Identification of Underground Faults using Internet of Things (IoT)

This paper aims at the detection of the fault occurring in an underground cable system, pinpoint the location of the fault using Extreme Learning Machine and convey the parameters of the fault occurred using Internet of Things (IoT). The underground cables have seen a steep increase in usage due to...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Conference series Vol. 1714; no. 1; pp. 12018 - 12025
Main Authors Rengaraj, R, Venkatakrishnan, G R, Adithya Pillai, R, Abinandhan, R, Dev Ganesh, S, Aravind, K
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.01.2021
Subjects
Online AccessGet full text
ISSN1742-6588
1742-6596
DOI10.1088/1742-6596/1714/1/012018

Cover

Abstract This paper aims at the detection of the fault occurring in an underground cable system, pinpoint the location of the fault using Extreme Learning Machine and convey the parameters of the fault occurred using Internet of Things (IoT). The underground cables have seen a steep increase in usage due to its many inherent advantages compared to the overhead cables. However, various methods to pinpoint the presence of fault in the underground cables of large lengths has proved futile and the communication of the fault information has been proved to be expensive. Our proposed project uses Extreme Learning Machine to detect the type of fault and to pinpoint the location of the fault in the system. Extreme Learning Machine Classification and Regression Algorithms are utilized to predict the type of fault in the system and the distance of the fault from the sending end. The regression algorithm is compared to other ML algorithms relevant to the subject matter at hand. The fault location conveyed by the use of GSM is limited by the fact that only text messages in the form of Short Messaging Services can be sent to the user concerned increasing the cost incurred by the user. Our project uses the internet to communicate through a big arsenal of methods, like e-mail and other social media services possible, thus widening the scope of communication while decreasing the size of the product.
AbstractList This paper aims at the detection of the fault occurring in an underground cable system, pinpoint the location of the fault using Extreme Learning Machine and convey the parameters of the fault occurred using Internet of Things (IoT). The underground cables have seen a steep increase in usage due to its many inherent advantages compared to the overhead cables. However, various methods to pinpoint the presence of fault in the underground cables of large lengths has proved futile and the communication of the fault information has been proved to be expensive. Our proposed project uses Extreme Learning Machine to detect the type of fault and to pinpoint the location of the fault in the system. Extreme Learning Machine Classification and Regression Algorithms are utilized to predict the type of fault in the system and the distance of the fault from the sending end. The regression algorithm is compared to other ML algorithms relevant to the subject matter at hand. The fault location conveyed by the use of GSM is limited by the fact that only text messages in the form of Short Messaging Services can be sent to the user concerned increasing the cost incurred by the user. Our project uses the internet to communicate through a big arsenal of methods, like e-mail and other social media services possible, thus widening the scope of communication while decreasing the size of the product.
Author Rengaraj, R
Venkatakrishnan, G R
Dev Ganesh, S
Abinandhan, R
Adithya Pillai, R
Aravind, K
Author_xml – sequence: 1
  givenname: R
  surname: Rengaraj
  fullname: Rengaraj, R
  email: rengarajr@ssn.edu.in
  organization: Department of Electrical and Electronics Engineering, Sri Sivasubramaniya Nadar College of Engineering
– sequence: 2
  givenname: G R
  surname: Venkatakrishnan
  fullname: Venkatakrishnan, G R
  email: venkatakrishnangr@ssn.edu.in
  organization: Department of Electrical and Electronics Engineering, Sri Sivasubramaniya Nadar College of Engineering
– sequence: 3
  givenname: R
  surname: Adithya Pillai
  fullname: Adithya Pillai, R
  email: adithyapillai16006@eee.ssn.edu.in
  organization: Department of Electrical and Electronics Engineering, Sri Sivasubramaniya Nadar College of Engineering
– sequence: 4
  givenname: R
  surname: Abinandhan
  fullname: Abinandhan, R
  email: abinandhan16004@eee.ssn.edu.in
  organization: Department of Electrical and Electronics Engineering, Sri Sivasubramaniya Nadar College of Engineering
– sequence: 5
  givenname: S
  surname: Dev Ganesh
  fullname: Dev Ganesh, S
  email: devganesh160023@eee.ssn.edu.in
  organization: Department of Electrical and Electronics Engineering, Sri Sivasubramaniya Nadar College of Engineering
– sequence: 6
  givenname: K
  surname: Aravind
  fullname: Aravind, K
  email: aravind16012@eee.ssn.edu.in
  organization: Department of Electrical and Electronics Engineering, Sri Sivasubramaniya Nadar College of Engineering
BookMark eNqFkFtLwzAUgINMcJv-Bgu-qFB30luSRylOKwMFt-eQpcnsmElN2gf_vSkVRRDMy7nkO-fAN0MTY41C6BzDDQZKF5hkSVzkrAgZzhZ4ATgBTI_Q9Ptn8p1TeoJm3u8B0vDIFJVVrUzX6EaKrrEmsjramFq5nbO9qaOl6A-dj3rfmF1UmU45o7oBWr-Gjo8uK7u-OkXHWhy8OvuKc7RZ3q3Lh3j1dF-Vt6tYpklCY5ZKnIFihEAGEkBKIViBFRVyq0i-JQrqGiRNIdT5VuBCpYxpRkRNgWqWztHFuLd19r1XvuN72zsTTvIkp8CgwAUOFBkp6az3TmneuuZNuA-OgQ_G-OCCD174YIxjPhoLk9fjZGPbn9WPz-XLb5C3tQ5w-gf834lPoa57sQ
Cites_doi 10.1016/j.neucom.2005.12.126
10.31142/ijtsrd19037
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1088/1742-6596/1714/1/012018
DatabaseName IOPscience
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: O3W
  name: IOPscience
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Identification of Underground Faults using Internet of Things (IoT)
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_1714_1_012018
JPCS_1714_1_012018
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
AAYXX
CITATION
OVT
PHGZM
PHGZT
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c3228-93c140e977040c00ccaa961e8acbe75b7e0dd0c830cbe5ba16e399f97ad808f93
IEDL.DBID IOP
ISSN 1742-6588
IngestDate Mon Jul 14 10:46:04 EDT 2025
Tue Jul 01 00:39:04 EDT 2025
Wed Aug 21 03:38:07 EDT 2024
Fri Jan 22 06:57:35 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3228-93c140e977040c00ccaa961e8acbe75b7e0dd0c830cbe5ba16e399f97ad808f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1742-6596/1714/1/012018
PQID 2580906161
PQPubID 4998668
PageCount 8
ParticipantIDs crossref_primary_10_1088_1742_6596_1714_1_012018
proquest_journals_2580906161
iop_journals_10_1088_1742_6596_1714_1_012018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 20210101
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References JPCS_1714_1_012018bib4
JPCS_1714_1_012018bib5
JPCS_1714_1_012018bib2
JPCS_1714_1_012018bib6
JPCS_1714_1_012018bib7
Huang (JPCS_1714_1_012018bib3) 2006; 70
Perktold (JPCS_1714_1_012018bib8) 2020
Dinesh (JPCS_1714_1_012018bib1) 2018; 3
References_xml – volume: 70
  start-page: 489
  year: 2006
  ident: JPCS_1714_1_012018bib3
  article-title: Extreme Learning Machine: A New Learning Scheme of Feedforward Neural Networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 3
  start-page: 668
  issn: 2456-6470
  year: 2018
  ident: JPCS_1714_1_012018bib1
  article-title: Design and Detection of Underground Cable Fault Using Raspberry Pi & IoT System
  publication-title: International Journal of Trend in Scientific Research and Development
  doi: 10.31142/ijtsrd19037
– ident: JPCS_1714_1_012018bib2
– year: 2020
  ident: JPCS_1714_1_012018bib8
  article-title: statsmodelsv0.12.0. dev0(+250)
– ident: JPCS_1714_1_012018bib4
– ident: JPCS_1714_1_012018bib7
– ident: JPCS_1714_1_012018bib5
– ident: JPCS_1714_1_012018bib6
SSID ssj0033337
Score 2.253214
Snippet This paper aims at the detection of the fault occurring in an underground cable system, pinpoint the location of the fault using Extreme Learning Machine and...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12018
SubjectTerms Algorithms
Artificial neural networks
Cellular communication
Extreme Learning machine (ELM)
Fault detection
Fault Identification
Fault location
Internet of Things
Machine learning
Physics
Short message service
Text messaging
Time Domain Reflectometry
Underground cables
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEF5sRfAiPrFaJaAHBZfu5rHZnESKsRYUwRZ6W5J9iCBJNOn_dzYPahE0tyRzmp2Zb3Z2Zj-ELiU3NKQmwAzgHfupLzE3imFjXBcSDoCcujfn6ZlN5v50ESzaglvZtlV2MbEO1CqXtkY-cgNOIgAfRm-LT2xZo-zpakuh0UObFJDG2jmPH7pI7METNgORLgak5V1_F2z62m8RG1kG8BEd2SFSy_zxA51673nxK0TXuBPvop02YXTumhXeQxs620dbdeOmLA_QuJm0NW3pzcmNU1MZ2WmNTDlxsvyoSsd2t785TfVPV1ao4et0rh7z2fUhmsf3s_EEt8QIWIL_QYDyJOyLNKRu4IKSEFiFJGJU80SmOgzSUBOliOQegfcgTSjTkIeYKEwUJ9xE3hHqZ3mmj5EjDfOMDhKldegrQlJKjfRkpDzi-1K7A0Q6hYiiuf9C1OfWnAurQ2F1KKwOBRWNDgfoBhQnWl8o_xe_WBOfvoxf1yVEocwADbt1WImubOLk79-naNu1vSh16WSI-tXXUp9BMlGl57XFfANB1b-7
  priority: 102
  providerName: ProQuest
Title Identification of Underground Faults using Internet of Things (IoT)
URI https://iopscience.iop.org/article/10.1088/1742-6596/1714/1/012018
https://www.proquest.com/docview/2580906161
Volume 1714
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-trZB4GRsfoqOrIo2HIZHWzofjPELVrkWCVgMEb1bijz1saqs1feGv5xwnGgUhhJaHKJHOsXO2735xfucDOJbc0ISa2Gfo3v0oj6TPjWK-MUGAgANdTsnNubxi49vo4j6-fxoLs1hWpr-Hl26jYKfCihDH-4ihA5_FKevb5N192rfxn5Q3oGXzV9pRPpnOamsc4pG4oEhbiPOa4_X6gzY8VANb8cJMl75ntAOybrWjnPzurYu8Jx-ebej4f6_1CT5W0NQ7cyU-wwc934WtkiIqV3swcDG9plrk8xbGK5Mm2biQufJG2fpPsfIsj_6X59YZdWGFXGZQ7_tkcXOyD7ej4c1g7FcpGHyJMx1NYSjxC0wjSMTJLgnB_s5SRjXPZK6TOE80UYpIHhK8j_OMMo2Ix6RJpjjhJg0PoDlfzPUheNKw0Og4U1onkSIkp9TIUKYqJFEkddAGUqtdLN1OG6L8Q865sLoRVjfC6kZQ4XTThlPUpqhm3ept8W8b4hezwfWmhFgq04ZO3dv_RIOYkxShD6Nf3lfnEWwHlgVTLtp0oFn8XeuvCGOKvAsNPvrRhdb58Gr2s2tdStwtxy6ep-HdI0JJ5Go
linkProvider IOP Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dSxtBEB9iQtGXorXFtFEXrFChR3bvc-9BRKMhMTGIRvBtvdsPESSXNgml_1T_RmfvA5WCPuXe7nZebnZ2frOzM_sD-C65YREzgRMivDt-6kuHGxU6xrguBhwIOXltzsUo7N3457fBbQ3-Vb0wtqyy8om5o1aZtDnythtwGiP4hOxo-suxrFH2dLWi0CjMYqD__sEt2-ywf4rzu--63bNxp-eUrAKOROPF1e1J3FRojHvQfiWl-AtJHDLNE5nqKEgjTZWiknsU34M0YaFGEDdxlChOubGXL6HLb_i2o7UOjZOz0eVV5fs9fKKiBdN1ENt5VVGG28zyWxy2Led4m7Vt26rlGnmBhysP2fQ_UMiRrrsOH8sQlRwXNrUBNT35BB_yUlE524RO0dtrymQfyQzJyZNsf8hEkW6yeJzPiK2nvydFvlHPrVDBEEp-9LPxwWe4WYrSvkB9kk30FhBpQs_oIFFaR76iNGXMSE_GyqO-L7XbBFopREyLGzdEflLOubA6FFaHwupQMFHosAk_UXGiXH2z98X3XomfX3auX0uIqTJNaFXz8Cz6bIVf3x7ehdXe-GIohv3R4BusubYSJk_ctKA-_73Q2xjKzNOd0n4I3C3bZJ8ARgr-cA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED-VTkN7QfsAUSgjEnsYEiF2HDvOI-qICmwMiVbwZiX-4GVqK9r-_5zjFFShCZGnRLok1s-5u5-d-wD4oaWjOXU8Fuje46zOdCydEbFzaYqEA11OE5vz51oMx9nlPb_vQPmcCzOdtab_FE9DoeAAYRsQJxPk0GkseCES37w7oYnP_6QymRm3AR84E9zX0P_L7lYWmeGRh8RIf6OUqziv_z9szUtt4EhemerG_5SfYasljtFZGOYX6NjJV_jYBHDq-TcYhIxb127BRVMXNS2NfNbGxERltfy3mEc-yv0hCruAduGFQt_O6OfFdHS8DePyfDQYxm2DhFijHqKhYhrXRxYpHKqiJgRnoyoEtbLStc15nVtiDNGSEbzmdUWFRT7iirwykkhXsB3oTqYTuwuRdoI5yytjbZ4ZQmpKnWa6MIxkmbZpD8gKEDULdTBU8_9aSuUxVB5D5TFUVAUMe3CCwKlWJ-Zvix-tiV_eDG7XJRTOcA_6q3l4EU25JAUSE0H33vfOQ9i8-VWq3xfXV_vwKfXhKs3uSh-6i8elPUC-sai_Nx_TEzEpw_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Underground+Faults+using+Internet+of+Things+%28IoT%29&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Rengaraj%2C+R&rft.au=Venkatakrishnan%2C+G+R&rft.au=Adithya+Pillai%2C+R&rft.au=Abinandhan%2C+R&rft.date=2021-01-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=1714&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F1714%2F1%2F012018&rft.externalDocID=JPCS_1714_1_012018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon