Combining data assimilation and machine learning to estimate parameters of a convective‐scale model

Errors in the representation of clouds in convection‐permitting numerical weather prediction models can be introduced by different sources. These can be the forcing and boundary conditions, the representation of orography, the accuracy of the numerical schemes determining the evolution of humidity a...

Full description

Saved in:
Bibliographic Details
Published inQuarterly journal of the Royal Meteorological Society Vol. 148; no. 743; pp. 860 - 874
Main Authors Legler, S., Janjić, T.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.01.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Errors in the representation of clouds in convection‐permitting numerical weather prediction models can be introduced by different sources. These can be the forcing and boundary conditions, the representation of orography, the accuracy of the numerical schemes determining the evolution of humidity and temperature, but large contributions are due to the parametrization of microphysics and the parametrization of processes in the surface and boundary layers. These schemes typically contain several tunable parameters that are either not physical or only crudely known, leading to model errors. Traditionally, the numerical values of these model parameters are chosen by manual model tuning. More objectively, they can be estimated from observations by the augmented state approach during the data assimilation. Alternatively, in this work, we look at the problem of parameter estimation through an artificial intelligence lens by training two types of artificial neural network (ANN) to estimate several parameters of the one‐dimensional modified shallow‐water model as a function of the observations or analysis of the atmospheric state. Through perfect model experiments we show that Bayesian neural networks (BNNs) and Bayesian approximations of point estimate neural networks (NNs) are able to estimate model parameters and their relevant statistics. The estimation of parameters combined with data assimilation for the state decreases the initial state errors even when assimilating sparse and noisy observations. The sensitivity to the number of ensemble members, observation coverage and neural network size is shown. Additionally, we use the method of layer‐wise relevance propagation to gain insight into how the ANNs are learning and discover that they naturally select only a few grid points that are subject to strong winds and rain to make their predictions of chosen parameters. We train a Bayesian neural network (BNN) and an ensemble of point estimate neural networks (NN) to estimate several model parameters and their uncertainty as a function of the atmospheric state. Experiments with the one‐dimensional modified shallow‐water model show that the BNN and the NN are able to estimate the model parameters and their relevant statistics. In addition, once combined with data assimilation for the state estimation, the state errors decreased even when assimilating sparse and noisy observations.
AbstractList Errors in the representation of clouds in convection‐permitting numerical weather prediction models can be introduced by different sources. These can be the forcing and boundary conditions, the representation of orography, the accuracy of the numerical schemes determining the evolution of humidity and temperature, but large contributions are due to the parametrization of microphysics and the parametrization of processes in the surface and boundary layers. These schemes typically contain several tunable parameters that are either not physical or only crudely known, leading to model errors. Traditionally, the numerical values of these model parameters are chosen by manual model tuning. More objectively, they can be estimated from observations by the augmented state approach during the data assimilation. Alternatively, in this work, we look at the problem of parameter estimation through an artificial intelligence lens by training two types of artificial neural network (ANN) to estimate several parameters of the one‐dimensional modified shallow‐water model as a function of the observations or analysis of the atmospheric state. Through perfect model experiments we show that Bayesian neural networks (BNNs) and Bayesian approximations of point estimate neural networks (NNs) are able to estimate model parameters and their relevant statistics. The estimation of parameters combined with data assimilation for the state decreases the initial state errors even when assimilating sparse and noisy observations. The sensitivity to the number of ensemble members, observation coverage and neural network size is shown. Additionally, we use the method of layer‐wise relevance propagation to gain insight into how the ANNs are learning and discover that they naturally select only a few grid points that are subject to strong winds and rain to make their predictions of chosen parameters.
Errors in the representation of clouds in convection‐permitting numerical weather prediction models can be introduced by different sources. These can be the forcing and boundary conditions, the representation of orography, the accuracy of the numerical schemes determining the evolution of humidity and temperature, but large contributions are due to the parametrization of microphysics and the parametrization of processes in the surface and boundary layers. These schemes typically contain several tunable parameters that are either not physical or only crudely known, leading to model errors. Traditionally, the numerical values of these model parameters are chosen by manual model tuning. More objectively, they can be estimated from observations by the augmented state approach during the data assimilation. Alternatively, in this work, we look at the problem of parameter estimation through an artificial intelligence lens by training two types of artificial neural network (ANN) to estimate several parameters of the one‐dimensional modified shallow‐water model as a function of the observations or analysis of the atmospheric state. Through perfect model experiments we show that Bayesian neural networks (BNNs) and Bayesian approximations of point estimate neural networks (NNs) are able to estimate model parameters and their relevant statistics. The estimation of parameters combined with data assimilation for the state decreases the initial state errors even when assimilating sparse and noisy observations. The sensitivity to the number of ensemble members, observation coverage and neural network size is shown. Additionally, we use the method of layer‐wise relevance propagation to gain insight into how the ANNs are learning and discover that they naturally select only a few grid points that are subject to strong winds and rain to make their predictions of chosen parameters. We train a Bayesian neural network (BNN) and an ensemble of point estimate neural networks (NN) to estimate several model parameters and their uncertainty as a function of the atmospheric state. Experiments with the one‐dimensional modified shallow‐water model show that the BNN and the NN are able to estimate the model parameters and their relevant statistics. In addition, once combined with data assimilation for the state estimation, the state errors decreased even when assimilating sparse and noisy observations.
Author Legler, S.
Janjić, T.
Author_xml – sequence: 1
  givenname: S.
  orcidid: 0000-0002-1261-059X
  surname: Legler
  fullname: Legler, S.
  email: S.Legler@physik.uni-muenchen.de
  organization: Ludwig‐Maximilians‐Universität München
– sequence: 2
  givenname: T.
  orcidid: 0000-0002-8837-0879
  surname: Janjić
  fullname: Janjić, T.
  organization: Ludwig‐Maximilians‐Universität München
BookMark eNp10EtKBDEQBuAgCo4PvELAhQtpzaMz6V7K4BNBBAV3TXW6WjN0JzNJVNx5BI_gWTyKJ7GdcSW6qs1HVf3_Bll13iEhO5wdcMbE4Xx6kAupVsiI51pnhWZ3q2TEmFRZyVi5TjZinDLGlBZ6RNqJ72vrrLunDSSgEKPtbQfJekfBNbQH82Ad0g4hLFjyH-8Yk-0hIZ1BgB4Thkh9S4Ea757QJPuEn69v0UCHtPcNdltkrYUu4vbP3CS3J8c3k7Ps8ur0fHJ0mRkphMqgNqXhmmscc5HXDUjeNkxBURdY1nWuoWhgrPJBNzXqXKhSK62bWgrJuWZyk-wu986Cnz8Ob1ZT_xjccLISY6kKXeayGFS2VCb4GAO2lbFpETkFsF3FWfVdZTWfVt9VDn7vl5-FIX94-UPuL-Wz7fDlP1ZdXyz0Fz7yhcc
CitedBy_id crossref_primary_10_1007_s11430_024_1395_7
crossref_primary_10_1002_qj_4708
crossref_primary_10_1016_j_agrformet_2023_109882
crossref_primary_10_1360_N072024_0008
crossref_primary_10_3390_jmse12010108
crossref_primary_10_1109_JAS_2023_123537
crossref_primary_10_1063_5_0228384
crossref_primary_10_1016_j_atmosenv_2024_120797
Cites_doi 10.1029/2019MS001896
10.1109/TGRS.2020.3032790
10.1016/j.jocs.2020.101171
10.1371/journal.pone.0130140
10.1175/JAS3430.1
10.3389/fnagi.2019.00194
10.1127/0941-2948/2014/0492
10.1175/MWR-D-19-0233.1
10.1162/neco.1992.4.3.448
10.5194/npg-28-111-2021
10.1175/MWR-D-13-00056.1
10.1029/94JC00572
10.1002/qj.4116
10.1073/pnas.1810286115
10.1016/j.strusafe.2008.06.020
10.1029/2020MS002232
10.4208/cicp.OA-2020-0165
10.1002/qj.3257
10.1029/2019MS002002
10.1038/s41467-020-17142-3
10.1007/s10236-003-0036-9
10.1080/19942060.2012.11015417
10.1029/2018MS001351
ContentType Journal Article
Copyright 2021 The Authors. Quarterly Journal of the Royal Meteorological Society published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.
2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. Quarterly Journal of the Royal Meteorological Society published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
DOI 10.1002/qj.4235
DatabaseName Wiley Online Library Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1477-870X
EndPage 874
ExternalDocumentID 10_1002_qj_4235
QJ4235
Genre article
GrantInformation_xml – fundername: German Research Foundation (DFG) through the ‘Waves to Weather’ subproject a Heisenberg Award (DFG
  funderid: JA1077/4‐1
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
H~9
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NNB
O66
O9-
OHT
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
UB1
VOH
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUPDE
WWD
WXSBR
WYISQ
XG1
XOL
XV2
ZY4
ZZTAW
~02
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7TG
7TN
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F1W
H96
KL.
L.G
ID FETCH-LOGICAL-c3225-abc9c1717e6124bda31fd05a8b8e9bb47a8da654c32dbe742597577db32311703
IEDL.DBID DR2
ISSN 0035-9009
IngestDate Sat Jul 19 07:40:37 EDT 2025
Tue Jul 01 00:43:57 EDT 2025
Thu Apr 24 23:07:00 EDT 2025
Wed Jan 22 16:26:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 743
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3225-abc9c1717e6124bda31fd05a8b8e9bb47a8da654c32dbe742597577db32311703
Notes Funding information
German Research Foundation (DFG) through the ‘Waves to Weather’ subproject a Heisenberg Award (DFG,JA1077/4‐1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1261-059X
0000-0002-8837-0879
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqj.4235
PQID 2635879438
PQPubID 1016432
PageCount 15
ParticipantIDs proquest_journals_2635879438
crossref_citationtrail_10_1002_qj_4235
crossref_primary_10_1002_qj_4235
wiley_primary_10_1002_qj_4235_QJ4235
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Reading
PublicationTitle Quarterly journal of the Royal Meteorological Society
PublicationYear 2022
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References 2018; 144
2019; 11
2021; 147
2019; 32
2021; 28
2015; 10
2005; 62
2020; 148
2006
2020; 12
2020; 11
2003; 53
2014; 23
2021; 59
2013; 14
2009; 31
2019; 20
2021
2020
2018; 115
2020; 28
1994; 99
2019
2018
2017
2015
2020; 44
2012; 6
2018; 10
2014; 142
1992; 4
e_1_2_8_29_1
Bingham E. (e_1_2_8_4_1) 2019; 20
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
Rasmussen C.E. (e_1_2_8_28_1) 2006
e_1_2_8_21_1
Paszke A. (e_1_2_8_27_1) 2019; 32
e_1_2_8_22_1
e_1_2_8_23_1
Labach A. (e_1_2_8_19_1) 2019
Jospin L.V. (e_1_2_8_17_1) 2020
Labe Z.M. (e_1_2_8_20_1) 2021
e_1_2_8_18_1
Hoffman M.D. (e_1_2_8_13_1) 2013; 14
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_37_1
Yadav N. (e_1_2_8_36_1) 2020
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 59
  start-page: 7211
  year: 2021
  end-page: 7223
  article-title: Stochastic super‐resolution for downscaling time‐evolving atmospheric fields with a generative adversarial network
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 32
  start-page: 8024
  year: 2019
  end-page: 8035
  article-title: Pytorch: an imperative style, high‐performance deep learning library
  publication-title: Advances in Neural Information Processing Systems
– year: 2020
  article-title: Hands‐on Bayesian neural networks – a tutorial for deep learning users
  publication-title: ArXiv
– volume: 4
  start-page: 448
  year: 1992
  end-page: 472
  article-title: A practical Bayesian framework for backpropagation networks
  publication-title: Neural Computation
– volume: 148
  start-page: 1607
  issue: 4
  year: 2020
  end-page: 1628
  article-title: Combined state‐parameter estimation with the LETKF for convective‐scale weather forecasting
  publication-title: Monthly Weather Review
– year: 2019
  article-title: Survey of dropout methods for deep neural networks
  publication-title: ArXiv
– volume: 11
  year: 2020
  article-title: Stable machine‐learning parameterization of subgrid processes for climate modeling at a range of resolutions
  publication-title: Nature Communications
– year: 2015
  article-title: Adam: a method for stochastic optimization. In: Third International Conference on Learning Representations, 7–9 May 2015, San Diego, CA
– volume: 142
  start-page: 755
  year: 2014
  end-page: 773
  article-title: Conservation of mass and preservation of positivity with ensemble‐type Kalman filter algorithms
  publication-title: Monthly Weather Review
– volume: 10
  start-page: 2548
  issue: 10
  year: 2018
  end-page: 2563
  article-title: Using machine learning to parameterize moist convection: potential for modeling of climate, climate change, and extreme events
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 14
  start-page: 1303
  year: 2013
  end-page: 1347
  article-title: Stochastic variational inference
  publication-title: Journal of Machine Learning Research
– volume: 11
  start-page: 1
  year: 2019
  end-page: 17
  article-title: Layer‐wise relevance propagation for explaining deep neural network decisions in MRI‐based Alzheimer's disease classification
  publication-title: Frontiers in Aging Neuroscience
– volume: 23
  start-page: 483
  issue: 5
  year: 2014
  end-page: 490
  article-title: A simple dynamical model of cumulus convection for data assimilation research
  publication-title: Meteorologische Zeitschrift
– year: 2020
  article-title: Informative ensemble Kalman learning for neural structure. In: Dynamic Data‐Driven Applications Systems, Third international conference, 2–4 October, Boston, MA
– volume: 31
  start-page: 105
  issue: 2
  year: 2009
  end-page: 112
  article-title: Aleatory or epistemic? Does it matter?
  publication-title: Structural Safety
– year: 2017
  article-title: Simple and scalable predictive uncertainty estimation using deep ensembles, pp. 6405–6416. In: , 4–9 December 2017, Long Beach, CA
– year: 2018
  article-title: Sensitivity analysis for predictive uncertainty, pp. 279–284. In: Proceedings of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, 25–27 April, Bruges, Belgium
– volume: 144
  start-page: 826
  year: 2018
  end-page: 841
  article-title: Parameter and state estimation with ensemble Kalman filter‐based algorithms for convective‐scale applications
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 6
  start-page: 224
  issue: 2
  year: 2012
  end-page: 233
  article-title: Data assimilation procedure by recurrent neural network
  publication-title: Engineering Applications of Computational Fluid Mechanics
– volume: 12
  issue: 3
  year: 2020
  article-title: Machine learning for stochastic parameterization: generative adversarial networks in the Lorenz '96 model
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 28
  start-page: 111
  issue: 1
  year: 2021
  end-page: 119
  article-title: Training a convolutional neural network to conserve mass in data assimilation
  publication-title: Nonlinear Processes in Geophysics
– volume: 10
  issue: 7
  year: 2015
  article-title: On pixel‐wise explanations for non‐linear classifier decisions by layer‐wise relevance propagation
  publication-title: PLoS One
– volume: 44
  year: 2020
  article-title: Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: a case study with the Lorenz'96 model
  publication-title: Journal of Computational Science
– volume: 53
  start-page: 343
  year: 2003
  end-page: 367
  article-title: The ensemble Kalman filter: theoretical formulation and practical implementation
  publication-title: Ocean Dynamics
– year: 2015
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift, pp. 448–456. In: Proceedings of the 32nd International Conference on Machine Learning, Vol. 37, 7–9 July, Lille, France
– start-page: 40
  year: 2021
  article-title: Detecting climate signals using explainable AI with single‐forcing large ensembles
  publication-title: Earth and Space Science Open Archive
– volume: 20
  start-page: 973
  issue: 1
  year: 2019
  end-page: 978
  article-title: Pyro: deep universal probabilistic programming
  publication-title: Journal of Machine Learning Research
– volume: 115
  start-page: 9684
  issue: 39
  year: 2018
  end-page: 9689
  article-title: Deep learning to represent sub‐grid processes in climate models
  publication-title: Proceedings of the National Academy of Sciences
– volume: 62
  start-page: 1574
  year: 2005
  end-page: 1587
  article-title: Designing chaotic models
  publication-title: Journal of the Atmospheric Sciences
– volume: 99
  start-page: 10143
  year: 1994
  end-page: 10162
  article-title: Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics
  publication-title: Journal of Geophysical Research
– volume: 28
  start-page: 1671
  issue: 5
  year: 2020
  end-page: 1706
  article-title: Dying ReLU and initialization: theory and numerical examples
  publication-title: Communications in Computational Physics
– year: 2020
  article-title: Machine learning for robust identification of complex nonlinear dynamical systems: applications to earth systems modeling
  publication-title: ArXiv
– year: 2006
– volume: 147
  start-page: 3067
  year: 2021
  end-page: 3084
  article-title: Using machine learning to correct model error in data assimilation and forecast applications
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 12
  issue: 12
  year: 2020
  article-title: Machine learning for model error inference and correction
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 12
  issue: 9
  year: 2020
  article-title: Physically interpretable neural networks for the geosciences: applications to earth system variability
  publication-title: Journal of Advances in Modeling Earth Systems
– ident: e_1_2_8_12_1
  doi: 10.1029/2019MS001896
– volume: 20
  start-page: 973
  issue: 1
  year: 2019
  ident: e_1_2_8_4_1
  article-title: Pyro: deep universal probabilistic programming
  publication-title: Journal of Machine Learning Research
– volume-title: Gaussian Processes for Machine Learning
  year: 2006
  ident: e_1_2_8_28_1
– ident: e_1_2_8_22_1
  doi: 10.1109/TGRS.2020.3032790
– volume: 32
  start-page: 8024
  year: 2019
  ident: e_1_2_8_27_1
  article-title: Pytorch: an imperative style, high‐performance deep learning library
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_8_6_1
  doi: 10.1016/j.jocs.2020.101171
– ident: e_1_2_8_2_1
  doi: 10.1371/journal.pone.0130140
– year: 2020
  ident: e_1_2_8_17_1
  article-title: Hands‐on Bayesian neural networks – a tutorial for deep learning users
  publication-title: ArXiv
– ident: e_1_2_8_23_1
  doi: 10.1175/JAS3430.1
– ident: e_1_2_8_3_1
  doi: 10.3389/fnagi.2019.00194
– ident: e_1_2_8_21_1
– ident: e_1_2_8_7_1
– year: 2019
  ident: e_1_2_8_19_1
  article-title: Survey of dropout methods for deep neural networks
  publication-title: ArXiv
– ident: e_1_2_8_35_1
  doi: 10.1127/0941-2948/2014/0492
– ident: e_1_2_8_30_1
  doi: 10.1175/MWR-D-19-0233.1
– ident: e_1_2_8_25_1
  doi: 10.1162/neco.1992.4.3.448
– ident: e_1_2_8_31_1
  doi: 10.5194/npg-28-111-2021
– year: 2020
  ident: e_1_2_8_36_1
  article-title: Machine learning for robust identification of complex nonlinear dynamical systems: applications to earth systems modeling
  publication-title: ArXiv
– ident: e_1_2_8_16_1
  doi: 10.1175/MWR-D-13-00056.1
– ident: e_1_2_8_9_1
  doi: 10.1029/94JC00572
– start-page: 40
  year: 2021
  ident: e_1_2_8_20_1
  article-title: Detecting climate signals using explainable AI with single‐forcing large ensembles
  publication-title: Earth and Space Science Open Archive
– ident: e_1_2_8_11_1
  doi: 10.1002/qj.4116
– volume: 14
  start-page: 1303
  year: 2013
  ident: e_1_2_8_13_1
  article-title: Stochastic variational inference
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_8_18_1
– ident: e_1_2_8_29_1
  doi: 10.1073/pnas.1810286115
– ident: e_1_2_8_8_1
  doi: 10.1016/j.strusafe.2008.06.020
– ident: e_1_2_8_15_1
– ident: e_1_2_8_5_1
  doi: 10.1029/2020MS002232
– ident: e_1_2_8_24_1
  doi: 10.4208/cicp.OA-2020-0165
– ident: e_1_2_8_32_1
  doi: 10.1002/qj.3257
– ident: e_1_2_8_33_1
  doi: 10.1029/2019MS002002
– ident: e_1_2_8_37_1
  doi: 10.1038/s41467-020-17142-3
– ident: e_1_2_8_10_1
  doi: 10.1007/s10236-003-0036-9
– ident: e_1_2_8_14_1
  doi: 10.1080/19942060.2012.11015417
– ident: e_1_2_8_26_1
  doi: 10.1029/2018MS001351
– ident: e_1_2_8_34_1
SSID ssj0005727
Score 2.4254553
Snippet Errors in the representation of clouds in convection‐permitting numerical weather prediction models can be introduced by different sources. These can be the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 860
SubjectTerms Artificial intelligence
Bayesian analysis
Bayesian neural network
Boundary conditions
Boundary layers
Convection
convective‐scale data assimilation
Data assimilation
Data collection
EnKF
Errors
