Macrocyclic Inorganic Tin‐Containing Oxo Clusters: Heterometallic Strategy for Configuration and Catalytic Activity Modulation
In this work, the first examples of inorganic macrocyclic tin‐oxo clusters which are stabilized by sulfate ligands are reported. As determined by X‐ray diffraction and photoelectron spectroscopy analyses, the prepared inorganic Sn10‐oxo cluster displays interesting mixed valence behaviors, with 8 Sn...
Saved in:
Published in | Chemistry : a European journal Vol. 27; no. 65; pp. 16117 - 16120 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
22.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, the first examples of inorganic macrocyclic tin‐oxo clusters which are stabilized by sulfate ligands are reported. As determined by X‐ray diffraction and photoelectron spectroscopy analyses, the prepared inorganic Sn10‐oxo cluster displays interesting mixed valence behaviors, with 8 Sn4+ located at the cyclic skeleton and two Sn2+ encapsulated in the center. When further introducing Ti4+ and In3+ ions to the synthetic systems, heterometallic Sn2Ti6 and SnIn5Ti6 complexes with Ti6(SO4)9 and SnIn5(SO4)12 macrocyclic skeletons were prepared whose configuration and packing models were affected by the ionic radius of incorporated metals. Moreover, comparative CO2 reduction experiments confirm that such heterometallic composition can significantly improve the catalytic activities of these inorganic macrocyclic oxo clusters. This work represents a milestone in constructing inorganic tin complexes and also macrocyclic metal oxo clusters with tunable configurations and properties.
Unprecedented macrocyclic inorganic tin‐containing oxo clusters have been successfully constructed, whose configuration, host‐guest behaviors, supramolecular packing and catalytic activities are significantly modulated by the introduction of heterometals with different ionic radius. |
---|---|
AbstractList | In this work, the first examples of inorganic macrocyclic tin‐oxo clusters which are stabilized by sulfate ligands are reported. As determined by X‐ray diffraction and photoelectron spectroscopy analyses, the prepared inorganic Sn
10
‐oxo cluster displays interesting mixed valence behaviors, with 8 Sn
4+
located at the cyclic skeleton and two Sn
2+
encapsulated in the center. When further introducing Ti
4+
and In
3+
ions to the synthetic systems, heterometallic Sn
2
Ti
6
and SnIn
5
Ti
6
complexes with Ti
6
(SO
4
)
9
and SnIn
5
(SO
4
)
12
macrocyclic skeletons were prepared whose configuration and packing models were affected by the ionic radius of incorporated metals. Moreover, comparative CO
2
reduction experiments confirm that such heterometallic composition can significantly improve the catalytic activities of these inorganic macrocyclic oxo clusters. This work represents a milestone in constructing inorganic tin complexes and also macrocyclic metal oxo clusters with tunable configurations and properties. In this work, the first examples of inorganic macrocyclic tin‐oxo clusters which are stabilized by sulfate ligands are reported. As determined by X‐ray diffraction and photoelectron spectroscopy analyses, the prepared inorganic Sn10‐oxo cluster displays interesting mixed valence behaviors, with 8 Sn4+ located at the cyclic skeleton and two Sn2+ encapsulated in the center. When further introducing Ti4+ and In3+ ions to the synthetic systems, heterometallic Sn2Ti6 and SnIn5Ti6 complexes with Ti6(SO4)9 and SnIn5(SO4)12 macrocyclic skeletons were prepared whose configuration and packing models were affected by the ionic radius of incorporated metals. Moreover, comparative CO2 reduction experiments confirm that such heterometallic composition can significantly improve the catalytic activities of these inorganic macrocyclic oxo clusters. This work represents a milestone in constructing inorganic tin complexes and also macrocyclic metal oxo clusters with tunable configurations and properties. Unprecedented macrocyclic inorganic tin‐containing oxo clusters have been successfully constructed, whose configuration, host‐guest behaviors, supramolecular packing and catalytic activities are significantly modulated by the introduction of heterometals with different ionic radius. In this work, the first examples of inorganic macrocyclic tin-oxo clusters which are stabilized by sulfate ligands are reported. As determined by X-ray diffraction and photoelectron spectroscopy analyses, the prepared inorganic Sn10 -oxo cluster displays interesting mixed valence behaviors, with 8 Sn4+ located at the cyclic skeleton and two Sn2+ encapsulated in the center. When further introducing Ti4+ and In3+ ions to the synthetic systems, heterometallic Sn2 Ti6 and SnIn5 Ti6 complexes with Ti6 (SO4 )9 and SnIn5 (SO4 )12 macrocyclic skeletons were prepared whose configuration and packing models were affected by the ionic radius of incorporated metals. Moreover, comparative CO2 reduction experiments confirm that such heterometallic composition can significantly improve the catalytic activities of these inorganic macrocyclic oxo clusters. This work represents a milestone in constructing inorganic tin complexes and also macrocyclic metal oxo clusters with tunable configurations and properties.In this work, the first examples of inorganic macrocyclic tin-oxo clusters which are stabilized by sulfate ligands are reported. As determined by X-ray diffraction and photoelectron spectroscopy analyses, the prepared inorganic Sn10 -oxo cluster displays interesting mixed valence behaviors, with 8 Sn4+ located at the cyclic skeleton and two Sn2+ encapsulated in the center. When further introducing Ti4+ and In3+ ions to the synthetic systems, heterometallic Sn2 Ti6 and SnIn5 Ti6 complexes with Ti6 (SO4 )9 and SnIn5 (SO4 )12 macrocyclic skeletons were prepared whose configuration and packing models were affected by the ionic radius of incorporated metals. Moreover, comparative CO2 reduction experiments confirm that such heterometallic composition can significantly improve the catalytic activities of these inorganic macrocyclic oxo clusters. This work represents a milestone in constructing inorganic tin complexes and also macrocyclic metal oxo clusters with tunable configurations and properties. |
Author | Chen, Guang‐Hui Yuan, Lv‐Bing Wang, Di Feng, Cheng‐Cheng Zhang, Jian Zhang, Lei |
Author_xml | – sequence: 1 givenname: Di surname: Wang fullname: Wang, Di organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Guang‐Hui surname: Chen fullname: Chen, Guang‐Hui organization: Chinese Academy of Sciences – sequence: 3 givenname: Lv‐Bing surname: Yuan fullname: Yuan, Lv‐Bing organization: University of Chinese Academy of Sciences – sequence: 4 givenname: Cheng‐Cheng surname: Feng fullname: Feng, Cheng‐Cheng organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Jian surname: Zhang fullname: Zhang, Jian organization: Chinese Academy of Sciences – sequence: 6 givenname: Lei orcidid: 0000-0001-7720-4667 surname: Zhang fullname: Zhang, Lei email: LZhang@fjirsm.ac.cn organization: Chinese Academy of Sciences |
BookMark | eNqFkD1PIzEQhi3ESQS49mqXNBv8sd4POrQCgkREAVevJo4355Nj52zvwXb8BH4jvwRvgkBCQlQzGr3PjOY5RPvWWYXQL0qmlBB2Kv-o9ZQRRglnrNhDEyoYzXhZiH00IXVeZoXg9QE6DOEvIaQuOJ-gpzlI7-QgjZb42jq_Apu6e21fnp4bZyNoq-0K3z463Jg-ROXDGZ6pVN1aRTAjdxc9RLUacOc8TlCnV32aaGcx2CVuIOWGmILnMur_Og547pa92SaO0Y8OTFA_3-oR-n15cd_Mspvbq-vm_CaT4zdZybqiqJgoa7YoAXLGuFhy0VECC5UXjFIQwBaVBCrKqqO8FiXnUBFW0UWuOD9CJ7u9G-_-9SrEdq2DVMaAVa4PbVpNa0aqeoxOd9FkJgSvunbj9Rr80FLSjqrbUXX7rjoB-SdA6rj9LonR5mus3mEP2qjhmyNtM7uYf7CvJuiYHw |
CitedBy_id | crossref_primary_10_1021_acs_inorgchem_4c00943 crossref_primary_10_1039_D4NR02644F crossref_primary_10_1016_j_jssc_2023_123918 crossref_primary_10_1039_D3DT03904H crossref_primary_10_1002_cplu_202400402 crossref_primary_10_1039_D2CC00574C crossref_primary_10_1016_j_jssc_2024_124556 crossref_primary_10_1016_j_jssc_2024_124765 crossref_primary_10_1016_j_jssc_2022_123304 crossref_primary_10_1039_D3DT02387G |
Cites_doi | 10.1021/jacs.7b11112 10.1002/anie.201608279 10.1039/C2CS35218D 10.1002/anie.202004149 10.1117/1.JMM.16.3.033510 10.1038/ncomms15898 10.1002/ange.201701703 10.1021/ja5060127 10.1039/C6CC05284C 10.1002/ange.202010847 10.1002/anie.201709096 10.1021/acs.accounts.5b00142 10.1021/ja9048042 10.1002/anie.199711121 10.1039/c0cc04697c 10.1002/anie.201901818 10.1016/j.mee.2014.04.024 10.1021/ic00207a004 10.1002/ange.19951071911 10.1002/ange.19971091023 10.1002/ange.202004149 10.1021/acsami.9b19004 10.1002/anie.201701703 10.1021/jacs.0c03041 10.1002/ange.201608279 10.1002/adfm.201706289 10.31635/ccschem.020.202000546 10.1002/ange.201709096 10.1016/j.molstruc.2007.03.021 10.31635/ccschem.020.202000128 10.1021/acsami.7b12968 10.1039/b510396g 10.1002/anie.202010847 10.1039/c2cc36056j 10.1002/ange.201901818 10.1002/anie.199521221 10.1002/smll.201602204 10.1021/ic100648c 10.1021/ic800852d 10.1039/B910889K |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1002/chem.202103226 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | 16120 |
ExternalDocumentID | 10_1002_chem_202103226 CHEM202103226 |
Genre | shortCommunication |
GrantInformation_xml | – fundername: national natural science foundation of china funderid: 91961108 and 21922111 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION 7X8 |
ID | FETCH-LOGICAL-c3226-72f66825792b7aa42235d35f10abe46211a5a2b8ca1578f1395733a80281b4e33 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Thu Jul 10 20:42:42 EDT 2025 Thu Apr 24 22:55:55 EDT 2025 Tue Jul 01 01:30:31 EDT 2025 Wed Jan 22 16:26:59 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 65 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3226-72f66825792b7aa42235d35f10abe46211a5a2b8ca1578f1395733a80281b4e33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7720-4667 |
PQID | 2571920893 |
PQPubID | 23479 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_2571920893 crossref_primary_10_1002_chem_202103226 crossref_citationtrail_10_1002_chem_202103226 wiley_primary_10_1002_chem_202103226_CHEM202103226 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 22, 2021 2021-11-22 20211122 |
PublicationDateYYYYMMDD | 2021-11-22 |
PublicationDate_xml | – month: 11 year: 2021 text: November 22, 2021 day: 22 |
PublicationDecade | 2020 |
PublicationTitle | Chemistry : a European journal |
PublicationYear | 2021 |
References | 2017; 8 2018; 28 2006; 35 2020; 142 2010; 39 2013; 42 2020 2020; 59 132 2016; 52 2020; 12 2017 2017; 56 129 2009; 131 2017; 9 2014; 136 2019 2019; 58 131 2017; 139 2016; 12 1985; 24 2015; 48 2014; 127 2010; 49 2020; 2 1995 1995; 34 107 2017; 16 2008; 47 1997 1997; 36 109 2008; 873 2012; 48 2011; 47 e_1_2_2_4_1 e_1_2_2_24_2 e_1_2_2_25_1 e_1_2_2_5_1 e_1_2_2_23_2 e_1_2_2_24_1 e_1_2_2_6_1 e_1_2_2_22_2 e_1_2_2_23_1 e_1_2_2_7_1 e_1_2_2_22_1 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_20_1 e_1_2_2_2_1 e_1_2_2_2_2 e_1_2_2_3_1 e_1_2_2_7_2 e_1_2_2_8_2 e_1_2_2_9_1 e_1_2_2_29_1 e_1_2_2_8_1 e_1_2_2_28_1 e_1_2_2_27_1 e_1_2_2_26_1 e_1_2_2_14_1 e_1_2_2_13_1 e_1_2_2_12_1 e_1_2_2_11_1 e_1_2_2_10_1 e_1_2_2_30_1 e_1_2_2_31_1 e_1_2_2_19_1 e_1_2_2_32_1 e_1_2_2_18_1 e_1_2_2_33_1 e_1_2_2_17_1 e_1_2_2_33_2 e_1_2_2_15_2 e_1_2_2_16_1 e_1_2_2_15_1 |
References_xml | – volume: 873 start-page: 168 year: 2008 end-page: 172 publication-title: J. Mol. Struct. – volume: 2 start-page: 209 year: 2020 end-page: 215 publication-title: CCS Chem. – volume: 2 start-page: 2607 year: 2020 end-page: 2616 publication-title: CCS Chem. – volume: 8 start-page: 15898 year: 2017 publication-title: Nat. Commun. – volume: 24 start-page: 1970 year: 1985 end-page: 1971 publication-title: Inorg. Chem. – volume: 12 start-page: 9881 year: 2020 end-page: 9889 publication-title: ACS Appl. Mater. Interfaces – volume: 47 start-page: 8798 year: 2008 end-page: 8806 publication-title: Inorg. Chem. – volume: 139 start-page: 18178 year: 2017 end-page: 18181 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 2366 year: 2015 end-page: 2379 publication-title: Acc. Chem. Res. – volume: 58 131 start-page: 10867 10983 year: 2019 2019 end-page: 10872 10988 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 56 129 start-page: 505 520 year: 2017 2017 end-page: 509 524 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 52 start-page: 10688 year: 2016 end-page: 10691 publication-title: Chem. Commun. – volume: 47 start-page: 3918 year: 2011 end-page: 3920 publication-title: Chem. Commun. – volume: 131 start-page: 13578 year: 2009 end-page: 13579 publication-title: J. Am. Chem. Soc. – volume: 42 start-page: 1713 year: 2013 end-page: 1727 publication-title: Chem. Soc. Rev. – volume: 56 129 start-page: 16252 16470 year: 2017 2017 end-page: 16256 16474 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 49 start-page: 5359 year: 2010 end-page: 5361 publication-title: Inorg. Chem. – volume: 59 132 start-page: 21397 21581 year: 2020 2020 end-page: 21402 21586 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 44584 year: 2017 end-page: 44592 publication-title: ACS Appl. Mater. Interfaces – volume: 39 start-page: 248 year: 2010 end-page: 255 publication-title: Dalton Trans. – volume: 48 start-page: 11689 year: 2012 end-page: 11691 publication-title: Chem. Commun. – volume: 35 start-page: 375 year: 2006 end-page: 387 publication-title: Chem. Soc. Rev. – volume: 16 year: 2017 publication-title: J.Micro/Nanolith. MEMS MOEMS – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 59 132 start-page: 12860 12960 year: 2020 2020 end-page: 12867 12967 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 56 129 start-page: 10140 10274 year: 2017 2017 end-page: 10144 10278 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 142 start-page: 9039 year: 2020 end-page: 9047 publication-title: J. Am. Chem. Soc. – volume: 36 109 start-page: 1112 1150 year: 1997 1997 end-page: 1114 1152 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 127 start-page: 44 year: 2014 end-page: 50 publication-title: Microelectron. Eng. – volume: 136 start-page: 12085 year: 2014 end-page: 12091 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 5989 year: 2016 end-page: 5997 publication-title: Small – volume: 34 107 start-page: 2122 2293 year: 1995 1995 end-page: 2134 2295 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – ident: e_1_2_2_3_1 doi: 10.1021/jacs.7b11112 – ident: e_1_2_2_22_1 doi: 10.1002/anie.201608279 – ident: e_1_2_2_1_1 doi: 10.1039/C2CS35218D – ident: e_1_2_2_33_1 doi: 10.1002/anie.202004149 – ident: e_1_2_2_18_1 doi: 10.1117/1.JMM.16.3.033510 – ident: e_1_2_2_32_1 – ident: e_1_2_2_5_1 doi: 10.1038/ncomms15898 – ident: e_1_2_2_23_2 doi: 10.1002/ange.201701703 – ident: e_1_2_2_29_1 doi: 10.1021/ja5060127 – ident: e_1_2_2_27_1 doi: 10.1039/C6CC05284C – ident: e_1_2_2_15_2 doi: 10.1002/ange.202010847 – ident: e_1_2_2_2_1 doi: 10.1002/anie.201709096 – ident: e_1_2_2_4_1 doi: 10.1021/acs.accounts.5b00142 – ident: e_1_2_2_6_1 doi: 10.1021/ja9048042 – ident: e_1_2_2_24_1 doi: 10.1002/anie.199711121 – ident: e_1_2_2_28_1 doi: 10.1039/c0cc04697c – ident: e_1_2_2_8_1 doi: 10.1002/anie.201901818 – ident: e_1_2_2_20_1 doi: 10.1016/j.mee.2014.04.024 – ident: e_1_2_2_25_1 doi: 10.1021/ic00207a004 – ident: e_1_2_2_7_2 doi: 10.1002/ange.19951071911 – ident: e_1_2_2_24_2 doi: 10.1002/ange.19971091023 – ident: e_1_2_2_33_2 doi: 10.1002/ange.202004149 – ident: e_1_2_2_19_1 doi: 10.1021/acsami.9b19004 – ident: e_1_2_2_23_1 doi: 10.1002/anie.201701703 – ident: e_1_2_2_9_1 doi: 10.1021/jacs.0c03041 – ident: e_1_2_2_22_2 doi: 10.1002/ange.201608279 – ident: e_1_2_2_21_1 doi: 10.1002/adfm.201706289 – ident: e_1_2_2_26_1 doi: 10.31635/ccschem.020.202000546 – ident: e_1_2_2_2_2 doi: 10.1002/ange.201709096 – ident: e_1_2_2_11_1 doi: 10.1016/j.molstruc.2007.03.021 – ident: e_1_2_2_12_1 doi: 10.31635/ccschem.020.202000128 – ident: e_1_2_2_16_1 doi: 10.1021/acsami.7b12968 – ident: e_1_2_2_10_1 doi: 10.1039/b510396g – ident: e_1_2_2_15_1 doi: 10.1002/anie.202010847 – ident: e_1_2_2_14_1 doi: 10.1039/c2cc36056j – ident: e_1_2_2_8_2 doi: 10.1002/ange.201901818 – ident: e_1_2_2_7_1 doi: 10.1002/anie.199521221 – ident: e_1_2_2_17_1 doi: 10.1002/smll.201602204 – ident: e_1_2_2_13_1 doi: 10.1021/ic100648c – ident: e_1_2_2_31_1 doi: 10.1021/ic800852d – ident: e_1_2_2_30_1 doi: 10.1039/B910889K |
SSID | ssj0009633 |
Score | 2.4270046 |
Snippet | In this work, the first examples of inorganic macrocyclic tin‐oxo clusters which are stabilized by sulfate ligands are reported. As determined by X‐ray... In this work, the first examples of inorganic macrocyclic tin-oxo clusters which are stabilized by sulfate ligands are reported. As determined by X-ray... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 16117 |
SubjectTerms | cluster compounds heterometallic complexes macrocycles structure-activity relationships tin |
Title | Macrocyclic Inorganic Tin‐Containing Oxo Clusters: Heterometallic Strategy for Configuration and Catalytic Activity Modulation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202103226 https://www.proquest.com/docview/2571920893 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsQwFA3iRje-xfFFBMFVtU36GndSlFEYBXHAXUnSVAbHVpwpOK7mE_xGv8R7m7bjCCLoroWm3CQ3uSePew4hh8xLbdeRzFK8zS03BQwnw5BbHEJ1EtoyZAITnLvXfqfnXt1791-y-A0_RLPhhiOjnK9xgAs5PJmShkKdMJOcISMcQ85tvLCFqOh2yh8F3mW05N3AQg7WmrXRZiezxWej0hRqfgWsZcS5WCaittVcNHk8LkbyWL19o3H8T2VWyFIFR-mZ8Z9VMqezNbIQ1Spw62TSFWCyGqtBX9HLzIhAKXrXzz4m70htZRQm6M1rTqNBgbQLw1PawUs2-ZMGZI_lKgrcMQWETDHHsP9QGM-jIktohFtIY7CAnikjZkG7eVLpim2Q3sX5XdSxKtUG6G6w3QpY6vuw7gzaTAZCuIA_vIR7qWMLqV0fFpzCE0yGSjgwW6QOHhRyLkIAOo50NeebZD7LM71FqAwTQEuSQwT13CRR0k6TtvY1C0JbwEKnRay612JVUZqjssYgNmTMLMZ2jZt2bZGj5vtnQ-bx45cHtRPE0OB4iCIynRfDGCoGoNgGmNcirOzSX34VI7dF87b9l0I7ZBGfMQWSsV0yP3op9B5goZHcL_39E2ADAdo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3RcmgvQIGqWwo1EhKnbBM7X9tbtaJKoVkktCtxi2zHqVZdkqrdSF1O_Qn8Rn4JM3Gy20WqkMoxURyN7bHn-WPeA_jAg8L1PcUdLQbC8QvEcCqOhSMwVOexq2IuKcE5HYXJxP_8PehuE1IujOWHWG640cho5msa4LQhfbRiDcVKUSo5J0o4Hm7AU5L1blZV31YMUuhfVk3ejxxiYe14G11-tF5-PS6twOZ9yNrEnNPnoDpr7VWTy349V3398y8ix_-qzgt41iJSdmJdaAeemPIlbA07IbhXcJdKtFkv9Gyq2VlpdaA0G0_L33e_iN3Kikywr7cVG85qYl64OWYJ3bOpfhgE91SuZcFdMATJjNIMpxe1dT4my5wNaRdpgRawE231LFha5a202GuYnH4aDxOnFW7AHkfbnYgXYYhLz2jAVSSljxAkyEVQeK5Uxg9xzSkDyVWspYcTRuHRWaEQMkas4ynfCLELm2VVmj1gKs4RMCmBQTTw81wrt8gHJjQ8il2Ja50eOF23ZbplNSdxjVlm-Zh5Ru2aLdu1Bx-X319ZPo8Hv3zfeUGGDU7nKLI0VX2TYcUQF7uI9HrAmz79x68yordYPu0_ptAhbCXj9Dw7Pxt9eQPb9J4yIjk_gM35dW3eIjSaq3eN8_8BefYF9Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwEB1BkYAXylUstOBKSDylTWwn8fJWbbvaQrcg1Ep9i3wLWrEkFd1ILE_9BL6RL2Fmney2lVAleEwUR2N77Dm-zDkAb3haxjIxPLKiLyJZIoYzSolIYKh2KjaKa0pwHh9loxP5_jQ9vZTFH_ghlhtuNDIW8zUN8DNX7qxIQ7FOlEnOiRGOZ7fhjsxiRX6993lFIIXuFcTkZR4RCWtH2xjznavlr4alFda8jFgXIWe4DrozNtw0-brdzMy2_XmNx_F_avMQHrR4lO0GB3oEt3z1GO4NOhm4J3Ax1miyndvpxLKDKqhAWXY8qX5f_CJuqyAxwT7-qNlg2hDvwvk7NqJbNvU3j9CeyrUcuHOGEJlRkuHkSxNcj-nKsQHtIc3RArZrg5oFG9euFRZ7CifD_ePBKGplG7C_0fYo52WW4cIz73OTay0RgKROpGUSa-NlhitOnWpulNUJThdlQieFQmiFSCcx0gvxDNaquvLPgRnlEC4ZgSE0lc5ZE5eu7zPPcxVrXOn0IOp6rbAtpzlJa0yLwMbMC2rXYtmuPXi7_P4ssHn89cutzgkKbHA6RdGVr5vzAiuGqBhdTfSAL7r0hl8VRG6xfHrxL4Vew91Pe8Pi8ODow0u4T68pHZLzDVibfW_8JuKimXm1cP0_fRcErQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Macrocyclic+Inorganic+Tin%E2%80%90Containing+Oxo+Clusters%3A+Heterometallic+Strategy+for+Configuration+and+Catalytic+Activity+Modulation&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Wang%2C+Di&rft.au=Chen%2C+Guang%E2%80%90Hui&rft.au=Yuan%2C+Lv%E2%80%90Bing&rft.au=Feng%2C+Cheng%E2%80%90Cheng&rft.date=2021-11-22&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=27&rft.issue=65&rft.spage=16117&rft.epage=16120&rft_id=info:doi/10.1002%2Fchem.202103226&rft.externalDBID=10.1002%252Fchem.202103226&rft.externalDocID=CHEM202103226 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |