Electrochemical Characterization of the Microfabricated Electrochemical Sensor‐Array System
Microfabrication technology has been used to prepare a microchip sensor‐array with six sets of platinum electrodes. Chromium/platinum (10 nm/100 nm thick) were sputtered on a borosilicate wafer and patterned by wet etching method. The electrodes were designed with working electrode area of 700×400 μ...
Saved in:
Published in | Electroanalysis (New York, N.Y.) Vol. 29; no. 1; pp. 249 - 258 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microfabrication technology has been used to prepare a microchip sensor‐array with six sets of platinum electrodes. Chromium/platinum (10 nm/100 nm thick) were sputtered on a borosilicate wafer and patterned by wet etching method. The electrodes were designed with working electrode area of 700×400 μm in the middle and a 200 μm wide and 2600 μm long counter electrode surrounding it from three sides in a U‐shape. The connection pads (1000×1500 μm) were located at the edge of a sensor‐array chip. Silicon wafer was etched through to form holes with slanting side walls for immobilization cavities. The silicon and the borosilicate wafers were adhesion bonded with SU‐8 epoxy resin. The cyclic voltammetry and electrochemical impedance experiments were carried out in a three‐electrode electrochemical system to characterize the fabricated sensor‐array chip. The results show that the current density depends on the electrode potential sweep rate ν. Also, current density depends on the concentration of potassium hexacyanoferrate(III). At slow potential sweep rates (ν≤0.01 V s−1) the steady‐state signal is achieved and the electrodes behave as micro‐electrodes. Such an array is a promising candidate for fast and simple biochemical oxygen demand (BOD) measurements. |
---|---|
AbstractList | Microfabrication technology has been used to prepare a microchip sensor-array with six sets of platinum electrodes. Chromium/platinum (10nm/100nm thick) were sputtered on a borosilicate wafer and patterned by wet etching method. The electrodes were designed with working electrode area of 700400 mu m in the middle and a 200 mu m wide and 2600 mu m long counter electrode surrounding it from three sides in a U-shape. The connection pads (10001500 mu m) were located at the edge of a sensor-array chip. Silicon wafer was etched through to form holes with slanting side walls for immobilization cavities. The silicon and the borosilicate wafers were adhesion bonded with SU-8 epoxy resin. The cyclic voltammetry and electrochemical impedance experiments were carried out in a three-electrode electrochemical system to characterize the fabricated sensor-array chip. The results show that the current density depends on the electrode potential sweep rate nu . Also, current density depends on the concentration of potassium hexacyanoferrate(III). At slow potential sweep rates ( nu less than or equal to 0.01 Vs super(-1)) the steady-state signal is achieved and the electrodes behave as micro-electrodes. Such an array is a promising candidate for fast and simple biochemical oxygen demand (BOD) measurements. Abstract Microfabrication technology has been used to prepare a microchip sensor‐array with six sets of platinum electrodes. Chromium/platinum (10 nm/100 nm thick) were sputtered on a borosilicate wafer and patterned by wet etching method. The electrodes were designed with working electrode area of 700×400 μm in the middle and a 200 μm wide and 2600 μm long counter electrode surrounding it from three sides in a U‐shape. The connection pads (1000×1500 μm) were located at the edge of a sensor‐array chip. Silicon wafer was etched through to form holes with slanting side walls for immobilization cavities. The silicon and the borosilicate wafers were adhesion bonded with SU‐8 epoxy resin. The cyclic voltammetry and electrochemical impedance experiments were carried out in a three‐electrode electrochemical system to characterize the fabricated sensor‐array chip. The results show that the current density depends on the electrode potential sweep rate ν. Also, current density depends on the concentration of potassium hexacyanoferrate(III). At slow potential sweep rates (ν≤0.01 V s −1 ) the steady‐state signal is achieved and the electrodes behave as micro‐electrodes. Such an array is a promising candidate for fast and simple biochemical oxygen demand (BOD) measurements. Microfabrication technology has been used to prepare a microchip sensor‐array with six sets of platinum electrodes. Chromium/platinum (10 nm/100 nm thick) were sputtered on a borosilicate wafer and patterned by wet etching method. The electrodes were designed with working electrode area of 700×400 μm in the middle and a 200 μm wide and 2600 μm long counter electrode surrounding it from three sides in a U‐shape. The connection pads (1000×1500 μm) were located at the edge of a sensor‐array chip. Silicon wafer was etched through to form holes with slanting side walls for immobilization cavities. The silicon and the borosilicate wafers were adhesion bonded with SU‐8 epoxy resin. The cyclic voltammetry and electrochemical impedance experiments were carried out in a three‐electrode electrochemical system to characterize the fabricated sensor‐array chip. The results show that the current density depends on the electrode potential sweep rate ν. Also, current density depends on the concentration of potassium hexacyanoferrate(III). At slow potential sweep rates (ν≤0.01 V s−1) the steady‐state signal is achieved and the electrodes behave as micro‐electrodes. Such an array is a promising candidate for fast and simple biochemical oxygen demand (BOD) measurements. |
Author | Franssila, Sami Kikas, Timo Lust, Enn Raud, Merlin Nerut, Jaak Pitman, Kätlin Scotti, Gianmario Jokinen, Ville P. |
Author_xml | – sequence: 1 givenname: Kätlin surname: Pitman fullname: Pitman, Kätlin organization: Estonian University of Life Sciences – sequence: 2 givenname: Merlin surname: Raud fullname: Raud, Merlin email: merlin.raud@emu.ee organization: Estonian University of Life Sciences – sequence: 3 givenname: Gianmario surname: Scotti fullname: Scotti, Gianmario organization: current address: University of Helsinki – sequence: 4 givenname: Ville P. surname: Jokinen fullname: Jokinen, Ville P. organization: Aalto University – sequence: 5 givenname: Sami surname: Franssila fullname: Franssila, Sami organization: Aalto University – sequence: 6 givenname: Jaak surname: Nerut fullname: Nerut, Jaak organization: University of Tartu – sequence: 7 givenname: Enn surname: Lust fullname: Lust, Enn organization: University of Tartu – sequence: 8 givenname: Timo surname: Kikas fullname: Kikas, Timo organization: Estonian University of Life Sciences |
BookMark | eNqFkD1PwzAQQC1UJNrCypyRJeXs2MEeq6p8SAWGwogsxzmrQWlc7FQoTPwEfiO_hFRFILEw3Q3vnXRvRAaNb5CQUwoTCsDOsTbNhAHNAYRQB2RIBaMpp6AG_Q4cUsjUxREZxfgMACrnakie5jXaNni7wnVlTZ3MViYY22Ko3kxb-SbxLmlXmNxWNnhnitBTLZbJX2-JTfTh8_1jGoLpkmUXW1wfk0Nn6ogn33NMHi_nD7PrdHF_dTObLlKbMaZSzl0uQZQms9KogkEJJWcmNyDzkuZ5xgpjqMoEMuEKBdZhJgVKzqVwKEU2Jmf7u5vgX7YYW72uosW6L4J-GzWVsv-YCcF6dLJH-3diDOj0JlRrEzpNQe866l1H_dOxF9ReeK1q7P6h9Xwxvft1vwCm4Xr7 |
CitedBy_id | crossref_primary_10_1149_1945_7111_abe8b6 crossref_primary_10_1021_acs_jpcc_7b10989 crossref_primary_10_1016_j_snb_2019_127447 |
Cites_doi | 10.1016/0022-0728(91)85517-S 10.1016/S0928-4931(00)00158-2 10.1007/s002160051375 10.1016/j.bios.2006.06.008 10.1016/j.bios.2011.07.071 10.1016/j.talanta.2010.08.033 10.1002/anie.199312681 10.1007/s00449-002-0283-z 10.1016/j.bioelechem.2010.08.004 10.1016/j.displa.2014.10.003 10.1351/pac200072081483 10.1016/S0003-2670(97)00560-6 10.1016/j.talanta.2006.05.090 10.1146/annurev.bioeng.1.1.401 10.1002/elan.1140050802 10.1016/j.snb.2009.08.005 10.1021/ac00190a034 10.1016/S0956-5663(98)00118-3 10.1007/978-3-540-92868-3 10.1016/0022-0728(88)80345-0 10.1021/ac980375r 10.1007/s00216-011-4816-7 10.1088/1742-6596/307/1/012052 10.1039/an994190001r 10.1142/p910 10.1109/TBME.2007.912430 10.1021/ac9908391 10.1142/p726 10.1016/j.watres.2013.02.026 |
ContentType | Journal Article |
Copyright | 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1002/elan.201600559 |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-4109 |
EndPage | 258 |
ExternalDocumentID | 10_1002_elan_201600559 ELAN201600559 |
Genre | article |
GrantInformation_xml | – fundername: European Regional Development Fund – fundername: Centre of Excellence funderid: 2014-2020.4.01.15-0011 – fundername: Estonian Science Foundation funderid: ETF 9136 – fundername: Institutional Research funderid: IUT20-13 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 186 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AQPKS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F5P FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH5 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E V8K W8V W99 WBFHL WBKPD WIB WIH WIK WOHZO WQJ WRJ WXSBR WYISQ XG1 XV2 Y6R ZY4 ZZTAW ~IA ~WT AAYXX CITATION 7U5 8FD L7M |
ID | FETCH-LOGICAL-c3229-44f6805da3c8a9b20d0d42a6a086d16632baa1935e25fb90cfe385e84485fe853 |
IEDL.DBID | DR2 |
ISSN | 1040-0397 |
IngestDate | Fri Aug 16 11:45:37 EDT 2024 Fri Aug 23 00:54:46 EDT 2024 Sat Aug 24 00:52:39 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3229-44f6805da3c8a9b20d0d42a6a086d16632baa1935e25fb90cfe385e84485fe853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1880002552 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1880002552 crossref_primary_10_1002_elan_201600559 wiley_primary_10_1002_elan_201600559_ELAN201600559 |
PublicationCentury | 2000 |
PublicationDate | January 2017 2017-01-00 20170101 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: January 2017 |
PublicationDecade | 2010 |
PublicationTitle | Electroanalysis (New York, N.Y.) |
PublicationYear | 2017 |
References | 1997; 357 2015; 37 1989; 61 2013; 47 2000; 72 1995 2007; 71 2008; 55 1999; 364 1999; 1 2010; 80 1994; 119 1988; 249 1993; 5 2010; 82 2002; 25 2011; 400 2011; 307 2001 2000; 12 1993; 32 1999; 14 2009; 142 1991; 305 1999; 71 2007; 22 2011; 29 e_1_2_6_32_1 Rubinstein Israel (e_1_2_6_5_1) 1995 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 Solna R. (e_1_2_6_15_1) e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 Bard A. J. (e_1_2_6_6_1) 2001 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_7_1 Sakaguchi T. (e_1_2_6_16_1) e_1_2_6_1_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 80 start-page: 87 year: 2010 end-page: 93 publication-title: Bioelectrochemistry – volume: 29 start-page: 1 year: 2011 end-page: 12 publication-title: Biosens. Bioelectron. – volume: 72 start-page: 1483 year: 2000 end-page: 1492 publication-title: Pure Appl. Chem. – volume: 5 start-page: 627 year: 1993 end-page: 639 publication-title: Electroanalysis – volume: 1 start-page: 401 year: 1999 end-page: 425 publication-title: Annu. Rev. Biomed. Eng. – volume: 400 start-page: 947 year: 2011 end-page: 964 publication-title: Anal. Bioanal. Chem. – volume: 307 start-page: 12052 year: 2011 publication-title: J. Phys. Conf. Ser. – volume: 25 start-page: 29 year: 2002 end-page: 33 publication-title: Bioprocess. Biosyst. Eng. – volume: 12 start-page: 55 year: 2000 end-page: 61 publication-title: Mater. Sci. Eng.: C – year: 2001 – volume: 55 start-page: 1457 year: 2008 end-page: 1460 publication-title: IEEE Trans. Biomed. Eng. – start-page: 131 year: 1995 – volume: 22 start-page: 1345 year: 2007 end-page: 1350 publication-title: Biosens. Bioelectron. – volume: 82 start-page: 1629 year: 2010 end-page: 1636 publication-title: Talanta – volume: 14 start-page: 187 year: 1999 end-page: 193 publication-title: Biosens. Bioelectron. – start-page: 115 end-page: 121 publication-title: Biosens. Bioelectron. B, 19 – volume: 72 start-page: 2022 year: 2000 end-page: 2028 publication-title: Anal. Chem. – volume: 71 start-page: 550 year: 1999 end-page: 556 publication-title: Anal. Chem. – start-page: 9 end-page: 19 publication-title: Anal. Chim. Acta B, 528 – volume: 364 start-page: 499 year: 1999 end-page: 505 publication-title: Fresenius J. Anal. Chem. – volume: 71 start-page: 1022 year: 2007 end-page: 1030 publication-title: Talanta – volume: 47 start-page: 2555 year: 2013 end-page: 2562 publication-title: Water Res. – volume: 37 start-page: 2 year: 2015 end-page: 10 publication-title: Displays – volume: 249 start-page: 1 year: 1988 end-page: 14 publication-title: J. Electroanal. Chem. Interfac. – volume: 305 start-page: 185 year: 1991 end-page: 193 publication-title: J. Electroanal. Chem. Interfac. – volume: 119 start-page: 1R year: 1994 end-page: 21R publication-title: Analyst – volume: 61 start-page: 1763 year: 1989 end-page: 1768 publication-title: Anal. Chem. – volume: 357 start-page: 41 year: 1997 end-page: 49 publication-title: Anal. Chim. Acta – volume: 142 start-page: 342 year: 2009 end-page: 346 publication-title: Sens. Actuators B Chem – volume: 32 start-page: 1268 year: 1993 end-page: 1288 publication-title: Angew. Chem. Int. Ed. Engl. – ident: e_1_2_6_10_1 doi: 10.1016/0022-0728(91)85517-S – ident: e_1_2_6_27_1 doi: 10.1016/S0928-4931(00)00158-2 – ident: e_1_2_6_14_1 doi: 10.1007/s002160051375 – ident: e_1_2_6_17_1 doi: 10.1016/j.bios.2006.06.008 – ident: e_1_2_6_26_1 doi: 10.1016/j.bios.2011.07.071 – ident: e_1_2_6_28_1 doi: 10.1016/j.talanta.2010.08.033 – ident: e_1_2_6_29_1 – start-page: 9 ident: e_1_2_6_15_1 publication-title: Anal. Chim. Acta B, 528 contributor: fullname: Solna R. – start-page: 115 ident: e_1_2_6_16_1 publication-title: Biosens. Bioelectron. B, 19 contributor: fullname: Sakaguchi T. – ident: e_1_2_6_2_1 doi: 10.1002/anie.199312681 – ident: e_1_2_6_18_1 doi: 10.1007/s00449-002-0283-z – ident: e_1_2_6_13_1 doi: 10.1016/j.bioelechem.2010.08.004 – ident: e_1_2_6_25_1 doi: 10.1016/j.displa.2014.10.003 – ident: e_1_2_6_3_1 doi: 10.1351/pac200072081483 – ident: e_1_2_6_21_1 doi: 10.1016/S0003-2670(97)00560-6 – ident: e_1_2_6_11_1 doi: 10.1016/j.talanta.2006.05.090 – ident: e_1_2_6_24_1 doi: 10.1146/annurev.bioeng.1.1.401 – ident: e_1_2_6_1_1 doi: 10.1002/elan.1140050802 – ident: e_1_2_6_7_1 doi: 10.1016/j.snb.2009.08.005 – ident: e_1_2_6_9_1 doi: 10.1021/ac00190a034 – ident: e_1_2_6_23_1 doi: 10.1016/S0956-5663(98)00118-3 – start-page: 131 volume-title: Physical Electrochemistry. Principles, Methods and Applications year: 1995 ident: e_1_2_6_5_1 contributor: fullname: Rubinstein Israel – ident: e_1_2_6_30_1 – ident: e_1_2_6_31_1 doi: 10.1007/978-3-540-92868-3 – ident: e_1_2_6_8_1 doi: 10.1016/0022-0728(88)80345-0 – ident: e_1_2_6_33_1 doi: 10.1021/ac980375r – ident: e_1_2_6_22_1 doi: 10.1007/s00216-011-4816-7 – ident: e_1_2_6_12_1 doi: 10.1088/1742-6596/307/1/012052 – ident: e_1_2_6_4_1 doi: 10.1039/an994190001r – volume-title: Electrochemical Methods: Fundamentals and Applications, 2nd ed year: 2001 ident: e_1_2_6_6_1 contributor: fullname: Bard A. J. – ident: e_1_2_6_34_1 doi: 10.1142/p910 – ident: e_1_2_6_35_1 doi: 10.1109/TBME.2007.912430 – ident: e_1_2_6_19_1 doi: 10.1021/ac9908391 – ident: e_1_2_6_32_1 doi: 10.1142/p726 – ident: e_1_2_6_20_1 doi: 10.1016/j.watres.2013.02.026 |
SSID | ssj0009649 |
Score | 2.255807 |
Snippet | Microfabrication technology has been used to prepare a microchip sensor‐array with six sets of platinum electrodes. Chromium/platinum (10 nm/100 nm thick) were... Abstract Microfabrication technology has been used to prepare a microchip sensor‐array with six sets of platinum electrodes. Chromium/platinum (10 nm/100 nm... Microfabrication technology has been used to prepare a microchip sensor-array with six sets of platinum electrodes. Chromium/platinum (10nm/100nm thick) were... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 249 |
SubjectTerms | Adhesive bonding Borosilicate Chips Current density Electrochemical sensor Electrodes Etching MEMS Micro-electrodes Microfabrication Pt electrodes Sensor arrays Sensor-array Wafers |
Title | Electrochemical Characterization of the Microfabricated Electrochemical Sensor‐Array System |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Felan.201600559 https://search.proquest.com/docview/1880002552 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQGWDhjSiPykhITGkdJ85j7FMVUhmASl1Q5OcCSlDaDjDxE_iN_BJsp0kfCxKMGS5Kzr677-y77wC4QZ5kvkTKiUgcOeamyaFhQBwWythVISfM3p6P7oPh2L-bkMlKF3_BD1EduBnLsP7aGDhl09aSNFS-UsNf6gaGRsp08LleaGq6eg9L_qg4sPjXNWVzSEfekrUR4da6-HpUWkLNVcBqI85gH9DyW4tCk5fmfMaa_GODxvE_P3MA9hZwFLaL_XMItmR6BHa65RS4Y_DcL-bk8AWxAOxWDM9FAyfMFNQgEo5MZZ-izI4dkgJuyj3qfDnLvz-_2nlO32HBlH4CxoP-U3foLEYyOFxbfuz4vgoiRAT1eERjhpFAwsc0oDozEq5GL5hRqjEhkZgoFiOupBcRGekkkCipocEpqKVZKs8A1Hko59rFKGH6qTwRhcLjTLuQwOcikrQObsslSd4K5o2k4FjGiVFXUqmrDq7LFUu0dsyNB01lNp8mhmzOZk24DrDV_y-vSsyckurp_C9CF2AXm9Bvj2kuQW2Wz-WVBi4z1gDb7U6vM2jYTfoDZ6XoVA |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEMdPUIay8EaUZ5CQmNImTpzHWJVWBdoO0EosKPJzATUotANMfAQ-I58E22lS2gUJxgyOEttn_8---x3AheMJ6gtH2hGOI1vfNNkkDLBNQxG7MmSYmtvz_iDojvybB1xEE-pcmJwPUR64acsw67U2cH0g3ZhTQ8Uz0QBTN9AcqXgV1pTNe7p6w9XdnCAVB0YBuzpwzlF7b8FtdFBjsf3ivjQXmz8lq9lzOptAi6_NQ02e6tMJrbP3JZDjv35nCzZmitRq5lNoG1bEeAeqraIQ3C48tvNSOWzGFrBaJeQ5z-G0UmkpHWn1dXCfJNRUHhLcWm53r1zmNPv6-GxmGXmzclj6How67WGra8-qMthMGX9s-74MIgdz4rGIxBQ53OE-IgFRzhF3lYBBlBAlC7FAWNLYYVJ4ERaR8gOxFEod7ENlnI7FAVjKFWVMrTKS65Qqj0ch9xhVq0jgMx4JUoPLYkySlxy-keSYZZTo7krK7qrBeTFkieodfelBxiKdviaaN2ccJ1QDZAbgl1clulRJ-XT4l0ZnUO0O-72kdz24PYJ1pJWAObU5hsokm4oTpWMm9NTM1G-W1er6 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JTsMwEIZHUCTgwo4oa5CQOKV1nDjLsSqtytIKAZV6QZHXC6itSnuAE4_AM_Ik2E7T7YIExxwcJWN75h8v3wBcIF-yQCLlxiSJXbPT5NIoJC6LZOKpiBNmd8-brbDRDm46pDNziz_jQ0wW3MzMsP7aTPC-UOUpNFS-UsMv9UKDkUqWYSUItfw1suhhCpBKQiuAPXNuDunQm2MbES7Pt58PS1OtOatYbcipbwLNPzY7afJSGg1ZiX8scBz_8zdbsDHWo04lG0DbsCS7O7BWzcvA7cJzLSuUw8dkAac6QTxnNzidnnK0inSa5mifoszWHZLCWWz3qBPm3uD786syGNB3J0Ol70G7XnuqNtxxTQaX66mfuEGgwhgRQX0e04RhJJAIMA2pTo2Ep-ULZpRqUUgkJooliCvpx0TGOgskSmptsA-Fbq8rD8DRiSjn2scoYS5U-SKOhM-Z9iFhwEUsaREu8y5J-xl6I80gyzg15kon5irCed5jqbaO2fKgXdkbvaWGNmfTJlwEbO3_y6tSU6hk8nT4l0ZnsHp_VU_vrlu3R7COjQywSzbHUBgORvJEi5ghO7Xj9Afoh-mp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+Characterization+of+the+Microfabricated+Electrochemical+Sensor-Array+System&rft.jtitle=Electroanalysis+%28New+York%2C+N.Y.%29&rft.au=Pitman%2C+Kaetlin&rft.au=Raud%2C+Merlin&rft.au=Scotti%2C+Gianmario&rft.au=Jokinen%2C+Ville+P&rft.date=2017-01-01&rft.issn=1040-0397&rft.eissn=1521-4109&rft.volume=29&rft.issue=1&rft.spage=249&rft.epage=258&rft_id=info:doi/10.1002%2Felan.201600559&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-0397&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-0397&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-0397&client=summon |