Combining data assimilation and machine learning to estimate parameters of a convective‐scale model
Errors in the representation of clouds in convection‐permitting numerical weather prediction models can be introduced by different sources. These can be the forcing and boundary conditions, the representation of orography, the accuracy of the numerical schemes determining the evolution of humidity a...
Saved in:
Published in | Quarterly journal of the Royal Meteorological Society Vol. 148; no. 743; pp. 860 - 874 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.01.2022
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Errors in the representation of clouds in convection‐permitting numerical weather prediction models can be introduced by different sources. These can be the forcing and boundary conditions, the representation of orography, the accuracy of the numerical schemes determining the evolution of humidity and temperature, but large contributions are due to the parametrization of microphysics and the parametrization of processes in the surface and boundary layers. These schemes typically contain several tunable parameters that are either not physical or only crudely known, leading to model errors. Traditionally, the numerical values of these model parameters are chosen by manual model tuning. More objectively, they can be estimated from observations by the augmented state approach during the data assimilation. Alternatively, in this work, we look at the problem of parameter estimation through an artificial intelligence lens by training two types of artificial neural network (ANN) to estimate several parameters of the one‐dimensional modified shallow‐water model as a function of the observations or analysis of the atmospheric state. Through perfect model experiments we show that Bayesian neural networks (BNNs) and Bayesian approximations of point estimate neural networks (NNs) are able to estimate model parameters and their relevant statistics. The estimation of parameters combined with data assimilation for the state decreases the initial state errors even when assimilating sparse and noisy observations. The sensitivity to the number of ensemble members, observation coverage and neural network size is shown. Additionally, we use the method of layer‐wise relevance propagation to gain insight into how the ANNs are learning and discover that they naturally select only a few grid points that are subject to strong winds and rain to make their predictions of chosen parameters.
We train a Bayesian neural network (BNN) and an ensemble of point estimate neural networks (NN) to estimate several model parameters and their uncertainty as a function of the atmospheric state. Experiments with the one‐dimensional modified shallow‐water model show that the BNN and the NN are able to estimate the model parameters and their relevant statistics. In addition, once combined with data assimilation for the state estimation, the state errors decreased even when assimilating sparse and noisy observations. |
---|---|
AbstractList | Errors in the representation of clouds in convection‐permitting numerical weather prediction models can be introduced by different sources. These can be the forcing and boundary conditions, the representation of orography, the accuracy of the numerical schemes determining the evolution of humidity and temperature, but large contributions are due to the parametrization of microphysics and the parametrization of processes in the surface and boundary layers. These schemes typically contain several tunable parameters that are either not physical or only crudely known, leading to model errors. Traditionally, the numerical values of these model parameters are chosen by manual model tuning. More objectively, they can be estimated from observations by the augmented state approach during the data assimilation. Alternatively, in this work, we look at the problem of parameter estimation through an artificial intelligence lens by training two types of artificial neural network (ANN) to estimate several parameters of the one‐dimensional modified shallow‐water model as a function of the observations or analysis of the atmospheric state. Through perfect model experiments we show that Bayesian neural networks (BNNs) and Bayesian approximations of point estimate neural networks (NNs) are able to estimate model parameters and their relevant statistics. The estimation of parameters combined with data assimilation for the state decreases the initial state errors even when assimilating sparse and noisy observations. The sensitivity to the number of ensemble members, observation coverage and neural network size is shown. Additionally, we use the method of layer‐wise relevance propagation to gain insight into how the ANNs are learning and discover that they naturally select only a few grid points that are subject to strong winds and rain to make their predictions of chosen parameters. Errors in the representation of clouds in convection‐permitting numerical weather prediction models can be introduced by different sources. These can be the forcing and boundary conditions, the representation of orography, the accuracy of the numerical schemes determining the evolution of humidity and temperature, but large contributions are due to the parametrization of microphysics and the parametrization of processes in the surface and boundary layers. These schemes typically contain several tunable parameters that are either not physical or only crudely known, leading to model errors. Traditionally, the numerical values of these model parameters are chosen by manual model tuning. More objectively, they can be estimated from observations by the augmented state approach during the data assimilation. Alternatively, in this work, we look at the problem of parameter estimation through an artificial intelligence lens by training two types of artificial neural network (ANN) to estimate several parameters of the one‐dimensional modified shallow‐water model as a function of the observations or analysis of the atmospheric state. Through perfect model experiments we show that Bayesian neural networks (BNNs) and Bayesian approximations of point estimate neural networks (NNs) are able to estimate model parameters and their relevant statistics. The estimation of parameters combined with data assimilation for the state decreases the initial state errors even when assimilating sparse and noisy observations. The sensitivity to the number of ensemble members, observation coverage and neural network size is shown. Additionally, we use the method of layer‐wise relevance propagation to gain insight into how the ANNs are learning and discover that they naturally select only a few grid points that are subject to strong winds and rain to make their predictions of chosen parameters. We train a Bayesian neural network (BNN) and an ensemble of point estimate neural networks (NN) to estimate several model parameters and their uncertainty as a function of the atmospheric state. Experiments with the one‐dimensional modified shallow‐water model show that the BNN and the NN are able to estimate the model parameters and their relevant statistics. In addition, once combined with data assimilation for the state estimation, the state errors decreased even when assimilating sparse and noisy observations. |
Author | Legler, S. Janjić, T. |
Author_xml | – sequence: 1 givenname: S. orcidid: 0000-0002-1261-059X surname: Legler fullname: Legler, S. email: S.Legler@physik.uni-muenchen.de organization: Ludwig‐Maximilians‐Universität München – sequence: 2 givenname: T. orcidid: 0000-0002-8837-0879 surname: Janjić fullname: Janjić, T. organization: Ludwig‐Maximilians‐Universität München |
BookMark | eNp10EtKBDEQBuAgCo4PvELAhQtpzaMz6V7K4BNBBAV3TXW6WjN0JzNJVNx5BI_gWTyKJ7GdcSW6qs1HVf3_Bll13iEhO5wdcMbE4Xx6kAupVsiI51pnhWZ3q2TEmFRZyVi5TjZinDLGlBZ6RNqJ72vrrLunDSSgEKPtbQfJekfBNbQH82Ad0g4hLFjyH-8Yk-0hIZ1BgB4Thkh9S4Ea757QJPuEn69v0UCHtPcNdltkrYUu4vbP3CS3J8c3k7Ps8ur0fHJ0mRkphMqgNqXhmmscc5HXDUjeNkxBURdY1nWuoWhgrPJBNzXqXKhSK62bWgrJuWZyk-wu986Cnz8Ob1ZT_xjccLISY6kKXeayGFS2VCb4GAO2lbFpETkFsF3FWfVdZTWfVt9VDn7vl5-FIX94-UPuL-Wz7fDlP1ZdXyz0Fz7yhcc |
CitedBy_id | crossref_primary_10_1007_s11430_024_1395_7 crossref_primary_10_1002_qj_4708 crossref_primary_10_1016_j_agrformet_2023_109882 crossref_primary_10_1360_N072024_0008 crossref_primary_10_3390_jmse12010108 crossref_primary_10_1109_JAS_2023_123537 crossref_primary_10_1063_5_0228384 crossref_primary_10_1016_j_atmosenv_2024_120797 |
Cites_doi | 10.1029/2019MS001896 10.1109/TGRS.2020.3032790 10.1016/j.jocs.2020.101171 10.1371/journal.pone.0130140 10.1175/JAS3430.1 10.3389/fnagi.2019.00194 10.1127/0941-2948/2014/0492 10.1175/MWR-D-19-0233.1 10.1162/neco.1992.4.3.448 10.5194/npg-28-111-2021 10.1175/MWR-D-13-00056.1 10.1029/94JC00572 10.1002/qj.4116 10.1073/pnas.1810286115 10.1016/j.strusafe.2008.06.020 10.1029/2020MS002232 10.4208/cicp.OA-2020-0165 10.1002/qj.3257 10.1029/2019MS002002 10.1038/s41467-020-17142-3 10.1007/s10236-003-0036-9 10.1080/19942060.2012.11015417 10.1029/2018MS001351 |
ContentType | Journal Article |
Copyright | 2021 The Authors. Quarterly Journal of the Royal Meteorological Society published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society. 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. Quarterly Journal of the Royal Meteorological Society published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society. – notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7TG 7TN F1W H96 KL. L.G |
DOI | 10.1002/qj.4235 |
DatabaseName | Wiley Online Library Open Access CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Meteorological & Geoastrophysical Abstracts - Academic ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1477-870X |
EndPage | 874 |
ExternalDocumentID | 10_1002_qj_4235 QJ4235 |
Genre | article |
GrantInformation_xml | – fundername: German Research Foundation (DFG) through the ‘Waves to Weather’ subproject a Heisenberg Award (DFG funderid: JA1077/4‐1 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GODZA H.T H.X HBH HF~ HGLYW HVGLF HZ~ H~9 IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M62 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ NNB O66 O9- OHT OK1 P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ UB1 VOH W8V W99 WBKPD WIB WIH WIK WJL WOHZO WQJ WRC WUPDE WWD WXSBR WYISQ XG1 XOL XV2 ZY4 ZZTAW ~02 ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7TG 7TN AAMMB AEFGJ AGXDD AIDQK AIDYY F1W H96 KL. L.G |
ID | FETCH-LOGICAL-c3225-abc9c1717e6124bda31fd05a8b8e9bb47a8da654c32dbe742597577db32311703 |
IEDL.DBID | DR2 |
ISSN | 0035-9009 |
IngestDate | Sat Jul 19 07:40:37 EDT 2025 Tue Jul 01 00:43:57 EDT 2025 Thu Apr 24 23:07:00 EDT 2025 Wed Jan 22 16:26:39 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 743 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3225-abc9c1717e6124bda31fd05a8b8e9bb47a8da654c32dbe742597577db32311703 |
Notes | Funding information German Research Foundation (DFG) through the ‘Waves to Weather’ subproject a Heisenberg Award (DFG,JA1077/4‐1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1261-059X 0000-0002-8837-0879 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqj.4235 |
PQID | 2635879438 |
PQPubID | 1016432 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2635879438 crossref_citationtrail_10_1002_qj_4235 crossref_primary_10_1002_qj_4235 wiley_primary_10_1002_qj_4235_QJ4235 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Reading |
PublicationTitle | Quarterly journal of the Royal Meteorological Society |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc |
References | 2018; 144 2019; 11 2021; 147 2019; 32 2021; 28 2015; 10 2005; 62 2020; 148 2006 2020; 12 2020; 11 2003; 53 2014; 23 2021; 59 2013; 14 2009; 31 2019; 20 2021 2020 2018; 115 2020; 28 1994; 99 2019 2018 2017 2015 2020; 44 2012; 6 2018; 10 2014; 142 1992; 4 e_1_2_8_29_1 Bingham E. (e_1_2_8_4_1) 2019; 20 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 Rasmussen C.E. (e_1_2_8_28_1) 2006 e_1_2_8_21_1 Paszke A. (e_1_2_8_27_1) 2019; 32 e_1_2_8_22_1 e_1_2_8_23_1 Labach A. (e_1_2_8_19_1) 2019 Jospin L.V. (e_1_2_8_17_1) 2020 Labe Z.M. (e_1_2_8_20_1) 2021 e_1_2_8_18_1 Hoffman M.D. (e_1_2_8_13_1) 2013; 14 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_37_1 Yadav N. (e_1_2_8_36_1) 2020 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 59 start-page: 7211 year: 2021 end-page: 7223 article-title: Stochastic super‐resolution for downscaling time‐evolving atmospheric fields with a generative adversarial network publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 32 start-page: 8024 year: 2019 end-page: 8035 article-title: Pytorch: an imperative style, high‐performance deep learning library publication-title: Advances in Neural Information Processing Systems – year: 2020 article-title: Hands‐on Bayesian neural networks – a tutorial for deep learning users publication-title: ArXiv – volume: 4 start-page: 448 year: 1992 end-page: 472 article-title: A practical Bayesian framework for backpropagation networks publication-title: Neural Computation – volume: 148 start-page: 1607 issue: 4 year: 2020 end-page: 1628 article-title: Combined state‐parameter estimation with the LETKF for convective‐scale weather forecasting publication-title: Monthly Weather Review – year: 2019 article-title: Survey of dropout methods for deep neural networks publication-title: ArXiv – volume: 11 year: 2020 article-title: Stable machine‐learning parameterization of subgrid processes for climate modeling at a range of resolutions publication-title: Nature Communications – year: 2015 article-title: Adam: a method for stochastic optimization. In: Third International Conference on Learning Representations, 7–9 May 2015, San Diego, CA – volume: 142 start-page: 755 year: 2014 end-page: 773 article-title: Conservation of mass and preservation of positivity with ensemble‐type Kalman filter algorithms publication-title: Monthly Weather Review – volume: 10 start-page: 2548 issue: 10 year: 2018 end-page: 2563 article-title: Using machine learning to parameterize moist convection: potential for modeling of climate, climate change, and extreme events publication-title: Journal of Advances in Modeling Earth Systems – volume: 14 start-page: 1303 year: 2013 end-page: 1347 article-title: Stochastic variational inference publication-title: Journal of Machine Learning Research – volume: 11 start-page: 1 year: 2019 end-page: 17 article-title: Layer‐wise relevance propagation for explaining deep neural network decisions in MRI‐based Alzheimer's disease classification publication-title: Frontiers in Aging Neuroscience – volume: 23 start-page: 483 issue: 5 year: 2014 end-page: 490 article-title: A simple dynamical model of cumulus convection for data assimilation research publication-title: Meteorologische Zeitschrift – year: 2020 article-title: Informative ensemble Kalman learning for neural structure. In: Dynamic Data‐Driven Applications Systems, Third international conference, 2–4 October, Boston, MA – volume: 31 start-page: 105 issue: 2 year: 2009 end-page: 112 article-title: Aleatory or epistemic? Does it matter? publication-title: Structural Safety – year: 2017 article-title: Simple and scalable predictive uncertainty estimation using deep ensembles, pp. 6405–6416. In: , 4–9 December 2017, Long Beach, CA – year: 2018 article-title: Sensitivity analysis for predictive uncertainty, pp. 279–284. In: Proceedings of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, 25–27 April, Bruges, Belgium – volume: 144 start-page: 826 year: 2018 end-page: 841 article-title: Parameter and state estimation with ensemble Kalman filter‐based algorithms for convective‐scale applications publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 6 start-page: 224 issue: 2 year: 2012 end-page: 233 article-title: Data assimilation procedure by recurrent neural network publication-title: Engineering Applications of Computational Fluid Mechanics – volume: 12 issue: 3 year: 2020 article-title: Machine learning for stochastic parameterization: generative adversarial networks in the Lorenz '96 model publication-title: Journal of Advances in Modeling Earth Systems – volume: 28 start-page: 111 issue: 1 year: 2021 end-page: 119 article-title: Training a convolutional neural network to conserve mass in data assimilation publication-title: Nonlinear Processes in Geophysics – volume: 10 issue: 7 year: 2015 article-title: On pixel‐wise explanations for non‐linear classifier decisions by layer‐wise relevance propagation publication-title: PLoS One – volume: 44 year: 2020 article-title: Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: a case study with the Lorenz'96 model publication-title: Journal of Computational Science – volume: 53 start-page: 343 year: 2003 end-page: 367 article-title: The ensemble Kalman filter: theoretical formulation and practical implementation publication-title: Ocean Dynamics – year: 2015 article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift, pp. 448–456. In: Proceedings of the 32nd International Conference on Machine Learning, Vol. 37, 7–9 July, Lille, France – start-page: 40 year: 2021 article-title: Detecting climate signals using explainable AI with single‐forcing large ensembles publication-title: Earth and Space Science Open Archive – volume: 20 start-page: 973 issue: 1 year: 2019 end-page: 978 article-title: Pyro: deep universal probabilistic programming publication-title: Journal of Machine Learning Research – volume: 115 start-page: 9684 issue: 39 year: 2018 end-page: 9689 article-title: Deep learning to represent sub‐grid processes in climate models publication-title: Proceedings of the National Academy of Sciences – volume: 62 start-page: 1574 year: 2005 end-page: 1587 article-title: Designing chaotic models publication-title: Journal of the Atmospheric Sciences – volume: 99 start-page: 10143 year: 1994 end-page: 10162 article-title: Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics publication-title: Journal of Geophysical Research – volume: 28 start-page: 1671 issue: 5 year: 2020 end-page: 1706 article-title: Dying ReLU and initialization: theory and numerical examples publication-title: Communications in Computational Physics – year: 2020 article-title: Machine learning for robust identification of complex nonlinear dynamical systems: applications to earth systems modeling publication-title: ArXiv – year: 2006 – volume: 147 start-page: 3067 year: 2021 end-page: 3084 article-title: Using machine learning to correct model error in data assimilation and forecast applications publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 12 issue: 12 year: 2020 article-title: Machine learning for model error inference and correction publication-title: Journal of Advances in Modeling Earth Systems – volume: 12 issue: 9 year: 2020 article-title: Physically interpretable neural networks for the geosciences: applications to earth system variability publication-title: Journal of Advances in Modeling Earth Systems – ident: e_1_2_8_12_1 doi: 10.1029/2019MS001896 – volume: 20 start-page: 973 issue: 1 year: 2019 ident: e_1_2_8_4_1 article-title: Pyro: deep universal probabilistic programming publication-title: Journal of Machine Learning Research – volume-title: Gaussian Processes for Machine Learning year: 2006 ident: e_1_2_8_28_1 – ident: e_1_2_8_22_1 doi: 10.1109/TGRS.2020.3032790 – volume: 32 start-page: 8024 year: 2019 ident: e_1_2_8_27_1 article-title: Pytorch: an imperative style, high‐performance deep learning library publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_8_6_1 doi: 10.1016/j.jocs.2020.101171 – ident: e_1_2_8_2_1 doi: 10.1371/journal.pone.0130140 – year: 2020 ident: e_1_2_8_17_1 article-title: Hands‐on Bayesian neural networks – a tutorial for deep learning users publication-title: ArXiv – ident: e_1_2_8_23_1 doi: 10.1175/JAS3430.1 – ident: e_1_2_8_3_1 doi: 10.3389/fnagi.2019.00194 – ident: e_1_2_8_21_1 – ident: e_1_2_8_7_1 – year: 2019 ident: e_1_2_8_19_1 article-title: Survey of dropout methods for deep neural networks publication-title: ArXiv – ident: e_1_2_8_35_1 doi: 10.1127/0941-2948/2014/0492 – ident: e_1_2_8_30_1 doi: 10.1175/MWR-D-19-0233.1 – ident: e_1_2_8_25_1 doi: 10.1162/neco.1992.4.3.448 – ident: e_1_2_8_31_1 doi: 10.5194/npg-28-111-2021 – year: 2020 ident: e_1_2_8_36_1 article-title: Machine learning for robust identification of complex nonlinear dynamical systems: applications to earth systems modeling publication-title: ArXiv – ident: e_1_2_8_16_1 doi: 10.1175/MWR-D-13-00056.1 – ident: e_1_2_8_9_1 doi: 10.1029/94JC00572 – start-page: 40 year: 2021 ident: e_1_2_8_20_1 article-title: Detecting climate signals using explainable AI with single‐forcing large ensembles publication-title: Earth and Space Science Open Archive – ident: e_1_2_8_11_1 doi: 10.1002/qj.4116 – volume: 14 start-page: 1303 year: 2013 ident: e_1_2_8_13_1 article-title: Stochastic variational inference publication-title: Journal of Machine Learning Research – ident: e_1_2_8_18_1 – ident: e_1_2_8_29_1 doi: 10.1073/pnas.1810286115 – ident: e_1_2_8_8_1 doi: 10.1016/j.strusafe.2008.06.020 – ident: e_1_2_8_15_1 – ident: e_1_2_8_5_1 doi: 10.1029/2020MS002232 – ident: e_1_2_8_24_1 doi: 10.4208/cicp.OA-2020-0165 – ident: e_1_2_8_32_1 doi: 10.1002/qj.3257 – ident: e_1_2_8_33_1 doi: 10.1029/2019MS002002 – ident: e_1_2_8_37_1 doi: 10.1038/s41467-020-17142-3 – ident: e_1_2_8_10_1 doi: 10.1007/s10236-003-0036-9 – ident: e_1_2_8_14_1 doi: 10.1080/19942060.2012.11015417 – ident: e_1_2_8_26_1 doi: 10.1029/2018MS001351 – ident: e_1_2_8_34_1 |
SSID | ssj0005727 |
Score | 2.4254553 |
Snippet | Errors in the representation of clouds in convection‐permitting numerical weather prediction models can be introduced by different sources. These can be the... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 860 |
SubjectTerms | Artificial intelligence Bayesian analysis Bayesian neural network Boundary conditions Boundary layers Convection convective‐scale data assimilation Data assimilation Data collection EnKF Errors layer‐wise relevance propagation Machine learning Mathematical models Microphysics Modelling Neural networks Numerical schemes Orography Parameter estimation Parameters Prediction models Probability theory Rainfall forecasting Scale models Statistical analysis Statistical methods Strong winds Training Weather forecasting Winds |
Title | Combining data assimilation and machine learning to estimate parameters of a convective‐scale model |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqj.4235 https://www.proquest.com/docview/2635879438 |
Volume | 148 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSsNAEF60Jy_-i_Wn7KH0lrZJd5PtUYoiBUVFQbyE_Yu0to1t48WTj-Aj-Cw-ik_izCa1_iCIpxCYDUt2Zvab5dtvCKnyRGvBI-slkZQeMyzwFLiG57Mg0iZQQjqd7ZPT8PiKda_59adWX7k-xMeBG0aGy9cY4FJNG3PR0HG_DlAAr5cjUwvh0MVcOIpHRbPWFvfaACPy67I4slGM-7oPzcHlZ4jq9pijFXIzm11OLbmrP2Sqrh-_CTf-a_qrZLlAnvQgd5U1smBH66R8AqA5nbizdVqjnUEPEKx72yAJ5Arl-kdQ5JFSgNm9YS_nzlE5MnToiJiWFp0nbmmWvr6gagd8w1IUFR8i2WZK04RK6vjtLru-PT1PwTUsdW14NsnV0eFl59gr2jJ4GqPfk0q3tQ9loAV0xJSRLT8xTS6FEratFIukMDLkDKyNslB6Q83Co8ioFmBJHzLMFimN0pHdJtT3jQ2EtaFtYR0kpOah0E1wEAAizPIyqc0WKdaFZjm2zhjEudpyEI_7Mf7GMqEfhve5TMdPk73ZKsdFnE5jlOIRqJEnyqTqluu34fF5Fx87fzPbJUsB3pNwZzV7pJRNHuw-oJdMVchiwM4qzl3fAZOe748 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSsNAEB60HvTiv1itugfxlmrSbLM9SrXUnwqKguAh7F-kalu17cWTj-Aj-Cw-ik_izCZt_UEQTyEwG5Ls7Ow3w7ffAGzyRGvBI-slkZReaMLAU-ganh8GkTaBEtLpbDdOyvWL8PCSX2asSjoLk-pDDAtutDJcvKYFTgXp7ZFq6MNNEbEAH4cJ6udNuvl7ZyPpKB5l7VpL3KsgkEgPzNLQ7Wzg151oBC8_g1S3y9Rm4Grwfim55LbY76mifvom3fi_D5iF6Qx8st3UW-ZgzLbnId9A3Nx5dOV1tsWqd00Ese5uARIMF8q1kGBEJWWItJutZkqfY7JtWMtxMS3Lmk9cs17n7ZWEO_AZlpGueIv4Nl3WSZhkjuLuAuz780sXvcMy14lnES5q--fVupd1ZvA0BQBPKl3RPmaCFgFSqIws-YnZ4VIoYStKhZEURpZ5iNZGWcy-MW3hUWRUCeGkj0FmCXLtTtsuA_N9YwNhbdmWKBUSUvOy0DvoI4hFQsvzsDWYpVhnsuXUPeMuTgWXg_jhJqbfmAc2NLxPlTp-mhQG0xxnS7UbkxqPIJk8kYdNN1-_DY9PD-my8jezDZisnzeO4-ODk6NVmAro2IQr3RQg13vs2zUEMz217rz2A9mV8tQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYJMQFsYqw-lD1FiCp3bhHVKjKqiKBxM3yFtSqTVfufAKfwLfwKXwJM05KQQiJUxRpJgePx37jPL8hpMRTYwRPXJgmSoXMsjjUMDXCiMWJsbEWyuts39xWmw_s8pE_fmv1letDfB24YWb49RoTfGDT45lo6LBzBFCAz5NF_NWHbK6YtWbsjqTo1lrhYQ1wRH5fFl2PC8efG9EMXX7HqH6TaaySlQId0tM8nGtkzmXrJLgBYNsf-fNvWqb1bhtQpn_bICnks_Y9HihyPSlA4XavnfPbqMos7XmypKNFd4gnOum_v6GyBnzDURT-7iEhZkz7KVXUc9D9Cvjx8jqG8DnqW-VskofG-X29GRatE0KDGRoqbWomglLNAYJh2qpKlNoTroQWrqY1S5SwqsoZWFvtoDyGuoInidUVwHsRrAJbZCHrZ26b0CiyLhbOVV0FaxWhDK8KcwJBBLDAHA9IeTqO0hS64tjeoitzReRYDjsSBzwg9MtwkEtp_DbZmwZCFrk0liiXI1DHTgSk5IPzl7u8u8THzv_MDslS66whry9ur3bJcozXGvzRyh5ZmIye3T6AjYk-8NPqE_Mt0es |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+data+assimilation+and+machine+learning+to+estimate+parameters+of+a+convective%E2%80%90scale+model&rft.jtitle=Quarterly+journal+of+the+Royal+Meteorological+Society&rft.au=Legler%2C+S&rft.au=Janji%C4%87%2C+T&rft.date=2022-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0035-9009&rft.eissn=1477-870X&rft.volume=148&rft.issue=743&rft.spage=860&rft.epage=874&rft_id=info:doi/10.1002%2Fqj.4235&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-9009&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-9009&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-9009&client=summon |