layer‐wise relevance propagation
Machine learning
Mathematical models
Microphysics
Modelling
Neural networks
Numerical schemes
Orography
Parameter estimation
Parameters
Prediction models
Probability theory
Rainfall forecasting
Scale models
Statistical analysis
Statistical methods
Strong winds
Training
Weather forecasting
Winds
Title Combining data assimilation and machine learning to estimate parameters of a convective‐scale model
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqj.4235
https://www.proquest.com/docview/2635879438
Volume 148
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSsNAEF60Jy_-i_Wn7KH0lrZJd5PtUYoiBUVFQbyE_Yu0to1t48WTj-Aj-Cw-ik_izCa1_iCIpxCYDUt2Zvab5dtvCKnyRGvBI-slkZQeMyzwFLiG57Mg0iZQQjqd7ZPT8PiKda_59adWX7k-xMeBG0aGy9cY4FJNG3PR0HG_DlAAr5cjUwvh0MVcOIpHRbPWFvfaACPy67I4slGM-7oPzcHlZ4jq9pijFXIzm11OLbmrP2Sqrh-_CTf-a_qrZLlAnvQgd5U1smBH66R8AqA5nbizdVqjnUEPEKx72yAJ5Arl-kdQ5JFSgNm9YS_nzlE5MnToiJiWFp0nbmmWvr6gagd8w1IUFR8i2WZK04RK6vjtLru-PT1PwTUsdW14NsnV0eFl59gr2jJ4GqPfk0q3tQ9loAV0xJSRLT8xTS6FEratFIukMDLkDKyNslB6Q83Co8ioFmBJHzLMFimN0pHdJtT3jQ2EtaFtYR0kpOah0E1wEAAizPIyqc0WKdaFZjm2zhjEudpyEI_7Mf7GMqEfhve5TMdPk73ZKsdFnE5jlOIRqJEnyqTqluu34fF5Fx87fzPbJUsB3pNwZzV7pJRNHuw-oJdMVchiwM4qzl3fAZOe748
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSsNAEB60HvTiv1itugfxlmrSbLM9SrXUnwqKguAh7F-kalu17cWTj-Aj-Cw-ik_izCZt_UEQTyEwG5Ls7Ow3w7ffAGzyRGvBI-slkZReaMLAU-ganh8GkTaBEtLpbDdOyvWL8PCSX2asSjoLk-pDDAtutDJcvKYFTgXp7ZFq6MNNEbEAH4cJ6udNuvl7ZyPpKB5l7VpL3KsgkEgPzNLQ7Wzg151oBC8_g1S3y9Rm4Grwfim55LbY76mifvom3fi_D5iF6Qx8st3UW-ZgzLbnId9A3Nx5dOV1tsWqd00Ese5uARIMF8q1kGBEJWWItJutZkqfY7JtWMtxMS3Lmk9cs17n7ZWEO_AZlpGueIv4Nl3WSZhkjuLuAuz780sXvcMy14lnES5q--fVupd1ZvA0BQBPKl3RPmaCFgFSqIws-YnZ4VIoYStKhZEURpZ5iNZGWcy-MW3hUWRUCeGkj0FmCXLtTtsuA_N9YwNhbdmWKBUSUvOy0DvoI4hFQsvzsDWYpVhnsuXUPeMuTgWXg_jhJqbfmAc2NLxPlTp-mhQG0xxnS7UbkxqPIJk8kYdNN1-_DY9PD-my8jezDZisnzeO4-ODk6NVmAro2IQr3RQg13vs2zUEMz217rz2A9mV8tQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYJMQFsYqw-lD1FiCp3bhHVKjKqiKBxM3yFtSqTVfufAKfwLfwKXwJM05KQQiJUxRpJgePx37jPL8hpMRTYwRPXJgmSoXMsjjUMDXCiMWJsbEWyuts39xWmw_s8pE_fmv1letDfB24YWb49RoTfGDT45lo6LBzBFCAz5NF_NWHbK6YtWbsjqTo1lrhYQ1wRH5fFl2PC8efG9EMXX7HqH6TaaySlQId0tM8nGtkzmXrJLgBYNsf-fNvWqb1bhtQpn_bICnks_Y9HihyPSlA4XavnfPbqMos7XmypKNFd4gnOum_v6GyBnzDURT-7iEhZkz7KVXUc9D9Cvjx8jqG8DnqW-VskofG-X29GRatE0KDGRoqbWomglLNAYJh2qpKlNoTroQWrqY1S5SwqsoZWFvtoDyGuoInidUVwHsRrAJbZCHrZ26b0CiyLhbOVV0FaxWhDK8KcwJBBLDAHA9IeTqO0hS64tjeoitzReRYDjsSBzwg9MtwkEtp_DbZmwZCFrk0liiXI1DHTgSk5IPzl7u8u8THzv_MDslS66whry9ur3bJcozXGvzRyh5ZmIye3T6AjYk-8NPqE_Mt0es
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+data+assimilation+and+machine+learning+to+estimate+parameters+of+a+convective%E2%80%90scale+model&rft.jtitle=Quarterly+journal+of+the+Royal+Meteorological+Society&rft.au=Legler%2C+S&rft.au=Janji%C4%87%2C+T&rft.date=2022-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0035-9009&rft.eissn=1477-870X&rft.volume=148&rft.issue=743&rft.spage=860&rft.epage=874&rft_id=info:doi/10.1002%2Fqj.4235&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-9009&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-9009&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-9009&client=summon