Electrochemical Characterization of the Microfabricated Electrochemical Sensor‐Array System

Microfabrication technology has been used to prepare a microchip sensor‐array with six sets of platinum electrodes. Chromium/platinum (10 nm/100 nm thick) were sputtered on a borosilicate wafer and patterned by wet etching method. The electrodes were designed with working electrode area of 700×400 μ...

Full description

Saved in:
Bibliographic Details
Published inElectroanalysis (New York, N.Y.) Vol. 29; no. 1; pp. 249 - 258
Main Authors Pitman, Kätlin, Raud, Merlin, Scotti, Gianmario, Jokinen, Ville P., Franssila, Sami, Nerut, Jaak, Lust, Enn, Kikas, Timo
Format Journal Article
LanguageEnglish
Published 01.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microfabrication technology has been used to prepare a microchip sensor‐array with six sets of platinum electrodes. Chromium/platinum (10 nm/100 nm thick) were sputtered on a borosilicate wafer and patterned by wet etching method. The electrodes were designed with working electrode area of 700×400 μm in the middle and a 200 μm wide and 2600 μm long counter electrode surrounding it from three sides in a U‐shape. The connection pads (1000×1500 μm) were located at the edge of a sensor‐array chip. Silicon wafer was etched through to form holes with slanting side walls for immobilization cavities. The silicon and the borosilicate wafers were adhesion bonded with SU‐8 epoxy resin. The cyclic voltammetry and electrochemical impedance experiments were carried out in a three‐electrode electrochemical system to characterize the fabricated sensor‐array chip. The results show that the current density depends on the electrode potential sweep rate ν. Also, current density depends on the concentration of potassium hexacyanoferrate(III). At slow potential sweep rates (ν≤0.01 V s−1) the steady‐state signal is achieved and the electrodes behave as micro‐electrodes. Such an array is a promising candidate for fast and simple biochemical oxygen demand (BOD) measurements.
AbstractList Microfabrication technology has been used to prepare a microchip sensor-array with six sets of platinum electrodes. Chromium/platinum (10nm/100nm thick) were sputtered on a borosilicate wafer and patterned by wet etching method. The electrodes were designed with working electrode area of 700400 mu m in the middle and a 200 mu m wide and 2600 mu m long counter electrode surrounding it from three sides in a U-shape. The connection pads (10001500 mu m) were located at the edge of a sensor-array chip. Silicon wafer was etched through to form holes with slanting side walls for immobilization cavities. The silicon and the borosilicate wafers were adhesion bonded with SU-8 epoxy resin. The cyclic voltammetry and electrochemical impedance experiments were carried out in a three-electrode electrochemical system to characterize the fabricated sensor-array chip. The results show that the current density depends on the electrode potential sweep rate nu . Also, current density depends on the concentration of potassium hexacyanoferrate(III). At slow potential sweep rates ( nu less than or equal to 0.01 Vs super(-1)) the steady-state signal is achieved and the electrodes behave as micro-electrodes. Such an array is a promising candidate for fast and simple biochemical oxygen demand (BOD) measurements.
Abstract Microfabrication technology has been used to prepare a microchip sensor‐array with six sets of platinum electrodes. Chromium/platinum (10 nm/100 nm thick) were sputtered on a borosilicate wafer and patterned by wet etching method. The electrodes were designed with working electrode area of 700×400 μm in the middle and a 200 μm wide and 2600 μm long counter electrode surrounding it from three sides in a U‐shape. The connection pads (1000×1500 μm) were located at the edge of a sensor‐array chip. Silicon wafer was etched through to form holes with slanting side walls for immobilization cavities. The silicon and the borosilicate wafers were adhesion bonded with SU‐8 epoxy resin. The cyclic voltammetry and electrochemical impedance experiments were carried out in a three‐electrode electrochemical system to characterize the fabricated sensor‐array chip. The results show that the current density depends on the electrode potential sweep rate ν. Also, current density depends on the concentration of potassium hexacyanoferrate(III). At slow potential sweep rates (ν≤0.01 V s −1 ) the steady‐state signal is achieved and the electrodes behave as micro‐electrodes. Such an array is a promising candidate for fast and simple biochemical oxygen demand (BOD) measurements.
Microfabrication technology has been used to prepare a microchip sensor‐array with six sets of platinum electrodes. Chromium/platinum (10 nm/100 nm thick) were sputtered on a borosilicate wafer and patterned by wet etching method. The electrodes were designed with working electrode area of 700×400 μm in the middle and a 200 μm wide and 2600 μm long counter electrode surrounding it from three sides in a U‐shape. The connection pads (1000×1500 μm) were located at the edge of a sensor‐array chip. Silicon wafer was etched through to form holes with slanting side walls for immobilization cavities. The silicon and the borosilicate wafers were adhesion bonded with SU‐8 epoxy resin. The cyclic voltammetry and electrochemical impedance experiments were carried out in a three‐electrode electrochemical system to characterize the fabricated sensor‐array chip. The results show that the current density depends on the electrode potential sweep rate ν. Also, current density depends on the concentration of potassium hexacyanoferrate(III). At slow potential sweep rates (ν≤0.01 V s−1) the steady‐state signal is achieved and the electrodes behave as micro‐electrodes. Such an array is a promising candidate for fast and simple biochemical oxygen demand (BOD) measurements.
Author Franssila, Sami
Kikas, Timo
Lust, Enn
Raud, Merlin
Nerut, Jaak
Pitman, Kätlin
Scotti, Gianmario
Jokinen, Ville P.
Author_xml – sequence: 1
  givenname: Kätlin
  surname: Pitman
  fullname: Pitman, Kätlin
  organization: Estonian University of Life Sciences
– sequence: 2
  givenname: Merlin
  surname: Raud
  fullname: Raud, Merlin
  email: merlin.raud@emu.ee
  organization: Estonian University of Life Sciences
– sequence: 3
  givenname: Gianmario
  surname: Scotti
  fullname: Scotti, Gianmario
  organization: current address: University of Helsinki
– sequence: 4
  givenname: Ville P.
  surname: Jokinen
  fullname: Jokinen, Ville P.
  organization: Aalto University
– sequence: 5
  givenname: Sami
  surname: Franssila
  fullname: Franssila, Sami
  organization: Aalto University
– sequence: 6
  givenname: Jaak
  surname: Nerut
  fullname: Nerut, Jaak
  organization: University of Tartu
– sequence: 7
  givenname: Enn
  surname: Lust
  fullname: Lust, Enn
  organization: University of Tartu
– sequence: 8
  givenname: Timo
  surname: Kikas
  fullname: Kikas, Timo
  organization: Estonian University of Life Sciences
BookMark eNqFkD1PwzAQQC1UJNrCypyRJeXs2MEeq6p8SAWGwogsxzmrQWlc7FQoTPwEfiO_hFRFILEw3Q3vnXRvRAaNb5CQUwoTCsDOsTbNhAHNAYRQB2RIBaMpp6AG_Q4cUsjUxREZxfgMACrnakie5jXaNni7wnVlTZ3MViYY22Ko3kxb-SbxLmlXmNxWNnhnitBTLZbJX2-JTfTh8_1jGoLpkmUXW1wfk0Nn6ogn33NMHi_nD7PrdHF_dTObLlKbMaZSzl0uQZQms9KogkEJJWcmNyDzkuZ5xgpjqMoEMuEKBdZhJgVKzqVwKEU2Jmf7u5vgX7YYW72uosW6L4J-GzWVsv-YCcF6dLJH-3diDOj0JlRrEzpNQe866l1H_dOxF9ReeK1q7P6h9Xwxvft1vwCm4Xr7
CitedBy_id crossref_primary_10_1149_1945_7111_abe8b6
crossref_primary_10_1021_acs_jpcc_7b10989
crossref_primary_10_1016_j_snb_2019_127447
Cites_doi 10.1016/0022-0728(91)85517-S
10.1016/S0928-4931(00)00158-2
10.1007/s002160051375
10.1016/j.bios.2006.06.008
10.1016/j.bios.2011.07.071
10.1016/j.talanta.2010.08.033
10.1002/anie.199312681
10.1007/s00449-002-0283-z
10.1016/j.bioelechem.2010.08.004
10.1016/j.displa.2014.10.003
10.1351/pac200072081483
10.1016/S0003-2670(97)00560-6
10.1016/j.talanta.2006.05.090
10.1146/annurev.bioeng.1.1.401
10.1002/elan.1140050802
10.1016/j.snb.2009.08.005
10.1021/ac00190a034
10.1016/S0956-5663(98)00118-3
10.1007/978-3-540-92868-3
10.1016/0022-0728(88)80345-0
10.1021/ac980375r
10.1007/s00216-011-4816-7
10.1088/1742-6596/307/1/012052
10.1039/an994190001r
10.1142/p910
10.1109/TBME.2007.912430
10.1021/ac9908391
10.1142/p726
10.1016/j.watres.2013.02.026
ContentType Journal Article
Copyright 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1002/elan.201600559
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList Technology Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-4109
EndPage 258
ExternalDocumentID 10_1002_elan_201600559
ELAN201600559
Genre article
GrantInformation_xml – fundername: European Regional Development Fund
– fundername: Centre of Excellence
  funderid: 2014-2020.4.01.15-0011
– fundername: Estonian Science Foundation
  funderid: ETF 9136
– fundername: Institutional Research
  funderid: IUT20-13
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
186
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AQPKS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH5
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
V8K
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WRJ
WXSBR
WYISQ
XG1
XV2
Y6R
ZY4
ZZTAW
~IA
~WT
AAYXX
CITATION
7U5
8FD
L7M
ID FETCH-LOGICAL-c3229-44f6805da3c8a9b20d0d42a6a086d16632baa1935e25fb90cfe385e84485fe853
IEDL.DBID DR2
ISSN 1040-0397
IngestDate Fri Aug 16 11:45:37 EDT 2024
Fri Aug 23 00:54:46 EDT 2024
Sat Aug 24 00:52:39 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3229-44f6805da3c8a9b20d0d42a6a086d16632baa1935e25fb90cfe385e84485fe853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1880002552
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1880002552
crossref_primary_10_1002_elan_201600559
wiley_primary_10_1002_elan_201600559_ELAN201600559
PublicationCentury 2000
PublicationDate January 2017
2017-01-00
20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: January 2017
PublicationDecade 2010
PublicationTitle Electroanalysis (New York, N.Y.)
PublicationYear 2017
References 1997; 357
2015; 37
1989; 61
2013; 47
2000; 72
1995
2007; 71
2008; 55
1999; 364
1999; 1
2010; 80
1994; 119
1988; 249
1993; 5
2010; 82
2002; 25
2011; 400
2011; 307
2001
2000; 12
1993; 32
1999; 14
2009; 142
1991; 305
1999; 71
2007; 22
2011; 29
e_1_2_6_32_1
Rubinstein Israel (e_1_2_6_5_1) 1995
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
Solna R. (e_1_2_6_15_1)
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
Bard A. J. (e_1_2_6_6_1) 2001
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_7_1
Sakaguchi T. (e_1_2_6_16_1)
e_1_2_6_1_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 80
  start-page: 87
  year: 2010
  end-page: 93
  publication-title: Bioelectrochemistry
– volume: 29
  start-page: 1
  year: 2011
  end-page: 12
  publication-title: Biosens. Bioelectron.
– volume: 72
  start-page: 1483
  year: 2000
  end-page: 1492
  publication-title: Pure Appl. Chem.
– volume: 5
  start-page: 627
  year: 1993
  end-page: 639
  publication-title: Electroanalysis
– volume: 1
  start-page: 401
  year: 1999
  end-page: 425
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 400
  start-page: 947
  year: 2011
  end-page: 964
  publication-title: Anal. Bioanal. Chem.
– volume: 307
  start-page: 12052
  year: 2011
  publication-title: J. Phys. Conf. Ser.
– volume: 25
  start-page: 29
  year: 2002
  end-page: 33
  publication-title: Bioprocess. Biosyst. Eng.
– volume: 12
  start-page: 55
  year: 2000
  end-page: 61
  publication-title: Mater. Sci. Eng.: C
– year: 2001
– volume: 55
  start-page: 1457
  year: 2008
  end-page: 1460
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 131
  year: 1995
– volume: 22
  start-page: 1345
  year: 2007
  end-page: 1350
  publication-title: Biosens. Bioelectron.
– volume: 82
  start-page: 1629
  year: 2010
  end-page: 1636
  publication-title: Talanta
– volume: 14
  start-page: 187
  year: 1999
  end-page: 193
  publication-title: Biosens. Bioelectron.
– start-page: 115
  end-page: 121
  publication-title: Biosens. Bioelectron. B, 19
– volume: 72
  start-page: 2022
  year: 2000
  end-page: 2028
  publication-title: Anal. Chem.
– volume: 71
  start-page: 550
  year: 1999
  end-page: 556
  publication-title: Anal. Chem.
– start-page: 9
  end-page: 19
  publication-title: Anal. Chim. Acta B, 528
– volume: 364
  start-page: 499
  year: 1999
  end-page: 505
  publication-title: Fresenius J. Anal. Chem.
– volume: 71
  start-page: 1022
  year: 2007
  end-page: 1030
  publication-title: Talanta
– volume: 47
  start-page: 2555
  year: 2013
  end-page: 2562
  publication-title: Water Res.
– volume: 37
  start-page: 2
  year: 2015
  end-page: 10
  publication-title: Displays
– volume: 249
  start-page: 1
  year: 1988
  end-page: 14
  publication-title: J. Electroanal. Chem. Interfac.
– volume: 305
  start-page: 185
  year: 1991
  end-page: 193
  publication-title: J. Electroanal. Chem. Interfac.
– volume: 119
  start-page: 1R
  year: 1994
  end-page: 21R
  publication-title: Analyst
– volume: 61
  start-page: 1763
  year: 1989
  end-page: 1768
  publication-title: Anal. Chem.
– volume: 357
  start-page: 41
  year: 1997
  end-page: 49
  publication-title: Anal. Chim. Acta
– volume: 142
  start-page: 342
  year: 2009
  end-page: 346
  publication-title: Sens. Actuators B Chem
– volume: 32
  start-page: 1268
  year: 1993
  end-page: 1288
  publication-title: Angew. Chem. Int. Ed. Engl.
– ident: e_1_2_6_10_1
  doi: 10.1016/0022-0728(91)85517-S
– ident: e_1_2_6_27_1
  doi: 10.1016/S0928-4931(00)00158-2
– ident: e_1_2_6_14_1
  doi: 10.1007/s002160051375
– ident: e_1_2_6_17_1
  doi: 10.1016/j.bios.2006.06.008
– ident: e_1_2_6_26_1
  doi: 10.1016/j.bios.2011.07.071
– ident: e_1_2_6_28_1
  doi: 10.1016/j.talanta.2010.08.033
– ident: e_1_2_6_29_1
– start-page: 9
  ident: e_1_2_6_15_1
  publication-title: Anal. Chim. Acta B, 528
  contributor:
    fullname: Solna R.
– start-page: 115
  ident: e_1_2_6_16_1
  publication-title: Biosens. Bioelectron. B, 19
  contributor:
    fullname: Sakaguchi T.
– ident: e_1_2_6_2_1
  doi: 10.1002/anie.199312681
– ident: e_1_2_6_18_1
  doi: 10.1007/s00449-002-0283-z
– ident: e_1_2_6_13_1
  doi: 10.1016/j.bioelechem.2010.08.004
– ident: e_1_2_6_25_1
  doi: 10.1016/j.displa.2014.10.003
– ident: e_1_2_6_3_1
  doi: 10.1351/pac200072081483
– ident: e_1_2_6_21_1
  doi: 10.1016/S0003-2670(97)00560-6
– ident: e_1_2_6_11_1
  doi: 10.1016/j.talanta.2006.05.090
– ident: e_1_2_6_24_1
  doi: 10.1146/annurev.bioeng.1.1.401
– ident: e_1_2_6_1_1
  doi: 10.1002/elan.1140050802
– ident: e_1_2_6_7_1
  doi: 10.1016/j.snb.2009.08.005
– ident: e_1_2_6_9_1
  doi: 10.1021/ac00190a034
– ident: e_1_2_6_23_1
  doi: 10.1016/S0956-5663(98)00118-3
– start-page: 131
  volume-title: Physical Electrochemistry. Principles, Methods and Applications
  year: 1995
  ident: e_1_2_6_5_1
  contributor:
    fullname: Rubinstein Israel
– ident: e_1_2_6_30_1
– ident: e_1_2_6_31_1
  doi: 10.1007/978-3-540-92868-3
– ident: e_1_2_6_8_1
  doi: 10.1016/0022-0728(88)80345-0
– ident: e_1_2_6_33_1
  doi: 10.1021/ac980375r
– ident: e_1_2_6_22_1
  doi: 10.1007/s00216-011-4816-7
– ident: e_1_2_6_12_1
  doi: 10.1088/1742-6596/307/1/012052
– ident: e_1_2_6_4_1
  doi: 10.1039/an994190001r
– volume-title: Electrochemical Methods: Fundamentals and Applications, 2nd ed
  year: 2001
  ident: e_1_2_6_6_1
  contributor:
    fullname: Bard A. J.
– ident: e_1_2_6_34_1
  doi: 10.1142/p910
– ident: e_1_2_6_35_1
  doi: 10.1109/TBME.2007.912430
– ident: e_1_2_6_19_1
  doi: 10.1021/ac9908391
– ident: e_1_2_6_32_1
  doi: 10.1142/p726
– ident: e_1_2_6_20_1
  doi: 10.1016/j.watres.2013.02.026
SSID ssj0009649
Score 2.255807
Snippet Microfabrication technology has been used to prepare a microchip sensor‐array with six sets of platinum electrodes. Chromium/platinum (10 nm/100 nm thick) were...
Abstract Microfabrication technology has been used to prepare a microchip sensor‐array with six sets of platinum electrodes. Chromium/platinum (10 nm/100 nm...
Microfabrication technology has been used to prepare a microchip sensor-array with six sets of platinum electrodes. Chromium/platinum (10nm/100nm thick) were...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 249
SubjectTerms Adhesive bonding
Borosilicate
Chips
Current density
Electrochemical sensor
Electrodes
Etching
MEMS
Micro-electrodes
Microfabrication
Pt electrodes
Sensor arrays
Sensor-array
Wafers
Title Electrochemical Characterization of the Microfabricated Electrochemical Sensor‐Array System
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Felan.201600559
https://search.proquest.com/docview/1880002552
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQGWDhjSiPykhITGkdJ85j7FMVUhmASl1Q5OcCSlDaDjDxE_iN_BJsp0kfCxKMGS5Kzr677-y77wC4QZ5kvkTKiUgcOeamyaFhQBwWythVISfM3p6P7oPh2L-bkMlKF3_BD1EduBnLsP7aGDhl09aSNFS-UsNf6gaGRsp08LleaGq6eg9L_qg4sPjXNWVzSEfekrUR4da6-HpUWkLNVcBqI85gH9DyW4tCk5fmfMaa_GODxvE_P3MA9hZwFLaL_XMItmR6BHa65RS4Y_DcL-bk8AWxAOxWDM9FAyfMFNQgEo5MZZ-izI4dkgJuyj3qfDnLvz-_2nlO32HBlH4CxoP-U3foLEYyOFxbfuz4vgoiRAT1eERjhpFAwsc0oDozEq5GL5hRqjEhkZgoFiOupBcRGekkkCipocEpqKVZKs8A1Hko59rFKGH6qTwRhcLjTLuQwOcikrQObsslSd4K5o2k4FjGiVFXUqmrDq7LFUu0dsyNB01lNp8mhmzOZk24DrDV_y-vSsyckurp_C9CF2AXm9Bvj2kuQW2Wz-WVBi4z1gDb7U6vM2jYTfoDZ6XoVA
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEMdPUIay8EaUZ5CQmNImTpzHWJVWBdoO0EosKPJzATUotANMfAQ-I58E22lS2gUJxgyOEttn_8---x3AheMJ6gtH2hGOI1vfNNkkDLBNQxG7MmSYmtvz_iDojvybB1xEE-pcmJwPUR64acsw67U2cH0g3ZhTQ8Uz0QBTN9AcqXgV1pTNe7p6w9XdnCAVB0YBuzpwzlF7b8FtdFBjsf3ivjQXmz8lq9lzOptAi6_NQ02e6tMJrbP3JZDjv35nCzZmitRq5lNoG1bEeAeqraIQ3C48tvNSOWzGFrBaJeQ5z-G0UmkpHWn1dXCfJNRUHhLcWm53r1zmNPv6-GxmGXmzclj6How67WGra8-qMthMGX9s-74MIgdz4rGIxBQ53OE-IgFRzhF3lYBBlBAlC7FAWNLYYVJ4ERaR8gOxFEod7ENlnI7FAVjKFWVMrTKS65Qqj0ch9xhVq0jgMx4JUoPLYkySlxy-keSYZZTo7krK7qrBeTFkieodfelBxiKdviaaN2ccJ1QDZAbgl1clulRJ-XT4l0ZnUO0O-72kdz24PYJ1pJWAObU5hsokm4oTpWMm9NTM1G-W1er6
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JTsMwEIZHUCTgwo4oa5CQOKV1nDjLsSqtytIKAZV6QZHXC6itSnuAE4_AM_Ik2E7T7YIExxwcJWN75h8v3wBcIF-yQCLlxiSJXbPT5NIoJC6LZOKpiBNmd8-brbDRDm46pDNziz_jQ0wW3MzMsP7aTPC-UOUpNFS-UsMv9UKDkUqWYSUItfw1suhhCpBKQiuAPXNuDunQm2MbES7Pt58PS1OtOatYbcipbwLNPzY7afJSGg1ZiX8scBz_8zdbsDHWo04lG0DbsCS7O7BWzcvA7cJzLSuUw8dkAac6QTxnNzidnnK0inSa5mifoszWHZLCWWz3qBPm3uD786syGNB3J0Ol70G7XnuqNtxxTQaX66mfuEGgwhgRQX0e04RhJJAIMA2pTo2Ep-ULZpRqUUgkJooliCvpx0TGOgskSmptsA-Fbq8rD8DRiSjn2scoYS5U-SKOhM-Z9iFhwEUsaREu8y5J-xl6I80gyzg15kon5irCed5jqbaO2fKgXdkbvaWGNmfTJlwEbO3_y6tSU6hk8nT4l0ZnsHp_VU_vrlu3R7COjQywSzbHUBgORvJEi5ghO7Xj9Afoh-mp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+Characterization+of+the+Microfabricated+Electrochemical+Sensor-Array+System&rft.jtitle=Electroanalysis+%28New+York%2C+N.Y.%29&rft.au=Pitman%2C+Kaetlin&rft.au=Raud%2C+Merlin&rft.au=Scotti%2C+Gianmario&rft.au=Jokinen%2C+Ville+P&rft.date=2017-01-01&rft.issn=1040-0397&rft.eissn=1521-4109&rft.volume=29&rft.issue=1&rft.spage=249&rft.epage=258&rft_id=info:doi/10.1002%2Felan.201600559&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-0397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-0397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-0397&client=summon