Review on heat transfer analysis in thermal energy storage using latent heat storage systems and phase change materials

Summary Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used later for heating and cooling applications and for power generation. TES has recently attracted increasing interest to thermal applications suc...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of energy research Vol. 43; no. 1; pp. 29 - 64
Main Authors Sarbu, Ioan, Dorca, Alexandru
Format Journal Article
LanguageEnglish
Published Bognor Regis John Wiley & Sons, Inc 01.01.2019
Subjects
Online AccessGet full text
ISSN0363-907X
1099-114X
DOI10.1002/er.4196

Cover

Abstract Summary Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used later for heating and cooling applications and for power generation. TES has recently attracted increasing interest to thermal applications such as space and water heating, waste heat utilisation, cooling, and air conditioning. Phase change materials (PCMs) used for the storage of thermal energy as latent heat are special types of advanced materials that substantially contribute to the efficient use and conservation of waste heat and solar energy. This paper provides a comprehensive review on the development of latent heat storage (LHS) systems focused on heat transfer and enhancement techniques employed in PCMs to effectively charge and discharge latent heat energy, and the formulation of the phase change problem. The main categories of PCMs are classified and briefly described, and heat transfer enhancement technologies, namely dispersion of low‐density materials, use of porous materials, metal matrices and encapsulation, incorporation of extended surfaces and fins, utilisation of heat pipes, cascaded storage, and direct heat transfer techniques, are also discussed in detail. Additionally, a two‐dimensional heat transfer simulation model of an LHS system is developed using the control volume technique to solve the phase change problem. Furthermore, a three‐dimensional numerical simulation model of an LHS is built to investigate the quasi‐steady state and transient heat transfer in PCMs. Finally, several future research directions are provided. Development of latent heat storage (LHS) systems focused on heat transfer and enhancement techniques used in phase change materials (PCMs) is reviewed The main categories of PCMs are classified, and its characteristic properties are briefly described Heat transfer enhancement technologies are also discussed in detail A numerical simulation model of two‐dimensional heat transfer and another with three dimensions for the LHS are included Several future research directions are provided
AbstractList Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used later for heating and cooling applications and for power generation. TES has recently attracted increasing interest to thermal applications such as space and water heating, waste heat utilisation, cooling, and air conditioning. Phase change materials (PCMs) used for the storage of thermal energy as latent heat are special types of advanced materials that substantially contribute to the efficient use and conservation of waste heat and solar energy. This paper provides a comprehensive review on the development of latent heat storage (LHS) systems focused on heat transfer and enhancement techniques employed in PCMs to effectively charge and discharge latent heat energy, and the formulation of the phase change problem. The main categories of PCMs are classified and briefly described, and heat transfer enhancement technologies, namely dispersion of low‐density materials, use of porous materials, metal matrices and encapsulation, incorporation of extended surfaces and fins, utilisation of heat pipes, cascaded storage, and direct heat transfer techniques, are also discussed in detail. Additionally, a two‐dimensional heat transfer simulation model of an LHS system is developed using the control volume technique to solve the phase change problem. Furthermore, a three‐dimensional numerical simulation model of an LHS is built to investigate the quasi‐steady state and transient heat transfer in PCMs. Finally, several future research directions are provided.
Summary Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used later for heating and cooling applications and for power generation. TES has recently attracted increasing interest to thermal applications such as space and water heating, waste heat utilisation, cooling, and air conditioning. Phase change materials (PCMs) used for the storage of thermal energy as latent heat are special types of advanced materials that substantially contribute to the efficient use and conservation of waste heat and solar energy. This paper provides a comprehensive review on the development of latent heat storage (LHS) systems focused on heat transfer and enhancement techniques employed in PCMs to effectively charge and discharge latent heat energy, and the formulation of the phase change problem. The main categories of PCMs are classified and briefly described, and heat transfer enhancement technologies, namely dispersion of low‐density materials, use of porous materials, metal matrices and encapsulation, incorporation of extended surfaces and fins, utilisation of heat pipes, cascaded storage, and direct heat transfer techniques, are also discussed in detail. Additionally, a two‐dimensional heat transfer simulation model of an LHS system is developed using the control volume technique to solve the phase change problem. Furthermore, a three‐dimensional numerical simulation model of an LHS is built to investigate the quasi‐steady state and transient heat transfer in PCMs. Finally, several future research directions are provided. Development of latent heat storage (LHS) systems focused on heat transfer and enhancement techniques used in phase change materials (PCMs) is reviewed The main categories of PCMs are classified, and its characteristic properties are briefly described Heat transfer enhancement technologies are also discussed in detail A numerical simulation model of two‐dimensional heat transfer and another with three dimensions for the LHS are included Several future research directions are provided
Author Sarbu, Ioan
Dorca, Alexandru
Author_xml – sequence: 1
  givenname: Ioan
  orcidid: 0000-0001-5606-6090
  surname: Sarbu
  fullname: Sarbu, Ioan
  email: ioan.sarbu@upt.ro
  organization: Polytechnic University of Timisoara
– sequence: 2
  givenname: Alexandru
  surname: Dorca
  fullname: Dorca, Alexandru
  organization: Polytechnic University of Timisoara
BookMark eNp1kE1LAzEYhINUsK3iXwh48CBb87HdTY5S6gcIQlHobUl333RTttmapJb996auXkRPc5hnBmZGaGBbCwhdUjKhhLBbcJOUyuwEDSmRMqE0XQ7QkPCMJ5LkyzM08n5DSPRoPkSHBXwYOODW4hpUwMEp6zU4rKxqOm88NhaHGtxWNRgsuHWHfWidWgPee2PXuFEBbOjTP47vfICtjyUV3tXKAy5rZaOxjbAzqvHn6FRHgYtvHaO3-_nr7DF5fnl4mt09JyVnLEuquESwKtM8FbwiMGU6JVxIyYXIM5KuWFaCzDLQkomKUcVWFdd5ynKitCg5H6Orvnfn2vc9-FBs2r2L23zB6DSngrJURuq6p0rXeu9AFztntsp1BSXF8dUCXHF8NZLJL7I0QQXT2vicaf7gb3r-YBro_qst5osv-hMYlonX
CitedBy_id crossref_primary_10_1016_j_est_2022_105589
crossref_primary_10_3390_app12146995
crossref_primary_10_1016_j_est_2021_103443
crossref_primary_10_1115_1_4065407
crossref_primary_10_1002_er_4925
crossref_primary_10_3390_en16010309
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119853
crossref_primary_10_1155_2024_6620850
crossref_primary_10_1016_j_est_2020_101540
crossref_primary_10_1016_j_energy_2020_118055
crossref_primary_10_1016_j_est_2023_107912
crossref_primary_10_32604_jrm_2022_022232
crossref_primary_10_1002_er_5208
crossref_primary_10_1177_09544089241312626
crossref_primary_10_1007_s10494_024_00594_8
crossref_primary_10_1016_j_applthermaleng_2020_115115
crossref_primary_10_1016_j_est_2020_101438
crossref_primary_10_1016_j_enconman_2022_115434
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121654
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123458
crossref_primary_10_1002_er_5566
crossref_primary_10_1016_j_applthermaleng_2021_117961
crossref_primary_10_1016_j_est_2021_103420
crossref_primary_10_1016_j_jobe_2019_100772
crossref_primary_10_1016_j_solmat_2024_112908
crossref_primary_10_1016_j_prime_2021_100027
crossref_primary_10_1007_s10765_022_03130_w
crossref_primary_10_1016_j_enganabound_2023_03_044
crossref_primary_10_1142_S0218625X25300072
crossref_primary_10_1016_j_matchemphys_2021_125438
crossref_primary_10_1155_er_3489021
crossref_primary_10_1016_j_solmat_2024_113317
crossref_primary_10_1063_5_0102005
crossref_primary_10_3390_en15030956
crossref_primary_10_1016_j_energy_2021_123018
crossref_primary_10_1002_er_5679
crossref_primary_10_1016_j_renene_2023_119673
crossref_primary_10_3390_ma14051091
crossref_primary_10_3390_app132413130
crossref_primary_10_3390_membranes11020127
crossref_primary_10_1080_15435075_2022_2138713
crossref_primary_10_1088_1742_6596_2492_1_012002
crossref_primary_10_1016_j_rineng_2024_103603
crossref_primary_10_1088_1742_6596_1683_5_052001
crossref_primary_10_1007_s10765_022_03042_9
crossref_primary_10_1016_j_apenergy_2022_119555
crossref_primary_10_3390_solar3010010
crossref_primary_10_1016_j_applthermaleng_2023_121073
crossref_primary_10_1016_j_solener_2021_07_003
crossref_primary_10_1016_j_energy_2024_131463
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123760
crossref_primary_10_1016_j_rser_2024_114528
crossref_primary_10_3390_en16196764
crossref_primary_10_1016_j_est_2025_115631
crossref_primary_10_1063_5_0257939
crossref_primary_10_3390_en18061433
crossref_primary_10_1002_est2_238
crossref_primary_10_1115_1_4052085
crossref_primary_10_1016_j_jobe_2024_111391
crossref_primary_10_3390_en15218271
crossref_primary_10_3390_nano13192635
crossref_primary_10_1016_j_icheatmasstransfer_2023_106646
crossref_primary_10_1016_j_solmat_2020_110394
crossref_primary_10_1016_j_ijthermalsci_2020_106578
crossref_primary_10_3390_en17020462
crossref_primary_10_1002_est2_127
crossref_primary_10_1115_1_4063045
crossref_primary_10_3390_en17164128
crossref_primary_10_1016_j_seta_2023_103078
crossref_primary_10_1016_j_est_2022_104795
crossref_primary_10_1080_10407782_2022_2083842
crossref_primary_10_2139_ssrn_4102550
crossref_primary_10_1016_j_est_2024_111329
crossref_primary_10_1016_j_ijft_2024_100623
crossref_primary_10_3934_energy_2019_4_507
crossref_primary_10_1007_s10965_022_02976_w
crossref_primary_10_1016_j_energy_2019_03_149
crossref_primary_10_1016_j_apenergy_2024_123893
crossref_primary_10_1016_j_est_2023_108792
crossref_primary_10_1177_01436244241261162
crossref_primary_10_1088_1742_6596_1782_1_012016
crossref_primary_10_1002_er_4668
crossref_primary_10_1007_s00396_020_04804_3
crossref_primary_10_1016_j_matpr_2022_07_217
crossref_primary_10_3389_fenrg_2023_1017943
crossref_primary_10_1002_er_5191
crossref_primary_10_1049_esi2_12128
crossref_primary_10_1115_1_4046056
crossref_primary_10_3390_mi15050623
crossref_primary_10_1039_D2RA02437C
crossref_primary_10_1002_er_6397
crossref_primary_10_1007_s10973_022_11798_3
crossref_primary_10_1016_j_enbuild_2024_115204
crossref_primary_10_1002_er_4896
crossref_primary_10_1177_09506608241292406
crossref_primary_10_1109_TPEL_2022_3223730
crossref_primary_10_1002_er_5069
crossref_primary_10_1002_er_4531
crossref_primary_10_1063_5_0145904
crossref_primary_10_1016_j_csite_2022_102490
crossref_primary_10_1016_j_est_2021_102871
crossref_primary_10_1016_j_applthermaleng_2022_118911
crossref_primary_10_1002_er_6828
crossref_primary_10_1016_j_seta_2021_101633
crossref_primary_10_1002_er_5055
crossref_primary_10_1002_er_5176
crossref_primary_10_1016_j_est_2021_103727
crossref_primary_10_1016_j_conbuildmat_2023_134269
crossref_primary_10_3390_pr12061123
crossref_primary_10_1016_j_heliyon_2024_e36105
crossref_primary_10_3390_en17020276
crossref_primary_10_1016_j_est_2023_108976
crossref_primary_10_1115_1_4051075
crossref_primary_10_1016_j_energy_2020_118698
crossref_primary_10_3390_en17184680
crossref_primary_10_1016_j_applthermaleng_2022_119439
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121256
crossref_primary_10_1016_j_jfoodeng_2020_110351
crossref_primary_10_1016_j_apenergy_2022_120363
crossref_primary_10_1016_j_renene_2025_122652
crossref_primary_10_1016_j_est_2024_112844
crossref_primary_10_1002_er_6132
crossref_primary_10_1016_j_est_2024_114347
crossref_primary_10_1016_j_est_2024_114345
crossref_primary_10_1142_S179329202430010X
crossref_primary_10_1016_j_energy_2019_116802
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119323
crossref_primary_10_1080_14484846_2022_2069644
crossref_primary_10_1016_j_scs_2024_105897
crossref_primary_10_1016_j_pecs_2023_101109
crossref_primary_10_1016_j_solmat_2022_112092
crossref_primary_10_1016_j_icheatmasstransfer_2025_108857
crossref_primary_10_3390_nano13142126
crossref_primary_10_1016_j_enbuild_2022_112205
crossref_primary_10_1080_01457632_2024_2392076
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124076
crossref_primary_10_1002_htj_22955
crossref_primary_10_1016_j_mtsust_2023_100469
crossref_primary_10_1016_j_applthermaleng_2023_120814
crossref_primary_10_1115_1_4063520
crossref_primary_10_1007_s10973_022_11806_6
crossref_primary_10_1016_j_est_2024_111085
crossref_primary_10_1016_j_jallcom_2024_173989
crossref_primary_10_1002_er_6240
crossref_primary_10_1016_j_enconman_2022_115484
crossref_primary_10_3390_en15239152
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121603
crossref_primary_10_1002_er_5949
crossref_primary_10_1016_j_est_2022_105179
crossref_primary_10_1016_j_applthermaleng_2023_120942
crossref_primary_10_1002_er_4856
crossref_primary_10_1002_er_4737
crossref_primary_10_1016_j_applthermaleng_2019_114764
crossref_primary_10_1007_s10853_024_10304_4
crossref_primary_10_1016_j_est_2023_108185
crossref_primary_10_1016_j_est_2021_103937
crossref_primary_10_1016_j_rser_2023_113904
crossref_primary_10_1016_j_tsep_2023_101668
crossref_primary_10_1016_j_applthermaleng_2020_116507
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124625
crossref_primary_10_3390_ma17020467
crossref_primary_10_1016_j_applthermaleng_2020_116509
crossref_primary_10_1016_j_applthermaleng_2022_118955
crossref_primary_10_1016_j_est_2022_106591
crossref_primary_10_1016_j_applthermaleng_2022_119364
crossref_primary_10_1063_5_0065433
crossref_primary_10_1016_j_est_2021_102957
crossref_primary_10_1016_j_applthermaleng_2020_115722
crossref_primary_10_1021_acs_chemrev_2c00407
crossref_primary_10_1016_j_est_2021_102711
crossref_primary_10_1002_app_55742
crossref_primary_10_3390_app10217771
crossref_primary_10_1016_j_egyr_2024_04_024
crossref_primary_10_1002_er_4960
crossref_primary_10_1002_er_4838
crossref_primary_10_1016_j_applthermaleng_2023_121858
crossref_primary_10_1016_j_est_2022_105277
crossref_primary_10_1093_ijlct_ctac125
crossref_primary_10_1016_j_est_2022_105273
crossref_primary_10_1002_er_7663
crossref_primary_10_1016_j_solmat_2024_112699
crossref_primary_10_1515_ehs_2023_0038
crossref_primary_10_1016_j_tsep_2021_101003
crossref_primary_10_1002_er_4711
crossref_primary_10_1016_j_energy_2025_135165
crossref_primary_10_1016_j_tsep_2023_101886
crossref_primary_10_1002_er_8513
crossref_primary_10_1016_j_applthermaleng_2021_116677
crossref_primary_10_1016_j_mtsust_2024_100986
crossref_primary_10_1016_j_rser_2023_113897
crossref_primary_10_1016_j_solmat_2021_111135
crossref_primary_10_1038_s41598_023_45549_7
crossref_primary_10_1016_j_est_2021_102934
crossref_primary_10_1016_j_xcrp_2021_100540
crossref_primary_10_1002_er_4934
crossref_primary_10_1016_j_matchemphys_2021_125089
crossref_primary_10_1007_s11356_022_24552_x
crossref_primary_10_1016_j_ijft_2024_100579
crossref_primary_10_1051_e3sconf_202015202008
crossref_primary_10_3390_en13092238
crossref_primary_10_1016_j_polymer_2021_124176
crossref_primary_10_1051_e3sconf_202132300023
crossref_primary_10_1016_j_tsep_2022_101440
crossref_primary_10_1016_j_applthermaleng_2021_117659
crossref_primary_10_1016_j_enconman_2022_115692
crossref_primary_10_1016_j_apenergy_2024_122714
crossref_primary_10_1016_j_est_2020_102189
crossref_primary_10_24237_djes_2022_15304
Cites_doi 10.1016/S0196-8904(99)00166-1
10.1007/978-94-009-5301-7
10.1016/0017-9310(81)90035-1
10.1016/S0038-092X(97)00104-7
10.1016/0038-092X(82)90058-5
10.1016/j.apenergy.2014.07.015
10.1016/j.ijheatmasstransfer.2018.03.095
10.1016/0017-9310(70)90180-8
10.1063/1.2802183
10.2514/3.27839
10.1016/j.applthermaleng.2006.11.004
10.1016/S0196-8904(01)00187-X
10.1016/j.apenergy.2014.10.051
10.1016/S1359-4311(02)00192-8
10.1016/j.ijrefrig.2012.06.003
10.1016/j.enconman.2004.06.010
10.1016/j.ijheatmasstransfer.2014.07.087
10.1016/j.rser.2010.08.019
10.1016/j.rser.2012.10.025
10.1016/j.pecs.2015.10.003
10.1007/978-94-011-2872-8_32
10.1016/0038-092X(83)90020-8
10.1002/nme.1620231003
10.1016/0306-2619(83)90063-6
10.1016/j.tca.2010.11.011
10.1080/10407782.2014.894371
10.1016/j.apenergy.2008.10.020
10.1016/0038-092X(84)90047-1
10.1016/0167-5826(83)90029-3
10.3390/su8101046
10.1016/j.enbuild.2013.05.027
10.1016/j.ijheatmasstransfer.2011.04.046
10.1115/1.3250668
10.1016/0038-092X(78)90141-X
10.1115/1.3246884
10.1016/0017-9310(89)90049-5
10.1016/j.apm.2008.05.016
10.1016/j.rser.2007.06.009
10.1016/0017-9310(84)90143-1
10.1016/j.apenergy.2013.08.026
10.1016/j.ijheatmasstransfer.2015.05.020
10.1115/1.4025973
10.1016/j.icheatmasstransfer.2014.02.025
10.1016/S1359-4311(96)00054-3
10.1016/j.ijheatmasstransfer.2011.06.018
10.1016/j.energy.2011.07.019
10.1016/S0196-8904(01)00131-5
10.1081/GE-200051299
10.1016/j.rser.2013.12.033
10.1016/j.energy.2012.01.024
10.1115/1.4023485
10.1016/j.apenergy.2011.08.025
10.1016/j.apenergy.2014.01.085
10.4028/www.scientific.net/AMR.239-242.2248
10.1016/j.apenergy.2013.04.043
10.1016/j.applthermaleng.2015.03.065
10.1016/j.pecs.2013.02.001
10.1016/j.applthermaleng.2004.10.007
10.1016/S0065-2717(08)70211-9
10.1016/j.solener.2006.11.009
10.1016/j.apenergy.2013.01.031
10.1016/0017-9310(84)90121-2
10.1016/j.camwa.2009.03.115
10.1016/j.solener.2010.04.022
10.1016/0196-8904(88)90021-0
10.1016/j.ijheatmasstransfer.2017.10.033
10.1016/j.applthermaleng.2014.05.080
10.1016/j.rser.2005.10.002
10.1080/10407799308955894
10.1016/j.ijrefrig.2010.07.017
10.1016/j.cep.2007.02.001
10.1016/0038-092X(93)90029-N
10.1016/j.solmat.2013.09.035
10.1615/JEnhHeatTransf.v3.i2.50
10.1016/j.applthermaleng.2018.02.035
10.1016/j.enconman.2015.08.004
10.1016/j.rser.2017.01.169
10.1016/0017-9310(71)90178-5
10.1016/j.rser.2009.11.011
10.1002/er.1057
10.1016/j.solener.2015.02.002
10.1016/j.rser.2009.07.035
10.1016/j.enconman.2014.01.042
10.1016/j.apenergy.2009.10.011
10.1016/j.renene.2010.06.005
10.1021/je200057j
10.1007/BF02653497
10.1016/j.apenergy.2012.11.051
10.1016/j.solener.2013.11.017
10.1016/0017-9310(73)90202-0
10.1016/j.enbuild.2013.12.028
10.1016/S0038-092X(87)80035-X
10.1016/0017-9310(89)90204-4
10.1016/0021-9614(70)90078-9
10.1007/s10973-014-4370-6
10.1016/0038-092X(89)90013-3
10.1016/0038-092X(88)90136-3
10.1016/j.solmat.2014.03.020
10.1016/j.ijheatmasstransfer.2013.03.061
10.1016/j.enconman.2003.09.015
10.1115/1.4024745
10.1016/j.cej.2010.07.054
10.1016/j.solmat.2011.09.020
10.1002/9781118671603
10.1016/j.rser.2015.03.038
10.1016/0017-9310(75)90228-8
10.1016/j.enconman.2014.07.041
10.1016/j.pmatsci.2014.03.005
10.1016/j.ijheatmasstransfer.2010.03.035
10.1016/j.rser.2012.01.020
10.1007/s007910050034
10.1016/0196-8904(81)90033-9
10.1016/j.renene.2014.02.025
10.1016/j.rser.2013.01.008
10.1016/j.applthermaleng.2013.01.011
10.1016/j.solener.2003.07.028
10.1016/0038-092X(82)90211-0
10.1016/S0038-092X(96)00167-3
10.1002/nme.1620080314
10.1016/j.solener.2005.03.006
10.1016/0017-9310(95)00402-5
10.1016/j.ijthermalsci.2013.03.015
10.1016/j.apenergy.2008.12.004
10.1016/j.applthermaleng.2010.11.022
10.1016/j.applthermaleng.2006.08.001
10.1016/S0038-092X(03)00117-8
10.1016/j.proeng.2015.09.189
10.1016/j.ijheatmasstransfer.2009.10.025
10.1016/S0038-092X(99)00045-6
10.1016/j.renene.2008.02.026
10.1016/j.solener.2006.09.008
10.1016/j.energy.2004.04.024
10.1080/01495728308963083
10.1016/j.rser.2007.10.005
10.1016/j.apenergy.2013.10.029
10.1016/j.ijheatmasstransfer.2004.10.042
10.1016/0360-5442(92)90004-J
10.1016/j.apenergy.2010.12.028
10.1002/er.4035
10.1016/j.solener.2013.11.008
10.1016/j.rser.2009.10.015
10.1016/0165-1633(80)90033-7
10.1016/0017-9310(80)90116-7
10.1016/j.solener.2011.12.008
10.1007/BF01177060
10.1016/j.apenergy.2014.03.025
10.1016/j.renene.2009.03.010
10.1002/er.3776
10.1115/1.3450375
10.1016/j.applthermaleng.2017.03.005
10.1016/j.carbon.2013.04.004
10.1016/j.applthermaleng.2014.12.008
10.1016/0094-4548(80)90004-1
10.1016/j.rser.2012.05.037
10.1016/j.enconman.2004.05.012
10.1016/j.applthermaleng.2013.12.016
10.1002/(SICI)1099-114X(19990325)23:4<287::AID-ER476>3.0.CO;2-K
10.1016/j.mspro.2014.07.579
10.1080/17512549.2013.809271
10.1016/j.ijheatmasstransfer.2014.11.022
10.1016/j.ijheatmasstransfer.2012.03.023
10.1016/j.rser.2015.10.128
10.1016/0038-092X(79)90140-3
10.1016/0378-7788(84)90009-4
10.1016/j.renene.2015.05.029
10.1080/10407799008961737
10.1016/S0196-8904(96)00193-8
10.1016/j.applthermaleng.2016.06.158
10.1016/j.enconman.2006.05.017
10.1080/10407799408955931
10.1063/1.555693
10.1080/01457632.2015.965093
10.1007/978-3-540-68557-9
10.1016/j.applthermaleng.2015.02.030
10.1016/j.rser.2017.05.093
10.1016/j.apenergy.2014.04.029
10.1016/j.ijheatmasstransfer.2009.12.057
10.1016/0017-9310(81)90078-8
10.1016/j.rser.2010.06.011
10.1016/S1359-4311(03)00108-X
10.1016/j.enconman.2015.07.068
10.1016/j.rser.2009.06.024
10.1504/IJEX.2012.050229
10.1016/j.apenergy.2013.01.082
10.1016/j.carbon.2005.06.042
10.1002/er.4440120318
10.1016/j.apenergy.2011.11.018
10.1115/1.3450599
10.1080/10407788808913615
10.1016/S0196-8904(03)00131-6
10.1016/j.apenergy.2016.05.097
10.1016/j.rser.2015.04.044
10.1016/j.enconman.2015.01.084
10.1016/S0017-9310(99)00024-1
ContentType Journal Article
Copyright 2018 John Wiley & Sons, Ltd.
2019 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2018 John Wiley & Sons, Ltd.
– notice: 2019 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SP
7ST
7TB
7TN
8FD
C1K
F1W
F28
FR3
H96
KR7
L.G
L7M
SOI
DOI 10.1002/er.4196
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Oceanic Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-114X
EndPage 64
ExternalDocumentID 10_1002_er_4196
ER4196
Genre reviewArticle
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAJEY
AANHP
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AI.
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BKSAR
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
H13
HCIFZ
HF~
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PCBAR
PIMPY
PTHSS
PYCSY
Q.N
Q11
QB0
QRW
R.K
RHX
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WWI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
ADMLS
AGQPQ
CITATION
PHGZM
PHGZT
7SP
7ST
7TB
7TN
8FD
C1K
F1W
F28
FR3
H96
KR7
L.G
L7M
SOI
ID FETCH-LOGICAL-c3226-d19682d6f3483d0e52f4038993887604b26ce966ef928d21a2bd3f74270af8c33
IEDL.DBID DR2
ISSN 0363-907X
IngestDate Fri Jul 25 10:34:27 EDT 2025
Tue Jul 01 01:41:23 EDT 2025
Thu Apr 24 23:06:49 EDT 2025
Wed Jan 22 16:29:37 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3226-d19682d6f3483d0e52f4038993887604b26ce966ef928d21a2bd3f74270af8c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5606-6090
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/er.4196
PQID 2157181249
PQPubID 996365
PageCount 36
ParticipantIDs proquest_journals_2157181249
crossref_primary_10_1002_er_4196
crossref_citationtrail_10_1002_er_4196
wiley_primary_10_1002_er_4196_ER4196
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2019
2019-01-00
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal of energy research
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2015; 78
1993; 24
2007; 102
2010; 14
1989; 42
2011; 513
2009; 86
1983; 2
2013; 65
1983; 6
2011; 239–242
2013; 63
1989; 111
1975; 18
1973; 16
1975; 12
2011; 54
2013; 70
1999; 42
2011; 56
2008; 33
2012; 16
2013; 7
2018; 42
2012; 11
1974; 8
1987; 39
2012; 98
2014; 136
1983; 14
1978
1983; 12
2015; 89
2014; 127
2009; 13
2017; 74
1986; 108
1989; 32
2015; 137
2015; 82
2015; 138
2015; 81
2015; 84
2015; 83
2017; 79
2013; 53
2006; 26
1985
2013; 60
1999; 294
1937; 15
1983
1981
2013; 110
1980
2014; 121
1979; 22
2014; 120
2014; 126
2014; 99
2005; 79
2010; 33
2010; 35
2013; 109
1980; 11A
2013; 104
2004; 45
2015; 120
2015; 121
2013; 106
1981; 24
2010; 163
1988; 12
1995
1988; 13
2012; 39
1992
2012; 35
1998; 62
2007; 11
1981; 21
1970; 13
1994; 287
2005; 19
2015; 115
2018; 117
1993; 50
1984; 32
1986; 23
1984; 6
1988; 28
2008; 47
2016; 177
2014; 36
2007; 81
2005; 2
2018; 10
2016; 8
2003; 23
1990; 4
2014; 31
2017; 41
2010; 53
2014; 70
1996; 39
1891; 278
2013; 21
2015; 105
1984; 27
1990; 17
2016; 107
2018; 124
2000; 41
1992; 17
1994; 25
2014; 68
2011; 15
2005; 29
2012; 55
2014; 66
2014; 65
1970; 2
2005; 25
2017; 118
2014; 64
2013; 18
2015; 48
2009; 58
2014; 4
1982; 29
1978; 20
2018; 134
2002; 43
2005; 30
1997; 17
1996; 1
1988; 41
1972; 14
1975; 8
1996; 3
2007; 27
2014; 53
1997; 60
2015; 95
1980; 23
1986; 59
1983; 31
2011; 31
2009
2016; 53
2008
2008; 12
1999; 66
2005; 43
1999; 2
2011; 36
2005; 48
2003; 74
2014; 114
2003; 75
2010; 84
2014; 87
2005; 46
2016; 55
2014; 113
1976; 98
2009; 33
2012; 92
2010; 87
1949; 46
1998; 39
2014; 80
2013; 39
1980; 2
1980; 11
2013; 136
1980; 7
2017
2013; 135
2015
2013
2012; 89
2014; 72
1976; 16
2014; 78
1989; 19
2012; 86
2007; 48
2014; 75
2014; 102
e_1_2_9_79_1
Bulunti B (e_1_2_9_159_1) 2006; 26
e_1_2_9_94_1
Stefan J (e_1_2_9_173_1) 1891; 278
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_216_1
e_1_2_9_71_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_18_1
e_1_2_9_160_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_204_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
Sarbu I (e_1_2_9_28_1) 2017
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_157_1
e_1_2_9_195_1
e_1_2_9_172_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_217_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_167_1
e_1_2_9_106_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_182_1
e_1_2_9_61_1
Voller VR (e_1_2_9_174_1) 1996; 1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_205_1
e_1_2_9_5_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_179_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_171_1
e_1_2_9_194_1
e_1_2_9_31_1
e_1_2_9_210_1
e_1_2_9_77_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
Telkes M (e_1_2_9_12_1) 1949; 46
e_1_2_9_101_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_162_1
Teller O (e_1_2_9_27_1) 2013
e_1_2_9_16_1
e_1_2_9_185_1
e_1_2_9_20_1
e_1_2_9_89_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_206_1
e_1_2_9_8_1
e_1_2_9_81_1
Wrobel LC (e_1_2_9_177_1) 1983
e_1_2_9_113_1
Edwards DP (e_1_2_9_170_1) 1994; 287
e_1_2_9_151_1
e_1_2_9_197_1
Faghri A (e_1_2_9_136_1) 1995
e_1_2_9_211_1
e_1_2_9_78_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_123_1
e_1_2_9_169_1
e_1_2_9_146_1
e_1_2_9_17_1
e_1_2_9_184_1
e_1_2_9_161_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_112_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_207_1
e_1_2_9_196_1
e_1_2_9_29_1
e_1_2_9_150_1
Huang ZG (e_1_2_9_50_1) 1990; 4
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_190_1
e_1_2_9_52_1
e_1_2_9_212_1
e_1_2_9_90_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_187_1
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_200_1
Gnielinski V (e_1_2_9_168_1) 1976; 16
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_115_1
e_1_2_9_199_1
e_1_2_9_26_1
e_1_2_9_208_1
e_1_2_9_130_1
e_1_2_9_176_1
e_1_2_9_153_1
e_1_2_9_191_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_213_1
e_1_2_9_76_1
e_1_2_9_91_1
Mehling H (e_1_2_9_100_1) 2008
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_186_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_201_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_175_1
e_1_2_9_198_1
e_1_2_9_209_1
Yang L (e_1_2_9_128_1) 2014; 75
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_96_1
e_1_2_9_166_1
e_1_2_9_105_1
e_1_2_9_189_1
e_1_2_9_120_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_181_1
e_1_2_9_62_1
e_1_2_9_202_1
e_1_2_9_24_1
e_1_2_9_85_1
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_178_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_193_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_215_1
e_1_2_9_13_1
e_1_2_9_97_1
e_1_2_9_127_1
e_1_2_9_188_1
e_1_2_9_104_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_165_1
e_1_2_9_180_1
e_1_2_9_63_1
Carman PC (e_1_2_9_214_1) 1937; 15
e_1_2_9_40_1
Sun JQ (e_1_2_9_49_1) 2005; 19
e_1_2_9_203_1
e_1_2_9_86_1
e_1_2_9_3_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
Sarbu I (e_1_2_9_4_1) 2018; 10
e_1_2_9_48_1
Meyer GH (e_1_2_9_183_1) 1978
e_1_2_9_192_1
References_xml – volume: 30
  start-page: 221
  year: 2005
  end-page: 233
  article-title: Anisotropic heat transfer in composites based on high‐thermal conductive carbon fibers
  publication-title: Energy
– volume: 111
  start-page: 239
  year: 1989
  end-page: 242
  article-title: The enthalpy method for heat conduction problems with moving boundaries
  publication-title: ASME Journal of Heat Transfer
– volume: 12
  start-page: 591
  issue: 3
  year: 1983
  end-page: 815
  article-title: Molten salts: volume 5, Part 2. Additional single and multi‐component salt systems. Electrical conductance, density, viscosity and surface tension data
  publication-title: J Phys Chem Ref Data Monogr
– volume: 27
  start-page: 994
  year: 2007
  end-page: 1000
  article-title: Effects of different multiple PCMs on the performance of a latent thermal energy storage system
  publication-title: Appl Therm Eng
– volume: 48
  start-page: 373
  year: 2015
  end-page: 391
  article-title: Review of solid–liquid phase change materials and their encapsulation technologies
  publication-title: Renew Sustain Energy Rev
– volume: 117
  start-page: 757
  year: 2018
  end-page: 767
  article-title: An implicit algorithm for melting and settling of phase change material inside macrocapsules
  publication-title: International Journal of Heat and Mass Transfer
– volume: 36
  start-page: 5539
  year: 2011
  end-page: 5546
  article-title: A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals
  publication-title: Energy
– volume: 27
  start-page: 1055
  issue: 7
  year: 1984
  end-page: 1065
  article-title: Inward solid–liquid phase‐change heat transfer in a rectangular cavity with conducting vertical walls
  publication-title: International Journal of Heat and Mass Transfer
– volume: 36
  start-page: 108
  issue: 1
  year: 2011
  end-page: 117
  article-title: Experimental study on the melting and solidification behaviour of a medium temperature phase change storage material (erythritol) system augmented with fins to power a LiBr/H O absorption cooling system
  publication-title: Renew Energy
– volume: 29
  start-page: 503
  issue: 6
  year: 1982
  end-page: 511
  article-title: Comparisons of paraffin wax storage subsystem models using liquid heat transfer media
  publication-title: Solar Energy
– volume: 70
  start-page: 609
  year: 2014
  end-page: 619
  article-title: A numerical and experimental study of solidification around axially finned heat pipes for high temperature latent heat thermal energy storage units
  publication-title: Appl Therm Eng
– volume: 64
  start-page: 396
  issue: s 1–2
  year: 2014
  end-page: 407
  article-title: Analysis of heat transfer and fluid flow during melting inside a spherical container for thermal energy storage
  publication-title: Applied Thermal Engineering
– volume: 59
  start-page: 59
  year: 1986
  end-page: 81
  article-title: A boundary element method analysis of temperature fields and stress during solidification
  publication-title: Acta Mechanica
– volume: 108
  start-page: 174
  year: 1986
  end-page: 181
  article-title: Melting and solidification of a pure metal on a vertical wall
  publication-title: J Heat Transfer
– volume: 14
  start-page: 197
  issue: 3
  year: 1983
  end-page: 209
  article-title: A solar water heater based on phase‐changing material
  publication-title: Appl Energy
– volume: 31
  start-page: 970
  issue: 5
  year: 2011
  end-page: 977
  article-title: Experimental investigations on heat transfer in phase change materials (PCMs) embedded with porous materials
  publication-title: Appl Therm Eng
– volume: 136
  issue: 2
  year: 2014
  article-title: Numerical simulation of heat pipe‐assisted latent heat thermal energy storage unit for Dish‐Stirling systems
  publication-title: Journal of Solar Energy Engineering
– year: 2008
– volume: 110
  start-page: 163
  year: 2013
  end-page: 172
  article-title: Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin‐based nanocomposite phase change materials
  publication-title: Appl Energy
– volume: 81
  start-page: 242
  year: 2015
  end-page: 252
  article-title: Performance of suspended finned heat pipes in high‐temperature latent heat thermal energy storage
  publication-title: Appl Therm Eng
– volume: 23
  start-page: 1647
  year: 2003
  end-page: 1664
  article-title: Numerical simulation of porous latent heat thermal energy storage for thermoelectric cooling
  publication-title: Appl Therm Eng
– volume: 86
  start-page: 1479
  issue: 9
  year: 2009
  end-page: 1483
  article-title: Preparation and thermal properties of polyethylene glycol/expanded graphite blends for energy storage
  publication-title: Appl Energy
– volume: 102
  year: 2007
  article-title: Experimental study on the influence of foam porosity and pore size on the melting of phase change materials
  publication-title: J Appl Phys
– volume: 23
  start-page: 283
  issue: 3
  year: 1980
  end-page: 292
  article-title: Solid–liquid phase‐change heat transfer and interface motion in materials cooled or heated from above or below
  publication-title: International Journal of Heat and Mass Transfer
– volume: 55
  start-page: 371
  year: 2016
  end-page: 398
  article-title: Passive thermal control in residential buildings using phase change materials
  publication-title: Renew Sustain Energy Rev
– volume: 25
  start-page: 1623
  issue: 11‐12
  year: 2005
  end-page: 1633
  article-title: Thermal conductivity measurement of a PCM based storage system containing carbon fibers
  publication-title: Appl Therm Eng
– volume: 15
  start-page: 112
  year: 2011
  end-page: 130
  article-title: A review on phase‐change materials: mathematical modeling and simulations
  publication-title: Renew Sustain Energy Rev
– volume: 138
  start-page: 381
  year: 2015
  end-page: 392
  article-title: Numerical analysis of a shell‐and‐tube latent heat storage unit with fins for air‐conditioning application
  publication-title: Appl Energy
– volume: 56
  start-page: 2889
  issue: 6
  year: 2011
  end-page: 2891
  article-title: Theoretic prediction of melting temperature and latent heat for a fatty acid eutectic mixture
  publication-title: J Chem Eng Data
– volume: 17
  start-page: 1153
  issue: 12
  year: 1992
  end-page: 1164
  article-title: Heat transfer characteristics of a latent heat storage system using MgCl2 6H2O
  publication-title: Energy
– volume: 16
  start-page: 1825
  issue: 10
  year: 1973
  end-page: 1832
  article-title: Numerical solution phase change problems
  publication-title: International Journal of Heat and Mass Transfer
– volume: 113
  start-page: 1525
  year: 2014
  end-page: 1561
  article-title: A review of phase change materials for vehicle component thermal buffering
  publication-title: Appl Energy
– volume: 2
  start-page: 123
  year: 1999
  end-page: 130
  article-title: Phase change problems with free convection: fixed grid numerical simulation
  publication-title: Computing and Visualization in Science
– volume: 13
  start-page: 2225
  issue: 9
  year: 2009
  end-page: 2244
  article-title: Performance enhancement in latent heat thermal storage system: a review
  publication-title: Renew Sustain Energy Rev
– volume: 70
  start-page: 114
  year: 2013
  end-page: 126
  article-title: Effects of melting temperature and the presence of internal fins on the performance of a phase change material (PCM)‐based heat sink
  publication-title: International Journal of Thermal Sciences
– volume: 11
  start-page: 1415
  issue: 8
  year: 1980
  end-page: 1420
  article-title: Heat storage in eutectic alloys
  publication-title: Metallurgical and Materials Transactions a
– volume: 3
  start-page: 119
  year: 1996
  end-page: 127
  article-title: Heat transfer enhancement in latent heat thermal energy storage system by using an external radial finned tube
  publication-title: Journal of Enhanced Heat Transfer
– volume: 78
  start-page: 1135
  year: 2014
  end-page: 1144
  article-title: Encapsulated phase change material for high temperature thermal energy storage—heat transfer analysis
  publication-title: International Journal of Heat and Mass Transfer
– volume: 106
  start-page: 25
  year: 2013
  end-page: 30
  article-title: A nano‐graphite/paraffin phase change material with high thermal conductivity
  publication-title: Appl Energy
– volume: 39
  start-page: 319
  year: 1998
  end-page: 330
  article-title: Numerical simulation of a latent heat thermal energy storage system with enhanced heat conduction
  publication-title: Energ Conver Manage
– year: 1995
– volume: 121
  start-page: 184
  issue: May
  year: 2014
  end-page: 195
  article-title: Dynamic thermal performance analysis of a molten‐salt packed‐bed thermal energy storage system using PCM capsules
  publication-title: Appl Energy
– volume: 126
  start-page: 125
  year: 2014
  end-page: 134
  article-title: Stability of sugar alcohols as PCM for thermal energy storage
  publication-title: Solar Energy Materials and Solar Cells
– year: 1978
– volume: 79
  start-page: 1212
  issue: 57
  year: 2017
  end-page: 1228
  article-title: Phase change materials and carbon nanostructures for thermal energy storage: a literature review
  publication-title: Renewable and Sustainable Energy Reviews
– volume: 121
  start-page: 1969
  year: 2015
  end-page: 1976
  article-title: Simulation and feasibility analysis of PCM based passive cooling technique in residential house
  publication-title: Procedia Engineering
– volume: 114
  start-page: 632
  year: 2014
  end-page: 643
  article-title: Microencapsulation of n‐octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: synthesis, microstructure, and performance evaluation
  publication-title: Appl Energy
– volume: 32
  start-page: 41
  issue: 1
  year: 1984
  end-page: 48
  article-title: Parametric sensitivity studies using paraffin wax storage subsystems
  publication-title: Solar Energy
– year: 2013
– year: 1985
– volume: 12
  start-page: 2438
  year: 2008
  end-page: 2458
  article-title: Heat transfer characteristics of thermal energy storage system using PCM capsules: a review
  publication-title: Renew Sustain Energy Rev
– year: 2009
– volume: 54
  start-page: 4429
  issue: 19‐20
  year: 2011
  end-page: 4436
  article-title: Energy storage and solidification of paraffin phase change material embedded with graphite nanofibers
  publication-title: International Journal of Heat and Mass Transfer
– volume: 92
  start-page: 593
  issue: 8
  year: 2012
  end-page: 605
  article-title: Review on thermal energy storage with phase change materials (PCMs) in building applications
  publication-title: Applied Energy
– volume: 89
  start-page: 37
  issue: 1
  year: 2012
  end-page: 44
  article-title: Heat pumps and energy storage—the challenges of implementation
  publication-title: Appl Energy
– volume: 105
  start-page: 260
  year: 2015
  end-page: 271
  article-title: Three‐dimensional simulation of high temperature latent heat thermal energy storage system assisted by finned heat pipes
  publication-title: Energ Conver Manage
– volume: 32
  start-page: 1663
  issue: 9
  year: 1989
  end-page: 1670
  article-title: An analysis of heat transfer using equivalent thermal conductivity of liquid phase during melting inside an isothermally heated horizontal cylinder
  publication-title: Heat and Mass Transfer
– volume: 74
  start-page: 141
  year: 2003
  end-page: 148
  article-title: Discharge mode for encapsulated PCMs in storage tanks
  publication-title: Solar Energy
– volume: 16
  start-page: 5603
  year: 2012
  end-page: 5616
  article-title: A review on effect of phase change material encapsulation on the thermal performance of a system
  publication-title: Renew Sustain Energy Rev
– volume: 72
  start-page: 31
  year: 2014
  end-page: 37
  article-title: Synthesis and characterization of microencapsulated paraffin with titanium dioxide shell as shape‐stabilized thermal energy storage materials in buildings
  publication-title: Energ Buildings
– volume: 86
  start-page: 1196
  issue: 7‐8
  year: 2009
  end-page: 1200
  article-title: Enhanced thermal conductivity and thermal performance of form‐stable composite phase change materials by using b‐aluminum nitride
  publication-title: Appl Energy
– volume: 87
  start-page: 1529
  issue: 5
  year: 2010
  end-page: 1534
  article-title: Preparation, characterization and thermal properties of PMMA/n‐heptadecane microcapsules as novel solid–liquid microPCM for thermal energy storage
  publication-title: Appl Energy
– volume: 75
  start-page: 317
  year: 2003
  end-page: 328
  article-title: Thermal response in thermal energy storage material around heat transfer tubes: effect of additives on heat transfer rates
  publication-title: Solar Energy
– volume: 42
  start-page: 3659
  year: 1999
  end-page: 3672
  article-title: An experimental investigation of the melting process in a rectangular enclosure
  publication-title: Heat and Mass Transfer
– volume: 60
  start-page: 281
  issue: 5
  year: 1997
  end-page: 290
  article-title: Experimental analysis and numerical modelling of inward solidification on a finned vertical tube for a latent heat storage unit
  publication-title: Solar Energy
– volume: 46
  start-page: 80
  issue: 11
  year: 1949
  end-page: 86
  article-title: Storing solar heat in chemicals—a report on the Dover house
  publication-title: Heat Vent
– volume: 21
  start-page: 125
  issue: 2
  year: 1981
  end-page: 130
  article-title: Studies on low‐temperature salt‐hydrate for thermal storage applications
  publication-title: Energ Conver Manage
– volume: 16
  start-page: 2118
  issue: 4
  year: 2012
  end-page: 2132
  article-title: Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems
  publication-title: Renew Sustain Energy Rev
– volume: 53
  start-page: 2979
  year: 2010
  end-page: 2988
  article-title: High temperature latent heat thermal energy storage using heat pipes
  publication-title: International Journal of Heat and Mass Transfer
– volume: 294
  start-page: 287
  year: 1999
  end-page: 294
  article-title: Theoretical study on a novel phase change process
  publication-title: International Journal of Energy Research
– volume: 29
  start-page: 257
  issue: 3
  year: 1982
  end-page: 263
  article-title: A preliminary model for phase change thermal energy storage in a shell and tube heat exchanger
  publication-title: Solar Energy
– volume: 11
  start-page: 349
  issue: 3
  year: 2012
  end-page: 370
  article-title: A study on the thermodynamic analysis of a cascaded latent heat storage system over the single storage tank system for diesel engine waste heat recovery
  publication-title: International Journal of Exergy
– volume: 58
  start-page: 1302
  year: 2009
  end-page: 1308
  article-title: A new numerical algorithm for 2D moving boundary problems using a boundary element method
  publication-title: Computers and Mathematics with Applications
– volume: 45
  start-page: 263
  issue: 2
  year: 2004
  end-page: 275
  article-title: A review on energy conservation in building applications with thermal storage by latent heat using phase change materials
  publication-title: Energ Conver Manage
– volume: 124
  start-page: 663
  year: 2018
  end-page: 676
  article-title: Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex‐tube heat exchanger
  publication-title: International Journal of Heat and Mass Transfer
– volume: 20
  start-page: 57
  issue: 1
  year: 1978
  end-page: 67
  article-title: Effects of phase‐change energy storage on the performance of air‐based and liquid‐based solar heating systems
  publication-title: Solar Energy
– volume: 84
  start-page: 1402
  issue: 8
  year: 2010
  end-page: 1412
  article-title: Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs)
  publication-title: Solar Energy
– year: 2015
– volume: 54
  start-page: 4596
  year: 2011
  end-page: 4610
  article-title: Analysis and optimization of a latent thermal energy storage system with embedded heat pipes
  publication-title: International Journal of Heat and Mass Transfer
– volume: 66
  start-page: 483
  issue: 6
  year: 1999
  end-page: 490
  article-title: Accelerated thermal cycle test of latent heat storage materials
  publication-title: Solar Energy
– volume: 29
  start-page: 283
  year: 2005
  end-page: 301
  article-title: Experimental and numerical investigation of thermal energy storage with a finned tube
  publication-title: International Journal of Energy Research
– volume: 118
  start-page: 430
  issue: 25 May
  year: 2017
  end-page: 447
  article-title: Multi‐objective RSM optimization of fin assisted latent heat thermal energy storage system based on solidification process of phase change material in presence of copper nanoparticles
  publication-title: Applied Thermal Engineering
– volume: 6
  start-page: 85
  issue: 1
  year: 1984
  end-page: 92
  article-title: The compressive strength of cement blocks permeated with an organic phase change material
  publication-title: Energ Buildings
– volume: 78
  start-page: 556
  issue: 3
  year: 2015
  end-page: 564
  article-title: Experimental study on solving the blocking for the direct contact mobilized thermal energy storage container
  publication-title: Appl Therm Eng
– volume: 39
  start-page: 285
  issue: 4
  year: 2013
  end-page: 319
  article-title: Thermal energy storage technologies and systems for concentrating solar power plants
  publication-title: Progress in Energy and Combustion Science
– volume: 4
  start-page: 203
  year: 1990
  end-page: 206
  article-title: Properties of cast aluminum alloys as thermal storage materials
  publication-title: Cast Metals
– volume: 26
  start-page: 11
  issue: 2
  year: 2006
  end-page: 16
  article-title: Analysis of inward melting of spheres subject to convection and radiation
  publication-title: Journal of Thermal Science and Technology
– volume: 41
  start-page: 2149
  issue: 14
  year: 2017
  end-page: 2161
  article-title: Modeling and assessment of a thermochemical energy storage using salt hydrates
  publication-title: International Journal of Energy Research
– volume: 23
  start-page: 251
  issue: 3
  year: 2003
  end-page: 283
  article-title: Review on thermal energy storage with phase change: materials, heat transfer analysis and applications
  publication-title: Appl Therm Eng
– volume: 14
  start-page: 615
  issue: 2
  year: 2010
  end-page: 628
  article-title: A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)
  publication-title: Renew Sustain Energy Rev
– volume: 109
  start-page: 360
  issue: 9
  year: 2013
  end-page: 365
  article-title: Prototype thermochemical heat storage with open reactor system
  publication-title: Appl Energy
– volume: 27
  start-page: 739
  issue: 5
  year: 1984
  end-page: 746
  article-title: An analytical solution of the heat transfer process during melting of an unfixed solid phase change material inside a horizontal tube
  publication-title: International Journal of Heat and Mass Transfer
– volume: 42
  start-page: 2518
  issue: 7
  year: 2018
  end-page: 2535
  article-title: Analysis of an encapsulated phase change material‐based energy storage system for high‐temperature applications
  publication-title: International Journal of Energy Research
– year: 1980
– volume: 13
  start-page: 297
  year: 1988
  end-page: 318
  article-title: Enthalpy‐porosity technique for modeling convection‐diffusion phase change: application to the melting of a pure metal
  publication-title: Numerical Heat Transfer
– volume: 55
  start-page: 3458
  issue: 13–14
  year: 2012
  end-page: 3469
  article-title: Heat pipe‐assisted melting of a phase change material
  publication-title: International Journal of Heat and Mass Transfer
– volume: 89
  start-page: 138
  year: 2015
  end-page: 158
  article-title: Heat pipe heat exchangers and heat sinks: opportunities, challenges, applications, analysis, and state of the art
  publication-title: International Journal of Heat and Mass Transfer
– volume: 68
  start-page: 452
  year: 2014
  end-page: 458
  article-title: Energy and exergy evaluation of a multiple‐PCM thermal storage unit for free cooling applications
  publication-title: Renew Energy
– volume: 287
  start-page: 17
  year: 1994
  end-page: 23
  article-title: Pressure drop and heat transfer predictions of turbulent flow in longitudinally finned tubes
  publication-title: Advances in Enhanced Heat Transfer
– volume: 134
  start-page: 585
  year: 2018
  end-page: 593
  article-title: Non‐linear system identification of a latent heat thermal energy storage system
  publication-title: Appl Therm Eng
– volume: 87
  start-page: 428
  year: 2014
  end-page: 438
  article-title: Theoretical and experimental investigation of plate screen mesh heat pipe solar collector
  publication-title: Energ Conver Manage
– volume: 8
  start-page: 1046
  year: 2016
  article-title: Micro‐encapsulated phase change materials: a review of encapsulation, safety and thermal characteristics
  publication-title: Sustainability
– volume: 17
  start-page: 155
  year: 1990
  end-page: 169
  article-title: Fast implicit finite‐difference method for the analysis of phase change problems
  publication-title: Numerical Heat Transfer, Part B: Fundamentals
– volume: 14
  start-page: 955
  issue: 3
  year: 2010
  end-page: 970
  article-title: High‐temperature phase change materials for thermal energy storage
  publication-title: Renew Sustain Energy Rev
– volume: 278
  start-page: 269
  issue: 2
  year: 1891
  end-page: 286
  article-title: Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere
  publication-title: Ann Phys Rehabil Med
– volume: 35
  start-page: 198
  issue: 1
  year: 2010
  end-page: 207
  article-title: Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array
  publication-title: Renew Energy
– volume: 104
  start-page: 538
  year: 2013
  end-page: 553
  article-title: A review of solar collectors and thermal energy storage in solar thermal applications
  publication-title: Appl Energy
– volume: 33
  start-page: 2606
  year: 2008
  end-page: 2614
  article-title: Thermal cycling test of few selected inorganic and organic phase change materials
  publication-title: Renew Energy
– volume: 513
  start-page: 49
  issue: 1–2
  year: 2011
  end-page: 59
  article-title: Thermal analysis of phase change materials in the temperature range 120–150 °C
  publication-title: Thermochimica Acta
– volume: 11
  start-page: 1146
  year: 2007
  end-page: 1166
  article-title: PCM thermal storage in buildings: a state of art
  publication-title: Renew Sustain Energy Rev
– year: 1981
– volume: 53
  start-page: 147
  year: 2013
  end-page: 156
  article-title: Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers
  publication-title: Appl Therm Eng
– volume: 65
  start-page: 260
  year: 2013
  end-page: 271
  article-title: Centralized latent heat thermal energy storage system: model development and validation
  publication-title: Energ Buildings
– volume: 46
  start-page: 959
  year: 2005
  end-page: 969
  article-title: Experimental investigations on the characteristics of melting processes of stearic acid in an annulus and its thermal conductivity enhancement by fins
  publication-title: Energ Conver Manage
– volume: 24
  start-page: 273
  issue: 2
  year: 1981
  end-page: 284
  article-title: Freezing on a finned tube for either conduction‐controlled or natural‐convection‐controlled heat transfer
  publication-title: International Journal of Heat and Mass Transfer
– volume: 2
  start-page: 341
  year: 1983
  end-page: 354
  article-title: Energy storage via desiccants for food/agricultural applications
  publication-title: Energy in Agriculture
– volume: 66
  start-page: 1131
  year: 2014
  end-page: 1153
  article-title: Numerical investigation of pcm based heat sinks with embedded metal foam/crossed plate fins
  publication-title: Numerical Heat Transfer, Part A: Applications
– volume: 105
  start-page: 189
  issue: November
  year: 2015
  end-page: 196
  article-title: Experimental analysis, modeling and simulation of a solar energy accumulator with paraffin wax as PCM
  publication-title: Energ Conver Manage
– volume: 7
  start-page: 183
  issue: 3
  year: 1980
  end-page: 188
  article-title: On the melting of a simple body with a convection boundary condition
  publication-title: Letters in Heat and Mass Transfer
– volume: 63
  start-page: 323
  year: 2013
  end-page: 335
  article-title: Heat transfer analysis of encapsulated phase change material for thermal energy storage
  publication-title: International Journal of Heat and Mass Transfer
– volume: 33
  start-page: 1676
  year: 2010
  end-page: 1683
  article-title: Experimental investigation of energy saving in buildings with PCM cold storage
  publication-title: International Journal of Refrigeration
– volume: 8
  start-page: 333
  year: 1975
  end-page: 340
  article-title: Analysis of multidimensional conduction phase change via the enthalpy model
  publication-title: ASME Journal of Heat Transfer
– volume: 107
  start-page: 154
  issue: 25 August
  year: 2016
  end-page: 166
  article-title: Numerical analysis of discharging process acceleration in LHTESS by immersing innovative fin configuration using finite element method
  publication-title: Applied Thermal Engineering
– volume: 46
  start-page: 847
  year: 2005
  end-page: 867
  article-title: Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix
  publication-title: Energ Conver Manage
– volume: 15
  start-page: 379
  year: 2011
  end-page: 391
  article-title: A review on phase change materials integrated in building walls
  publication-title: Renew Sustain Energy Rev
– volume: 10
  start-page: 1
  issue: art.191
  year: 2018
  end-page: 33
  article-title: A comprehensive review of thermal energy storage
  publication-title: Sustainability
– volume: 136
  start-page: 11010
  year: 2013
  article-title: Computational modeling of dynamic response of a latent thermal energy storage system with embedded heat pipes
  publication-title: Journal of Solar Energy Engineering
– volume: 23
  start-page: 1807
  year: 1986
  end-page: 1829
  article-title: Comparison of finite element techniques for solidification problems
  publication-title: International Journal of Numerical Methods in Engineering
– year: 1992
– volume: 6
  start-page: 209
  issue: 2
  year: 1983
  end-page: 222
  article-title: Numerical computation using finite elements for the moving interface in heat transfer problems with phase change transformation
  publication-title: Numerical Heat Transfer
– volume: 25
  start-page: 467
  year: 1994
  end-page: 480
  article-title: Temperature‐transforming model for binary solid–liquid phase change problems, part 1: mathematical modeling and numerical methodology
  publication-title: Numerical Heat Transfer, Part B: Fundamentals
– volume: 99
  start-page: 172
  year: 2014
  end-page: 184
  article-title: Numerical study on the thermal behavior of phase change materials (PCMs) embedded in porous metal matrix
  publication-title: Solar Energy
– volume: 60
  start-page: 117
  year: 2013
  end-page: 128
  article-title: Thermal conductivity improvement of phase change materials/graphite foam composites
  publication-title: Carbon NY
– volume: 80
  start-page: 382
  year: 2014
  end-page: 390
  article-title: Microencapsulation of a fatty acid with poly (melamine–urea–formaldehyde)
  publication-title: Energ Conver Manage
– volume: 53
  start-page: 1986
  year: 2010
  end-page: 2000
  article-title: A comprehensive numerical model for melting with natural convection
  publication-title: International Journal of Heat and Mass Transfer
– volume: 39
  start-page: 246
  year: 2012
  end-page: 257
  article-title: Thermal energy storage: how previous findings determine current research priorities
  publication-title: Energy
– volume: 2
  start-page: 381
  issue: 4
  year: 1980
  end-page: 393
  article-title: Thermal energy storage in salt hydrates
  publication-title: Solar Energy Materials
– volume: 45
  start-page: 1597
  issue: 9–10
  year: 2004
  end-page: 1615
  article-title: A review on phase change energy storage: materials and applications
  publication-title: Energ Conver Manage
– volume: 65
  start-page: 67
  year: 2014
  end-page: 123
  article-title: Phase change materials for thermal energy storage
  publication-title: Progress in Materials Science
– volume: 13
  start-page: 318
  year: 2009
  end-page: 345
  article-title: Review on thermal energy storage with phase change materials and applications
  publication-title: Renew Sustain Energy Rev
– volume: 83
  start-page: 729
  year: 2015
  end-page: 736
  article-title: Experimental evaluation at pilot plant scale of multiple PCMs (cascaded) vs. single PCM configuration for thermal energy storage
  publication-title: Renew Energy
– volume: 81
  start-page: 839
  year: 2007
  end-page: 845
  article-title: Thermal conductivity enhancement in a latent heat storage system
  publication-title: Solar Energy
– volume: 53
  start-page: 1195
  year: 2010
  end-page: 1207
  article-title: Confined melting in deformable porous media: a first attempt to explain the graphite/salt composites behaviour
  publication-title: International Journal of Heat and Mass Transfer
– volume: 14
  start-page: 1285
  year: 1972
  end-page: 1294
  article-title: On the use of Green's functions for solving melting or solidification problems
  publication-title: International Journal of Heat Mass Transfer
– volume: 16
  start-page: 359
  year: 1976
  end-page: 368
  article-title: New equations for heat and mass transfer in turbulent pipes and channels flow
  publication-title: International Chemical Engineering
– volume: 7
  start-page: 66
  year: 2013
  end-page: 119
  article-title: Short‐term storage systems of thermal energy for buildings: a review
  publication-title: Advances in Building Energy Research
– volume: 28
  start-page: 197
  issue: 3
  year: 1988
  end-page: 200
  article-title: Mixture of calcium chloride hexahydrate with salt hydrate or anhydrous salts as latent heat storage materials
  publication-title: Energ Conver Manage
– volume: 2
  start-page: 1
  issue: 1
  year: 2005
  end-page: 56
  article-title: Latent heat storage materials and systems: a review
  publication-title: International Journal of Green Energy
– volume: 18
  start-page: 327
  year: 2013
  end-page: 349
  article-title: A review of potential materials for thermal energy storage in building applications
  publication-title: Renew Sustain Energy Rev
– volume: 31
  start-page: 319
  issue: 3
  year: 1983
  end-page: 326
  article-title: Proportioning composites for efficient thermal storage walls
  publication-title: Solar Energy
– volume: 137
  start-page: 707
  year: 2015
  end-page: 715
  article-title: Maximization of performance of a PCM latent heat storage system with innovative fins
  publication-title: Appl Energy
– volume: 32
  start-page: 2447
  issue: 12
  year: 1989
  end-page: 2457
  article-title: The problem of time‐dependent natural convection melting with conduction in the solid
  publication-title: Heat and Mass Transfer
– volume: 95
  start-page: 193
  year: 2015
  end-page: 228
  article-title: Developments in organic solid–liquid phase change materials and their applications in thermal energy storage
  publication-title: Energ Conver Manage
– volume: 74
  start-page: 26
  year: 2017
  end-page: 50
  article-title: Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review
  publication-title: Renew Sustain Energy Rev
– volume: 120
  start-page: 536
  year: 2014
  end-page: 542
  article-title: Microencapsulation of caprylic acid with different wall materials as phase change material for thermal energy storage
  publication-title: Solar Energy Materials and Solar Cells
– volume: 98
  start-page: 550
  year: 1976
  end-page: 557
  article-title: Effect of density change on multidimensional conduction phase change
  publication-title: ASME Journal of Heat Transfer
– volume: 98
  start-page: 66
  year: 2012
  end-page: 70
  article-title: Preparation, characterization and thermal properties of micro‐encapsulated phase change materials
  publication-title: Solar Energy Materials and Solar Cells
– volume: 24
  start-page: 279
  year: 1993
  end-page: 300
  article-title: An alternative formulation of the apparent heat capacity method for phase‐change problems
  publication-title: Numerical Heat Transfer, Part B: Fundamentals
– volume: 53
  start-page: 1
  year: 2016
  end-page: 40
  article-title: Thermal energy storage: recent developments and practical aspects
  publication-title: Progress in Energy and Combustion Science
– volume: 53
  start-page: 109
  year: 2014
  end-page: 115
  article-title: Analysis of geometrical and operational parameters of PCM in a fin and tube heat exchanger
  publication-title: International Communications in Heat and Mass Transfer
– volume: 47
  start-page: 879
  year: 2008
  end-page: 885
  article-title: Extension of heat transfer area using carbon fiber cloths in latent heat thermal energy storage tanks
  publication-title: Chemical Engineering and Processing—Process Intensification
– volume: 177
  start-page: 227
  year: 2016
  end-page: 238
  article-title: Thermal energy storage for low and medium temperature applications using phase change materials—a review
  publication-title: Applied Energy
– volume: 31
  start-page: 531
  year: 2014
  end-page: 542
  article-title: A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium
  publication-title: Renew Sustain Energy Rev
– volume: 19
  start-page: 1
  year: 1989
  end-page: 95
  article-title: Melting and freezing
  publication-title: Advances in Heat Transfer
– volume: 13
  start-page: 1459
  issue: 9
  year: 1970
  end-page: 1477
  article-title: A numerical solution of the multidimensional solidification (or melting) problem
  publication-title: International Journal of Heat and Mass Transfer
– volume: 43
  start-page: 3067
  year: 2005
  end-page: 3074
  article-title: Effect of carbon nanofiber additives on thermal behavior of phase change materials
  publication-title: Carbon
– volume: 48
  start-page: 3689
  issue: 17
  year: 2005
  end-page: 3706
  article-title: Numerical investigation of a PCM‐based heat sink with internal fins
  publication-title: International Journal of Heat and Mass Transfer
– volume: 41
  start-page: 1543
  issue: 14
  year: 2000
  end-page: 1556
  article-title: Thermal conductivity enhancement of energy storage media using carbon fibers
  publication-title: Energ Conver Manage
– volume: 135
  start-page: 1
  issue: 3
  year: 2013
  end-page: 6
  article-title: High temperature thermal energy storage utilizing metallic phase change materials and metallic heat transfer fluids
  publication-title: Journal of Solar Energy Engineering
– volume: 22
  start-page: 251
  year: 1979
  end-page: 257
  article-title: Melt time and heat flux for a simple PCM body
  publication-title: Solar Energy
– volume: 1
  start-page: 341
  issue: 9
  year: 1996
  end-page: 380
  article-title: An overview of numerical methods for solving phase change problems
  publication-title: Advances in Numerical Heat Transfer
– volume: 27
  start-page: 1271
  year: 2007
  end-page: 1277
  article-title: Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material
  publication-title: Appl Therm Eng
– volume: 19
  start-page: 99
  year: 2005
  end-page: 101
  article-title: Review of thermal energy storage with metal phase change materials
  publication-title: Materials Reviews
– volume: 163
  start-page: 154
  year: 2010
  end-page: 159
  article-title: Synthesis and properties of microencapsulated paraffin composites with SiO shell as thermal energy storage materials
  publication-title: Chem Eng J
– volume: 62
  start-page: 19
  issue: 1
  year: 1998
  end-page: 28
  article-title: Geometric design of solar‐aided latent heat store depending on various parameters and phase change materials
  publication-title: Solar Energy
– volume: 75
  start-page: 195
  year: 2014
  end-page: 207
  article-title: Numerical analysis on performance of naphthalene phase change thermal storage system in aluminum plate‐fin unit
  publication-title: Heat and Mass Transfer
– volume: 12
  start-page: 329
  year: 1975
  end-page: 334
  article-title: Solidification and melting of material subjected to convention and radiation
  publication-title: Journal of Spacecraft and Rockets
– volume: 33
  start-page: 2132
  year: 2009
  end-page: 2144
  article-title: Numerical analysis of the thermal behaviour of a shell‐and‐tube heat storage unit using phase change materials
  publication-title: App Math Model
– volume: 50
  start-page: 357
  issue: 4
  year: 1993
  end-page: 367
  article-title: Numerical simulation of a shell and tube latent heat thermal energy storage unit
  publication-title: Solar Energy
– volume: 15
  start-page: 150
  year: 1937
  end-page: 156
  article-title: Fluid flow through granular beds
  publication-title: Transactions of the Institute of Chemical Engineers
– year: 1983
– volume: 35
  start-page: 2053
  issue: 8
  year: 2012
  end-page: 2077
  article-title: Review of cold storage materials for air conditioning application
  publication-title: International Journal of Refrigeration
– volume: 12
  start-page: 547
  issue: 3
  year: 1988
  end-page: 555
  article-title: Solar thermal storage systems using phase change materials
  publication-title: International Journal of Energy Research
– volume: 82
  start-page: 273
  year: 2015
  end-page: 281
  article-title: Experimental and theoretical analysis of an aluminum foam enhanced phase change thermal storage unit
  publication-title: International Journal of Heat and Mass Transfer
– volume: 126
  start-page: 266
  year: 2014
  end-page: 280
  article-title: Design of a latent thermal energy storage system with embedded heat pipes
  publication-title: Appl Energy
– volume: 81
  start-page: 829
  issue: 6
  year: 2007
  end-page: 837
  article-title: Cascaded latent heat storage for parabolic trough solar power plants
  publication-title: Solar Energy
– volume: 4
  start-page: 389
  year: 2014
  end-page: 394
  article-title: Research progress of phase change materials (PCMs) embedded with metal foam (a review)
  publication-title: Procedia Material Science
– volume: 24
  start-page: 1699
  issue: 10
  year: 1981
  end-page: 1710
  article-title: Heat transfer coefficients for melting about a vertical cylinder with or without subcooling and for open or closed containment
  publication-title: International Journal of Heat and Mass Transfer
– volume: 115
  start-page: 180
  year: 2015
  end-page: 194
  article-title: Experimental and computational study of thermal energy storage with encapsulated NANO for high temperature applications
  publication-title: Solar Energy
– volume: 102
  start-page: 318
  year: 2014
  end-page: 332
  article-title: Thermal analytical model of latent thermal storage with heat pipe heat exchanger for concentrated solar power
  publication-title: Solar Energy
– volume: 84
  start-page: 320
  year: 2015
  end-page: 330
  article-title: Numerical study of PCM solidification in a finned tube thermal storage including natural convection
  publication-title: Appl Therm Eng
– volume: 41
  start-page: 193
  issue: 2
  year: 1988
  end-page: 197
  article-title: Salt hydrate used for latent heat storage: corrosion metals and reliability of thermal performance
  publication-title: Solar Energy
– volume: 36
  start-page: 880
  year: 2014
  end-page: 901
  article-title: Review on heat transfer mechanisms and characteristics in encapsulated PCMs
  publication-title: Heat Transfer Engineering
– volume: 17
  start-page: 583
  issue: 4
  year: 1997
  end-page: 591
  article-title: Finite‐element analysis of cyclic heat transfer in a shell and tube latent heat energy storage exchanger
  publication-title: Appl Therm Eng
– volume: 14
  start-page: 31
  year: 2010
  end-page: 55
  article-title: State of the art on high temperature thermal energy storage for power generation: Part 1—Concepts, materials and modellization
  publication-title: Renew Sustain Energy Rev
– volume: 8
  start-page: 613
  year: 1974
  end-page: 624
  article-title: Finite element solution of non‐linear heat conduction problems with special reference to phase change
  publication-title: International Journal of Numerical Methods in Engineering
– volume: 18
  start-page: 1101
  year: 1975
  end-page: 1117
  article-title: Isothermal migration in two dimensions
  publication-title: International Journal of Heat and Mass Transfer
– volume: 2
  start-page: 158
  issue: 1
  year: 1970
  end-page: 159
  article-title: Molecular thermodynamics of fluid‐phase equilibria
  publication-title: Journal of Chemical Thermodynamics
– volume: 79
  start-page: 648
  issue: 6
  year: 2005
  end-page: 660
  article-title: An experimental and numerical investigation of heat transfer during technical grade paraffin melting and solidification in a shell‐and‐tube latent thermal energy storage unit
  publication-title: Solar Energy
– volume: 43
  start-page: 1923
  issue: 14
  year: 2002
  end-page: 1930
  article-title: Accelerated thermal cycle test of acetamide, stearic acid and paraffin wax for solar thermal latent heat storage applications
  publication-title: Energ Conver Manage
– volume: 239–242
  start-page: 2248
  year: 2011
  end-page: 2251
  article-title: The influence of heating‐cooling cycles on the thermal storage performances of Al‐17 wt.% Si alloy
  publication-title: Advanced Material Research
– volume: 92
  start-page: 456
  year: 2012
  end-page: 461
  article-title: Properties of form‐stable paraffin/silicon dioxide/expanded graphite phase change composites prepared by sol–gel method
  publication-title: Appl Energy
– volume: 42
  start-page: 209
  issue: 3
  year: 1989
  end-page: 220
  article-title: Comparison of theoretical models of phase‐change and sensible heat storage for air and water‐based solar heating systems
  publication-title: Solar Energy
– volume: 120
  start-page: 1407
  issue: 2
  year: 2015
  end-page: 1416
  article-title: Enhanced heat transfer for PCM melting in the frustum‐shaped unit with multiple PCMs
  publication-title: Journal of Thermal Analysis and Calorimetry
– volume: 127
  start-page: 166
  year: 2014
  end-page: 171
  article-title: Enhancement in thermal property and mechanical property of phase change microcapsule with modified carbon nanotube
  publication-title: Appl Energy
– volume: 11A
  start-page: 1415
  year: 1980
  end-page: 1420
  article-title: Heat storage in eutectic alloys
  publication-title: Metallurgical Transactions
– volume: 86
  start-page: 816
  year: 2012
  end-page: 830
  article-title: Heat transfer and exergy analysis of cascaded latent heat storage with gravity‐assisted heat pipes for concentrating solar power applications
  publication-title: Solar Energy
– volume: 48
  start-page: 79
  year: 2015
  end-page: 87
  article-title: Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage
  publication-title: Renew Sustain Energy Rev
– volume: 21
  start-page: 331
  year: 2013
  end-page: 346
  article-title: Low melting point liquid metal as a new class of phase change material: an emerging frontier in energy area
  publication-title: Renew Sustain Energy Rev
– volume: 48
  start-page: 619
  issue: 2
  year: 2007
  end-page: 624
  article-title: Thermal reliability test of Al–34%Mg–6%Zn alloy as latent heat storage material and corrosion of metal with respect to thermal cycling
  publication-title: Energ Conver Manage
– volume: 43
  start-page: 2493
  year: 2002
  end-page: 2507
  article-title: Thermal and heat transfer characteristics in a latent heat storage system using lauric acid
  publication-title: Energ Conver Manage
– year: 2017
– volume: 39
  start-page: 79
  issue: 2
  year: 1987
  end-page: 85
  article-title: Durability of latent heat storage tube sheets
  publication-title: Solar Energy
– volume: 39
  start-page: 3165
  issue: 15
  year: 1996
  end-page: 3173
  article-title: Heat transfer enhancement in latent heat thermal energy storage system by using the internally finned tube
  publication-title: International Journal of Heat Mass Transfer
– ident: e_1_2_9_83_1
  doi: 10.1016/S0196-8904(99)00166-1
– ident: e_1_2_9_2_1
  doi: 10.1007/978-94-009-5301-7
– ident: e_1_2_9_14_1
  doi: 10.1016/0017-9310(81)90035-1
– ident: e_1_2_9_172_1
  doi: 10.1016/S0038-092X(97)00104-7
– ident: e_1_2_9_21_1
  doi: 10.1016/0038-092X(82)90058-5
– ident: e_1_2_9_77_1
  doi: 10.1016/j.apenergy.2014.07.015
– ident: e_1_2_9_135_1
  doi: 10.1016/j.ijheatmasstransfer.2018.03.095
– volume: 278
  start-page: 269
  issue: 2
  year: 1891
  ident: e_1_2_9_173_1
  article-title: Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere
  publication-title: Ann Phys Rehabil Med
– ident: e_1_2_9_207_1
  doi: 10.1016/0017-9310(70)90180-8
– ident: e_1_2_9_91_1
  doi: 10.1063/1.2802183
– ident: e_1_2_9_202_1
  doi: 10.2514/3.27839
– ident: e_1_2_9_88_1
  doi: 10.1016/j.applthermaleng.2006.11.004
– volume: 75
  start-page: 195
  year: 2014
  ident: e_1_2_9_128_1
  article-title: Numerical analysis on performance of naphthalene phase change thermal storage system in aluminum plate‐fin unit
  publication-title: Heat and Mass Transfer
– ident: e_1_2_9_185_1
  doi: 10.1016/S0196-8904(01)00187-X
– ident: e_1_2_9_126_1
  doi: 10.1016/j.apenergy.2014.10.051
– ident: e_1_2_9_5_1
  doi: 10.1016/S1359-4311(02)00192-8
– ident: e_1_2_9_65_1
  doi: 10.1016/j.ijrefrig.2012.06.003
– ident: e_1_2_9_95_1
  doi: 10.1016/j.enconman.2004.06.010
– ident: e_1_2_9_105_1
  doi: 10.1016/j.ijheatmasstransfer.2014.07.087
– ident: e_1_2_9_109_1
  doi: 10.1016/j.rser.2010.08.019
– ident: e_1_2_9_216_1
  doi: 10.1016/j.rser.2012.10.025
– ident: e_1_2_9_98_1
  doi: 10.1016/j.pecs.2015.10.003
– ident: e_1_2_9_179_1
  doi: 10.1007/978-94-011-2872-8_32
– ident: e_1_2_9_25_1
  doi: 10.1016/0038-092X(83)90020-8
– ident: e_1_2_9_194_1
  doi: 10.1002/nme.1620231003
– ident: e_1_2_9_19_1
  doi: 10.1016/0306-2619(83)90063-6
– ident: e_1_2_9_58_1
  doi: 10.1016/j.tca.2010.11.011
– ident: e_1_2_9_74_1
  doi: 10.1080/10407782.2014.894371
– ident: e_1_2_9_72_1
  doi: 10.1016/j.apenergy.2008.10.020
– ident: e_1_2_9_24_1
  doi: 10.1016/0038-092X(84)90047-1
– ident: e_1_2_9_26_1
  doi: 10.1016/0167-5826(83)90029-3
– ident: e_1_2_9_111_1
  doi: 10.3390/su8101046
– ident: e_1_2_9_204_1
– ident: e_1_2_9_211_1
  doi: 10.1016/j.enbuild.2013.05.027
– ident: e_1_2_9_86_1
  doi: 10.1016/j.ijheatmasstransfer.2011.04.046
– ident: e_1_2_9_184_1
  doi: 10.1115/1.3250668
– ident: e_1_2_9_29_1
  doi: 10.1016/0038-092X(78)90141-X
– volume: 287
  start-page: 17
  year: 1994
  ident: e_1_2_9_170_1
  article-title: Pressure drop and heat transfer predictions of turbulent flow in longitudinally finned tubes
  publication-title: Advances in Enhanced Heat Transfer
– ident: e_1_2_9_217_1
  doi: 10.1115/1.3246884
– ident: e_1_2_9_166_1
  doi: 10.1016/0017-9310(89)90049-5
– ident: e_1_2_9_150_1
  doi: 10.1016/j.apm.2008.05.016
– ident: e_1_2_9_10_1
  doi: 10.1016/j.rser.2007.06.009
– ident: e_1_2_9_17_1
  doi: 10.1016/0017-9310(84)90143-1
– ident: e_1_2_9_57_1
  doi: 10.1016/j.apenergy.2013.08.026
– ident: e_1_2_9_157_1
  doi: 10.1016/j.ijheatmasstransfer.2015.05.020
– ident: e_1_2_9_97_1
– volume-title: Heat Pipe Science and Technology
  year: 1995
  ident: e_1_2_9_136_1
– ident: e_1_2_9_140_1
  doi: 10.1115/1.4025973
– ident: e_1_2_9_129_1
  doi: 10.1016/j.icheatmasstransfer.2014.02.025
– ident: e_1_2_9_189_1
  doi: 10.1016/S1359-4311(96)00054-3
– volume: 19
  start-page: 99
  year: 2005
  ident: e_1_2_9_49_1
  article-title: Review of thermal energy storage with metal phase change materials
  publication-title: Materials Reviews
– ident: e_1_2_9_138_1
  doi: 10.1016/j.ijheatmasstransfer.2011.06.018
– ident: e_1_2_9_73_1
  doi: 10.1016/j.energy.2011.07.019
– ident: e_1_2_9_69_1
  doi: 10.1016/S0196-8904(01)00131-5
– ident: e_1_2_9_7_1
  doi: 10.1081/GE-200051299
– ident: e_1_2_9_110_1
  doi: 10.1016/j.rser.2013.12.033
– ident: e_1_2_9_9_1
  doi: 10.1016/j.energy.2012.01.024
– ident: e_1_2_9_47_1
  doi: 10.1115/1.4023485
– ident: e_1_2_9_63_1
  doi: 10.1016/j.apenergy.2011.08.025
– ident: e_1_2_9_101_1
  doi: 10.1016/j.apenergy.2014.01.085
– ident: e_1_2_9_53_1
  doi: 10.4028/www.scientific.net/AMR.239-242.2248
– ident: e_1_2_9_117_1
  doi: 10.1016/j.apenergy.2013.04.043
– ident: e_1_2_9_127_1
  doi: 10.1016/j.applthermaleng.2015.03.065
– ident: e_1_2_9_43_1
– volume: 4
  start-page: 203
  year: 1990
  ident: e_1_2_9_50_1
  article-title: Properties of cast aluminum alloys as thermal storage materials
  publication-title: Cast Metals
– ident: e_1_2_9_154_1
  doi: 10.1016/j.pecs.2013.02.001
– ident: e_1_2_9_84_1
  doi: 10.1016/j.applthermaleng.2004.10.007
– ident: e_1_2_9_206_1
  doi: 10.1016/S0065-2717(08)70211-9
– ident: e_1_2_9_81_1
  doi: 10.1016/j.solener.2006.11.009
– ident: e_1_2_9_119_1
  doi: 10.1016/j.apenergy.2013.01.031
– ident: e_1_2_9_20_1
  doi: 10.1016/0017-9310(84)90121-2
– ident: e_1_2_9_180_1
  doi: 10.1016/j.camwa.2009.03.115
– ident: e_1_2_9_33_1
  doi: 10.1016/j.solener.2010.04.022
– ident: e_1_2_9_70_1
  doi: 10.1016/0196-8904(88)90021-0
– ident: e_1_2_9_192_1
  doi: 10.1016/j.ijheatmasstransfer.2017.10.033
– ident: e_1_2_9_143_1
  doi: 10.1016/j.applthermaleng.2014.05.080
– ident: e_1_2_9_40_1
  doi: 10.1016/j.rser.2005.10.002
– ident: e_1_2_9_175_1
– ident: e_1_2_9_195_1
  doi: 10.1080/10407799308955894
– ident: e_1_2_9_215_1
  doi: 10.1016/j.ijrefrig.2010.07.017
– ident: e_1_2_9_82_1
  doi: 10.1016/j.cep.2007.02.001
– ident: e_1_2_9_188_1
  doi: 10.1016/0038-092X(93)90029-N
– ident: e_1_2_9_122_1
  doi: 10.1016/j.solmat.2013.09.035
– ident: e_1_2_9_123_1
  doi: 10.1615/JEnhHeatTransf.v3.i2.50
– ident: e_1_2_9_200_1
  doi: 10.1016/j.applthermaleng.2018.02.035
– ident: e_1_2_9_144_1
  doi: 10.1016/j.enconman.2015.08.004
– ident: e_1_2_9_80_1
  doi: 10.1016/j.rser.2017.01.169
– ident: e_1_2_9_176_1
  doi: 10.1016/0017-9310(71)90178-5
– ident: e_1_2_9_46_1
  doi: 10.1016/j.rser.2009.11.011
– ident: e_1_2_9_125_1
  doi: 10.1002/er.1057
– ident: e_1_2_9_106_1
  doi: 10.1016/j.solener.2015.02.002
– ident: e_1_2_9_45_1
  doi: 10.1016/j.rser.2009.07.035
– ident: e_1_2_9_112_1
  doi: 10.1016/j.enconman.2014.01.042
– ident: e_1_2_9_113_1
  doi: 10.1016/j.apenergy.2009.10.011
– ident: e_1_2_9_36_1
  doi: 10.1016/j.renene.2010.06.005
– ident: e_1_2_9_62_1
  doi: 10.1021/je200057j
– ident: e_1_2_9_52_1
  doi: 10.1007/BF02653497
– ident: e_1_2_9_31_1
  doi: 10.1016/j.apenergy.2012.11.051
– volume: 16
  start-page: 359
  year: 1976
  ident: e_1_2_9_168_1
  article-title: New equations for heat and mass transfer in turbulent pipes and channels flow
  publication-title: International Chemical Engineering
– ident: e_1_2_9_93_1
  doi: 10.1016/j.solener.2013.11.017
– ident: e_1_2_9_208_1
  doi: 10.1016/0017-9310(73)90202-0
– volume-title: Boundary Elements
  year: 1983
  ident: e_1_2_9_177_1
– ident: e_1_2_9_120_1
  doi: 10.1016/j.enbuild.2013.12.028
– ident: e_1_2_9_66_1
  doi: 10.1016/S0038-092X(87)80035-X
– ident: e_1_2_9_187_1
  doi: 10.1016/0017-9310(89)90204-4
– ident: e_1_2_9_61_1
  doi: 10.1016/0021-9614(70)90078-9
– ident: e_1_2_9_152_1
  doi: 10.1007/s10973-014-4370-6
– ident: e_1_2_9_30_1
  doi: 10.1016/0038-092X(89)90013-3
– ident: e_1_2_9_67_1
  doi: 10.1016/0038-092X(88)90136-3
– ident: e_1_2_9_59_1
  doi: 10.1016/j.solmat.2014.03.020
– ident: e_1_2_9_104_1
  doi: 10.1016/j.ijheatmasstransfer.2013.03.061
– ident: e_1_2_9_6_1
  doi: 10.1016/j.enconman.2003.09.015
– volume-title: Moving Boundary Problems
  year: 1978
  ident: e_1_2_9_183_1
– ident: e_1_2_9_139_1
  doi: 10.1115/1.4024745
– ident: e_1_2_9_115_1
  doi: 10.1016/j.cej.2010.07.054
– ident: e_1_2_9_121_1
  doi: 10.1016/j.solmat.2011.09.020
– ident: e_1_2_9_190_1
  doi: 10.1002/9781118671603
– ident: e_1_2_9_99_1
  doi: 10.1016/j.rser.2015.03.038
– ident: e_1_2_9_203_1
  doi: 10.1016/0017-9310(75)90228-8
– ident: e_1_2_9_78_1
  doi: 10.1016/j.enconman.2014.07.041
– ident: e_1_2_9_32_1
  doi: 10.1016/j.pmatsci.2014.03.005
– ident: e_1_2_9_137_1
  doi: 10.1016/j.ijheatmasstransfer.2010.03.035
– ident: e_1_2_9_124_1
  doi: 10.1016/j.rser.2012.01.020
– ident: e_1_2_9_161_1
  doi: 10.1007/s007910050034
– ident: e_1_2_9_23_1
  doi: 10.1016/0196-8904(81)90033-9
– ident: e_1_2_9_151_1
  doi: 10.1016/j.renene.2014.02.025
– ident: e_1_2_9_56_1
  doi: 10.1016/j.rser.2013.01.008
– volume: 15
  start-page: 150
  year: 1937
  ident: e_1_2_9_214_1
  article-title: Fluid flow through granular beds
  publication-title: Transactions of the Institute of Chemical Engineers
– ident: e_1_2_9_130_1
  doi: 10.1016/j.applthermaleng.2013.01.011
– ident: e_1_2_9_160_1
  doi: 10.1016/j.solener.2003.07.028
– ident: e_1_2_9_171_1
  doi: 10.1016/0038-092X(82)90211-0
– ident: e_1_2_9_191_1
  doi: 10.1016/S0038-092X(96)00167-3
– ident: e_1_2_9_193_1
  doi: 10.1002/nme.1620080314
– ident: e_1_2_9_37_1
  doi: 10.1016/j.solener.2005.03.006
– ident: e_1_2_9_169_1
  doi: 10.1016/0017-9310(95)00402-5
– ident: e_1_2_9_132_1
  doi: 10.1016/j.ijthermalsci.2013.03.015
– ident: e_1_2_9_79_1
  doi: 10.1016/j.apenergy.2008.12.004
– ident: e_1_2_9_90_1
  doi: 10.1016/j.applthermaleng.2010.11.022
– ident: e_1_2_9_148_1
  doi: 10.1016/j.applthermaleng.2006.08.001
– ident: e_1_2_9_38_1
  doi: 10.1016/S0038-092X(03)00117-8
– ident: e_1_2_9_102_1
  doi: 10.1016/j.proeng.2015.09.189
– ident: e_1_2_9_89_1
  doi: 10.1016/j.ijheatmasstransfer.2009.10.025
– ident: e_1_2_9_68_1
  doi: 10.1016/S0038-092X(99)00045-6
– ident: e_1_2_9_71_1
  doi: 10.1016/j.renene.2008.02.026
– ident: e_1_2_9_155_1
  doi: 10.1016/j.solener.2006.09.008
– ident: e_1_2_9_85_1
  doi: 10.1016/j.energy.2004.04.024
– volume: 10
  start-page: 1
  issue: 191
  year: 2018
  ident: e_1_2_9_4_1
  article-title: A comprehensive review of thermal energy storage
  publication-title: Sustainability
– ident: e_1_2_9_209_1
  doi: 10.1080/01495728308963083
– ident: e_1_2_9_3_1
  doi: 10.1016/j.rser.2007.10.005
– ident: e_1_2_9_114_1
  doi: 10.1016/j.apenergy.2013.10.029
– volume-title: Solar Heating and Cooling Systems: Fundamentals, Experiments and Applications
  year: 2017
  ident: e_1_2_9_28_1
– ident: e_1_2_9_131_1
  doi: 10.1016/j.ijheatmasstransfer.2004.10.042
– ident: e_1_2_9_167_1
  doi: 10.1016/0360-5442(92)90004-J
– ident: e_1_2_9_34_1
  doi: 10.1016/j.apenergy.2010.12.028
– volume-title: Joint EASE/EERA Recommendations for a European Energy Storage Technology Development Roadmap towards 2030
  year: 2013
  ident: e_1_2_9_27_1
– ident: e_1_2_9_107_1
  doi: 10.1002/er.4035
– ident: e_1_2_9_142_1
  doi: 10.1016/j.solener.2013.11.008
– ident: e_1_2_9_8_1
  doi: 10.1016/j.rser.2009.10.015
– ident: e_1_2_9_13_1
  doi: 10.1016/0165-1633(80)90033-7
– ident: e_1_2_9_16_1
  doi: 10.1016/0017-9310(80)90116-7
– ident: e_1_2_9_147_1
  doi: 10.1016/j.solener.2011.12.008
– ident: e_1_2_9_178_1
  doi: 10.1007/BF01177060
– ident: e_1_2_9_141_1
  doi: 10.1016/j.apenergy.2014.03.025
– ident: e_1_2_9_186_1
  doi: 10.1016/j.renene.2009.03.010
– ident: e_1_2_9_44_1
  doi: 10.1002/er.3776
– ident: e_1_2_9_181_1
  doi: 10.1115/1.3450375
– ident: e_1_2_9_134_1
  doi: 10.1016/j.applthermaleng.2017.03.005
– ident: e_1_2_9_92_1
  doi: 10.1016/j.carbon.2013.04.004
– ident: e_1_2_9_158_1
  doi: 10.1016/j.applthermaleng.2014.12.008
– volume: 26
  start-page: 11
  issue: 2
  year: 2006
  ident: e_1_2_9_159_1
  article-title: Analysis of inward melting of spheres subject to convection and radiation
  publication-title: Journal of Thermal Science and Technology
– ident: e_1_2_9_22_1
  doi: 10.1016/0094-4548(80)90004-1
– ident: e_1_2_9_108_1
  doi: 10.1016/j.rser.2012.05.037
– ident: e_1_2_9_162_1
  doi: 10.1016/j.enconman.2004.05.012
– ident: e_1_2_9_163_1
  doi: 10.1016/j.applthermaleng.2013.12.016
– ident: e_1_2_9_149_1
  doi: 10.1002/(SICI)1099-114X(19990325)23:4<287::AID-ER476>3.0.CO;2-K
– ident: e_1_2_9_87_1
  doi: 10.1016/j.mspro.2014.07.579
– ident: e_1_2_9_42_1
  doi: 10.1080/17512549.2013.809271
– ident: e_1_2_9_94_1
  doi: 10.1016/j.ijheatmasstransfer.2014.11.022
– ident: e_1_2_9_146_1
  doi: 10.1016/j.ijheatmasstransfer.2012.03.023
– ident: e_1_2_9_41_1
  doi: 10.1016/j.rser.2015.10.128
– ident: e_1_2_9_165_1
  doi: 10.1016/0038-092X(79)90140-3
– ident: e_1_2_9_18_1
  doi: 10.1016/0378-7788(84)90009-4
– ident: e_1_2_9_156_1
  doi: 10.1016/j.renene.2015.05.029
– volume: 1
  start-page: 341
  issue: 9
  year: 1996
  ident: e_1_2_9_174_1
  article-title: An overview of numerical methods for solving phase change problems
  publication-title: Advances in Numerical Heat Transfer
– ident: e_1_2_9_210_1
  doi: 10.1080/10407799008961737
– ident: e_1_2_9_196_1
  doi: 10.1016/S0196-8904(96)00193-8
– ident: e_1_2_9_133_1
  doi: 10.1016/j.applthermaleng.2016.06.158
– ident: e_1_2_9_51_1
  doi: 10.1016/j.enconman.2006.05.017
– ident: e_1_2_9_197_1
  doi: 10.1080/10407799408955931
– ident: e_1_2_9_60_1
  doi: 10.1063/1.555693
– ident: e_1_2_9_201_1
  doi: 10.1080/01457632.2015.965093
– volume-title: Heat and Cold Storage with PCM: An Up to Date Introduction into Basics and Applications
  year: 2008
  ident: e_1_2_9_100_1
  doi: 10.1007/978-3-540-68557-9
– ident: e_1_2_9_145_1
  doi: 10.1016/j.applthermaleng.2015.02.030
– ident: e_1_2_9_212_1
– ident: e_1_2_9_76_1
  doi: 10.1016/j.rser.2017.05.093
– ident: e_1_2_9_118_1
  doi: 10.1016/j.apenergy.2014.04.029
– ident: e_1_2_9_198_1
  doi: 10.1016/j.ijheatmasstransfer.2009.12.057
– ident: e_1_2_9_15_1
  doi: 10.1016/0017-9310(81)90078-8
– ident: e_1_2_9_48_1
  doi: 10.1007/BF02653497
– ident: e_1_2_9_199_1
  doi: 10.1016/j.rser.2010.06.011
– ident: e_1_2_9_75_1
  doi: 10.1016/S1359-4311(03)00108-X
– ident: e_1_2_9_103_1
  doi: 10.1016/j.enconman.2015.07.068
– ident: e_1_2_9_64_1
  doi: 10.1016/j.rser.2009.06.024
– ident: e_1_2_9_153_1
  doi: 10.1504/IJEX.2012.050229
– ident: e_1_2_9_11_1
  doi: 10.1016/j.apenergy.2013.01.082
– ident: e_1_2_9_96_1
  doi: 10.1016/j.carbon.2005.06.042
– ident: e_1_2_9_205_1
  doi: 10.1002/er.4440120318
– ident: e_1_2_9_116_1
  doi: 10.1016/j.apenergy.2011.11.018
– ident: e_1_2_9_182_1
  doi: 10.1115/1.3450599
– ident: e_1_2_9_213_1
  doi: 10.1080/10407788808913615
– ident: e_1_2_9_39_1
  doi: 10.1016/S0196-8904(03)00131-6
– volume: 46
  start-page: 80
  issue: 11
  year: 1949
  ident: e_1_2_9_12_1
  article-title: Storing solar heat in chemicals—a report on the Dover house
  publication-title: Heat Vent
– ident: e_1_2_9_35_1
  doi: 10.1016/j.apenergy.2016.05.097
– ident: e_1_2_9_54_1
  doi: 10.1016/j.rser.2015.04.044
– ident: e_1_2_9_55_1
  doi: 10.1016/j.enconman.2015.01.084
– ident: e_1_2_9_164_1
  doi: 10.1016/S0017-9310(99)00024-1
SSID ssj0009917
Score 2.6189487
SecondaryResourceType review_article
Snippet Summary Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used...
Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used later for...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 29
SubjectTerms Air conditioners
Air conditioning
Computer simulation
Cooling
Encapsulation
Energy
Energy conservation
Energy storage
Fins
Heat pipes
Heat storage
Heat transfer
heat transfer enhancement
heat transfer simulation models
Heating
Internal energy
Latent heat
latent heat storage system
Mathematical models
Metals
phase change material
Phase change materials
Porous materials
Simulation
Solar energy
Stocks
Storage systems
Thermal energy
Transient heat transfer
Waste heat
Water heating
Title Review on heat transfer analysis in thermal energy storage using latent heat storage systems and phase change materials
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fer.4196
https://www.proquest.com/docview/2157181249
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMeD6EUP_hanc-QwvHWrSZq2R3HKEOdhOhheSvOjKs4qXUXwr_clabepCOKphyYhNC8vn9fkfYNQm0Zc-VxIL5As9FgqtCekoB4LgzRUwLxpYBKcB9e8P2KX42C8cNWX04eY_XAzM8P6azPBUzHtzkVDddFhYD7gfU8oN6r5veFcOAqoJ6x3KSH8G7t0WVOzW9X7ug7N4XIRUe0ac7GB7ureuaMlT523UnTkxzfhxn91fxOtV-SJT52pbKElnW-jtQU9wh307nYK8EuOjY_GpaVaXeC0ki7Bjzk2xPgMDWmbNYjN6UrwSdgcoL_HE0DXvHS16zdOLHoKjSj8-gCrJnbZxhhg2dn_LhpdnN-e9b3qZgZPggPgnoKeR0TxjLKIKl8HJGNWqY-Cz-I-E4RLDYGUzmISKXKSEqFoBlF46KdZJCndQ8v5S673EVYAQEqRDMJAzgSTgug4Yiy2WnAxFw10XI9TIivZcnN7xiRxgssk0UVivmQD4VnBV6fU8bNIsx7opJqq0wSYJ7SYEzdQ247Yb9WT86F5HPyt2CFaBbiK3e-aJlouizd9BABTihZaOe0Nrm5a1mY_ARmG700
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYCBN6JQwEPFllIcx0lGBFQFSocKpEoMUfwIICBFJQiJX8_ZTigPISGmDPFZTuw7f3e--wzQ9COu2lxIL5As9FgqtCek8D0WBmmoEPOmgSlwvujz7hU7GwbDMqvS1MI4foiPgJvRDGuvjYKbgPT-hDVUj1sM1880zDCEGcbxOh5MqKMQ94TVOSU6gENXMGtE90vBrzvRBF5-Bql2l-kswnU1Ppdcct96KURLvn2jbvzfByzBQgk-yaFbLcswpfMVmP9ESbgKr-6wgIxyYsw0KSyw1WOSluwl5C4nBjQ-YkfaFg4Sk2CJZomYHPob8oDoNS-cdPXG8UU_YyeKPN3ixklcwTFBvOxUYA2uOieXR12vvJzBk2gDuKdw5BFVPPNZ5Ku2DmjGLFmfj2aLt5mgXGr0pXQW00jRg5QK5WfoiIftNIuk769DLR_legOIQgykFM3QE-RMMCmojiPGYksHF3NRh71qohJZMpebCzQeEse5TBM9TsyfrAP5aPjkyDp-NmlUM52U2vqcIOwJLdKJ69C0U_abeHIyMI_NvzXbhdnu5UUv6Z32z7dgDrFW7KI3DagV4xe9jXimEDt24b4DhGbx2A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMcPXkD0wbs4r3kQ3zpnmqbto6jD6xBRGL6U5lIVZze2iuCn9yRpt6kI4lMfmhNCk5z8TpPzD8CeH3HV4EJ6gWShx1KhPSGF77EwSEOFzJsGJsH5usXP7tlFO2iPXfXl9CGGP9zMzLD-2kzwnsoORqKhul9nOHwmYZpx5AjDQ7cj5SjEnrDapsT4r-3yZY3pQWn4dSEa0eU4o9pFprkAD1Xz3NmSl_pbIery45ty47_avwjzJXqSIzdWlmBC58swNyZIuALvbquAdHNinDQpLNbqPklL7RLynBODjK9YkbZpg8Qcr0SnRMwJ-kfSQXbNC2ddvXFq0QOsRJHeEy6bxKUbE6RlNwFW4b55end85pVXM3gSPQD3FLY8oopnPot81dABzZiV6vPRafEGE5RLjZGUzmIaKXqYUqH8DMPwsJFmkfT9NZjKu7leB6KQgJSiGcaBnAkmBdVxxFhsxeBiLmqwX_VTIkvdcnN9Ridxiss00f3EfMkakGHBnpPq-Flkq-ropJyrgwShJ7ScE9dgz_bYb-bJ6a15bPyt2C7M3Jw0k6vz1uUmzCJoxe7XzRZMFf03vY0wU4gdO2w_AcMm8Ic
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+on+heat+transfer+analysis+in+thermal+energy+storage+using+latent+heat+storage+systems+and+phase+change+materials&rft.jtitle=International+journal+of+energy+research&rft.au=Sarbu%2C+Ioan&rft.au=Dorca%2C+Alexandru&rft.date=2019-01-01&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=43&rft.issue=1&rft.spage=29&rft.epage=64&rft_id=info:doi/10.1002%2Fer.4196&rft.externalDBID=10.1002%252Fer.4196&rft.externalDocID=ER4196
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon