Predictors and prediction skill for marine cold‐air outbreaks over the Barents Sea

Marine cold‐air outbreaks (MCAOs) create conditions for hazardous maritime mesocyclones (polar lows) posing risks to marine infrastructure. For marine management, skilful predictions of MCAOs would be highly beneficial. For this reason, we investigate (a) the ability of a seasonal prediction system...

Full description

Saved in:
Bibliographic Details
Published inQuarterly journal of the Royal Meteorological Society Vol. 147; no. 738; pp. 2638 - 2656
Main Authors Polkova, Iuliia, Afargan‐Gerstman, Hilla, Domeisen, Daniela I. V., King, Martin P., Ruggieri, Paolo, Athanasiadis, Panos, Dobrynin, Mikhail, Aarnes, Øivin, Kretschmer, Marlene, Baehr, Johanna
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.07.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Marine cold‐air outbreaks (MCAOs) create conditions for hazardous maritime mesocyclones (polar lows) posing risks to marine infrastructure. For marine management, skilful predictions of MCAOs would be highly beneficial. For this reason, we investigate (a) the ability of a seasonal prediction system to predict MCAOs and (b) the possibilities to improve predictions through large‐scale causal drivers. Our results show that the seasonal ensemble predictions have high prediction skill for MCAOs over the Nordic Seas for about 20 days starting from November initial conditions. To study causal drivers of MCAOs, we utilize a causal effect network approach applied to the atmospheric reanalysis ERA‐Interim and identify local sea surface temperature and atmospheric circulation patterns over Scandinavia as valuable predictors. Prediction skill for MCAOs is further improved up to 40 days by including MCAO predictors in the analysis. Marine cold‐air outbreaks (MCAOs) create conditions for hazardous maritime mesocyclones known as polar lows posing risks to marine infrastructure. For marine management, prediction of MCAOs would be highly beneficial. The seasonal prediction system is able to predict MCAOs up to 20 days. By combining statistical and dynamical predictions, this skill can further be extended to 40 days in some regions.
AbstractList Abstract Marine cold‐air outbreaks (MCAOs) create conditions for hazardous maritime mesocyclones (polar lows) posing risks to marine infrastructure. For marine management, skilful predictions of MCAOs would be highly beneficial. For this reason, we investigate (a) the ability of a seasonal prediction system to predict MCAOs and (b) the possibilities to improve predictions through large‐scale causal drivers. Our results show that the seasonal ensemble predictions have high prediction skill for MCAOs over the Nordic Seas for about 20 days starting from November initial conditions. To study causal drivers of MCAOs, we utilize a causal effect network approach applied to the atmospheric reanalysis ERA‐Interim and identify local sea surface temperature and atmospheric circulation patterns over Scandinavia as valuable predictors. Prediction skill for MCAOs is further improved up to 40 days by including MCAO predictors in the analysis.
Marine cold‐air outbreaks (MCAOs) create conditions for hazardous maritime mesocyclones (polar lows) posing risks to marine infrastructure. For marine management, skilful predictions of MCAOs would be highly beneficial. For this reason, we investigate (a) the ability of a seasonal prediction system to predict MCAOs and (b) the possibilities to improve predictions through large‐scale causal drivers. Our results show that the seasonal ensemble predictions have high prediction skill for MCAOs over the Nordic Seas for about 20 days starting from November initial conditions. To study causal drivers of MCAOs, we utilize a causal effect network approach applied to the atmospheric reanalysis ERA‐Interim and identify local sea surface temperature and atmospheric circulation patterns over Scandinavia as valuable predictors. Prediction skill for MCAOs is further improved up to 40 days by including MCAO predictors in the analysis.
Marine cold‐air outbreaks (MCAOs) create conditions for hazardous maritime mesocyclones (polar lows) posing risks to marine infrastructure. For marine management, skilful predictions of MCAOs would be highly beneficial. For this reason, we investigate (a) the ability of a seasonal prediction system to predict MCAOs and (b) the possibilities to improve predictions through large‐scale causal drivers. Our results show that the seasonal ensemble predictions have high prediction skill for MCAOs over the Nordic Seas for about 20 days starting from November initial conditions. To study causal drivers of MCAOs, we utilize a causal effect network approach applied to the atmospheric reanalysis ERA‐Interim and identify local sea surface temperature and atmospheric circulation patterns over Scandinavia as valuable predictors. Prediction skill for MCAOs is further improved up to 40 days by including MCAO predictors in the analysis. Marine cold‐air outbreaks (MCAOs) create conditions for hazardous maritime mesocyclones known as polar lows posing risks to marine infrastructure. For marine management, prediction of MCAOs would be highly beneficial. The seasonal prediction system is able to predict MCAOs up to 20 days. By combining statistical and dynamical predictions, this skill can further be extended to 40 days in some regions.
Author Baehr, Johanna
Ruggieri, Paolo
Polkova, Iuliia
King, Martin P.
Afargan‐Gerstman, Hilla
Aarnes, Øivin
Athanasiadis, Panos
Kretschmer, Marlene
Domeisen, Daniela I. V.
Dobrynin, Mikhail
Author_xml – sequence: 1
  givenname: Iuliia
  orcidid: 0000-0003-4940-050X
  surname: Polkova
  fullname: Polkova, Iuliia
  email: iuliia.polkova@uni-hamburg.de
  organization: Universität Hamburg
– sequence: 2
  givenname: Hilla
  surname: Afargan‐Gerstman
  fullname: Afargan‐Gerstman, Hilla
  organization: ETH Zürich
– sequence: 3
  givenname: Daniela I. V.
  surname: Domeisen
  fullname: Domeisen, Daniela I. V.
  organization: ETH Zürich
– sequence: 4
  givenname: Martin P.
  surname: King
  fullname: King, Martin P.
  organization: NORCE Climate, and Bjerknes Centre for Climate Research
– sequence: 5
  givenname: Paolo
  surname: Ruggieri
  fullname: Ruggieri, Paolo
  organization: University of Bologna
– sequence: 6
  givenname: Panos
  surname: Athanasiadis
  fullname: Athanasiadis, Panos
  organization: Euro‐Mediterranean Center on Climate Change (CMCC)
– sequence: 7
  givenname: Mikhail
  orcidid: 0000-0003-3533-3529
  surname: Dobrynin
  fullname: Dobrynin, Mikhail
  organization: Deutscher Wetterdienst
– sequence: 8
  givenname: Øivin
  surname: Aarnes
  fullname: Aarnes, Øivin
  organization: DNV‐GL
– sequence: 9
  givenname: Marlene
  surname: Kretschmer
  fullname: Kretschmer, Marlene
  organization: University of Reading
– sequence: 10
  givenname: Johanna
  surname: Baehr
  fullname: Baehr, Johanna
  organization: Universität Hamburg
BookMark eNp10MtKAzEUBuAgFWyr-AoBFy5kai6TZLLUUm8UVKzgLiQzGcx0nLTJVOnOR_AZfRKnjltXhwMf_-H8IzBofGMBOMZoghEi5-tqkiKa7YEhToVIMoFeBmCIEGWJREgegFGMFUKICSKGYPEQbOHy1ocIdVPAVb8638C4dHUNSx_gmw6usTD3dfH9-aVdgH7TmmD1MkL_bgNsXy281ME2bYRPVh-C_VLX0R79zTF4vpotpjfJ_P76dnoxT3JKSJak3GCd8xwX0lCacWa4xJpRRrmgQqTY4MJYaYqs5IQSkZuUCSNSKbOi1EbTMTjpc1fBrzc2tqrym9B0JxVhTHDeWdKp017lwccYbKlWwXUvbRVGaleZWldqV1knz3r54Wq7_Y-px7tf_QNkqG4j
CitedBy_id crossref_primary_10_5194_wcd_2_867_2021
crossref_primary_10_1029_2021JD035741
crossref_primary_10_1016_j_cliser_2022_100291
crossref_primary_10_1029_2022JD037978
crossref_primary_10_3390_atmos15030317
Cites_doi 10.1029/2019GL083059
10.1126/sciadv.aau4996
10.1029/2019GL084763
10.1002/2017GL076921
10.1002/jgrd.50246
10.1038/s41612-018-0054-4
10.1175/MWR-D-15-0314.1
10.1029/2019JD030480
10.1007/s00382-008-0431-5
10.1175/MWR-D-15-0268.1
10.1002/qj.888
10.1175/BAMS-D-16-0207.1
10.1175/JCLI-D-16-0605.1
10.1175/BAMS-D-14-00287.1
10.1029/2019GL083346
10.1175/BAMS-D-16-0259.1
10.1002/qj.846
10.1175/JCLI-D-14-00207.1
10.1175/JCLI-D-16-0025.1
10.5194/gmd-7-453-2014
10.1063/1.5025050
10.1007/s00382-013-1969-4
10.1029/2020MS002101
10.1111/j.1600-0870.2010.00498.x
10.1002/2015GL066928
10.1175/1520-0442(2000)013<1044:OASSTI>2.0.CO;2
10.1002/2018GL077209
10.1175/1520-0434(1999)014<0713:CPROCA>2.0.CO;2
10.1175/JCLI-D-16-0890.1
10.1002/qj.620
10.1080/17445302.2016.1259954
10.1029/2020RG000708
10.1002/qj.2063
10.1029/2018JC014738
10.1007/s00382-019-04867-1
10.1029/2006JD008251
10.1175/JCLI-D-15-0654.1
10.1175/MWR-D-19-0409.1
10.1002/jame.20038
10.1002/qj.2743
10.1002/qj.3068
10.1175/JCLI-D-15-0268.1
10.1007/s00382-007-0331-0
10.1029/2019MS001991
10.5194/wcd-1-261-2020
10.1007/s00382-014-2399-7
10.1007/s00376-012-2006-y
10.3402/tellusa.v40i3.11798
10.5194/wcd-1-541-2020
10.1002/qj.828
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.
2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
DOI 10.1002/qj.4038
DatabaseName Wiley-Blackwell Open Access Collection
Wiley Online Library Journals
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley-Blackwell Titles (Open access)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1477-870X
EndPage 2656
ExternalDocumentID 10_1002_qj_4038
QJ4038
Genre article
GrantInformation_xml – fundername: European Union's Horizon 2020 research and innovation programme Marie Skłodowska‐Curie Swiss National Science Foundation Deutsche Forschungsgemeinschaft
  funderid: 727852; 841902; PP00P2_170523; 436413914
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
H~9
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NNB
O66
O9-
OHT
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
UB1
VOH
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUPDE
WWD
WXSBR
WYISQ
XG1
XOL
XV2
ZY4
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
ID FETCH-LOGICAL-c3228-46b1ac6c1d9b33865b691a53536737741b1dbe9bd8f62327cb457b74998dfaba3
IEDL.DBID 24P
ISSN 0035-9009
IngestDate Thu Oct 10 20:01:55 EDT 2024
Fri Aug 23 01:06:03 EDT 2024
Sat Aug 24 01:02:51 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 738
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3228-46b1ac6c1d9b33865b691a53536737741b1dbe9bd8f62327cb457b74998dfaba3
Notes Funding information
European Union's Horizon 2020 research and innovation programme Marie Skłodowska‐Curie Swiss National Science Foundation Deutsche Forschungsgemeinschaft,727852;841902;PP00P2_170523;436413914
ORCID 0000-0003-4940-050X
0000-0003-3533-3529
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqj.4038
PQID 2557667492
PQPubID 1016432
PageCount 20
ParticipantIDs proquest_journals_2557667492
crossref_primary_10_1002_qj_4038
wiley_primary_10_1002_qj_4038_QJ4038
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Reading
PublicationTitle Quarterly journal of the Royal Meteorological Society
PublicationYear 2021
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References 2017; 8
2019; 53
2015; 144
2019; 124
2016; 30
2016; 144
2020; 12
2008; 30
2020; 125
2018; 45
2013; 5
2016; 142
2017; 30
2020; 1
2000; 13
2015; 44
2013; 118
1999; 14
2016; 43
2011; 63
1983
1988; 40
2014; 7
2018; 31
2011; 137
2018; 28
2019; 5
2012
2020; 148
2016; 97
2014; 42
2021; 13
2009; 33
2007; 112
2021; 59
2015; 28
2019; 46
2010; 136
2017; 98
2013; 139
2013; 30
2017; 12
2019
2018
2017
2016
2018a; 1
2018b; 99
2017; 143
2013
2016; 29
e_1_2_8_28_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
Jolliffe I.T. (e_1_2_8_24_1) 2012
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Aarnes Ø. (e_1_2_8_2_1) 2018
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_61_1
Årthun M. (e_1_2_8_4_1) 2017; 8
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
Domeisen D.I.V. (e_1_2_8_18_1) 2020; 125
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
Landgren O.A. (e_1_2_8_37_1) 2019
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 12
  issue: 6
  year: 2020
  article-title: The influence of convective momentum transport and vertical wind shear on the evolution of a cold air outbreak
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 29
  start-page: 1999
  issue: 6
  year: 2016
  end-page: 2014
  article-title: The climatology, meteorology, and boundary‐layer structure of marine cold air outbreaks in both hemispheres
  publication-title: Journal of Climate
– volume: 137
  start-page: 1749
  year: 2011
  end-page: 1761
  article-title: A global climatology of favourable conditions for polar lows
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 40
  start-page: 248
  issue: 3
  year: 1988
  end-page: 255
  article-title: Climatology of polar lows over the Norwegian and Barents Seas
  publication-title: Tellus A
– volume: 43
  start-page: 852
  issue: 2
  year: 2016
  end-page: 859
  article-title: Seasonal climate forecasts significantly affected by observational uncertainty of Arctic sea ice concentration
  publication-title: Geophysical Research Letters
– volume: 53
  start-page: 2411
  issue: 3‐4
  year: 2019
  end-page: 2424
  article-title: Seasonal persistence of soil moisture anomalies related to freeze–thaw over the Tibetan Plateau and prediction signal of summer precipitation in eastern China
  publication-title: Climate Dynamics
– year: 2018
  article-title: End‐user requirements specification report Blue‐Action case study Nr. 3 (D5.11)
  publication-title: Zenodo
– volume: 8
  year: 2017
  article-title: Skillful prediction of northern climate provided by the ocean
  publication-title: Nature Communications
– volume: 112
  issue: D12
  year: 2007
  article-title: Associations between large‐scale atmospheric circulation and polar low developments over the North Atlantic during winter
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 30
  start-page: 2717
  issue: 8
  year: 2016
  end-page: 2737
  article-title: A Lagrangian climatology of wintertime cold air outbreaks in the Irminger and Nordic Seas and their role in shaping air–sea heat fluxes
  publication-title: Journal of Climate
– volume: 13
  start-page: 1044
  issue: 5
  year: 2000
  end-page: 1053
  article-title: On anomalous sea surface temperatures in the Nordic Seas
  publication-title: Journal of Climate
– volume: 148
  start-page: 4799
  issue: 12
  year: 2020
  end-page: 4822
  article-title: Subseasonal statistical forecasts of eastern US hot temperature events
  publication-title: Monthly Weather Review
– volume: 5
  start-page: 572
  issue: 3
  year: 2013
  end-page: 597
  article-title: Climate and carbon cycle changes from 1850 to 2100 in MPI‐ESM simulations for the coupled model intercomparison project phase 5
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 118
  start-page: 2455
  issue: 6
  year: 2013
  end-page: 2472
  article-title: Polar lows over the Nordic and Labrador Seas: synoptic circulation patterns and associations with North Atlantic–Europe wintertime weather regimes
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 28
  issue: 7
  year: 2018
  article-title: Causal network reconstruction from time series: from theoretical assumptions to practical estimation
  publication-title: Chaos: An Interdisciplinary Journal of Nonlinear Science
– year: 2018
– volume: 46
  start-page: 7583
  issue: 13
  year: 2019
  end-page: 7591
  article-title: Nonstationary relationship between autumn Arctic sea ice and the winter North Atlantic Oscillation
  publication-title: Geophysical Research Letters
– volume: 124
  start-page: 13943
  year: 2019
  end-page: 13961
  article-title: Observed relationships between sudden stratospheric warmings and European climate extremes
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 136
  start-page: 886
  year: 2010
  end-page: 893
  article-title: The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 45
  start-page: 3605
  issue: 8
  year: 2018
  end-page: 3614
  article-title: Improved teleconnection‐based dynamical seasonal predictions of boreal winter
  publication-title: Geophysical Research Letters
– volume: 137
  start-page: 553
  year: 2011
  end-page: 597
  article-title: The ERA‐Interim reanalysis: configuration and performance of the data assimilation system
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 45
  start-page: 2542
  issue: 5
  year: 2018
  end-page: 2553
  article-title: Linking low‐frequency large‐scale circulation patterns to cold air outbreak formation in the northeastern North Atlantic
  publication-title: Geophysical Research Letters
– volume: 98
  start-page: ES139
  issue: 6
  year: 2017
  end-page: ES142
  article-title: Polar low workshop summary
  publication-title: Bulletin of the American Meteorological Society
– volume: 29
  start-page: 4069
  issue: 11
  year: 2016
  end-page: 4081
  article-title: Using causal effect networks to analyze different Arctic drivers of midlatitude winter circulation
  publication-title: Journal of Climate
– volume: 30
  start-page: 803
  issue: 2
  year: 2017
  end-page: 812
  article-title: Wind‐driven Atlantic water flow as a direct mode for reduced Barents Sea ice cover
  publication-title: Journal of Climate
– volume: 1
  start-page: 541
  year: 2020
  end-page: 553
  article-title: Stratospheric influence on marine cold air outbreaks in the Barents Sea
  publication-title: Weather and Climate Dynamics
– volume: 30
  start-page: 397
  issue: 2
  year: 2013
  end-page: 410
  article-title: Revisiting the climatology of atmospheric blocking in the Northern Hemisphere
  publication-title: Advances in Atmospheric Sciences
– volume: 144
  start-page: 1341
  issue: 4
  year: 2016
  end-page: 1354
  article-title: Forward and reverse shear environments during polar low genesis over the Northeast Atlantic
  publication-title: Monthly Weather Review
– volume: 99
  start-page: 49
  issue: 1
  year: 2018b
  end-page: 60
  article-title: More‐persistent weak stratospheric polar vortex states linked to cold extremes
  publication-title: Bulletin of the American Meteorological Society
– volume: 59
  issue: 1
  year: 2021
  article-title: Sudden stratospheric warmings
  publication-title: Reviews of Geophysics
– volume: 1
  start-page: 44
  issue: 1
  year: 2018a
  article-title: The different stratospheric influence on cold extremes in Eurasia and North America
  publication-title: npj Climate and Atmospheric Science
– year: 1983
  article-title: A review of meso‐scale disturbances in cold air masses. pp.,247–283 in Mesoscale Meteorology – Theories, Observations and Models
– volume: 46
  start-page: 13479
  issue: 22
  year: 2019
  end-page: 13487
  article-title: Quantifying the timescale and strength of Southern Hemisphere intraseasonal stratosphere–troposphere coupling
  publication-title: Geophysical Research Letters
– volume: 139
  start-page: 1132
  year: 2013
  end-page: 1161
  article-title: Evaluation of the ECMWF ocean reanalysis system ORAS4
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 124
  start-page: 1807
  issue: 3
  year: 2019
  end-page: 1826
  article-title: Atlantic inflow to the North Sea modulated by the subpolar gyre in a historical simulation with MPI‐ESM
  publication-title: Journal of Geophysical Research: Oceans
– volume: 33
  start-page: 187
  issue: 2–3
  year: 2009
  end-page: 197
  article-title: Marine cold‐air outbreaks in the North Atlantic: temporal distribution and associations with large‐scale atmospheric circulation
  publication-title: Climate Dynamics
– volume: 63
  start-page: 585
  issue: 3
  year: 2011
  end-page: 604
  article-title: High‐resolution ensemble prediction of a polar low development
  publication-title: Tellus A: Dynamic Meteorology and Oceanography
– volume: 137
  start-page: 1762
  year: 2011
  end-page: 1772
  article-title: A climatological study of polar lows in the Nordic Seas
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 42
  start-page: 3151
  issue: 11–12
  year: 2014
  end-page: 3169
  article-title: Impact of initialization procedures on the predictive skill of a coupled ocean–atmosphere model
  publication-title: Climate Dynamics
– year: 2016
– volume: 12
  start-page: S82
  issue: Supplement 1
  year: 2017
  end-page: S87
  article-title: Vessel stability in polar low situations
  publication-title: Ships and Offshore Structures
– year: 2012
– volume: 14
  start-page: 713
  issue: 5
  year: 1999
  end-page: 725
  article-title: Conditional probabilities, relative operating characteristics, and relative operating levels
  publication-title: Weather and Forecasting
– volume: 144
  start-page: 315
  issue: 1
  year: 2015
  end-page: 336
  article-title: Importance of latent heating in mesocyclones for the decay of cold air outbreaks: a numerical process study from the Pacific sector of the Southern Ocean
  publication-title: Monthly Weather Review
– volume: 7
  start-page: 453
  issue: 1
  year: 2014
  end-page: 461
  article-title: Ensemble initialization of the oceanic component of a coupled model through bred vectors at seasonal‐to‐interannual timescales
  publication-title: Geoscientific Model Development
– volume: 28
  start-page: 256
  issue: 1
  year: 2015
  end-page: 271
  article-title: Seasonal predictability over Europe arising from El Niño and stratospheric variability in the MPI‐ESM seasonal prediction system
  publication-title: Journal of Climate
– volume: 46
  year: 2019
  article-title: Predictability of Northern Hemisphere final stratospheric warmings and their surface impacts
  publication-title: Geophysical Research Letters
– volume: 30
  start-page: 871
  issue: 7–8
  year: 2008
  end-page: 885
  article-title: Marine cold‐air outbreaks in the future: an assessment of IPCC AR4 model results for the Northern Hemisphere
  publication-title: Climate Dynamics
– volume: 5
  issue: 11
  year: 2019
  article-title: Detecting and quantifying causal associations in large nonlinear time series datasets
  publication-title: Science Advances
– volume: 13
  year: 2021
  article-title: The German climate forecast system: GCFS
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 97
  start-page: 1475
  issue: 8
  year: 2016
  end-page: 1489
  article-title: Feeling the pulse of the stratosphere: an emerging opportunity for predicting continental‐scale cold‐air outbreaks one month in advance
  publication-title: Bulletin of the American Meteorological Society
– start-page: 1
  year: 2019
  end-page: 13
  article-title: Projected future changes in marine cold‐air outbreaks associated with polar lows in the northern North Atlantic Ocean
  publication-title: Climate Dynamics
– volume: 125
  issue: 2
  year: 2020
  article-title: The role of the stratosphere in subseasonal to seasonal prediction: 2. predictability arising from stratosphere–troposphere coupling
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 31
  start-page: 2511
  issue: 6
  year: 2018
  end-page: 2532
  article-title: Polar mesoscale cyclone climatology for the Nordic Seas based on ERA‐Interim
  publication-title: Journal of Climate
– volume: 44
  start-page: 2723
  issue: 9–10
  year: 2015
  end-page: 2735
  article-title: The prediction of surface temperature in the new seasonal prediction system based on the MPI‐ESM coupled climate model
  publication-title: Climate Dynamics
– volume: 1
  start-page: 261
  issue: 1
  year: 2020
  end-page: 275
  article-title: Intermittency of Arctic–midlatitude teleconnections: stratospheric pathway between autumn sea ice and the winter North Atlantic Oscillation
  publication-title: Weather and Climate Dynamics
– year: 2017
– volume: 142
  start-page: 1413
  year: 2016
  end-page: 1427
  article-title: The climate‐system historical forecast project: do stratosphere‐resolving models make better seasonal climate predictions in boreal winter?
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 143
  start-page: 2084
  year: 2017
  end-page: 2092
  article-title: Higher ocean wind speeds during marine cold air outbreaks
  publication-title: Quarterly Journal of the Royal Meteorological Society
– year: 2013
– ident: e_1_2_8_29_1
  doi: 10.1029/2019GL083059
– ident: e_1_2_8_52_1
  doi: 10.1126/sciadv.aau4996
– ident: e_1_2_8_53_1
  doi: 10.1029/2019GL084763
– ident: e_1_2_8_45_1
  doi: 10.1002/2017GL076921
– volume: 8
  year: 2017
  ident: e_1_2_8_4_1
  article-title: Skillful prediction of northern climate provided by the ocean
  publication-title: Nature Communications
  contributor:
    fullname: Årthun M.
– ident: e_1_2_8_39_1
  doi: 10.1002/jgrd.50246
– ident: e_1_2_8_34_1
  doi: 10.1038/s41612-018-0054-4
– ident: e_1_2_8_58_1
  doi: 10.1175/MWR-D-15-0314.1
– ident: e_1_2_8_25_1
  doi: 10.1029/2019JD030480
– ident: e_1_2_8_30_1
  doi: 10.1007/s00382-008-0431-5
– ident: e_1_2_8_40_1
– ident: e_1_2_8_46_1
  doi: 10.1175/MWR-D-15-0268.1
– ident: e_1_2_8_26_1
  doi: 10.1002/qj.888
– ident: e_1_2_8_57_1
  doi: 10.1175/BAMS-D-16-0207.1
– ident: e_1_2_8_47_1
  doi: 10.1175/JCLI-D-16-0605.1
– ident: e_1_2_8_12_1
  doi: 10.1175/BAMS-D-14-00287.1
– ident: e_1_2_8_11_1
  doi: 10.1029/2019GL083346
– ident: e_1_2_8_35_1
  doi: 10.1175/BAMS-D-16-0259.1
– ident: e_1_2_8_43_1
  doi: 10.1002/qj.846
– ident: e_1_2_8_17_1
  doi: 10.1175/JCLI-D-14-00207.1
– ident: e_1_2_8_38_1
  doi: 10.1175/JCLI-D-16-0025.1
– ident: e_1_2_8_5_1
  doi: 10.5194/gmd-7-453-2014
– ident: e_1_2_8_50_1
  doi: 10.1063/1.5025050
– ident: e_1_2_8_48_1
  doi: 10.1007/s00382-013-1969-4
– ident: e_1_2_8_21_1
  doi: 10.1029/2020MS002101
– ident: e_1_2_8_36_1
  doi: 10.1111/j.1600-0870.2010.00498.x
– ident: e_1_2_8_9_1
  doi: 10.1002/2015GL066928
– ident: e_1_2_8_22_1
  doi: 10.1175/1520-0442(2000)013<1044:OASSTI>2.0.CO;2
– volume-title: Forecast Verification: A Practitioner's Guide in Atmospheric Science
  year: 2012
  ident: e_1_2_8_24_1
  contributor:
    fullname: Jolliffe I.T.
– ident: e_1_2_8_16_1
  doi: 10.1002/2018GL077209
– ident: e_1_2_8_41_1
  doi: 10.1175/1520-0434(1999)014<0713:CPROCA>2.0.CO;2
– ident: e_1_2_8_42_1
  doi: 10.1175/JCLI-D-16-0890.1
– start-page: 1
  year: 2019
  ident: e_1_2_8_37_1
  article-title: Projected future changes in marine cold‐air outbreaks associated with polar lows in the northern North Atlantic Ocean
  publication-title: Climate Dynamics
  contributor:
    fullname: Landgren O.A.
– ident: e_1_2_8_31_1
  doi: 10.1002/qj.620
– ident: e_1_2_8_51_1
– ident: e_1_2_8_44_1
  doi: 10.1080/17445302.2016.1259954
– ident: e_1_2_8_7_1
  doi: 10.1029/2020RG000708
– ident: e_1_2_8_8_1
  doi: 10.1002/qj.2063
– ident: e_1_2_8_32_1
  doi: 10.1029/2018JC014738
– ident: e_1_2_8_61_1
  doi: 10.1007/s00382-019-04867-1
– ident: e_1_2_8_14_1
  doi: 10.1029/2006JD008251
– ident: e_1_2_8_33_1
  doi: 10.1175/JCLI-D-15-0654.1
– ident: e_1_2_8_59_1
  doi: 10.1175/MWR-D-19-0409.1
– ident: e_1_2_8_55_1
– ident: e_1_2_8_23_1
  doi: 10.1002/jame.20038
– ident: e_1_2_8_10_1
  doi: 10.1002/qj.2743
– year: 2018
  ident: e_1_2_8_2_1
  article-title: End‐user requirements specification report Blue‐Action case study Nr. 3 (D5.11)
  publication-title: Zenodo
  contributor:
    fullname: Aarnes Ø.
– ident: e_1_2_8_60_1
– ident: e_1_2_8_27_1
  doi: 10.1002/qj.3068
– ident: e_1_2_8_20_1
  doi: 10.1175/JCLI-D-15-0268.1
– ident: e_1_2_8_28_1
  doi: 10.1007/s00382-007-0331-0
– ident: e_1_2_8_54_1
  doi: 10.1029/2019MS001991
– ident: e_1_2_8_56_1
  doi: 10.5194/wcd-1-261-2020
– ident: e_1_2_8_6_1
  doi: 10.1007/s00382-014-2399-7
– volume: 125
  issue: 2
  year: 2020
  ident: e_1_2_8_18_1
  article-title: The role of the stratosphere in subseasonal to seasonal prediction: 2. predictability arising from stratosphere–troposphere coupling
  publication-title: Journal of Geophysical Research: Atmospheres
  contributor:
    fullname: Domeisen D.I.V.
– ident: e_1_2_8_49_1
– ident: e_1_2_8_13_1
  doi: 10.1007/s00376-012-2006-y
– ident: e_1_2_8_19_1
  doi: 10.3402/tellusa.v40i3.11798
– ident: e_1_2_8_3_1
  doi: 10.5194/wcd-1-541-2020
– ident: e_1_2_8_15_1
  doi: 10.1002/qj.828
SSID ssj0005727
Score 2.4190984
Snippet Marine cold‐air outbreaks (MCAOs) create conditions for hazardous maritime mesocyclones (polar lows) posing risks to marine infrastructure. For marine...
Abstract Marine cold‐air outbreaks (MCAOs) create conditions for hazardous maritime mesocyclones (polar lows) posing risks to marine infrastructure. For marine...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 2638
SubjectTerms Arctic climate
Atmospheric circulation
Atmospheric circulation patterns
causal drivers
marine cold air outbreak
Outbreaks
polar low
Polar lows
Predictions
Sea surface
Sea surface temperature
seasonal prediction
Surface temperature
Title Predictors and prediction skill for marine cold‐air outbreaks over the Barents Sea
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqj.4038
https://www.proquest.com/docview/2557667492
Volume 147
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gXLggnqIwUA4Tt7K1Tfo4osE0TQIN2KTdqqRJpT3oHu3u_AR-I78EOy1sHJC4tIpkK5JT158Txx8hjTCQIcRVbadCJzZzNbejKE3txEsZTwOuhWFveHzyu0PWG_HRFtVX2R_iZ8MNPcP8r9HBhcybm6ahy8kta3nhLtnDfjHYNt9l_U11R1CxtXowOeCI8r4sqjYrxd-BaIMutzGqCTKdQ3JQoUN6Vy7nEdnR2TGxHgHYzldm_5ve0PZsDCjTjE7IoL_CkxakzKEiU3RRDsHYNJ-OZzMKmJS-CbziR2HJ1ef7hxiv6HxdQCospjnFCk4KIJAi8UFW5PRVi1My7DwM2l27IkoAk7q4O-ZLRyR-4qhIekjiKf3IEdzjHrLQAGaQjpI6kipMAe24QSIZD2QAyU6oUiGFd0Zq2TzT54QmLFAQ1jlTKOSrSESOJxQkOkK3Qs0tEKmsFi_Kfhhx2fnYjZeTGA1rkfq3NePKIfIYMpfA92FK1yINY-G_1OPnHr4u_id2SfZdrDIxBbR1UitWa30FMKGQ1-aDgOf9i_sFbWW6_w
link.rule.ids 315,783,787,1378,11574,27936,27937,46064,46306,46488,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYDnBhR4TVh4pbWhLHWY6IRaW0FUsrVeIQ2bEjlZaUtumFE5_AN_IlzCQpBSQkxCmyNJYdjyd-MxnPI6Tke9KHc1WbsdCR6diam0EQx2bEYofHHtciY29oNN1q26l1eKfIqsS7MHl9iM-AG1pG9r1GA8eAdGVWNXT4WHZOmD9PFsHYGdI2nN_NSkdxr6BrZTA6AIn8wix2rRQdv59EM3j5FaRmp8zlKnmYzi9PLumVJ6ksRy8_Sjf-7wXWyEoBPulpvlvWyZxONojRANw8GGXhdXpMz_pdALFZa5O0bkb4IwcZeahIFH3Om6BLOu51-30KkJc-CbxBSGFHqffXN9Ed0QHMG8Bob0wxQZQCxqTIq5CkY3qvxRZpX160zqpmwcMAGrMx-OZKS0RuZKlAMuQIlW5gCc44Q5IbgCTSUlIHUvkxgCnbi6TDPemBL-WrWEjBtslCMkj0DqGR4ylADdxRKOSqQAQWEwr8KKFPfM0NECl0Ej7n5TbCvLCyHQ4fQ1wug-xPdRUW9jYOwTHyXBeGtA1Syhb9t-7hbQ0fu38TOyJL1VajHtavmtd7ZNnGhJYsV3efLKSjiT4ARJLKw2zrfQC6hd2d
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gSIgL4ikKA3KYuJWtbdLHEQ2mMdg0xCbtViVNIu1Bt7XdnZ_Ab-SX4LSFjQMSpyqSrUhOXX92HX8I1XyP-xBXpamYjExiS2oGgVJm5ChClUcly9kbuj23PSSdER1tUH0V8yF-Cm7aM_LvtXbwhVD19dDQ5eSWNBx_G-0QAOF6bL5N-uvuDq9ka3Vgc8ARxX1ZrVovFX8HojW63MSoeZBpHaD9Eh3iu-I4D9GWjI-Q0QVgO0_y-je-wc3ZGFBmvjpGg36i_7RoyhzMYoEXxRKMjdPpeDbDgEnxG9NX_DAcufh8_2DjBM9XGaTCbJpi3cGJAQRiTXwQZyl-lewEDVsPg2bbLIkSwKS2ro653GKRG1ki4I4m8eRuYDHqUEez0ABm4JbgMuDCV4B2bC_ihHrcg2THF4px5pyiSjyP5RnCEfEEhHVKhBZyRcACy2ECEh0mG76kBoiUVgsXxTyMsJh8bIfLSagNa6DqtzXD0iHSEDIXz3VhS9tAtdzCf6mHLx39OP-f2DXa7d-3wufH3tMF2rN1w0neS1tFlSxZyUtADBm_yt-NLzVHvKo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictors+and+prediction+skill+for+marine+cold%E2%80%90air+outbreaks+over+the+Barents+Sea&rft.jtitle=Quarterly+journal+of+the+Royal+Meteorological+Society&rft.au=Polkova%2C+Iuliia&rft.au=Afargan%E2%80%90Gerstman%2C+Hilla&rft.au=Domeisen%2C+Daniela+I.+V.&rft.au=King%2C+Martin+P.&rft.date=2021-07-01&rft.issn=0035-9009&rft.eissn=1477-870X&rft.volume=147&rft.issue=738&rft.spage=2638&rft.epage=2656&rft_id=info:doi/10.1002%2Fqj.4038&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_qj_4038
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-9009&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-9009&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-9009&client=summon