4
  contributor:
    fullname: Porth
– volume: 840
  start-page: 103
  year: 2017
  ident: R1
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa6caa
  contributor:
    fullname: Alzate
– volume: 285
  start-page: 269
  year: 2013
  ident: R15
  publication-title: Sol. Phys.
  doi: 10.1007/s11207-012-0217-0
  contributor:
    fullname: Howard
– volume: 5171
  start-page: 111
  year: 2004
  ident: R46
  publication-title: Proc. SPIE
  doi: 10.1117/12.506877
  contributor:
    fullname: Wuelser
– volume: 175
  start-page: 645
  year: 2002
  ident: R8
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2001.6961
  contributor:
    fullname: Dedner
– volume: 438
  start-page: L45
  year: 1995
  ident: R23
  publication-title: ApJ
  doi: 10.1086/187711
  contributor:
    fullname: Linker
– volume: 655
  start-page: 591
  year: 2007
  ident: R33
  publication-title: ApJ
  doi: 10.1086/509913
  contributor:
    fullname: Riley
– volume: 4853
  start-page: 1
  year: 2003
  ident: R40
  publication-title: Proc. SPIE
  doi: 10.1117/12.460267
  contributor:
    fullname: Thompson
– volume: 292
  start-page: 125
  year: 2017
  ident: R30
  publication-title: Sol. Phys.
  doi: 10.1007/s11207-017-1147-7
  contributor:
    fullname: Nitta
SSID ssj0002183
Score 2.4328165
Snippet Context. It is widely accepted that photospheric shearing motions play an important role in triggering the initiation of coronal mass ejections (CMEs). Even...
Context. It is widely accepted that photospheric shearing motions play an important role in triggering the initiation of coronal mass ejections (CMEs). Even...
SourceID proquest
crossref
SourceType Aggregation Database
StartPage A77
SubjectTerms Computational fluid dynamics
Configurations
Coronagraphs
Coronal mass ejection
Current sheets
Cylindrical shells
Finite element method
Geomagnetism
Magnetic flux
Magnetic storms
Magnetohydrodynamics
Mathematical models
Photosphere
Propagation
Shearing
Signatures
Simulation
Solar corona
Solar wind
Weather forecasting
Title Numerical simulations of shear-induced consecutive coronal mass ejections
URI https://www.proquest.com/docview/2487118408
Volume 637
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKEBKXCQZog4F8QFyGuyZxkvpYjY8OiWkSnbRbZDuOBNpaRJPDOPC3856f46aAEOMSJVb1KuX98j5_fmbspVWTial1AtavmQipayuMLo3IMqlzcHhJ6lsxH8-K-YX8cJlfjkY3A9ZS15qx_f7HfSX_o1VYA73iLtlbaDYKhQW4B_3CFTQM13_S8VlH_Zaro_Xn627AalvjOdUC0u0O2_sWGdO28yQhixMLcMcIBM1H7osnYoWCXT-Ldo3V8dU1DWbS-ETlD1-fpfFYg_rBQl9hNb_zxmssTsYDwsCS2vDe3sb185WrW4-eT3HtTc-5UPOOkBV-H-oR6WTD_os2VooioxHrY0dmVWbIcQ3FxmB3C5r2EiznjE5z-c2ig9EgCiQJxQ0s2DyFLKjcuLC-bf-LZ4t8Q99pzxPstMsKxVRRyB12Ny1VjmzQ96c_ohPHyJEyJ_rffmBVnhzHteMoZDuo2fbpPlBZPGC7IcPgM4LLQzZyyz22H7XKX_HZQKd77N453T1ipxFPfIAnvmr4Fp74AE884IkjnnjE02N28e7t4mQuwlEbwoJFbwVElXluGmVqVTsni6nTqjRSFWld6gKnDGosHqjGauN0qcFw28wmSjeQvsNj9oTtLFdLt8-4k1bWWQ2Bd2HAQZSmybRJpy6XqZPOmAP2un9X1VeaqFL9RT8H7LB_n1X49NZVCml2grWJ6dPbSXvG7m8we8h22m-dew5RZWteeP3_BKFtbgU
link.rule.ids 315,786,790,27955,27956
linkProvider EDP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulations+of+shear-induced+consecutive+coronal+mass+ejections&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Talpeanu%2C+D.-C.&rft.au=Chan%C3%A9%2C+E.&rft.au=Poedts%2C+S.&rft.au=D%E2%80%99Huys%2C+E.&rft.date=2020-05-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=637&rft.spage=A77&rft_id=info:doi/10.1051%2F0004-6361%2F202037477&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_202037477
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon