Review on heat transfer analysis in thermal energy storage using latent heat storage systems and phase change materials
Summary Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used later for heating and cooling applications and for power generation. TES has recently attracted increasing interest to thermal applications suc...
Saved in:
Published in | International journal of energy research Vol. 43; no. 1; pp. 29 - 64 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
John Wiley & Sons, Inc
01.01.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0363-907X 1099-114X |
DOI | 10.1002/er.4196 |
Cover
Abstract | Summary
Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used later for heating and cooling applications and for power generation. TES has recently attracted increasing interest to thermal applications such as space and water heating, waste heat utilisation, cooling, and air conditioning. Phase change materials (PCMs) used for the storage of thermal energy as latent heat are special types of advanced materials that substantially contribute to the efficient use and conservation of waste heat and solar energy. This paper provides a comprehensive review on the development of latent heat storage (LHS) systems focused on heat transfer and enhancement techniques employed in PCMs to effectively charge and discharge latent heat energy, and the formulation of the phase change problem. The main categories of PCMs are classified and briefly described, and heat transfer enhancement technologies, namely dispersion of low‐density materials, use of porous materials, metal matrices and encapsulation, incorporation of extended surfaces and fins, utilisation of heat pipes, cascaded storage, and direct heat transfer techniques, are also discussed in detail. Additionally, a two‐dimensional heat transfer simulation model of an LHS system is developed using the control volume technique to solve the phase change problem. Furthermore, a three‐dimensional numerical simulation model of an LHS is built to investigate the quasi‐steady state and transient heat transfer in PCMs. Finally, several future research directions are provided.
Development of latent heat storage (LHS) systems focused on heat transfer and enhancement techniques used in phase change materials (PCMs) is reviewed
The main categories of PCMs are classified, and its characteristic properties are briefly described
Heat transfer enhancement technologies are also discussed in detail
A numerical simulation model of two‐dimensional heat transfer and another with three dimensions for the LHS are included
Several future research directions are provided |
---|---|
AbstractList | Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used later for heating and cooling applications and for power generation. TES has recently attracted increasing interest to thermal applications such as space and water heating, waste heat utilisation, cooling, and air conditioning. Phase change materials (PCMs) used for the storage of thermal energy as latent heat are special types of advanced materials that substantially contribute to the efficient use and conservation of waste heat and solar energy. This paper provides a comprehensive review on the development of latent heat storage (LHS) systems focused on heat transfer and enhancement techniques employed in PCMs to effectively charge and discharge latent heat energy, and the formulation of the phase change problem. The main categories of PCMs are classified and briefly described, and heat transfer enhancement technologies, namely dispersion of low‐density materials, use of porous materials, metal matrices and encapsulation, incorporation of extended surfaces and fins, utilisation of heat pipes, cascaded storage, and direct heat transfer techniques, are also discussed in detail. Additionally, a two‐dimensional heat transfer simulation model of an LHS system is developed using the control volume technique to solve the phase change problem. Furthermore, a three‐dimensional numerical simulation model of an LHS is built to investigate the quasi‐steady state and transient heat transfer in PCMs. Finally, several future research directions are provided. Summary Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used later for heating and cooling applications and for power generation. TES has recently attracted increasing interest to thermal applications such as space and water heating, waste heat utilisation, cooling, and air conditioning. Phase change materials (PCMs) used for the storage of thermal energy as latent heat are special types of advanced materials that substantially contribute to the efficient use and conservation of waste heat and solar energy. This paper provides a comprehensive review on the development of latent heat storage (LHS) systems focused on heat transfer and enhancement techniques employed in PCMs to effectively charge and discharge latent heat energy, and the formulation of the phase change problem. The main categories of PCMs are classified and briefly described, and heat transfer enhancement technologies, namely dispersion of low‐density materials, use of porous materials, metal matrices and encapsulation, incorporation of extended surfaces and fins, utilisation of heat pipes, cascaded storage, and direct heat transfer techniques, are also discussed in detail. Additionally, a two‐dimensional heat transfer simulation model of an LHS system is developed using the control volume technique to solve the phase change problem. Furthermore, a three‐dimensional numerical simulation model of an LHS is built to investigate the quasi‐steady state and transient heat transfer in PCMs. Finally, several future research directions are provided. Development of latent heat storage (LHS) systems focused on heat transfer and enhancement techniques used in phase change materials (PCMs) is reviewed The main categories of PCMs are classified, and its characteristic properties are briefly described Heat transfer enhancement technologies are also discussed in detail A numerical simulation model of two‐dimensional heat transfer and another with three dimensions for the LHS are included Several future research directions are provided |
Author | Sarbu, Ioan Dorca, Alexandru |
Author_xml | – sequence: 1 givenname: Ioan orcidid: 0000-0001-5606-6090 surname: Sarbu fullname: Sarbu, Ioan email: ioan.sarbu@upt.ro organization: Polytechnic University of Timisoara – sequence: 2 givenname: Alexandru surname: Dorca fullname: Dorca, Alexandru organization: Polytechnic University of Timisoara |
BookMark | eNp1kE1LAzEYhINUsK3iXwh48CBb87HdTY5S6gcIQlHobUl333RTttmapJb996auXkRPc5hnBmZGaGBbCwhdUjKhhLBbcJOUyuwEDSmRMqE0XQ7QkPCMJ5LkyzM08n5DSPRoPkSHBXwYOODW4hpUwMEp6zU4rKxqOm88NhaHGtxWNRgsuHWHfWidWgPee2PXuFEBbOjTP47vfICtjyUV3tXKAy5rZaOxjbAzqvHn6FRHgYtvHaO3-_nr7DF5fnl4mt09JyVnLEuquESwKtM8FbwiMGU6JVxIyYXIM5KuWFaCzDLQkomKUcVWFdd5ynKitCg5H6Orvnfn2vc9-FBs2r2L23zB6DSngrJURuq6p0rXeu9AFztntsp1BSXF8dUCXHF8NZLJL7I0QQXT2vicaf7gb3r-YBro_qst5osv-hMYlonX |
CitedBy_id | crossref_primary_10_1016_j_est_2022_105589 crossref_primary_10_3390_app12146995 crossref_primary_10_1016_j_est_2021_103443 crossref_primary_10_1115_1_4065407 crossref_primary_10_1002_er_4925 crossref_primary_10_3390_en16010309 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119853 crossref_primary_10_1155_2024_6620850 crossref_primary_10_1016_j_est_2020_101540 crossref_primary_10_1016_j_energy_2020_118055 crossref_primary_10_1016_j_est_2023_107912 crossref_primary_10_32604_jrm_2022_022232 crossref_primary_10_1002_er_5208 crossref_primary_10_1177_09544089241312626 crossref_primary_10_1007_s10494_024_00594_8 crossref_primary_10_1016_j_applthermaleng_2020_115115 crossref_primary_10_1016_j_est_2020_101438 crossref_primary_10_1016_j_enconman_2022_115434 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121654 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123458 crossref_primary_10_1002_er_5566 crossref_primary_10_1016_j_applthermaleng_2021_117961 crossref_primary_10_1016_j_est_2021_103420 crossref_primary_10_1016_j_jobe_2019_100772 crossref_primary_10_1016_j_solmat_2024_112908 crossref_primary_10_1016_j_prime_2021_100027 crossref_primary_10_1007_s10765_022_03130_w crossref_primary_10_1016_j_enganabound_2023_03_044 crossref_primary_10_1142_S0218625X25300072 crossref_primary_10_1016_j_matchemphys_2021_125438 crossref_primary_10_1155_er_3489021 crossref_primary_10_1016_j_solmat_2024_113317 crossref_primary_10_1063_5_0102005 crossref_primary_10_3390_en15030956 crossref_primary_10_1016_j_energy_2021_123018 crossref_primary_10_1002_er_5679 crossref_primary_10_1016_j_renene_2023_119673 crossref_primary_10_3390_ma14051091 crossref_primary_10_3390_app132413130 crossref_primary_10_3390_membranes11020127 crossref_primary_10_1080_15435075_2022_2138713 crossref_primary_10_1088_1742_6596_2492_1_012002 crossref_primary_10_1016_j_rineng_2024_103603 crossref_primary_10_1088_1742_6596_1683_5_052001 crossref_primary_10_1007_s10765_022_03042_9 crossref_primary_10_1016_j_apenergy_2022_119555 crossref_primary_10_3390_solar3010010 crossref_primary_10_1016_j_applthermaleng_2023_121073 crossref_primary_10_1016_j_solener_2021_07_003 crossref_primary_10_1016_j_energy_2024_131463 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123760 crossref_primary_10_1016_j_rser_2024_114528 crossref_primary_10_3390_en16196764 crossref_primary_10_1016_j_est_2025_115631 crossref_primary_10_1063_5_0257939 crossref_primary_10_3390_en18061433 crossref_primary_10_1002_est2_238 crossref_primary_10_1115_1_4052085 crossref_primary_10_1016_j_jobe_2024_111391 crossref_primary_10_3390_en15218271 crossref_primary_10_3390_nano13192635 crossref_primary_10_1016_j_icheatmasstransfer_2023_106646 crossref_primary_10_1016_j_solmat_2020_110394 crossref_primary_10_1016_j_ijthermalsci_2020_106578 crossref_primary_10_3390_en17020462 crossref_primary_10_1002_est2_127 crossref_primary_10_1115_1_4063045 crossref_primary_10_3390_en17164128 crossref_primary_10_1016_j_seta_2023_103078 crossref_primary_10_1016_j_est_2022_104795 crossref_primary_10_1080_10407782_2022_2083842 crossref_primary_10_2139_ssrn_4102550 crossref_primary_10_1016_j_est_2024_111329 crossref_primary_10_1016_j_ijft_2024_100623 crossref_primary_10_3934_energy_2019_4_507 crossref_primary_10_1007_s10965_022_02976_w crossref_primary_10_1016_j_energy_2019_03_149 crossref_primary_10_1016_j_apenergy_2024_123893 crossref_primary_10_1016_j_est_2023_108792 crossref_primary_10_1177_01436244241261162 crossref_primary_10_1088_1742_6596_1782_1_012016 crossref_primary_10_1002_er_4668 crossref_primary_10_1007_s00396_020_04804_3 crossref_primary_10_1016_j_matpr_2022_07_217 crossref_primary_10_3389_fenrg_2023_1017943 crossref_primary_10_1002_er_5191 crossref_primary_10_1049_esi2_12128 crossref_primary_10_1115_1_4046056 crossref_primary_10_3390_mi15050623 crossref_primary_10_1039_D2RA02437C crossref_primary_10_1002_er_6397 crossref_primary_10_1007_s10973_022_11798_3 crossref_primary_10_1016_j_enbuild_2024_115204 crossref_primary_10_1002_er_4896 crossref_primary_10_1177_09506608241292406 crossref_primary_10_1109_TPEL_2022_3223730 crossref_primary_10_1002_er_5069 crossref_primary_10_1002_er_4531 crossref_primary_10_1063_5_0145904 crossref_primary_10_1016_j_csite_2022_102490 crossref_primary_10_1016_j_est_2021_102871 crossref_primary_10_1016_j_applthermaleng_2022_118911 crossref_primary_10_1002_er_6828 crossref_primary_10_1016_j_seta_2021_101633 crossref_primary_10_1002_er_5055 crossref_primary_10_1002_er_5176 crossref_primary_10_1016_j_est_2021_103727 crossref_primary_10_1016_j_conbuildmat_2023_134269 crossref_primary_10_3390_pr12061123 crossref_primary_10_1016_j_heliyon_2024_e36105 crossref_primary_10_3390_en17020276 crossref_primary_10_1016_j_est_2023_108976 crossref_primary_10_1115_1_4051075 crossref_primary_10_1016_j_energy_2020_118698 crossref_primary_10_3390_en17184680 crossref_primary_10_1016_j_applthermaleng_2022_119439 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121256 crossref_primary_10_1016_j_jfoodeng_2020_110351 crossref_primary_10_1016_j_apenergy_2022_120363 crossref_primary_10_1016_j_renene_2025_122652 crossref_primary_10_1016_j_est_2024_112844 crossref_primary_10_1002_er_6132 crossref_primary_10_1016_j_est_2024_114347 crossref_primary_10_1016_j_est_2024_114345 crossref_primary_10_1142_S179329202430010X crossref_primary_10_1016_j_energy_2019_116802 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119323 crossref_primary_10_1080_14484846_2022_2069644 crossref_primary_10_1016_j_scs_2024_105897 crossref_primary_10_1016_j_pecs_2023_101109 crossref_primary_10_1016_j_solmat_2022_112092 crossref_primary_10_1016_j_icheatmasstransfer_2025_108857 crossref_primary_10_3390_nano13142126 crossref_primary_10_1016_j_enbuild_2022_112205 crossref_primary_10_1080_01457632_2024_2392076 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124076 crossref_primary_10_1002_htj_22955 crossref_primary_10_1016_j_mtsust_2023_100469 crossref_primary_10_1016_j_applthermaleng_2023_120814 crossref_primary_10_1115_1_4063520 crossref_primary_10_1007_s10973_022_11806_6 crossref_primary_10_1016_j_est_2024_111085 crossref_primary_10_1016_j_jallcom_2024_173989 crossref_primary_10_1002_er_6240 crossref_primary_10_1016_j_enconman_2022_115484 crossref_primary_10_3390_en15239152 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121603 crossref_primary_10_1002_er_5949 crossref_primary_10_1016_j_est_2022_105179 crossref_primary_10_1016_j_applthermaleng_2023_120942 crossref_primary_10_1002_er_4856 crossref_primary_10_1002_er_4737 crossref_primary_10_1016_j_applthermaleng_2019_114764 crossref_primary_10_1007_s10853_024_10304_4 crossref_primary_10_1016_j_est_2023_108185 crossref_primary_10_1016_j_est_2021_103937 crossref_primary_10_1016_j_rser_2023_113904 crossref_primary_10_1016_j_tsep_2023_101668 crossref_primary_10_1016_j_applthermaleng_2020_116507 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124625 crossref_primary_10_3390_ma17020467 crossref_primary_10_1016_j_applthermaleng_2020_116509 crossref_primary_10_1016_j_applthermaleng_2022_118955 crossref_primary_10_1016_j_est_2022_106591 crossref_primary_10_1016_j_applthermaleng_2022_119364 crossref_primary_10_1063_5_0065433 crossref_primary_10_1016_j_est_2021_102957 crossref_primary_10_1016_j_applthermaleng_2020_115722 crossref_primary_10_1021_acs_chemrev_2c00407 crossref_primary_10_1016_j_est_2021_102711 crossref_primary_10_1002_app_55742 crossref_primary_10_3390_app10217771 crossref_primary_10_1016_j_egyr_2024_04_024 crossref_primary_10_1002_er_4960 crossref_primary_10_1002_er_4838 crossref_primary_10_1016_j_applthermaleng_2023_121858 crossref_primary_10_1016_j_est_2022_105277 crossref_primary_10_1093_ijlct_ctac125 crossref_primary_10_1016_j_est_2022_105273 crossref_primary_10_1002_er_7663 crossref_primary_10_1016_j_solmat_2024_112699 crossref_primary_10_1515_ehs_2023_0038 crossref_primary_10_1016_j_tsep_2021_101003 crossref_primary_10_1002_er_4711 crossref_primary_10_1016_j_energy_2025_135165 crossref_primary_10_1016_j_tsep_2023_101886 crossref_primary_10_1002_er_8513 crossref_primary_10_1016_j_applthermaleng_2021_116677 crossref_primary_10_1016_j_mtsust_2024_100986 crossref_primary_10_1016_j_rser_2023_113897 crossref_primary_10_1016_j_solmat_2021_111135 crossref_primary_10_1038_s41598_023_45549_7 crossref_primary_10_1016_j_est_2021_102934 crossref_primary_10_1016_j_xcrp_2021_100540 crossref_primary_10_1002_er_4934 crossref_primary_10_1016_j_matchemphys_2021_125089 crossref_primary_10_1007_s11356_022_24552_x crossref_primary_10_1016_j_ijft_2024_100579 crossref_primary_10_1051_e3sconf_202015202008 crossref_primary_10_3390_en13092238 crossref_primary_10_1016_j_polymer_2021_124176 crossref_primary_10_1051_e3sconf_202132300023 crossref_primary_10_1016_j_tsep_2022_101440 crossref_primary_10_1016_j_applthermaleng_2021_117659 crossref_primary_10_1016_j_enconman_2022_115692 crossref_primary_10_1016_j_apenergy_2024_122714 crossref_primary_10_1016_j_est_2020_102189 crossref_primary_10_24237_djes_2022_15304 |
Cites_doi | 10.1016/S0196-8904(99)00166-1 10.1007/978-94-009-5301-7 10.1016/0017-9310(81)90035-1 10.1016/S0038-092X(97)00104-7 10.1016/0038-092X(82)90058-5 10.1016/j.apenergy.2014.07.015 10.1016/j.ijheatmasstransfer.2018.03.095 10.1016/0017-9310(70)90180-8 10.1063/1.2802183 10.2514/3.27839 10.1016/j.applthermaleng.2006.11.004 10.1016/S0196-8904(01)00187-X 10.1016/j.apenergy.2014.10.051 10.1016/S1359-4311(02)00192-8 10.1016/j.ijrefrig.2012.06.003 10.1016/j.enconman.2004.06.010 10.1016/j.ijheatmasstransfer.2014.07.087 10.1016/j.rser.2010.08.019 10.1016/j.rser.2012.10.025 10.1016/j.pecs.2015.10.003 10.1007/978-94-011-2872-8_32 10.1016/0038-092X(83)90020-8 10.1002/nme.1620231003 10.1016/0306-2619(83)90063-6 10.1016/j.tca.2010.11.011 10.1080/10407782.2014.894371 10.1016/j.apenergy.2008.10.020 10.1016/0038-092X(84)90047-1 10.1016/0167-5826(83)90029-3 10.3390/su8101046 10.1016/j.enbuild.2013.05.027 10.1016/j.ijheatmasstransfer.2011.04.046 10.1115/1.3250668 10.1016/0038-092X(78)90141-X 10.1115/1.3246884 10.1016/0017-9310(89)90049-5 10.1016/j.apm.2008.05.016 10.1016/j.rser.2007.06.009 10.1016/0017-9310(84)90143-1 10.1016/j.apenergy.2013.08.026 10.1016/j.ijheatmasstransfer.2015.05.020 10.1115/1.4025973 10.1016/j.icheatmasstransfer.2014.02.025 10.1016/S1359-4311(96)00054-3 10.1016/j.ijheatmasstransfer.2011.06.018 10.1016/j.energy.2011.07.019 10.1016/S0196-8904(01)00131-5 10.1081/GE-200051299 10.1016/j.rser.2013.12.033 10.1016/j.energy.2012.01.024 10.1115/1.4023485 10.1016/j.apenergy.2011.08.025 10.1016/j.apenergy.2014.01.085 10.4028/www.scientific.net/AMR.239-242.2248 10.1016/j.apenergy.2013.04.043 10.1016/j.applthermaleng.2015.03.065 10.1016/j.pecs.2013.02.001 10.1016/j.applthermaleng.2004.10.007 10.1016/S0065-2717(08)70211-9 10.1016/j.solener.2006.11.009 10.1016/j.apenergy.2013.01.031 10.1016/0017-9310(84)90121-2 10.1016/j.camwa.2009.03.115 10.1016/j.solener.2010.04.022 10.1016/0196-8904(88)90021-0 10.1016/j.ijheatmasstransfer.2017.10.033 10.1016/j.applthermaleng.2014.05.080 10.1016/j.rser.2005.10.002 10.1080/10407799308955894 10.1016/j.ijrefrig.2010.07.017 10.1016/j.cep.2007.02.001 10.1016/0038-092X(93)90029-N 10.1016/j.solmat.2013.09.035 10.1615/JEnhHeatTransf.v3.i2.50 10.1016/j.applthermaleng.2018.02.035 10.1016/j.enconman.2015.08.004 10.1016/j.rser.2017.01.169 10.1016/0017-9310(71)90178-5 10.1016/j.rser.2009.11.011 10.1002/er.1057 10.1016/j.solener.2015.02.002 10.1016/j.rser.2009.07.035 10.1016/j.enconman.2014.01.042 10.1016/j.apenergy.2009.10.011 10.1016/j.renene.2010.06.005 10.1021/je200057j 10.1007/BF02653497 10.1016/j.apenergy.2012.11.051 10.1016/j.solener.2013.11.017 10.1016/0017-9310(73)90202-0 10.1016/j.enbuild.2013.12.028 10.1016/S0038-092X(87)80035-X 10.1016/0017-9310(89)90204-4 10.1016/0021-9614(70)90078-9 10.1007/s10973-014-4370-6 10.1016/0038-092X(89)90013-3 10.1016/0038-092X(88)90136-3 10.1016/j.solmat.2014.03.020 10.1016/j.ijheatmasstransfer.2013.03.061 10.1016/j.enconman.2003.09.015 10.1115/1.4024745 10.1016/j.cej.2010.07.054 10.1016/j.solmat.2011.09.020 10.1002/9781118671603 10.1016/j.rser.2015.03.038 10.1016/0017-9310(75)90228-8 10.1016/j.enconman.2014.07.041 10.1016/j.pmatsci.2014.03.005 10.1016/j.ijheatmasstransfer.2010.03.035 10.1016/j.rser.2012.01.020 10.1007/s007910050034 10.1016/0196-8904(81)90033-9 10.1016/j.renene.2014.02.025 10.1016/j.rser.2013.01.008 10.1016/j.applthermaleng.2013.01.011 10.1016/j.solener.2003.07.028 10.1016/0038-092X(82)90211-0 10.1016/S0038-092X(96)00167-3 10.1002/nme.1620080314 10.1016/j.solener.2005.03.006 10.1016/0017-9310(95)00402-5 10.1016/j.ijthermalsci.2013.03.015 10.1016/j.apenergy.2008.12.004 10.1016/j.applthermaleng.2010.11.022 10.1016/j.applthermaleng.2006.08.001 10.1016/S0038-092X(03)00117-8 10.1016/j.proeng.2015.09.189 10.1016/j.ijheatmasstransfer.2009.10.025 10.1016/S0038-092X(99)00045-6 10.1016/j.renene.2008.02.026 10.1016/j.solener.2006.09.008 10.1016/j.energy.2004.04.024 10.1080/01495728308963083 10.1016/j.rser.2007.10.005 10.1016/j.apenergy.2013.10.029 10.1016/j.ijheatmasstransfer.2004.10.042 10.1016/0360-5442(92)90004-J 10.1016/j.apenergy.2010.12.028 10.1002/er.4035 10.1016/j.solener.2013.11.008 10.1016/j.rser.2009.10.015 10.1016/0165-1633(80)90033-7 10.1016/0017-9310(80)90116-7 10.1016/j.solener.2011.12.008 10.1007/BF01177060 10.1016/j.apenergy.2014.03.025 10.1016/j.renene.2009.03.010 10.1002/er.3776 10.1115/1.3450375 10.1016/j.applthermaleng.2017.03.005 10.1016/j.carbon.2013.04.004 10.1016/j.applthermaleng.2014.12.008 10.1016/0094-4548(80)90004-1 10.1016/j.rser.2012.05.037 10.1016/j.enconman.2004.05.012 10.1016/j.applthermaleng.2013.12.016 10.1002/(SICI)1099-114X(19990325)23:4<287::AID-ER476>3.0.CO;2-K 10.1016/j.mspro.2014.07.579 10.1080/17512549.2013.809271 10.1016/j.ijheatmasstransfer.2014.11.022 10.1016/j.ijheatmasstransfer.2012.03.023 10.1016/j.rser.2015.10.128 10.1016/0038-092X(79)90140-3 10.1016/0378-7788(84)90009-4 10.1016/j.renene.2015.05.029 10.1080/10407799008961737 10.1016/S0196-8904(96)00193-8 10.1016/j.applthermaleng.2016.06.158 10.1016/j.enconman.2006.05.017 10.1080/10407799408955931 10.1063/1.555693 10.1080/01457632.2015.965093 10.1007/978-3-540-68557-9 10.1016/j.applthermaleng.2015.02.030 10.1016/j.rser.2017.05.093 10.1016/j.apenergy.2014.04.029 10.1016/j.ijheatmasstransfer.2009.12.057 10.1016/0017-9310(81)90078-8 10.1016/j.rser.2010.06.011 10.1016/S1359-4311(03)00108-X 10.1016/j.enconman.2015.07.068 10.1016/j.rser.2009.06.024 10.1504/IJEX.2012.050229 10.1016/j.apenergy.2013.01.082 10.1016/j.carbon.2005.06.042 10.1002/er.4440120318 10.1016/j.apenergy.2011.11.018 10.1115/1.3450599 10.1080/10407788808913615 10.1016/S0196-8904(03)00131-6 10.1016/j.apenergy.2016.05.097 10.1016/j.rser.2015.04.044 10.1016/j.enconman.2015.01.084 10.1016/S0017-9310(99)00024-1 |
ContentType | Journal Article |
Copyright | 2018 John Wiley & Sons, Ltd. 2019 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2018 John Wiley & Sons, Ltd. – notice: 2019 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SP 7ST 7TB 7TN 8FD C1K F1W F28 FR3 H96 KR7 L.G L7M SOI |
DOI | 10.1002/er.4196 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Oceanic Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-114X |
EndPage | 64 |
ExternalDocumentID | 10_1002_er_4196 ER4196 |
Genre | reviewArticle |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AAJEY AANHP AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AEUYN AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AI. AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BKSAR BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 FEDTE G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X H13 HCIFZ HF~ HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 M7S MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PCBAR PIMPY PTHSS PYCSY Q.N Q11 QB0 QRW R.K RHX RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TN5 UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WWI WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX ADMLS AGQPQ CITATION PHGZM PHGZT 7SP 7ST 7TB 7TN 8FD C1K F1W F28 FR3 H96 KR7 L.G L7M SOI |
ID | FETCH-LOGICAL-c3226-d19682d6f3483d0e52f4038993887604b26ce966ef928d21a2bd3f74270af8c33 |
IEDL.DBID | DR2 |
ISSN | 0363-907X |
IngestDate | Fri Jul 25 10:34:27 EDT 2025 Tue Jul 01 01:41:23 EDT 2025 Thu Apr 24 23:06:49 EDT 2025 Wed Jan 22 16:29:37 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3226-d19682d6f3483d0e52f4038993887604b26ce966ef928d21a2bd3f74270af8c33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5606-6090 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/er.4196 |
PQID | 2157181249 |
PQPubID | 996365 |
PageCount | 36 |
ParticipantIDs | proquest_journals_2157181249 crossref_primary_10_1002_er_4196 crossref_citationtrail_10_1002_er_4196 wiley_primary_10_1002_er_4196_ER4196 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2019 2019-01-00 20190101 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
PublicationDecade | 2010 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | International journal of energy research |
PublicationYear | 2019 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2015; 78 1993; 24 2007; 102 2010; 14 1989; 42 2011; 513 2009; 86 1983; 2 2013; 65 1983; 6 2011; 239–242 2013; 63 1989; 111 1975; 18 1973; 16 1975; 12 2011; 54 2013; 70 1999; 42 2011; 56 2008; 33 2012; 16 2013; 7 2018; 42 2012; 11 1974; 8 1987; 39 2012; 98 2014; 136 1983; 14 1978 1983; 12 2015; 89 2014; 127 2009; 13 2017; 74 1986; 108 1989; 32 2015; 137 2015; 82 2015; 138 2015; 81 2015; 84 2015; 83 2017; 79 2013; 53 2006; 26 1985 2013; 60 1999; 294 1937; 15 1983 1981 2013; 110 1980 2014; 121 1979; 22 2014; 120 2014; 126 2014; 99 2005; 79 2010; 33 2010; 35 2013; 109 1980; 11A 2013; 104 2004; 45 2015; 120 2015; 121 2013; 106 1981; 24 2010; 163 1988; 12 1995 1988; 13 2012; 39 1992 2012; 35 1998; 62 2007; 11 1981; 21 1970; 13 1994; 287 2005; 19 2015; 115 2018; 117 1993; 50 1984; 32 1986; 23 1984; 6 1988; 28 2008; 47 2016; 177 2014; 36 2007; 81 2005; 2 2018; 10 2016; 8 2003; 23 1990; 4 2014; 31 2017; 41 2010; 53 2014; 70 1996; 39 1891; 278 2013; 21 2015; 105 1984; 27 1990; 17 2016; 107 2018; 124 2000; 41 1992; 17 1994; 25 2014; 68 2011; 15 2005; 29 2012; 55 2014; 66 2014; 65 1970; 2 2005; 25 2017; 118 2014; 64 2013; 18 2015; 48 2009; 58 2014; 4 1982; 29 1978; 20 2018; 134 2002; 43 2005; 30 1997; 17 1996; 1 1988; 41 1972; 14 1975; 8 1996; 3 2007; 27 2014; 53 1997; 60 2015; 95 1980; 23 1986; 59 1983; 31 2011; 31 2009 2016; 53 2008 2008; 12 1999; 66 2005; 43 1999; 2 2011; 36 2005; 48 2003; 74 2014; 114 2003; 75 2010; 84 2014; 87 2005; 46 2016; 55 2014; 113 1976; 98 2009; 33 2012; 92 2010; 87 1949; 46 1998; 39 2014; 80 2013; 39 1980; 2 1980; 11 2013; 136 1980; 7 2017 2013; 135 2015 2013 2012; 89 2014; 72 1976; 16 2014; 78 1989; 19 2012; 86 2007; 48 2014; 75 2014; 102 e_1_2_9_79_1 Bulunti B (e_1_2_9_159_1) 2006; 26 e_1_2_9_94_1 Stefan J (e_1_2_9_173_1) 1891; 278 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_216_1 e_1_2_9_71_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_18_1 e_1_2_9_160_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_204_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 Sarbu I (e_1_2_9_28_1) 2017 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_157_1 e_1_2_9_195_1 e_1_2_9_172_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_217_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_167_1 e_1_2_9_106_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_182_1 e_1_2_9_61_1 Voller VR (e_1_2_9_174_1) 1996; 1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_205_1 e_1_2_9_5_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_179_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_171_1 e_1_2_9_194_1 e_1_2_9_31_1 e_1_2_9_210_1 e_1_2_9_77_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 Telkes M (e_1_2_9_12_1) 1949; 46 e_1_2_9_101_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_162_1 Teller O (e_1_2_9_27_1) 2013 e_1_2_9_16_1 e_1_2_9_185_1 e_1_2_9_20_1 e_1_2_9_89_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_206_1 e_1_2_9_8_1 e_1_2_9_81_1 Wrobel LC (e_1_2_9_177_1) 1983 e_1_2_9_113_1 Edwards DP (e_1_2_9_170_1) 1994; 287 e_1_2_9_151_1 e_1_2_9_197_1 Faghri A (e_1_2_9_136_1) 1995 e_1_2_9_211_1 e_1_2_9_78_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_123_1 e_1_2_9_169_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_184_1 e_1_2_9_161_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_112_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_207_1 e_1_2_9_196_1 e_1_2_9_29_1 e_1_2_9_150_1 Huang ZG (e_1_2_9_50_1) 1990; 4 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_190_1 e_1_2_9_52_1 e_1_2_9_212_1 e_1_2_9_90_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_187_1 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_200_1 Gnielinski V (e_1_2_9_168_1) 1976; 16 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_115_1 e_1_2_9_199_1 e_1_2_9_26_1 e_1_2_9_208_1 e_1_2_9_130_1 e_1_2_9_176_1 e_1_2_9_153_1 e_1_2_9_191_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_213_1 e_1_2_9_76_1 e_1_2_9_91_1 Mehling H (e_1_2_9_100_1) 2008 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_186_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_201_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_175_1 e_1_2_9_198_1 e_1_2_9_209_1 Yang L (e_1_2_9_128_1) 2014; 75 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_96_1 e_1_2_9_166_1 e_1_2_9_105_1 e_1_2_9_189_1 e_1_2_9_120_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_181_1 e_1_2_9_62_1 e_1_2_9_202_1 e_1_2_9_24_1 e_1_2_9_85_1 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_178_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_193_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_215_1 e_1_2_9_13_1 e_1_2_9_97_1 e_1_2_9_127_1 e_1_2_9_188_1 e_1_2_9_104_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_165_1 e_1_2_9_180_1 e_1_2_9_63_1 Carman PC (e_1_2_9_214_1) 1937; 15 e_1_2_9_40_1 Sun JQ (e_1_2_9_49_1) 2005; 19 e_1_2_9_203_1 e_1_2_9_86_1 e_1_2_9_3_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 Sarbu I (e_1_2_9_4_1) 2018; 10 e_1_2_9_48_1 Meyer GH (e_1_2_9_183_1) 1978 e_1_2_9_192_1 |
References_xml | – volume: 30 start-page: 221 year: 2005 end-page: 233 article-title: Anisotropic heat transfer in composites based on high‐thermal conductive carbon fibers publication-title: Energy – volume: 111 start-page: 239 year: 1989 end-page: 242 article-title: The enthalpy method for heat conduction problems with moving boundaries publication-title: ASME Journal of Heat Transfer – volume: 12 start-page: 591 issue: 3 year: 1983 end-page: 815 article-title: Molten salts: volume 5, Part 2. Additional single and multi‐component salt systems. Electrical conductance, density, viscosity and surface tension data publication-title: J Phys Chem Ref Data Monogr – volume: 27 start-page: 994 year: 2007 end-page: 1000 article-title: Effects of different multiple PCMs on the performance of a latent thermal energy storage system publication-title: Appl Therm Eng – volume: 48 start-page: 373 year: 2015 end-page: 391 article-title: Review of solid–liquid phase change materials and their encapsulation technologies publication-title: Renew Sustain Energy Rev – volume: 117 start-page: 757 year: 2018 end-page: 767 article-title: An implicit algorithm for melting and settling of phase change material inside macrocapsules publication-title: International Journal of Heat and Mass Transfer – volume: 36 start-page: 5539 year: 2011 end-page: 5546 article-title: A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals publication-title: Energy – volume: 27 start-page: 1055 issue: 7 year: 1984 end-page: 1065 article-title: Inward solid–liquid phase‐change heat transfer in a rectangular cavity with conducting vertical walls publication-title: International Journal of Heat and Mass Transfer – volume: 36 start-page: 108 issue: 1 year: 2011 end-page: 117 article-title: Experimental study on the melting and solidification behaviour of a medium temperature phase change storage material (erythritol) system augmented with fins to power a LiBr/H O absorption cooling system publication-title: Renew Energy – volume: 29 start-page: 503 issue: 6 year: 1982 end-page: 511 article-title: Comparisons of paraffin wax storage subsystem models using liquid heat transfer media publication-title: Solar Energy – volume: 70 start-page: 609 year: 2014 end-page: 619 article-title: A numerical and experimental study of solidification around axially finned heat pipes for high temperature latent heat thermal energy storage units publication-title: Appl Therm Eng – volume: 64 start-page: 396 issue: s 1–2 year: 2014 end-page: 407 article-title: Analysis of heat transfer and fluid flow during melting inside a spherical container for thermal energy storage publication-title: Applied Thermal Engineering – volume: 59 start-page: 59 year: 1986 end-page: 81 article-title: A boundary element method analysis of temperature fields and stress during solidification publication-title: Acta Mechanica – volume: 108 start-page: 174 year: 1986 end-page: 181 article-title: Melting and solidification of a pure metal on a vertical wall publication-title: J Heat Transfer – volume: 14 start-page: 197 issue: 3 year: 1983 end-page: 209 article-title: A solar water heater based on phase‐changing material publication-title: Appl Energy – volume: 31 start-page: 970 issue: 5 year: 2011 end-page: 977 article-title: Experimental investigations on heat transfer in phase change materials (PCMs) embedded with porous materials publication-title: Appl Therm Eng – volume: 136 issue: 2 year: 2014 article-title: Numerical simulation of heat pipe‐assisted latent heat thermal energy storage unit for Dish‐Stirling systems publication-title: Journal of Solar Energy Engineering – year: 2008 – volume: 110 start-page: 163 year: 2013 end-page: 172 article-title: Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin‐based nanocomposite phase change materials publication-title: Appl Energy – volume: 81 start-page: 242 year: 2015 end-page: 252 article-title: Performance of suspended finned heat pipes in high‐temperature latent heat thermal energy storage publication-title: Appl Therm Eng – volume: 23 start-page: 1647 year: 2003 end-page: 1664 article-title: Numerical simulation of porous latent heat thermal energy storage for thermoelectric cooling publication-title: Appl Therm Eng – volume: 86 start-page: 1479 issue: 9 year: 2009 end-page: 1483 article-title: Preparation and thermal properties of polyethylene glycol/expanded graphite blends for energy storage publication-title: Appl Energy – volume: 102 year: 2007 article-title: Experimental study on the influence of foam porosity and pore size on the melting of phase change materials publication-title: J Appl Phys – volume: 23 start-page: 283 issue: 3 year: 1980 end-page: 292 article-title: Solid–liquid phase‐change heat transfer and interface motion in materials cooled or heated from above or below publication-title: International Journal of Heat and Mass Transfer – volume: 55 start-page: 371 year: 2016 end-page: 398 article-title: Passive thermal control in residential buildings using phase change materials publication-title: Renew Sustain Energy Rev – volume: 25 start-page: 1623 issue: 11‐12 year: 2005 end-page: 1633 article-title: Thermal conductivity measurement of a PCM based storage system containing carbon fibers publication-title: Appl Therm Eng – volume: 15 start-page: 112 year: 2011 end-page: 130 article-title: A review on phase‐change materials: mathematical modeling and simulations publication-title: Renew Sustain Energy Rev – volume: 138 start-page: 381 year: 2015 end-page: 392 article-title: Numerical analysis of a shell‐and‐tube latent heat storage unit with fins for air‐conditioning application publication-title: Appl Energy – volume: 56 start-page: 2889 issue: 6 year: 2011 end-page: 2891 article-title: Theoretic prediction of melting temperature and latent heat for a fatty acid eutectic mixture publication-title: J Chem Eng Data – volume: 17 start-page: 1153 issue: 12 year: 1992 end-page: 1164 article-title: Heat transfer characteristics of a latent heat storage system using MgCl2 6H2O publication-title: Energy – volume: 16 start-page: 1825 issue: 10 year: 1973 end-page: 1832 article-title: Numerical solution phase change problems publication-title: International Journal of Heat and Mass Transfer – volume: 113 start-page: 1525 year: 2014 end-page: 1561 article-title: A review of phase change materials for vehicle component thermal buffering publication-title: Appl Energy – volume: 2 start-page: 123 year: 1999 end-page: 130 article-title: Phase change problems with free convection: fixed grid numerical simulation publication-title: Computing and Visualization in Science – volume: 13 start-page: 2225 issue: 9 year: 2009 end-page: 2244 article-title: Performance enhancement in latent heat thermal storage system: a review publication-title: Renew Sustain Energy Rev – volume: 70 start-page: 114 year: 2013 end-page: 126 article-title: Effects of melting temperature and the presence of internal fins on the performance of a phase change material (PCM)‐based heat sink publication-title: International Journal of Thermal Sciences – volume: 11 start-page: 1415 issue: 8 year: 1980 end-page: 1420 article-title: Heat storage in eutectic alloys publication-title: Metallurgical and Materials Transactions a – volume: 3 start-page: 119 year: 1996 end-page: 127 article-title: Heat transfer enhancement in latent heat thermal energy storage system by using an external radial finned tube publication-title: Journal of Enhanced Heat Transfer – volume: 78 start-page: 1135 year: 2014 end-page: 1144 article-title: Encapsulated phase change material for high temperature thermal energy storage—heat transfer analysis publication-title: International Journal of Heat and Mass Transfer – volume: 106 start-page: 25 year: 2013 end-page: 30 article-title: A nano‐graphite/paraffin phase change material with high thermal conductivity publication-title: Appl Energy – volume: 39 start-page: 319 year: 1998 end-page: 330 article-title: Numerical simulation of a latent heat thermal energy storage system with enhanced heat conduction publication-title: Energ Conver Manage – year: 1995 – volume: 121 start-page: 184 issue: May year: 2014 end-page: 195 article-title: Dynamic thermal performance analysis of a molten‐salt packed‐bed thermal energy storage system using PCM capsules publication-title: Appl Energy – volume: 126 start-page: 125 year: 2014 end-page: 134 article-title: Stability of sugar alcohols as PCM for thermal energy storage publication-title: Solar Energy Materials and Solar Cells – year: 1978 – volume: 79 start-page: 1212 issue: 57 year: 2017 end-page: 1228 article-title: Phase change materials and carbon nanostructures for thermal energy storage: a literature review publication-title: Renewable and Sustainable Energy Reviews – volume: 121 start-page: 1969 year: 2015 end-page: 1976 article-title: Simulation and feasibility analysis of PCM based passive cooling technique in residential house publication-title: Procedia Engineering – volume: 114 start-page: 632 year: 2014 end-page: 643 article-title: Microencapsulation of n‐octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: synthesis, microstructure, and performance evaluation publication-title: Appl Energy – volume: 32 start-page: 41 issue: 1 year: 1984 end-page: 48 article-title: Parametric sensitivity studies using paraffin wax storage subsystems publication-title: Solar Energy – year: 2013 – year: 1985 – volume: 12 start-page: 2438 year: 2008 end-page: 2458 article-title: Heat transfer characteristics of thermal energy storage system using PCM capsules: a review publication-title: Renew Sustain Energy Rev – year: 2009 – volume: 54 start-page: 4429 issue: 19‐20 year: 2011 end-page: 4436 article-title: Energy storage and solidification of paraffin phase change material embedded with graphite nanofibers publication-title: International Journal of Heat and Mass Transfer – volume: 92 start-page: 593 issue: 8 year: 2012 end-page: 605 article-title: Review on thermal energy storage with phase change materials (PCMs) in building applications publication-title: Applied Energy – volume: 89 start-page: 37 issue: 1 year: 2012 end-page: 44 article-title: Heat pumps and energy storage—the challenges of implementation publication-title: Appl Energy – volume: 105 start-page: 260 year: 2015 end-page: 271 article-title: Three‐dimensional simulation of high temperature latent heat thermal energy storage system assisted by finned heat pipes publication-title: Energ Conver Manage – volume: 32 start-page: 1663 issue: 9 year: 1989 end-page: 1670 article-title: An analysis of heat transfer using equivalent thermal conductivity of liquid phase during melting inside an isothermally heated horizontal cylinder publication-title: Heat and Mass Transfer – volume: 74 start-page: 141 year: 2003 end-page: 148 article-title: Discharge mode for encapsulated PCMs in storage tanks publication-title: Solar Energy – volume: 16 start-page: 5603 year: 2012 end-page: 5616 article-title: A review on effect of phase change material encapsulation on the thermal performance of a system publication-title: Renew Sustain Energy Rev – volume: 72 start-page: 31 year: 2014 end-page: 37 article-title: Synthesis and characterization of microencapsulated paraffin with titanium dioxide shell as shape‐stabilized thermal energy storage materials in buildings publication-title: Energ Buildings – volume: 86 start-page: 1196 issue: 7‐8 year: 2009 end-page: 1200 article-title: Enhanced thermal conductivity and thermal performance of form‐stable composite phase change materials by using b‐aluminum nitride publication-title: Appl Energy – volume: 87 start-page: 1529 issue: 5 year: 2010 end-page: 1534 article-title: Preparation, characterization and thermal properties of PMMA/n‐heptadecane microcapsules as novel solid–liquid microPCM for thermal energy storage publication-title: Appl Energy – volume: 75 start-page: 317 year: 2003 end-page: 328 article-title: Thermal response in thermal energy storage material around heat transfer tubes: effect of additives on heat transfer rates publication-title: Solar Energy – volume: 42 start-page: 3659 year: 1999 end-page: 3672 article-title: An experimental investigation of the melting process in a rectangular enclosure publication-title: Heat and Mass Transfer – volume: 60 start-page: 281 issue: 5 year: 1997 end-page: 290 article-title: Experimental analysis and numerical modelling of inward solidification on a finned vertical tube for a latent heat storage unit publication-title: Solar Energy – volume: 46 start-page: 80 issue: 11 year: 1949 end-page: 86 article-title: Storing solar heat in chemicals—a report on the Dover house publication-title: Heat Vent – volume: 21 start-page: 125 issue: 2 year: 1981 end-page: 130 article-title: Studies on low‐temperature salt‐hydrate for thermal storage applications publication-title: Energ Conver Manage – volume: 16 start-page: 2118 issue: 4 year: 2012 end-page: 2132 article-title: Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems publication-title: Renew Sustain Energy Rev – volume: 53 start-page: 2979 year: 2010 end-page: 2988 article-title: High temperature latent heat thermal energy storage using heat pipes publication-title: International Journal of Heat and Mass Transfer – volume: 294 start-page: 287 year: 1999 end-page: 294 article-title: Theoretical study on a novel phase change process publication-title: International Journal of Energy Research – volume: 29 start-page: 257 issue: 3 year: 1982 end-page: 263 article-title: A preliminary model for phase change thermal energy storage in a shell and tube heat exchanger publication-title: Solar Energy – volume: 11 start-page: 349 issue: 3 year: 2012 end-page: 370 article-title: A study on the thermodynamic analysis of a cascaded latent heat storage system over the single storage tank system for diesel engine waste heat recovery publication-title: International Journal of Exergy – volume: 58 start-page: 1302 year: 2009 end-page: 1308 article-title: A new numerical algorithm for 2D moving boundary problems using a boundary element method publication-title: Computers and Mathematics with Applications – volume: 45 start-page: 263 issue: 2 year: 2004 end-page: 275 article-title: A review on energy conservation in building applications with thermal storage by latent heat using phase change materials publication-title: Energ Conver Manage – volume: 124 start-page: 663 year: 2018 end-page: 676 article-title: Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex‐tube heat exchanger publication-title: International Journal of Heat and Mass Transfer – volume: 20 start-page: 57 issue: 1 year: 1978 end-page: 67 article-title: Effects of phase‐change energy storage on the performance of air‐based and liquid‐based solar heating systems publication-title: Solar Energy – volume: 84 start-page: 1402 issue: 8 year: 2010 end-page: 1412 article-title: Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs) publication-title: Solar Energy – year: 2015 – volume: 54 start-page: 4596 year: 2011 end-page: 4610 article-title: Analysis and optimization of a latent thermal energy storage system with embedded heat pipes publication-title: International Journal of Heat and Mass Transfer – volume: 66 start-page: 483 issue: 6 year: 1999 end-page: 490 article-title: Accelerated thermal cycle test of latent heat storage materials publication-title: Solar Energy – volume: 29 start-page: 283 year: 2005 end-page: 301 article-title: Experimental and numerical investigation of thermal energy storage with a finned tube publication-title: International Journal of Energy Research – volume: 118 start-page: 430 issue: 25 May year: 2017 end-page: 447 article-title: Multi‐objective RSM optimization of fin assisted latent heat thermal energy storage system based on solidification process of phase change material in presence of copper nanoparticles publication-title: Applied Thermal Engineering – volume: 6 start-page: 85 issue: 1 year: 1984 end-page: 92 article-title: The compressive strength of cement blocks permeated with an organic phase change material publication-title: Energ Buildings – volume: 78 start-page: 556 issue: 3 year: 2015 end-page: 564 article-title: Experimental study on solving the blocking for the direct contact mobilized thermal energy storage container publication-title: Appl Therm Eng – volume: 39 start-page: 285 issue: 4 year: 2013 end-page: 319 article-title: Thermal energy storage technologies and systems for concentrating solar power plants publication-title: Progress in Energy and Combustion Science – volume: 4 start-page: 203 year: 1990 end-page: 206 article-title: Properties of cast aluminum alloys as thermal storage materials publication-title: Cast Metals – volume: 26 start-page: 11 issue: 2 year: 2006 end-page: 16 article-title: Analysis of inward melting of spheres subject to convection and radiation publication-title: Journal of Thermal Science and Technology – volume: 41 start-page: 2149 issue: 14 year: 2017 end-page: 2161 article-title: Modeling and assessment of a thermochemical energy storage using salt hydrates publication-title: International Journal of Energy Research – volume: 23 start-page: 251 issue: 3 year: 2003 end-page: 283 article-title: Review on thermal energy storage with phase change: materials, heat transfer analysis and applications publication-title: Appl Therm Eng – volume: 14 start-page: 615 issue: 2 year: 2010 end-page: 628 article-title: A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS) publication-title: Renew Sustain Energy Rev – volume: 109 start-page: 360 issue: 9 year: 2013 end-page: 365 article-title: Prototype thermochemical heat storage with open reactor system publication-title: Appl Energy – volume: 27 start-page: 739 issue: 5 year: 1984 end-page: 746 article-title: An analytical solution of the heat transfer process during melting of an unfixed solid phase change material inside a horizontal tube publication-title: International Journal of Heat and Mass Transfer – volume: 42 start-page: 2518 issue: 7 year: 2018 end-page: 2535 article-title: Analysis of an encapsulated phase change material‐based energy storage system for high‐temperature applications publication-title: International Journal of Energy Research – year: 1980 – volume: 13 start-page: 297 year: 1988 end-page: 318 article-title: Enthalpy‐porosity technique for modeling convection‐diffusion phase change: application to the melting of a pure metal publication-title: Numerical Heat Transfer – volume: 55 start-page: 3458 issue: 13–14 year: 2012 end-page: 3469 article-title: Heat pipe‐assisted melting of a phase change material publication-title: International Journal of Heat and Mass Transfer – volume: 89 start-page: 138 year: 2015 end-page: 158 article-title: Heat pipe heat exchangers and heat sinks: opportunities, challenges, applications, analysis, and state of the art publication-title: International Journal of Heat and Mass Transfer – volume: 68 start-page: 452 year: 2014 end-page: 458 article-title: Energy and exergy evaluation of a multiple‐PCM thermal storage unit for free cooling applications publication-title: Renew Energy – volume: 287 start-page: 17 year: 1994 end-page: 23 article-title: Pressure drop and heat transfer predictions of turbulent flow in longitudinally finned tubes publication-title: Advances in Enhanced Heat Transfer – volume: 134 start-page: 585 year: 2018 end-page: 593 article-title: Non‐linear system identification of a latent heat thermal energy storage system publication-title: Appl Therm Eng – volume: 87 start-page: 428 year: 2014 end-page: 438 article-title: Theoretical and experimental investigation of plate screen mesh heat pipe solar collector publication-title: Energ Conver Manage – volume: 8 start-page: 1046 year: 2016 article-title: Micro‐encapsulated phase change materials: a review of encapsulation, safety and thermal characteristics publication-title: Sustainability – volume: 17 start-page: 155 year: 1990 end-page: 169 article-title: Fast implicit finite‐difference method for the analysis of phase change problems publication-title: Numerical Heat Transfer, Part B: Fundamentals – volume: 14 start-page: 955 issue: 3 year: 2010 end-page: 970 article-title: High‐temperature phase change materials for thermal energy storage publication-title: Renew Sustain Energy Rev – volume: 278 start-page: 269 issue: 2 year: 1891 end-page: 286 article-title: Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere publication-title: Ann Phys Rehabil Med – volume: 35 start-page: 198 issue: 1 year: 2010 end-page: 207 article-title: Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array publication-title: Renew Energy – volume: 104 start-page: 538 year: 2013 end-page: 553 article-title: A review of solar collectors and thermal energy storage in solar thermal applications publication-title: Appl Energy – volume: 33 start-page: 2606 year: 2008 end-page: 2614 article-title: Thermal cycling test of few selected inorganic and organic phase change materials publication-title: Renew Energy – volume: 513 start-page: 49 issue: 1–2 year: 2011 end-page: 59 article-title: Thermal analysis of phase change materials in the temperature range 120–150 °C publication-title: Thermochimica Acta – volume: 11 start-page: 1146 year: 2007 end-page: 1166 article-title: PCM thermal storage in buildings: a state of art publication-title: Renew Sustain Energy Rev – year: 1981 – volume: 53 start-page: 147 year: 2013 end-page: 156 article-title: Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers publication-title: Appl Therm Eng – volume: 65 start-page: 260 year: 2013 end-page: 271 article-title: Centralized latent heat thermal energy storage system: model development and validation publication-title: Energ Buildings – volume: 46 start-page: 959 year: 2005 end-page: 969 article-title: Experimental investigations on the characteristics of melting processes of stearic acid in an annulus and its thermal conductivity enhancement by fins publication-title: Energ Conver Manage – volume: 24 start-page: 273 issue: 2 year: 1981 end-page: 284 article-title: Freezing on a finned tube for either conduction‐controlled or natural‐convection‐controlled heat transfer publication-title: International Journal of Heat and Mass Transfer – volume: 2 start-page: 341 year: 1983 end-page: 354 article-title: Energy storage via desiccants for food/agricultural applications publication-title: Energy in Agriculture – volume: 66 start-page: 1131 year: 2014 end-page: 1153 article-title: Numerical investigation of pcm based heat sinks with embedded metal foam/crossed plate fins publication-title: Numerical Heat Transfer, Part A: Applications – volume: 105 start-page: 189 issue: November year: 2015 end-page: 196 article-title: Experimental analysis, modeling and simulation of a solar energy accumulator with paraffin wax as PCM publication-title: Energ Conver Manage – volume: 7 start-page: 183 issue: 3 year: 1980 end-page: 188 article-title: On the melting of a simple body with a convection boundary condition publication-title: Letters in Heat and Mass Transfer – volume: 63 start-page: 323 year: 2013 end-page: 335 article-title: Heat transfer analysis of encapsulated phase change material for thermal energy storage publication-title: International Journal of Heat and Mass Transfer – volume: 33 start-page: 1676 year: 2010 end-page: 1683 article-title: Experimental investigation of energy saving in buildings with PCM cold storage publication-title: International Journal of Refrigeration – volume: 8 start-page: 333 year: 1975 end-page: 340 article-title: Analysis of multidimensional conduction phase change via the enthalpy model publication-title: ASME Journal of Heat Transfer – volume: 107 start-page: 154 issue: 25 August year: 2016 end-page: 166 article-title: Numerical analysis of discharging process acceleration in LHTESS by immersing innovative fin configuration using finite element method publication-title: Applied Thermal Engineering – volume: 46 start-page: 847 year: 2005 end-page: 867 article-title: Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix publication-title: Energ Conver Manage – volume: 15 start-page: 379 year: 2011 end-page: 391 article-title: A review on phase change materials integrated in building walls publication-title: Renew Sustain Energy Rev – volume: 10 start-page: 1 issue: art.191 year: 2018 end-page: 33 article-title: A comprehensive review of thermal energy storage publication-title: Sustainability – volume: 136 start-page: 11010 year: 2013 article-title: Computational modeling of dynamic response of a latent thermal energy storage system with embedded heat pipes publication-title: Journal of Solar Energy Engineering – volume: 23 start-page: 1807 year: 1986 end-page: 1829 article-title: Comparison of finite element techniques for solidification problems publication-title: International Journal of Numerical Methods in Engineering – year: 1992 – volume: 6 start-page: 209 issue: 2 year: 1983 end-page: 222 article-title: Numerical computation using finite elements for the moving interface in heat transfer problems with phase change transformation publication-title: Numerical Heat Transfer – volume: 25 start-page: 467 year: 1994 end-page: 480 article-title: Temperature‐transforming model for binary solid–liquid phase change problems, part 1: mathematical modeling and numerical methodology publication-title: Numerical Heat Transfer, Part B: Fundamentals – volume: 99 start-page: 172 year: 2014 end-page: 184 article-title: Numerical study on the thermal behavior of phase change materials (PCMs) embedded in porous metal matrix publication-title: Solar Energy – volume: 60 start-page: 117 year: 2013 end-page: 128 article-title: Thermal conductivity improvement of phase change materials/graphite foam composites publication-title: Carbon NY – volume: 80 start-page: 382 year: 2014 end-page: 390 article-title: Microencapsulation of a fatty acid with poly (melamine–urea–formaldehyde) publication-title: Energ Conver Manage – volume: 53 start-page: 1986 year: 2010 end-page: 2000 article-title: A comprehensive numerical model for melting with natural convection publication-title: International Journal of Heat and Mass Transfer – volume: 39 start-page: 246 year: 2012 end-page: 257 article-title: Thermal energy storage: how previous findings determine current research priorities publication-title: Energy – volume: 2 start-page: 381 issue: 4 year: 1980 end-page: 393 article-title: Thermal energy storage in salt hydrates publication-title: Solar Energy Materials – volume: 45 start-page: 1597 issue: 9–10 year: 2004 end-page: 1615 article-title: A review on phase change energy storage: materials and applications publication-title: Energ Conver Manage – volume: 65 start-page: 67 year: 2014 end-page: 123 article-title: Phase change materials for thermal energy storage publication-title: Progress in Materials Science – volume: 13 start-page: 318 year: 2009 end-page: 345 article-title: Review on thermal energy storage with phase change materials and applications publication-title: Renew Sustain Energy Rev – volume: 83 start-page: 729 year: 2015 end-page: 736 article-title: Experimental evaluation at pilot plant scale of multiple PCMs (cascaded) vs. single PCM configuration for thermal energy storage publication-title: Renew Energy – volume: 81 start-page: 839 year: 2007 end-page: 845 article-title: Thermal conductivity enhancement in a latent heat storage system publication-title: Solar Energy – volume: 53 start-page: 1195 year: 2010 end-page: 1207 article-title: Confined melting in deformable porous media: a first attempt to explain the graphite/salt composites behaviour publication-title: International Journal of Heat and Mass Transfer – volume: 14 start-page: 1285 year: 1972 end-page: 1294 article-title: On the use of Green's functions for solving melting or solidification problems publication-title: International Journal of Heat Mass Transfer – volume: 16 start-page: 359 year: 1976 end-page: 368 article-title: New equations for heat and mass transfer in turbulent pipes and channels flow publication-title: International Chemical Engineering – volume: 7 start-page: 66 year: 2013 end-page: 119 article-title: Short‐term storage systems of thermal energy for buildings: a review publication-title: Advances in Building Energy Research – volume: 28 start-page: 197 issue: 3 year: 1988 end-page: 200 article-title: Mixture of calcium chloride hexahydrate with salt hydrate or anhydrous salts as latent heat storage materials publication-title: Energ Conver Manage – volume: 2 start-page: 1 issue: 1 year: 2005 end-page: 56 article-title: Latent heat storage materials and systems: a review publication-title: International Journal of Green Energy – volume: 18 start-page: 327 year: 2013 end-page: 349 article-title: A review of potential materials for thermal energy storage in building applications publication-title: Renew Sustain Energy Rev – volume: 31 start-page: 319 issue: 3 year: 1983 end-page: 326 article-title: Proportioning composites for efficient thermal storage walls publication-title: Solar Energy – volume: 137 start-page: 707 year: 2015 end-page: 715 article-title: Maximization of performance of a PCM latent heat storage system with innovative fins publication-title: Appl Energy – volume: 32 start-page: 2447 issue: 12 year: 1989 end-page: 2457 article-title: The problem of time‐dependent natural convection melting with conduction in the solid publication-title: Heat and Mass Transfer – volume: 95 start-page: 193 year: 2015 end-page: 228 article-title: Developments in organic solid–liquid phase change materials and their applications in thermal energy storage publication-title: Energ Conver Manage – volume: 74 start-page: 26 year: 2017 end-page: 50 article-title: Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review publication-title: Renew Sustain Energy Rev – volume: 120 start-page: 536 year: 2014 end-page: 542 article-title: Microencapsulation of caprylic acid with different wall materials as phase change material for thermal energy storage publication-title: Solar Energy Materials and Solar Cells – volume: 98 start-page: 550 year: 1976 end-page: 557 article-title: Effect of density change on multidimensional conduction phase change publication-title: ASME Journal of Heat Transfer – volume: 98 start-page: 66 year: 2012 end-page: 70 article-title: Preparation, characterization and thermal properties of micro‐encapsulated phase change materials publication-title: Solar Energy Materials and Solar Cells – volume: 24 start-page: 279 year: 1993 end-page: 300 article-title: An alternative formulation of the apparent heat capacity method for phase‐change problems publication-title: Numerical Heat Transfer, Part B: Fundamentals – volume: 53 start-page: 1 year: 2016 end-page: 40 article-title: Thermal energy storage: recent developments and practical aspects publication-title: Progress in Energy and Combustion Science – volume: 53 start-page: 109 year: 2014 end-page: 115 article-title: Analysis of geometrical and operational parameters of PCM in a fin and tube heat exchanger publication-title: International Communications in Heat and Mass Transfer – volume: 47 start-page: 879 year: 2008 end-page: 885 article-title: Extension of heat transfer area using carbon fiber cloths in latent heat thermal energy storage tanks publication-title: Chemical Engineering and Processing—Process Intensification – volume: 177 start-page: 227 year: 2016 end-page: 238 article-title: Thermal energy storage for low and medium temperature applications using phase change materials—a review publication-title: Applied Energy – volume: 31 start-page: 531 year: 2014 end-page: 542 article-title: A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium publication-title: Renew Sustain Energy Rev – volume: 19 start-page: 1 year: 1989 end-page: 95 article-title: Melting and freezing publication-title: Advances in Heat Transfer – volume: 13 start-page: 1459 issue: 9 year: 1970 end-page: 1477 article-title: A numerical solution of the multidimensional solidification (or melting) problem publication-title: International Journal of Heat and Mass Transfer – volume: 43 start-page: 3067 year: 2005 end-page: 3074 article-title: Effect of carbon nanofiber additives on thermal behavior of phase change materials publication-title: Carbon – volume: 48 start-page: 3689 issue: 17 year: 2005 end-page: 3706 article-title: Numerical investigation of a PCM‐based heat sink with internal fins publication-title: International Journal of Heat and Mass Transfer – volume: 41 start-page: 1543 issue: 14 year: 2000 end-page: 1556 article-title: Thermal conductivity enhancement of energy storage media using carbon fibers publication-title: Energ Conver Manage – volume: 135 start-page: 1 issue: 3 year: 2013 end-page: 6 article-title: High temperature thermal energy storage utilizing metallic phase change materials and metallic heat transfer fluids publication-title: Journal of Solar Energy Engineering – volume: 22 start-page: 251 year: 1979 end-page: 257 article-title: Melt time and heat flux for a simple PCM body publication-title: Solar Energy – volume: 1 start-page: 341 issue: 9 year: 1996 end-page: 380 article-title: An overview of numerical methods for solving phase change problems publication-title: Advances in Numerical Heat Transfer – volume: 27 start-page: 1271 year: 2007 end-page: 1277 article-title: Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material publication-title: Appl Therm Eng – volume: 19 start-page: 99 year: 2005 end-page: 101 article-title: Review of thermal energy storage with metal phase change materials publication-title: Materials Reviews – volume: 163 start-page: 154 year: 2010 end-page: 159 article-title: Synthesis and properties of microencapsulated paraffin composites with SiO shell as thermal energy storage materials publication-title: Chem Eng J – volume: 62 start-page: 19 issue: 1 year: 1998 end-page: 28 article-title: Geometric design of solar‐aided latent heat store depending on various parameters and phase change materials publication-title: Solar Energy – volume: 75 start-page: 195 year: 2014 end-page: 207 article-title: Numerical analysis on performance of naphthalene phase change thermal storage system in aluminum plate‐fin unit publication-title: Heat and Mass Transfer – volume: 12 start-page: 329 year: 1975 end-page: 334 article-title: Solidification and melting of material subjected to convention and radiation publication-title: Journal of Spacecraft and Rockets – volume: 33 start-page: 2132 year: 2009 end-page: 2144 article-title: Numerical analysis of the thermal behaviour of a shell‐and‐tube heat storage unit using phase change materials publication-title: App Math Model – volume: 50 start-page: 357 issue: 4 year: 1993 end-page: 367 article-title: Numerical simulation of a shell and tube latent heat thermal energy storage unit publication-title: Solar Energy – volume: 15 start-page: 150 year: 1937 end-page: 156 article-title: Fluid flow through granular beds publication-title: Transactions of the Institute of Chemical Engineers – year: 1983 – volume: 35 start-page: 2053 issue: 8 year: 2012 end-page: 2077 article-title: Review of cold storage materials for air conditioning application publication-title: International Journal of Refrigeration – volume: 12 start-page: 547 issue: 3 year: 1988 end-page: 555 article-title: Solar thermal storage systems using phase change materials publication-title: International Journal of Energy Research – volume: 82 start-page: 273 year: 2015 end-page: 281 article-title: Experimental and theoretical analysis of an aluminum foam enhanced phase change thermal storage unit publication-title: International Journal of Heat and Mass Transfer – volume: 126 start-page: 266 year: 2014 end-page: 280 article-title: Design of a latent thermal energy storage system with embedded heat pipes publication-title: Appl Energy – volume: 81 start-page: 829 issue: 6 year: 2007 end-page: 837 article-title: Cascaded latent heat storage for parabolic trough solar power plants publication-title: Solar Energy – volume: 4 start-page: 389 year: 2014 end-page: 394 article-title: Research progress of phase change materials (PCMs) embedded with metal foam (a review) publication-title: Procedia Material Science – volume: 24 start-page: 1699 issue: 10 year: 1981 end-page: 1710 article-title: Heat transfer coefficients for melting about a vertical cylinder with or without subcooling and for open or closed containment publication-title: International Journal of Heat and Mass Transfer – volume: 115 start-page: 180 year: 2015 end-page: 194 article-title: Experimental and computational study of thermal energy storage with encapsulated NANO for high temperature applications publication-title: Solar Energy – volume: 102 start-page: 318 year: 2014 end-page: 332 article-title: Thermal analytical model of latent thermal storage with heat pipe heat exchanger for concentrated solar power publication-title: Solar Energy – volume: 84 start-page: 320 year: 2015 end-page: 330 article-title: Numerical study of PCM solidification in a finned tube thermal storage including natural convection publication-title: Appl Therm Eng – volume: 41 start-page: 193 issue: 2 year: 1988 end-page: 197 article-title: Salt hydrate used for latent heat storage: corrosion metals and reliability of thermal performance publication-title: Solar Energy – volume: 36 start-page: 880 year: 2014 end-page: 901 article-title: Review on heat transfer mechanisms and characteristics in encapsulated PCMs publication-title: Heat Transfer Engineering – volume: 17 start-page: 583 issue: 4 year: 1997 end-page: 591 article-title: Finite‐element analysis of cyclic heat transfer in a shell and tube latent heat energy storage exchanger publication-title: Appl Therm Eng – volume: 14 start-page: 31 year: 2010 end-page: 55 article-title: State of the art on high temperature thermal energy storage for power generation: Part 1—Concepts, materials and modellization publication-title: Renew Sustain Energy Rev – volume: 8 start-page: 613 year: 1974 end-page: 624 article-title: Finite element solution of non‐linear heat conduction problems with special reference to phase change publication-title: International Journal of Numerical Methods in Engineering – volume: 18 start-page: 1101 year: 1975 end-page: 1117 article-title: Isothermal migration in two dimensions publication-title: International Journal of Heat and Mass Transfer – volume: 2 start-page: 158 issue: 1 year: 1970 end-page: 159 article-title: Molecular thermodynamics of fluid‐phase equilibria publication-title: Journal of Chemical Thermodynamics – volume: 79 start-page: 648 issue: 6 year: 2005 end-page: 660 article-title: An experimental and numerical investigation of heat transfer during technical grade paraffin melting and solidification in a shell‐and‐tube latent thermal energy storage unit publication-title: Solar Energy – volume: 43 start-page: 1923 issue: 14 year: 2002 end-page: 1930 article-title: Accelerated thermal cycle test of acetamide, stearic acid and paraffin wax for solar thermal latent heat storage applications publication-title: Energ Conver Manage – volume: 239–242 start-page: 2248 year: 2011 end-page: 2251 article-title: The influence of heating‐cooling cycles on the thermal storage performances of Al‐17 wt.% Si alloy publication-title: Advanced Material Research – volume: 92 start-page: 456 year: 2012 end-page: 461 article-title: Properties of form‐stable paraffin/silicon dioxide/expanded graphite phase change composites prepared by sol–gel method publication-title: Appl Energy – volume: 42 start-page: 209 issue: 3 year: 1989 end-page: 220 article-title: Comparison of theoretical models of phase‐change and sensible heat storage for air and water‐based solar heating systems publication-title: Solar Energy – volume: 120 start-page: 1407 issue: 2 year: 2015 end-page: 1416 article-title: Enhanced heat transfer for PCM melting in the frustum‐shaped unit with multiple PCMs publication-title: Journal of Thermal Analysis and Calorimetry – volume: 127 start-page: 166 year: 2014 end-page: 171 article-title: Enhancement in thermal property and mechanical property of phase change microcapsule with modified carbon nanotube publication-title: Appl Energy – volume: 11A start-page: 1415 year: 1980 end-page: 1420 article-title: Heat storage in eutectic alloys publication-title: Metallurgical Transactions – volume: 86 start-page: 816 year: 2012 end-page: 830 article-title: Heat transfer and exergy analysis of cascaded latent heat storage with gravity‐assisted heat pipes for concentrating solar power applications publication-title: Solar Energy – volume: 48 start-page: 79 year: 2015 end-page: 87 article-title: Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage publication-title: Renew Sustain Energy Rev – volume: 21 start-page: 331 year: 2013 end-page: 346 article-title: Low melting point liquid metal as a new class of phase change material: an emerging frontier in energy area publication-title: Renew Sustain Energy Rev – volume: 48 start-page: 619 issue: 2 year: 2007 end-page: 624 article-title: Thermal reliability test of Al–34%Mg–6%Zn alloy as latent heat storage material and corrosion of metal with respect to thermal cycling publication-title: Energ Conver Manage – volume: 43 start-page: 2493 year: 2002 end-page: 2507 article-title: Thermal and heat transfer characteristics in a latent heat storage system using lauric acid publication-title: Energ Conver Manage – year: 2017 – volume: 39 start-page: 79 issue: 2 year: 1987 end-page: 85 article-title: Durability of latent heat storage tube sheets publication-title: Solar Energy – volume: 39 start-page: 3165 issue: 15 year: 1996 end-page: 3173 article-title: Heat transfer enhancement in latent heat thermal energy storage system by using the internally finned tube publication-title: International Journal of Heat Mass Transfer – ident: e_1_2_9_83_1 doi: 10.1016/S0196-8904(99)00166-1 – ident: e_1_2_9_2_1 doi: 10.1007/978-94-009-5301-7 – ident: e_1_2_9_14_1 doi: 10.1016/0017-9310(81)90035-1 – ident: e_1_2_9_172_1 doi: 10.1016/S0038-092X(97)00104-7 – ident: e_1_2_9_21_1 doi: 10.1016/0038-092X(82)90058-5 – ident: e_1_2_9_77_1 doi: 10.1016/j.apenergy.2014.07.015 – ident: e_1_2_9_135_1 doi: 10.1016/j.ijheatmasstransfer.2018.03.095 – volume: 278 start-page: 269 issue: 2 year: 1891 ident: e_1_2_9_173_1 article-title: Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere publication-title: Ann Phys Rehabil Med – ident: e_1_2_9_207_1 doi: 10.1016/0017-9310(70)90180-8 – ident: e_1_2_9_91_1 doi: 10.1063/1.2802183 – ident: e_1_2_9_202_1 doi: 10.2514/3.27839 – ident: e_1_2_9_88_1 doi: 10.1016/j.applthermaleng.2006.11.004 – volume: 75 start-page: 195 year: 2014 ident: e_1_2_9_128_1 article-title: Numerical analysis on performance of naphthalene phase change thermal storage system in aluminum plate‐fin unit publication-title: Heat and Mass Transfer – ident: e_1_2_9_185_1 doi: 10.1016/S0196-8904(01)00187-X – ident: e_1_2_9_126_1 doi: 10.1016/j.apenergy.2014.10.051 – ident: e_1_2_9_5_1 doi: 10.1016/S1359-4311(02)00192-8 – ident: e_1_2_9_65_1 doi: 10.1016/j.ijrefrig.2012.06.003 – ident: e_1_2_9_95_1 doi: 10.1016/j.enconman.2004.06.010 – ident: e_1_2_9_105_1 doi: 10.1016/j.ijheatmasstransfer.2014.07.087 – ident: e_1_2_9_109_1 doi: 10.1016/j.rser.2010.08.019 – ident: e_1_2_9_216_1 doi: 10.1016/j.rser.2012.10.025 – ident: e_1_2_9_98_1 doi: 10.1016/j.pecs.2015.10.003 – ident: e_1_2_9_179_1 doi: 10.1007/978-94-011-2872-8_32 – ident: e_1_2_9_25_1 doi: 10.1016/0038-092X(83)90020-8 – ident: e_1_2_9_194_1 doi: 10.1002/nme.1620231003 – ident: e_1_2_9_19_1 doi: 10.1016/0306-2619(83)90063-6 – ident: e_1_2_9_58_1 doi: 10.1016/j.tca.2010.11.011 – ident: e_1_2_9_74_1 doi: 10.1080/10407782.2014.894371 – ident: e_1_2_9_72_1 doi: 10.1016/j.apenergy.2008.10.020 – ident: e_1_2_9_24_1 doi: 10.1016/0038-092X(84)90047-1 – ident: e_1_2_9_26_1 doi: 10.1016/0167-5826(83)90029-3 – ident: e_1_2_9_111_1 doi: 10.3390/su8101046 – ident: e_1_2_9_204_1 – ident: e_1_2_9_211_1 doi: 10.1016/j.enbuild.2013.05.027 – ident: e_1_2_9_86_1 doi: 10.1016/j.ijheatmasstransfer.2011.04.046 – ident: e_1_2_9_184_1 doi: 10.1115/1.3250668 – ident: e_1_2_9_29_1 doi: 10.1016/0038-092X(78)90141-X – volume: 287 start-page: 17 year: 1994 ident: e_1_2_9_170_1 article-title: Pressure drop and heat transfer predictions of turbulent flow in longitudinally finned tubes publication-title: Advances in Enhanced Heat Transfer – ident: e_1_2_9_217_1 doi: 10.1115/1.3246884 – ident: e_1_2_9_166_1 doi: 10.1016/0017-9310(89)90049-5 – ident: e_1_2_9_150_1 doi: 10.1016/j.apm.2008.05.016 – ident: e_1_2_9_10_1 doi: 10.1016/j.rser.2007.06.009 – ident: e_1_2_9_17_1 doi: 10.1016/0017-9310(84)90143-1 – ident: e_1_2_9_57_1 doi: 10.1016/j.apenergy.2013.08.026 – ident: e_1_2_9_157_1 doi: 10.1016/j.ijheatmasstransfer.2015.05.020 – ident: e_1_2_9_97_1 – volume-title: Heat Pipe Science and Technology year: 1995 ident: e_1_2_9_136_1 – ident: e_1_2_9_140_1 doi: 10.1115/1.4025973 – ident: e_1_2_9_129_1 doi: 10.1016/j.icheatmasstransfer.2014.02.025 – ident: e_1_2_9_189_1 doi: 10.1016/S1359-4311(96)00054-3 – volume: 19 start-page: 99 year: 2005 ident: e_1_2_9_49_1 article-title: Review of thermal energy storage with metal phase change materials publication-title: Materials Reviews – ident: e_1_2_9_138_1 doi: 10.1016/j.ijheatmasstransfer.2011.06.018 – ident: e_1_2_9_73_1 doi: 10.1016/j.energy.2011.07.019 – ident: e_1_2_9_69_1 doi: 10.1016/S0196-8904(01)00131-5 – ident: e_1_2_9_7_1 doi: 10.1081/GE-200051299 – ident: e_1_2_9_110_1 doi: 10.1016/j.rser.2013.12.033 – ident: e_1_2_9_9_1 doi: 10.1016/j.energy.2012.01.024 – ident: e_1_2_9_47_1 doi: 10.1115/1.4023485 – ident: e_1_2_9_63_1 doi: 10.1016/j.apenergy.2011.08.025 – ident: e_1_2_9_101_1 doi: 10.1016/j.apenergy.2014.01.085 – ident: e_1_2_9_53_1 doi: 10.4028/www.scientific.net/AMR.239-242.2248 – ident: e_1_2_9_117_1 doi: 10.1016/j.apenergy.2013.04.043 – ident: e_1_2_9_127_1 doi: 10.1016/j.applthermaleng.2015.03.065 – ident: e_1_2_9_43_1 – volume: 4 start-page: 203 year: 1990 ident: e_1_2_9_50_1 article-title: Properties of cast aluminum alloys as thermal storage materials publication-title: Cast Metals – ident: e_1_2_9_154_1 doi: 10.1016/j.pecs.2013.02.001 – ident: e_1_2_9_84_1 doi: 10.1016/j.applthermaleng.2004.10.007 – ident: e_1_2_9_206_1 doi: 10.1016/S0065-2717(08)70211-9 – ident: e_1_2_9_81_1 doi: 10.1016/j.solener.2006.11.009 – ident: e_1_2_9_119_1 doi: 10.1016/j.apenergy.2013.01.031 – ident: e_1_2_9_20_1 doi: 10.1016/0017-9310(84)90121-2 – ident: e_1_2_9_180_1 doi: 10.1016/j.camwa.2009.03.115 – ident: e_1_2_9_33_1 doi: 10.1016/j.solener.2010.04.022 – ident: e_1_2_9_70_1 doi: 10.1016/0196-8904(88)90021-0 – ident: e_1_2_9_192_1 doi: 10.1016/j.ijheatmasstransfer.2017.10.033 – ident: e_1_2_9_143_1 doi: 10.1016/j.applthermaleng.2014.05.080 – ident: e_1_2_9_40_1 doi: 10.1016/j.rser.2005.10.002 – ident: e_1_2_9_175_1 – ident: e_1_2_9_195_1 doi: 10.1080/10407799308955894 – ident: e_1_2_9_215_1 doi: 10.1016/j.ijrefrig.2010.07.017 – ident: e_1_2_9_82_1 doi: 10.1016/j.cep.2007.02.001 – ident: e_1_2_9_188_1 doi: 10.1016/0038-092X(93)90029-N – ident: e_1_2_9_122_1 doi: 10.1016/j.solmat.2013.09.035 – ident: e_1_2_9_123_1 doi: 10.1615/JEnhHeatTransf.v3.i2.50 – ident: e_1_2_9_200_1 doi: 10.1016/j.applthermaleng.2018.02.035 – ident: e_1_2_9_144_1 doi: 10.1016/j.enconman.2015.08.004 – ident: e_1_2_9_80_1 doi: 10.1016/j.rser.2017.01.169 – ident: e_1_2_9_176_1 doi: 10.1016/0017-9310(71)90178-5 – ident: e_1_2_9_46_1 doi: 10.1016/j.rser.2009.11.011 – ident: e_1_2_9_125_1 doi: 10.1002/er.1057 – ident: e_1_2_9_106_1 doi: 10.1016/j.solener.2015.02.002 – ident: e_1_2_9_45_1 doi: 10.1016/j.rser.2009.07.035 – ident: e_1_2_9_112_1 doi: 10.1016/j.enconman.2014.01.042 – ident: e_1_2_9_113_1 doi: 10.1016/j.apenergy.2009.10.011 – ident: e_1_2_9_36_1 doi: 10.1016/j.renene.2010.06.005 – ident: e_1_2_9_62_1 doi: 10.1021/je200057j – ident: e_1_2_9_52_1 doi: 10.1007/BF02653497 – ident: e_1_2_9_31_1 doi: 10.1016/j.apenergy.2012.11.051 – volume: 16 start-page: 359 year: 1976 ident: e_1_2_9_168_1 article-title: New equations for heat and mass transfer in turbulent pipes and channels flow publication-title: International Chemical Engineering – ident: e_1_2_9_93_1 doi: 10.1016/j.solener.2013.11.017 – ident: e_1_2_9_208_1 doi: 10.1016/0017-9310(73)90202-0 – volume-title: Boundary Elements year: 1983 ident: e_1_2_9_177_1 – ident: e_1_2_9_120_1 doi: 10.1016/j.enbuild.2013.12.028 – ident: e_1_2_9_66_1 doi: 10.1016/S0038-092X(87)80035-X – ident: e_1_2_9_187_1 doi: 10.1016/0017-9310(89)90204-4 – ident: e_1_2_9_61_1 doi: 10.1016/0021-9614(70)90078-9 – ident: e_1_2_9_152_1 doi: 10.1007/s10973-014-4370-6 – ident: e_1_2_9_30_1 doi: 10.1016/0038-092X(89)90013-3 – ident: e_1_2_9_67_1 doi: 10.1016/0038-092X(88)90136-3 – ident: e_1_2_9_59_1 doi: 10.1016/j.solmat.2014.03.020 – ident: e_1_2_9_104_1 doi: 10.1016/j.ijheatmasstransfer.2013.03.061 – ident: e_1_2_9_6_1 doi: 10.1016/j.enconman.2003.09.015 – volume-title: Moving Boundary Problems year: 1978 ident: e_1_2_9_183_1 – ident: e_1_2_9_139_1 doi: 10.1115/1.4024745 – ident: e_1_2_9_115_1 doi: 10.1016/j.cej.2010.07.054 – ident: e_1_2_9_121_1 doi: 10.1016/j.solmat.2011.09.020 – ident: e_1_2_9_190_1 doi: 10.1002/9781118671603 – ident: e_1_2_9_99_1 doi: 10.1016/j.rser.2015.03.038 – ident: e_1_2_9_203_1 doi: 10.1016/0017-9310(75)90228-8 – ident: e_1_2_9_78_1 doi: 10.1016/j.enconman.2014.07.041 – ident: e_1_2_9_32_1 doi: 10.1016/j.pmatsci.2014.03.005 – ident: e_1_2_9_137_1 doi: 10.1016/j.ijheatmasstransfer.2010.03.035 – ident: e_1_2_9_124_1 doi: 10.1016/j.rser.2012.01.020 – ident: e_1_2_9_161_1 doi: 10.1007/s007910050034 – ident: e_1_2_9_23_1 doi: 10.1016/0196-8904(81)90033-9 – ident: e_1_2_9_151_1 doi: 10.1016/j.renene.2014.02.025 – ident: e_1_2_9_56_1 doi: 10.1016/j.rser.2013.01.008 – volume: 15 start-page: 150 year: 1937 ident: e_1_2_9_214_1 article-title: Fluid flow through granular beds publication-title: Transactions of the Institute of Chemical Engineers – ident: e_1_2_9_130_1 doi: 10.1016/j.applthermaleng.2013.01.011 – ident: e_1_2_9_160_1 doi: 10.1016/j.solener.2003.07.028 – ident: e_1_2_9_171_1 doi: 10.1016/0038-092X(82)90211-0 – ident: e_1_2_9_191_1 doi: 10.1016/S0038-092X(96)00167-3 – ident: e_1_2_9_193_1 doi: 10.1002/nme.1620080314 – ident: e_1_2_9_37_1 doi: 10.1016/j.solener.2005.03.006 – ident: e_1_2_9_169_1 doi: 10.1016/0017-9310(95)00402-5 – ident: e_1_2_9_132_1 doi: 10.1016/j.ijthermalsci.2013.03.015 – ident: e_1_2_9_79_1 doi: 10.1016/j.apenergy.2008.12.004 – ident: e_1_2_9_90_1 doi: 10.1016/j.applthermaleng.2010.11.022 – ident: e_1_2_9_148_1 doi: 10.1016/j.applthermaleng.2006.08.001 – ident: e_1_2_9_38_1 doi: 10.1016/S0038-092X(03)00117-8 – ident: e_1_2_9_102_1 doi: 10.1016/j.proeng.2015.09.189 – ident: e_1_2_9_89_1 doi: 10.1016/j.ijheatmasstransfer.2009.10.025 – ident: e_1_2_9_68_1 doi: 10.1016/S0038-092X(99)00045-6 – ident: e_1_2_9_71_1 doi: 10.1016/j.renene.2008.02.026 – ident: e_1_2_9_155_1 doi: 10.1016/j.solener.2006.09.008 – ident: e_1_2_9_85_1 doi: 10.1016/j.energy.2004.04.024 – volume: 10 start-page: 1 issue: 191 year: 2018 ident: e_1_2_9_4_1 article-title: A comprehensive review of thermal energy storage publication-title: Sustainability – ident: e_1_2_9_209_1 doi: 10.1080/01495728308963083 – ident: e_1_2_9_3_1 doi: 10.1016/j.rser.2007.10.005 – ident: e_1_2_9_114_1 doi: 10.1016/j.apenergy.2013.10.029 – volume-title: Solar Heating and Cooling Systems: Fundamentals, Experiments and Applications year: 2017 ident: e_1_2_9_28_1 – ident: e_1_2_9_131_1 doi: 10.1016/j.ijheatmasstransfer.2004.10.042 – ident: e_1_2_9_167_1 doi: 10.1016/0360-5442(92)90004-J – ident: e_1_2_9_34_1 doi: 10.1016/j.apenergy.2010.12.028 – volume-title: Joint EASE/EERA Recommendations for a European Energy Storage Technology Development Roadmap towards 2030 year: 2013 ident: e_1_2_9_27_1 – ident: e_1_2_9_107_1 doi: 10.1002/er.4035 – ident: e_1_2_9_142_1 doi: 10.1016/j.solener.2013.11.008 – ident: e_1_2_9_8_1 doi: 10.1016/j.rser.2009.10.015 – ident: e_1_2_9_13_1 doi: 10.1016/0165-1633(80)90033-7 – ident: e_1_2_9_16_1 doi: 10.1016/0017-9310(80)90116-7 – ident: e_1_2_9_147_1 doi: 10.1016/j.solener.2011.12.008 – ident: e_1_2_9_178_1 doi: 10.1007/BF01177060 – ident: e_1_2_9_141_1 doi: 10.1016/j.apenergy.2014.03.025 – ident: e_1_2_9_186_1 doi: 10.1016/j.renene.2009.03.010 – ident: e_1_2_9_44_1 doi: 10.1002/er.3776 – ident: e_1_2_9_181_1 doi: 10.1115/1.3450375 – ident: e_1_2_9_134_1 doi: 10.1016/j.applthermaleng.2017.03.005 – ident: e_1_2_9_92_1 doi: 10.1016/j.carbon.2013.04.004 – ident: e_1_2_9_158_1 doi: 10.1016/j.applthermaleng.2014.12.008 – volume: 26 start-page: 11 issue: 2 year: 2006 ident: e_1_2_9_159_1 article-title: Analysis of inward melting of spheres subject to convection and radiation publication-title: Journal of Thermal Science and Technology – ident: e_1_2_9_22_1 doi: 10.1016/0094-4548(80)90004-1 – ident: e_1_2_9_108_1 doi: 10.1016/j.rser.2012.05.037 – ident: e_1_2_9_162_1 doi: 10.1016/j.enconman.2004.05.012 – ident: e_1_2_9_163_1 doi: 10.1016/j.applthermaleng.2013.12.016 – ident: e_1_2_9_149_1 doi: 10.1002/(SICI)1099-114X(19990325)23:4<287::AID-ER476>3.0.CO;2-K – ident: e_1_2_9_87_1 doi: 10.1016/j.mspro.2014.07.579 – ident: e_1_2_9_42_1 doi: 10.1080/17512549.2013.809271 – ident: e_1_2_9_94_1 doi: 10.1016/j.ijheatmasstransfer.2014.11.022 – ident: e_1_2_9_146_1 doi: 10.1016/j.ijheatmasstransfer.2012.03.023 – ident: e_1_2_9_41_1 doi: 10.1016/j.rser.2015.10.128 – ident: e_1_2_9_165_1 doi: 10.1016/0038-092X(79)90140-3 – ident: e_1_2_9_18_1 doi: 10.1016/0378-7788(84)90009-4 – ident: e_1_2_9_156_1 doi: 10.1016/j.renene.2015.05.029 – volume: 1 start-page: 341 issue: 9 year: 1996 ident: e_1_2_9_174_1 article-title: An overview of numerical methods for solving phase change problems publication-title: Advances in Numerical Heat Transfer – ident: e_1_2_9_210_1 doi: 10.1080/10407799008961737 – ident: e_1_2_9_196_1 doi: 10.1016/S0196-8904(96)00193-8 – ident: e_1_2_9_133_1 doi: 10.1016/j.applthermaleng.2016.06.158 – ident: e_1_2_9_51_1 doi: 10.1016/j.enconman.2006.05.017 – ident: e_1_2_9_197_1 doi: 10.1080/10407799408955931 – ident: e_1_2_9_60_1 doi: 10.1063/1.555693 – ident: e_1_2_9_201_1 doi: 10.1080/01457632.2015.965093 – volume-title: Heat and Cold Storage with PCM: An Up to Date Introduction into Basics and Applications year: 2008 ident: e_1_2_9_100_1 doi: 10.1007/978-3-540-68557-9 – ident: e_1_2_9_145_1 doi: 10.1016/j.applthermaleng.2015.02.030 – ident: e_1_2_9_212_1 – ident: e_1_2_9_76_1 doi: 10.1016/j.rser.2017.05.093 – ident: e_1_2_9_118_1 doi: 10.1016/j.apenergy.2014.04.029 – ident: e_1_2_9_198_1 doi: 10.1016/j.ijheatmasstransfer.2009.12.057 – ident: e_1_2_9_15_1 doi: 10.1016/0017-9310(81)90078-8 – ident: e_1_2_9_48_1 doi: 10.1007/BF02653497 – ident: e_1_2_9_199_1 doi: 10.1016/j.rser.2010.06.011 – ident: e_1_2_9_75_1 doi: 10.1016/S1359-4311(03)00108-X – ident: e_1_2_9_103_1 doi: 10.1016/j.enconman.2015.07.068 – ident: e_1_2_9_64_1 doi: 10.1016/j.rser.2009.06.024 – ident: e_1_2_9_153_1 doi: 10.1504/IJEX.2012.050229 – ident: e_1_2_9_11_1 doi: 10.1016/j.apenergy.2013.01.082 – ident: e_1_2_9_96_1 doi: 10.1016/j.carbon.2005.06.042 – ident: e_1_2_9_205_1 doi: 10.1002/er.4440120318 – ident: e_1_2_9_116_1 doi: 10.1016/j.apenergy.2011.11.018 – ident: e_1_2_9_182_1 doi: 10.1115/1.3450599 – ident: e_1_2_9_213_1 doi: 10.1080/10407788808913615 – ident: e_1_2_9_39_1 doi: 10.1016/S0196-8904(03)00131-6 – volume: 46 start-page: 80 issue: 11 year: 1949 ident: e_1_2_9_12_1 article-title: Storing solar heat in chemicals—a report on the Dover house publication-title: Heat Vent – ident: e_1_2_9_35_1 doi: 10.1016/j.apenergy.2016.05.097 – ident: e_1_2_9_54_1 doi: 10.1016/j.rser.2015.04.044 – ident: e_1_2_9_55_1 doi: 10.1016/j.enconman.2015.01.084 – ident: e_1_2_9_164_1 doi: 10.1016/S0017-9310(99)00024-1 |
SSID | ssj0009917 |
Score | 2.6189487 |
SecondaryResourceType | review_article |
Snippet | Summary
Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used... Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used later for... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 29 |
SubjectTerms | Air conditioners Air conditioning Computer simulation Cooling Encapsulation Energy Energy conservation Energy storage Fins Heat pipes Heat storage Heat transfer heat transfer enhancement heat transfer simulation models Heating Internal energy Latent heat latent heat storage system Mathematical models Metals phase change material Phase change materials Porous materials Simulation Solar energy Stocks Storage systems Thermal energy Transient heat transfer Waste heat Water heating |
Title | Review on heat transfer analysis in thermal energy storage using latent heat storage systems and phase change materials |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fer.4196 https://www.proquest.com/docview/2157181249 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMeD6EUP_hanc-QwvHWrSZq2R3HKEOdhOhheSvOjKs4qXUXwr_clabepCOKphyYhNC8vn9fkfYNQm0Zc-VxIL5As9FgqtCekoB4LgzRUwLxpYBKcB9e8P2KX42C8cNWX04eY_XAzM8P6azPBUzHtzkVDddFhYD7gfU8oN6r5veFcOAqoJ6x3KSH8G7t0WVOzW9X7ug7N4XIRUe0ac7GB7ureuaMlT523UnTkxzfhxn91fxOtV-SJT52pbKElnW-jtQU9wh307nYK8EuOjY_GpaVaXeC0ki7Bjzk2xPgMDWmbNYjN6UrwSdgcoL_HE0DXvHS16zdOLHoKjSj8-gCrJnbZxhhg2dn_LhpdnN-e9b3qZgZPggPgnoKeR0TxjLKIKl8HJGNWqY-Cz-I-E4RLDYGUzmISKXKSEqFoBlF46KdZJCndQ8v5S673EVYAQEqRDMJAzgSTgug4Yiy2WnAxFw10XI9TIivZcnN7xiRxgssk0UVivmQD4VnBV6fU8bNIsx7opJqq0wSYJ7SYEzdQ247Yb9WT86F5HPyt2CFaBbiK3e-aJlouizd9BABTihZaOe0Nrm5a1mY_ARmG700 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYCBN6JQwEPFllIcx0lGBFQFSocKpEoMUfwIICBFJQiJX8_ZTigPISGmDPFZTuw7f3e--wzQ9COu2lxIL5As9FgqtCek8D0WBmmoEPOmgSlwvujz7hU7GwbDMqvS1MI4foiPgJvRDGuvjYKbgPT-hDVUj1sM1880zDCEGcbxOh5MqKMQ94TVOSU6gENXMGtE90vBrzvRBF5-Bql2l-kswnU1Ppdcct96KURLvn2jbvzfByzBQgk-yaFbLcswpfMVmP9ESbgKr-6wgIxyYsw0KSyw1WOSluwl5C4nBjQ-YkfaFg4Sk2CJZomYHPob8oDoNS-cdPXG8UU_YyeKPN3ixklcwTFBvOxUYA2uOieXR12vvJzBk2gDuKdw5BFVPPNZ5Ku2DmjGLFmfj2aLt5mgXGr0pXQW00jRg5QK5WfoiIftNIuk769DLR_legOIQgykFM3QE-RMMCmojiPGYksHF3NRh71qohJZMpebCzQeEse5TBM9TsyfrAP5aPjkyDp-NmlUM52U2vqcIOwJLdKJ69C0U_abeHIyMI_NvzXbhdnu5UUv6Z32z7dgDrFW7KI3DagV4xe9jXimEDt24b4DhGbx2A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMcPXkD0wbs4r3kQ3zpnmqbto6jD6xBRGL6U5lIVZze2iuCn9yRpt6kI4lMfmhNCk5z8TpPzD8CeH3HV4EJ6gWShx1KhPSGF77EwSEOFzJsGJsH5usXP7tlFO2iPXfXl9CGGP9zMzLD-2kzwnsoORqKhul9nOHwmYZpx5AjDQ7cj5SjEnrDapsT4r-3yZY3pQWn4dSEa0eU4o9pFprkAD1Xz3NmSl_pbIery45ty47_avwjzJXqSIzdWlmBC58swNyZIuALvbquAdHNinDQpLNbqPklL7RLynBODjK9YkbZpg8Qcr0SnRMwJ-kfSQXbNC2ddvXFq0QOsRJHeEy6bxKUbE6RlNwFW4b55end85pVXM3gSPQD3FLY8oopnPot81dABzZiV6vPRafEGE5RLjZGUzmIaKXqYUqH8DMPwsJFmkfT9NZjKu7leB6KQgJSiGcaBnAkmBdVxxFhsxeBiLmqwX_VTIkvdcnN9Ridxiss00f3EfMkakGHBnpPq-Flkq-ropJyrgwShJ7ScE9dgz_bYb-bJ6a15bPyt2C7M3Jw0k6vz1uUmzCJoxe7XzRZMFf03vY0wU4gdO2w_AcMm8Ic |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+on+heat+transfer+analysis+in+thermal+energy+storage+using+latent+heat+storage+systems+and+phase+change+materials&rft.jtitle=International+journal+of+energy+research&rft.au=Sarbu%2C+Ioan&rft.au=Dorca%2C+Alexandru&rft.date=2019-01-01&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=43&rft.issue=1&rft.spage=29&rft.epage=64&rft_id=info:doi/10.1002%2Fer.4196&rft.externalDBID=10.1002%252Fer.4196&rft.externalDocID=ER4196 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon |