SATEER: Subject-Aware Transformer for EEG-Based Emotion Recognition

This study presents a Subject-Aware Transformer-based neural network designed for the Electroencephalogram (EEG) Emotion Recognition task (SATEER), which entails the analysis of EEG signals to classify and interpret human emotional states. SATEER processes the EEG waveforms by transforming them into...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of neural systems p. 2550002
Main Authors Lanzino, Romeo, Avola, Danilo, Fontana, Federico, Cinque, Luigi, Scarcello, Francesco, Foresti, Gian Luca
Format Journal Article
LanguageEnglish
Published Singapore 01.02.2025
Subjects
Online AccessGet more information

Cover

Loading…
Abstract This study presents a Subject-Aware Transformer-based neural network designed for the Electroencephalogram (EEG) Emotion Recognition task (SATEER), which entails the analysis of EEG signals to classify and interpret human emotional states. SATEER processes the EEG waveforms by transforming them into Mel spectrograms, which can be seen as particular cases of images with the number of channels equal to the number of electrodes used during the recording process; this type of data can thus be processed using a Computer Vision pipeline. Distinct from preceding approaches, this model addresses the variability in individual responses to identical stimuli by incorporating a User Embedder module. This module enables the association of individual profiles with their EEGs, thereby enhancing classification accuracy. The efficacy of the model was rigorously evaluated using four publicly available datasets, demonstrating superior performance over existing methods in all conducted benchmarks. For instance, on the AMIGOS dataset (A dataset for Multimodal research of affect, personality traits, and mood on Individuals and GrOupS), SATEER's accuracy exceeds 99.8% accuracy across all labels and showcases an improvement of 0.47% over the state of the art. Furthermore, an exhaustive ablation study underscores the pivotal role of the User Embedder module and each other component of the presented model in achieving these advancements.
AbstractList This study presents a Subject-Aware Transformer-based neural network designed for the Electroencephalogram (EEG) Emotion Recognition task (SATEER), which entails the analysis of EEG signals to classify and interpret human emotional states. SATEER processes the EEG waveforms by transforming them into Mel spectrograms, which can be seen as particular cases of images with the number of channels equal to the number of electrodes used during the recording process; this type of data can thus be processed using a Computer Vision pipeline. Distinct from preceding approaches, this model addresses the variability in individual responses to identical stimuli by incorporating a User Embedder module. This module enables the association of individual profiles with their EEGs, thereby enhancing classification accuracy. The efficacy of the model was rigorously evaluated using four publicly available datasets, demonstrating superior performance over existing methods in all conducted benchmarks. For instance, on the AMIGOS dataset (A dataset for Multimodal research of affect, personality traits, and mood on Individuals and GrOupS), SATEER's accuracy exceeds 99.8% accuracy across all labels and showcases an improvement of 0.47% over the state of the art. Furthermore, an exhaustive ablation study underscores the pivotal role of the User Embedder module and each other component of the presented model in achieving these advancements.
Author Foresti, Gian Luca
Scarcello, Francesco
Cinque, Luigi
Lanzino, Romeo
Fontana, Federico
Avola, Danilo
Author_xml – sequence: 1
  givenname: Romeo
  orcidid: 0000-0003-2939-3007
  surname: Lanzino
  fullname: Lanzino, Romeo
  organization: Department of Computer Science, Sapienza University of Rome, Via Salaria 113, Rome 00198, Italy
– sequence: 2
  givenname: Danilo
  orcidid: 0000-0001-9437-6217
  surname: Avola
  fullname: Avola, Danilo
  organization: Department of Computer Science, Sapienza University of Rome, Via Salaria 113, Rome 00198, Italy
– sequence: 3
  givenname: Federico
  orcidid: 0009-0007-0437-7832
  surname: Fontana
  fullname: Fontana, Federico
  organization: Department of Computer Science, Sapienza University of Rome, Via Salaria 113, Rome 00198, Italy
– sequence: 4
  givenname: Luigi
  orcidid: 0000-0001-9149-2175
  surname: Cinque
  fullname: Cinque, Luigi
  organization: Department of Computer Science, Sapienza University of Rome, Via Salaria 113, Rome 00198, Italy
– sequence: 5
  givenname: Francesco
  orcidid: 0000-0001-7765-1563
  surname: Scarcello
  fullname: Scarcello, Francesco
  organization: Department of Computer Engineering, Modeling, Electronics, and Systems Engineering University of Calabria, Via Pietro Bucci, Rende (CS) 87036, Italy
– sequence: 6
  givenname: Gian Luca
  orcidid: 0000-0002-8425-6892
  surname: Foresti
  fullname: Foresti, Gian Luca
  organization: Department of Mathematics, Computer Science and Physics, University of Udine, Via delle Scienze Udine 33100, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39560447$$D View this record in MEDLINE/PubMed
BookMark eNo1j8tKxDAUQIMoOo5-gBvJD0Rz82rjrpY4CgPCtK6HPG6lYtshnUH8exV1dc7qwDknx-M0IiFXwG8AlLhtOAjLjS6E1pxzYY_IAgormVFGnJIzabXhShULUjdV69zmjjaH8IZxz6oPn5G22Y9zN-UBM_0GdW7F7v2Mibph2vfTSDcYp9ex__ELctL59xkv_7gkLw-urR_Z-nn1VFdrFqUQlgWZUqlNFBohWV6gN1YixEJKr8tSQrRRWVSpC7aTFiSPWHoMQgfoZAKxJNe_3d0hDJi2u9wPPn9u_2_EF3pbSDA
ContentType Journal Article
DBID NPM
DOI 10.1142/S0129065725500029
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
EISSN 1793-6462
ExternalDocumentID 39560447
Genre Journal Article
GroupedDBID NPM
ID FETCH-LOGICAL-c3229-b3dd856c25e1d907ea693e1c733a58831c9c49e4dfb9f39130ce8aeb25b1f3d12
IngestDate Thu Jan 02 22:24:31 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords transformer
deep learning
Electroencephalogram
emotion recognition
neural network
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3229-b3dd856c25e1d907ea693e1c733a58831c9c49e4dfb9f39130ce8aeb25b1f3d12
ORCID 0000-0001-7765-1563
0000-0001-9149-2175
0000-0001-9437-6217
0000-0003-2939-3007
0009-0007-0437-7832
0000-0002-8425-6892
PMID 39560447
ParticipantIDs pubmed_primary_39560447
PublicationCentury 2000
PublicationDate 20250200
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 20250200
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle International journal of neural systems
PublicationTitleAlternate Int J Neural Syst
PublicationYear 2025
Score 2.3818784
Snippet This study presents a Subject-Aware Transformer-based neural network designed for the Electroencephalogram (EEG) Emotion Recognition task (SATEER), which...
SourceID pubmed
SourceType Index Database
StartPage 2550002
Title SATEER: Subject-Aware Transformer for EEG-Based Emotion Recognition
URI https://www.ncbi.nlm.nih.gov/pubmed/39560447
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZT8JAEN54JIYXo_G-0gffyCrtdtuub0iKxERjEBLeSPeowUghBmPCr3d2e4po1JdCdkqB_XZmZ2bnQOhcCSmpYALbXiPGLlMCR1Hg4VhJ2L94FNixifK99zp993ZAB2WsqskumfELMV-aV_IfVGEMcNVZsn9AtngoDMB7wBeugDBcf4XxY7MXhl1t1AP_a4cKbr7rSK5ero2qVxNGGIY3-Bq2K1kP0649WltM44YyVJ7LgPbSP1ipKqHLXurMkkp9c1OtMZmPTO_uencyVpNi9YDMi_IE9pdiuD1JQBU1hLauYQGLsDgCGSWwQRknwdvoaVT1RTg0D1_WW0kqP4HdsedmAjaTiVQ3XXCWy2vXMSfG2hvmUT-7lVXvhUmcjg2ARNtyblqg82fqQgntnLSKVsGY0N1RH-6yE274AZdfvr6GNvKPLFgbRuvobaHNzFywmin222hFJTuoleJ-ZX1C3aqgbsGLVaBuZahbFdR3Ub8d9lodnDXDwAJkLsOcSBlQTzhU2ZI1fBV5jChb-IRENAiIDQwHrObKmLOYMFBNhAoixR3K7ZhI29lDa8kkUQfIAhOA-4H0fV8IVxLKbM68oKF0G5YGUA7Rfvqfh9O04skwn42jbynHqFYuiBO0HgOLqVPQ12b8zMz3By8nPhU
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SATEER%3A+Subject-Aware+Transformer+for+EEG-Based+Emotion+Recognition&rft.jtitle=International+journal+of+neural+systems&rft.au=Lanzino%2C+Romeo&rft.au=Avola%2C+Danilo&rft.au=Fontana%2C+Federico&rft.au=Cinque%2C+Luigi&rft.date=2025-02-01&rft.eissn=1793-6462&rft.spage=2550002&rft_id=info:doi/10.1142%2FS0129065725500029&rft_id=info%3Apmid%2F39560447&rft_id=info%3Apmid%2F39560447&rft.externalDocID=39560447