Macrocyclic Inorganic Tin‐Containing Oxo Clusters: Heterometallic Strategy for Configuration and Catalytic Activity Modulation

In this work, the first examples of inorganic macrocyclic tin‐oxo clusters which are stabilized by sulfate ligands are reported. As determined by X‐ray diffraction and photoelectron spectroscopy analyses, the prepared inorganic Sn10‐oxo cluster displays interesting mixed valence behaviors, with 8 Sn...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 27; no. 65; pp. 16117 - 16120
Main Authors Wang, Di, Chen, Guang‐Hui, Yuan, Lv‐Bing, Feng, Cheng‐Cheng, Zhang, Jian, Zhang, Lei
Format Journal Article
LanguageEnglish
Published 22.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, the first examples of inorganic macrocyclic tin‐oxo clusters which are stabilized by sulfate ligands are reported. As determined by X‐ray diffraction and photoelectron spectroscopy analyses, the prepared inorganic Sn10‐oxo cluster displays interesting mixed valence behaviors, with 8 Sn4+ located at the cyclic skeleton and two Sn2+ encapsulated in the center. When further introducing Ti4+ and In3+ ions to the synthetic systems, heterometallic Sn2Ti6 and SnIn5Ti6 complexes with Ti6(SO4)9 and SnIn5(SO4)12 macrocyclic skeletons were prepared whose configuration and packing models were affected by the ionic radius of incorporated metals. Moreover, comparative CO2 reduction experiments confirm that such heterometallic composition can significantly improve the catalytic activities of these inorganic macrocyclic oxo clusters. This work represents a milestone in constructing inorganic tin complexes and also macrocyclic metal oxo clusters with tunable configurations and properties. Unprecedented macrocyclic inorganic tin‐containing oxo clusters have been successfully constructed, whose configuration, host‐guest behaviors, supramolecular packing and catalytic activities are significantly modulated by the introduction of heterometals with different ionic radius.
AbstractList In this work, the first examples of inorganic macrocyclic tin‐oxo clusters which are stabilized by sulfate ligands are reported. As determined by X‐ray diffraction and photoelectron spectroscopy analyses, the prepared inorganic Sn 10 ‐oxo cluster displays interesting mixed valence behaviors, with 8 Sn 4+ located at the cyclic skeleton and two Sn 2+ encapsulated in the center. When further introducing Ti 4+ and In 3+ ions to the synthetic systems, heterometallic Sn 2 Ti 6 and SnIn 5 Ti 6 complexes with Ti 6 (SO 4 ) 9 and SnIn 5 (SO 4 ) 12 macrocyclic skeletons were prepared whose configuration and packing models were affected by the ionic radius of incorporated metals. Moreover, comparative CO 2 reduction experiments confirm that such heterometallic composition can significantly improve the catalytic activities of these inorganic macrocyclic oxo clusters. This work represents a milestone in constructing inorganic tin complexes and also macrocyclic metal oxo clusters with tunable configurations and properties.
In this work, the first examples of inorganic macrocyclic tin‐oxo clusters which are stabilized by sulfate ligands are reported. As determined by X‐ray diffraction and photoelectron spectroscopy analyses, the prepared inorganic Sn10‐oxo cluster displays interesting mixed valence behaviors, with 8 Sn4+ located at the cyclic skeleton and two Sn2+ encapsulated in the center. When further introducing Ti4+ and In3+ ions to the synthetic systems, heterometallic Sn2Ti6 and SnIn5Ti6 complexes with Ti6(SO4)9 and SnIn5(SO4)12 macrocyclic skeletons were prepared whose configuration and packing models were affected by the ionic radius of incorporated metals. Moreover, comparative CO2 reduction experiments confirm that such heterometallic composition can significantly improve the catalytic activities of these inorganic macrocyclic oxo clusters. This work represents a milestone in constructing inorganic tin complexes and also macrocyclic metal oxo clusters with tunable configurations and properties. Unprecedented macrocyclic inorganic tin‐containing oxo clusters have been successfully constructed, whose configuration, host‐guest behaviors, supramolecular packing and catalytic activities are significantly modulated by the introduction of heterometals with different ionic radius.
In this work, the first examples of inorganic macrocyclic tin-oxo clusters which are stabilized by sulfate ligands are reported. As determined by X-ray diffraction and photoelectron spectroscopy analyses, the prepared inorganic Sn10 -oxo cluster displays interesting mixed valence behaviors, with 8 Sn4+ located at the cyclic skeleton and two Sn2+ encapsulated in the center. When further introducing Ti4+ and In3+ ions to the synthetic systems, heterometallic Sn2 Ti6 and SnIn5 Ti6 complexes with Ti6 (SO4 )9 and SnIn5 (SO4 )12 macrocyclic skeletons were prepared whose configuration and packing models were affected by the ionic radius of incorporated metals. Moreover, comparative CO2 reduction experiments confirm that such heterometallic composition can significantly improve the catalytic activities of these inorganic macrocyclic oxo clusters. This work represents a milestone in constructing inorganic tin complexes and also macrocyclic metal oxo clusters with tunable configurations and properties.In this work, the first examples of inorganic macrocyclic tin-oxo clusters which are stabilized by sulfate ligands are reported. As determined by X-ray diffraction and photoelectron spectroscopy analyses, the prepared inorganic Sn10 -oxo cluster displays interesting mixed valence behaviors, with 8 Sn4+ located at the cyclic skeleton and two Sn2+ encapsulated in the center. When further introducing Ti4+ and In3+ ions to the synthetic systems, heterometallic Sn2 Ti6 and SnIn5 Ti6 complexes with Ti6 (SO4 )9 and SnIn5 (SO4 )12 macrocyclic skeletons were prepared whose configuration and packing models were affected by the ionic radius of incorporated metals. Moreover, comparative CO2 reduction experiments confirm that such heterometallic composition can significantly improve the catalytic activities of these inorganic macrocyclic oxo clusters. This work represents a milestone in constructing inorganic tin complexes and also macrocyclic metal oxo clusters with tunable configurations and properties.
Author Chen, Guang‐Hui
Yuan, Lv‐Bing
Wang, Di
Feng, Cheng‐Cheng
Zhang, Jian
Zhang, Lei
Author_xml – sequence: 1
  givenname: Di
  surname: Wang
  fullname: Wang, Di
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Guang‐Hui
  surname: Chen
  fullname: Chen, Guang‐Hui
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Lv‐Bing
  surname: Yuan
  fullname: Yuan, Lv‐Bing
  organization: University of Chinese Academy of Sciences
– sequence: 4
  givenname: Cheng‐Cheng
  surname: Feng
  fullname: Feng, Cheng‐Cheng
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Jian
  surname: Zhang
  fullname: Zhang, Jian
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Lei
  orcidid: 0000-0001-7720-4667
  surname: Zhang
  fullname: Zhang, Lei
  email: LZhang@fjirsm.ac.cn
  organization: Chinese Academy of Sciences
BookMark eNqFkD1PIzEQhi3ESQS49mqXNBv8sd4POrQCgkREAVevJo4355Nj52zvwXb8BH4jvwRvgkBCQlQzGr3PjOY5RPvWWYXQL0qmlBB2Kv-o9ZQRRglnrNhDEyoYzXhZiH00IXVeZoXg9QE6DOEvIaQuOJ-gpzlI7-QgjZb42jq_Apu6e21fnp4bZyNoq-0K3z463Jg-ROXDGZ6pVN1aRTAjdxc9RLUacOc8TlCnV32aaGcx2CVuIOWGmILnMur_Og547pa92SaO0Y8OTFA_3-oR-n15cd_Mspvbq-vm_CaT4zdZybqiqJgoa7YoAXLGuFhy0VECC5UXjFIQwBaVBCrKqqO8FiXnUBFW0UWuOD9CJ7u9G-_-9SrEdq2DVMaAVa4PbVpNa0aqeoxOd9FkJgSvunbj9Rr80FLSjqrbUXX7rjoB-SdA6rj9LonR5mus3mEP2qjhmyNtM7uYf7CvJuiYHw
CitedBy_id crossref_primary_10_1021_acs_inorgchem_4c00943
crossref_primary_10_1039_D4NR02644F
crossref_primary_10_1016_j_jssc_2023_123918
crossref_primary_10_1039_D3DT03904H
crossref_primary_10_1002_cplu_202400402
crossref_primary_10_1039_D2CC00574C
crossref_primary_10_1016_j_jssc_2024_124556
crossref_primary_10_1016_j_jssc_2024_124765
crossref_primary_10_1016_j_jssc_2022_123304
crossref_primary_10_1039_D3DT02387G
Cites_doi 10.1021/jacs.7b11112
10.1002/anie.201608279
10.1039/C2CS35218D
10.1002/anie.202004149
10.1117/1.JMM.16.3.033510
10.1038/ncomms15898
10.1002/ange.201701703
10.1021/ja5060127
10.1039/C6CC05284C
10.1002/ange.202010847
10.1002/anie.201709096
10.1021/acs.accounts.5b00142
10.1021/ja9048042
10.1002/anie.199711121
10.1039/c0cc04697c
10.1002/anie.201901818
10.1016/j.mee.2014.04.024
10.1021/ic00207a004
10.1002/ange.19951071911
10.1002/ange.19971091023
10.1002/ange.202004149
10.1021/acsami.9b19004
10.1002/anie.201701703
10.1021/jacs.0c03041
10.1002/ange.201608279
10.1002/adfm.201706289
10.31635/ccschem.020.202000546
10.1002/ange.201709096
10.1016/j.molstruc.2007.03.021
10.31635/ccschem.020.202000128
10.1021/acsami.7b12968
10.1039/b510396g
10.1002/anie.202010847
10.1039/c2cc36056j
10.1002/ange.201901818
10.1002/anie.199521221
10.1002/smll.201602204
10.1021/ic100648c
10.1021/ic800852d
10.1039/B910889K
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7X8
DOI 10.1002/chem.202103226
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 16120
ExternalDocumentID 10_1002_chem_202103226
CHEM202103226
Genre shortCommunication
GrantInformation_xml – fundername: national natural science foundation of china
  funderid: 91961108 and 21922111
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
7X8
ID FETCH-LOGICAL-c3226-72f66825792b7aa42235d35f10abe46211a5a2b8ca1578f1395733a80281b4e33
IEDL.DBID DR2
ISSN 0947-6539
1521-3765
IngestDate Thu Jul 10 20:42:42 EDT 2025
Thu Apr 24 22:55:55 EDT 2025
Tue Jul 01 01:30:31 EDT 2025
Wed Jan 22 16:26:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 65
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3226-72f66825792b7aa42235d35f10abe46211a5a2b8ca1578f1395733a80281b4e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7720-4667
PQID 2571920893
PQPubID 23479
PageCount 4
ParticipantIDs proquest_miscellaneous_2571920893
crossref_primary_10_1002_chem_202103226
crossref_citationtrail_10_1002_chem_202103226
wiley_primary_10_1002_chem_202103226_CHEM202103226
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 22, 2021
2021-11-22
20211122
PublicationDateYYYYMMDD 2021-11-22
PublicationDate_xml – month: 11
  year: 2021
  text: November 22, 2021
  day: 22
PublicationDecade 2020
PublicationTitle Chemistry : a European journal
PublicationYear 2021
References 2017; 8
2018; 28
2006; 35
2020; 142
2010; 39
2013; 42
2020 2020; 59 132
2016; 52
2020; 12
2017 2017; 56 129
2009; 131
2017; 9
2014; 136
2019 2019; 58 131
2017; 139
2016; 12
1985; 24
2015; 48
2014; 127
2010; 49
2020; 2
1995 1995; 34 107
2017; 16
2008; 47
1997 1997; 36 109
2008; 873
2012; 48
2011; 47
e_1_2_2_4_1
e_1_2_2_24_2
e_1_2_2_25_1
e_1_2_2_5_1
e_1_2_2_23_2
e_1_2_2_24_1
e_1_2_2_6_1
e_1_2_2_22_2
e_1_2_2_23_1
e_1_2_2_7_1
e_1_2_2_22_1
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_20_1
e_1_2_2_2_1
e_1_2_2_2_2
e_1_2_2_3_1
e_1_2_2_7_2
e_1_2_2_8_2
e_1_2_2_9_1
e_1_2_2_29_1
e_1_2_2_8_1
e_1_2_2_28_1
e_1_2_2_27_1
e_1_2_2_26_1
e_1_2_2_14_1
e_1_2_2_13_1
e_1_2_2_12_1
e_1_2_2_11_1
e_1_2_2_10_1
e_1_2_2_30_1
e_1_2_2_31_1
e_1_2_2_19_1
e_1_2_2_32_1
e_1_2_2_18_1
e_1_2_2_33_1
e_1_2_2_17_1
e_1_2_2_33_2
e_1_2_2_15_2
e_1_2_2_16_1
e_1_2_2_15_1
References_xml – volume: 873
  start-page: 168
  year: 2008
  end-page: 172
  publication-title: J. Mol. Struct.
– volume: 2
  start-page: 209
  year: 2020
  end-page: 215
  publication-title: CCS Chem.
– volume: 2
  start-page: 2607
  year: 2020
  end-page: 2616
  publication-title: CCS Chem.
– volume: 8
  start-page: 15898
  year: 2017
  publication-title: Nat. Commun.
– volume: 24
  start-page: 1970
  year: 1985
  end-page: 1971
  publication-title: Inorg. Chem.
– volume: 12
  start-page: 9881
  year: 2020
  end-page: 9889
  publication-title: ACS Appl. Mater. Interfaces
– volume: 47
  start-page: 8798
  year: 2008
  end-page: 8806
  publication-title: Inorg. Chem.
– volume: 139
  start-page: 18178
  year: 2017
  end-page: 18181
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 2366
  year: 2015
  end-page: 2379
  publication-title: Acc. Chem. Res.
– volume: 58 131
  start-page: 10867 10983
  year: 2019 2019
  end-page: 10872 10988
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 56 129
  start-page: 505 520
  year: 2017 2017
  end-page: 509 524
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 52
  start-page: 10688
  year: 2016
  end-page: 10691
  publication-title: Chem. Commun.
– volume: 47
  start-page: 3918
  year: 2011
  end-page: 3920
  publication-title: Chem. Commun.
– volume: 131
  start-page: 13578
  year: 2009
  end-page: 13579
  publication-title: J. Am. Chem. Soc.
– volume: 42
  start-page: 1713
  year: 2013
  end-page: 1727
  publication-title: Chem. Soc. Rev.
– volume: 56 129
  start-page: 16252 16470
  year: 2017 2017
  end-page: 16256 16474
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 49
  start-page: 5359
  year: 2010
  end-page: 5361
  publication-title: Inorg. Chem.
– volume: 59 132
  start-page: 21397 21581
  year: 2020 2020
  end-page: 21402 21586
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 44584
  year: 2017
  end-page: 44592
  publication-title: ACS Appl. Mater. Interfaces
– volume: 39
  start-page: 248
  year: 2010
  end-page: 255
  publication-title: Dalton Trans.
– volume: 48
  start-page: 11689
  year: 2012
  end-page: 11691
  publication-title: Chem. Commun.
– volume: 35
  start-page: 375
  year: 2006
  end-page: 387
  publication-title: Chem. Soc. Rev.
– volume: 16
  year: 2017
  publication-title: J.Micro/Nanolith. MEMS MOEMS
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 59 132
  start-page: 12860 12960
  year: 2020 2020
  end-page: 12867 12967
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 56 129
  start-page: 10140 10274
  year: 2017 2017
  end-page: 10144 10278
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 142
  start-page: 9039
  year: 2020
  end-page: 9047
  publication-title: J. Am. Chem. Soc.
– volume: 36 109
  start-page: 1112 1150
  year: 1997 1997
  end-page: 1114 1152
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 127
  start-page: 44
  year: 2014
  end-page: 50
  publication-title: Microelectron. Eng.
– volume: 136
  start-page: 12085
  year: 2014
  end-page: 12091
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 5989
  year: 2016
  end-page: 5997
  publication-title: Small
– volume: 34 107
  start-page: 2122 2293
  year: 1995 1995
  end-page: 2134 2295
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– ident: e_1_2_2_3_1
  doi: 10.1021/jacs.7b11112
– ident: e_1_2_2_22_1
  doi: 10.1002/anie.201608279
– ident: e_1_2_2_1_1
  doi: 10.1039/C2CS35218D
– ident: e_1_2_2_33_1
  doi: 10.1002/anie.202004149
– ident: e_1_2_2_18_1
  doi: 10.1117/1.JMM.16.3.033510
– ident: e_1_2_2_32_1
– ident: e_1_2_2_5_1
  doi: 10.1038/ncomms15898
– ident: e_1_2_2_23_2
  doi: 10.1002/ange.201701703
– ident: e_1_2_2_29_1
  doi: 10.1021/ja5060127
– ident: e_1_2_2_27_1
  doi: 10.1039/C6CC05284C
– ident: e_1_2_2_15_2
  doi: 10.1002/ange.202010847
– ident: e_1_2_2_2_1
  doi: 10.1002/anie.201709096
– ident: e_1_2_2_4_1
  doi: 10.1021/acs.accounts.5b00142
– ident: e_1_2_2_6_1
  doi: 10.1021/ja9048042
– ident: e_1_2_2_24_1
  doi: 10.1002/anie.199711121
– ident: e_1_2_2_28_1
  doi: 10.1039/c0cc04697c
– ident: e_1_2_2_8_1
  doi: 10.1002/anie.201901818
– ident: e_1_2_2_20_1
  doi: 10.1016/j.mee.2014.04.024
– ident: e_1_2_2_25_1
  doi: 10.1021/ic00207a004
– ident: e_1_2_2_7_2
  doi: 10.1002/ange.19951071911
– ident: e_1_2_2_24_2
  doi: 10.1002/ange.19971091023
– ident: e_1_2_2_33_2
  doi: 10.1002/ange.202004149
– ident: e_1_2_2_19_1
  doi: 10.1021/acsami.9b19004
– ident: e_1_2_2_23_1
  doi: 10.1002/anie.201701703
– ident: e_1_2_2_9_1
  doi: 10.1021/jacs.0c03041
– ident: e_1_2_2_22_2
  doi: 10.1002/ange.201608279
– ident: e_1_2_2_21_1
  doi: 10.1002/adfm.201706289
– ident: e_1_2_2_26_1
  doi: 10.31635/ccschem.020.202000546
– ident: e_1_2_2_2_2
  doi: 10.1002/ange.201709096
– ident: e_1_2_2_11_1
  doi: 10.1016/j.molstruc.2007.03.021
– ident: e_1_2_2_12_1
  doi: 10.31635/ccschem.020.202000128
– ident: e_1_2_2_16_1
  doi: 10.1021/acsami.7b12968
– ident: e_1_2_2_10_1
  doi: 10.1039/b510396g
– ident: e_1_2_2_15_1
  doi: 10.1002/anie.202010847
– ident: e_1_2_2_14_1
  doi: 10.1039/c2cc36056j
– ident: e_1_2_2_8_2
  doi: 10.1002/ange.201901818
– ident: e_1_2_2_7_1
  doi: 10.1002/anie.199521221
– ident: e_1_2_2_17_1
  doi: 10.1002/smll.201602204
– ident: e_1_2_2_13_1
  doi: 10.1021/ic100648c
– ident: e_1_2_2_31_1
  doi: 10.1021/ic800852d
– ident: e_1_2_2_30_1
  doi: 10.1039/B910889K
SSID ssj0009633
Score 2.4270046
Snippet In this work, the first examples of inorganic macrocyclic tin‐oxo clusters which are stabilized by sulfate ligands are reported. As determined by X‐ray...
In this work, the first examples of inorganic macrocyclic tin-oxo clusters which are stabilized by sulfate ligands are reported. As determined by X-ray...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 16117
SubjectTerms cluster compounds
heterometallic complexes
macrocycles
structure-activity relationships
tin
Title Macrocyclic Inorganic Tin‐Containing Oxo Clusters: Heterometallic Strategy for Configuration and Catalytic Activity Modulation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202103226
https://www.proquest.com/docview/2571920893
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsQwFA3iRje-xfFFBMFVtU36GndSlFEYBXHAXUnSVAbHVpwpOK7mE_xGv8R7m7bjCCLoroWm3CQ3uSePew4hh8xLbdeRzFK8zS03BQwnw5BbHEJ1EtoyZAITnLvXfqfnXt1791-y-A0_RLPhhiOjnK9xgAs5PJmShkKdMJOcISMcQ85tvLCFqOh2yh8F3mW05N3AQg7WmrXRZiezxWej0hRqfgWsZcS5WCaittVcNHk8LkbyWL19o3H8T2VWyFIFR-mZ8Z9VMqezNbIQ1Spw62TSFWCyGqtBX9HLzIhAKXrXzz4m70htZRQm6M1rTqNBgbQLw1PawUs2-ZMGZI_lKgrcMQWETDHHsP9QGM-jIktohFtIY7CAnikjZkG7eVLpim2Q3sX5XdSxKtUG6G6w3QpY6vuw7gzaTAZCuIA_vIR7qWMLqV0fFpzCE0yGSjgwW6QOHhRyLkIAOo50NeebZD7LM71FqAwTQEuSQwT13CRR0k6TtvY1C0JbwEKnRay612JVUZqjssYgNmTMLMZ2jZt2bZGj5vtnQ-bx45cHtRPE0OB4iCIynRfDGCoGoNgGmNcirOzSX34VI7dF87b9l0I7ZBGfMQWSsV0yP3op9B5goZHcL_39E2ADAdo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3RcmgvQIGqWwo1EhKnbBM7X9tbtaJKoVkktCtxi2zHqVZdkqrdSF1O_Qn8Rn4JM3Gy20WqkMoxURyN7bHn-WPeA_jAg8L1PcUdLQbC8QvEcCqOhSMwVOexq2IuKcE5HYXJxP_8PehuE1IujOWHWG640cho5msa4LQhfbRiDcVKUSo5J0o4Hm7AU5L1blZV31YMUuhfVk3ejxxiYe14G11-tF5-PS6twOZ9yNrEnNPnoDpr7VWTy349V3398y8ix_-qzgt41iJSdmJdaAeemPIlbA07IbhXcJdKtFkv9Gyq2VlpdaA0G0_L33e_iN3Kikywr7cVG85qYl64OWYJ3bOpfhgE91SuZcFdMATJjNIMpxe1dT4my5wNaRdpgRawE231LFha5a202GuYnH4aDxOnFW7AHkfbnYgXYYhLz2jAVSSljxAkyEVQeK5Uxg9xzSkDyVWspYcTRuHRWaEQMkas4ynfCLELm2VVmj1gKs4RMCmBQTTw81wrt8gHJjQ8il2Ja50eOF23ZbplNSdxjVlm-Zh5Ru2aLdu1Bx-X319ZPo8Hv3zfeUGGDU7nKLI0VX2TYcUQF7uI9HrAmz79x68yordYPu0_ptAhbCXj9Dw7Pxt9eQPb9J4yIjk_gM35dW3eIjSaq3eN8_8BefYF9Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwEB1BkYAXylUstOBKSDylTWwn8fJWbbvaQrcg1Ep9i3wLWrEkFd1ILE_9BL6RL2Fmney2lVAleEwUR2N77Dm-zDkAb3haxjIxPLKiLyJZIoYzSolIYKh2KjaKa0pwHh9loxP5_jQ9vZTFH_ghlhtuNDIW8zUN8DNX7qxIQ7FOlEnOiRGOZ7fhjsxiRX6993lFIIXuFcTkZR4RCWtH2xjznavlr4alFda8jFgXIWe4DrozNtw0-brdzMy2_XmNx_F_avMQHrR4lO0GB3oEt3z1GO4NOhm4J3Ax1miyndvpxLKDKqhAWXY8qX5f_CJuqyAxwT7-qNlg2hDvwvk7NqJbNvU3j9CeyrUcuHOGEJlRkuHkSxNcj-nKsQHtIc3RArZrg5oFG9euFRZ7CifD_ePBKGplG7C_0fYo52WW4cIz73OTay0RgKROpGUSa-NlhitOnWpulNUJThdlQieFQmiFSCcx0gvxDNaquvLPgRnlEC4ZgSE0lc5ZE5eu7zPPcxVrXOn0IOp6rbAtpzlJa0yLwMbMC2rXYtmuPXi7_P4ssHn89cutzgkKbHA6RdGVr5vzAiuGqBhdTfSAL7r0hl8VRG6xfHrxL4Vew91Pe8Pi8ODow0u4T68pHZLzDVibfW_8JuKimXm1cP0_fRcErQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Macrocyclic+Inorganic+Tin%E2%80%90Containing+Oxo+Clusters%3A+Heterometallic+Strategy+for+Configuration+and+Catalytic+Activity+Modulation&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Wang%2C+Di&rft.au=Chen%2C+Guang%E2%80%90Hui&rft.au=Yuan%2C+Lv%E2%80%90Bing&rft.au=Feng%2C+Cheng%E2%80%90Cheng&rft.date=2021-11-22&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=27&rft.issue=65&rft.spage=16117&rft.epage=16120&rft_id=info:doi/10.1002%2Fchem.202103226&rft.externalDBID=10.1002%252Fchem.202103226&rft.externalDocID=CHEM202103226
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon