Food‐derived extracellular vesicles in the human gastrointestinal tract: Opportunities for personalised nutrition and targeted therapeutics

Food‐derived extracellular vesicles (FDEVs) such as those found in mammalian milk and plants are of great interest for both their health benefits and ability to act as biological nanocarriers. While the extracellular vesicle (EV) field is expanding rapidly to perform characterisation studies on FDEV...

Full description

Saved in:
Bibliographic Details
Published inJournal of extracellular biology Vol. 3; no. 5; pp. e154 - n/a
Main Author Turner, Natalie P.
Format Journal Article
LanguageEnglish
Published United States John Wiley and Sons Inc 01.05.2024
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Food‐derived extracellular vesicles (FDEVs) such as those found in mammalian milk and plants are of great interest for both their health benefits and ability to act as biological nanocarriers. While the extracellular vesicle (EV) field is expanding rapidly to perform characterisation studies on FDEVs from plants, yeasts and bacteria, species‐specific differences in EV uptake and function in the human gastrointestinal (GI) tract are poorly understood. Moreover, the effects of food processing on the EV surfaceome and intraluminal content also raises questions surrounding biological viability once consumed. Here, I present a case for increasing community‐wide focus on understanding the cellular uptake of FDEVs from different animal, plant, yeast, and bacterial species and how this may impact their function in the human, which will have implications for human health and therapeutic strategies alike.
AbstractList Abstract Food‐derived extracellular vesicles (FDEVs) such as those found in mammalian milk and plants are of great interest for both their health benefits and ability to act as biological nanocarriers. While the extracellular vesicle (EV) field is expanding rapidly to perform characterisation studies on FDEVs from plants, yeasts and bacteria, species‐specific differences in EV uptake and function in the human gastrointestinal (GI) tract are poorly understood. Moreover, the effects of food processing on the EV surfaceome and intraluminal content also raises questions surrounding biological viability once consumed. Here, I present a case for increasing community‐wide focus on understanding the cellular uptake of FDEVs from different animal, plant, yeast, and bacterial species and how this may impact their function in the human, which will have implications for human health and therapeutic strategies alike.
Food-derived extracellular vesicles (FDEVs) such as those found in mammalian milk and plants are of great interest for both their health benefits and ability to act as biological nanocarriers. While the extracellular vesicle (EV) field is expanding rapidly to perform characterisation studies on FDEVs from plants, yeasts and bacteria, species-specific differences in EV uptake and function in the human gastrointestinal (GI) tract are poorly understood. Moreover, the effects of food processing on the EV surfaceome and intraluminal content also raises questions surrounding biological viability once consumed. Here, I present a case for increasing community-wide focus on understanding the cellular uptake of FDEVs from different animal, plant, yeast, and bacterial species and how this may impact their function in the human, which will have implications for human health and therapeutic strategies alike.Food-derived extracellular vesicles (FDEVs) such as those found in mammalian milk and plants are of great interest for both their health benefits and ability to act as biological nanocarriers. While the extracellular vesicle (EV) field is expanding rapidly to perform characterisation studies on FDEVs from plants, yeasts and bacteria, species-specific differences in EV uptake and function in the human gastrointestinal (GI) tract are poorly understood. Moreover, the effects of food processing on the EV surfaceome and intraluminal content also raises questions surrounding biological viability once consumed. Here, I present a case for increasing community-wide focus on understanding the cellular uptake of FDEVs from different animal, plant, yeast, and bacterial species and how this may impact their function in the human, which will have implications for human health and therapeutic strategies alike.
Food‐derived extracellular vesicles (FDEVs) such as those found in mammalian milk and plants are of great interest for both their health benefits and ability to act as biological nanocarriers. While the extracellular vesicle (EV) field is expanding rapidly to perform characterisation studies on FDEVs from plants, yeasts and bacteria, species‐specific differences in EV uptake and function in the human gastrointestinal (GI) tract are poorly understood. Moreover, the effects of food processing on the EV surfaceome and intraluminal content also raises questions surrounding biological viability once consumed. Here, I present a case for increasing community‐wide focus on understanding the cellular uptake of FDEVs from different animal, plant, yeast, and bacterial species and how this may impact their function in the human, which will have implications for human health and therapeutic strategies alike.
Abstract Food‐derived extracellular vesicles (FDEVs) such as those found in mammalian milk and plants are of great interest for both their health benefits and ability to act as biological nanocarriers. While the extracellular vesicle (EV) field is expanding rapidly to perform characterisation studies on FDEVs from plants, yeasts and bacteria, species‐specific differences in EV uptake and function in the human gastrointestinal (GI) tract are poorly understood. Moreover, the effects of food processing on the EV surfaceome and intraluminal content also raises questions surrounding biological viability once consumed. Here, I present a case for increasing community‐wide focus on understanding the cellular uptake of FDEVs from different animal, plant, yeast, and bacterial species and how this may impact their function in the human, which will have implications for human health and therapeutic strategies alike.
Author Turner, Natalie P.
AuthorAffiliation 1 Faculty of Health Queensland University of Technology Kelvin Grove Queensland Australia
AuthorAffiliation_xml – name: 1 Faculty of Health Queensland University of Technology Kelvin Grove Queensland Australia
Author_xml – sequence: 1
  givenname: Natalie P.
  orcidid: 0000-0002-2641-2295
  surname: Turner
  fullname: Turner, Natalie P.
  email: natalie.turner@connect.qut.edu.au
  organization: Queensland University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38939572$$D View this record in MEDLINE/PubMed
BookMark eNp1ksluFDEQhlsoiCxE4gmQj1w6eOllzAWhKIGgSLmAxM3yUp7xqMdubPckufECSDxjngQ3E0Jy4ORS1V9fuZbDas8HD1X1iuATgjF9u4YbekLa5ll1QPtuUdMFIXuP7P3qOKU1LlJOGKfti2qfLTjjbU8Pqp_nIZi7H78MRLcFg-AmR6lhGKZBRrSF5PQACTmP8grQatpIj5Yy5Ricz5Cy83JAc0p-h67GMcQ8eZddSbEhohFiCkXhUkH7KccSCh5Jb1CWcQm5uAs3yhGm7HR6WT23ckhwfP8eVV_Pz76cfqovrz5enH64rDWjtKkpwcYaapXGRvddC33DbadIy4nmqmO9UqU_BkAZU1aB0oT0xphWstnu2FF1seOaINdijG4j460I0ok_jhCXQsY8ty5YwxVQTgu1a8jCKkUNNzNcW4m5Laz3O9Y4qQ0YDb6MY3gCfRrxbiWWYSsIwQvc47YQ3twTYvg-laGKjUvzDqSHMCXBcM8oa3uG_0l1DClFsA91CBbzNYj5GkS5hiJ9_fhfD8K_uy-Ceie4dgPc_hckPp99ozPwN1oHxvg
CitedBy_id crossref_primary_10_1002_pmic_202400074
Cites_doi 10.1038/s41467‐021‐24273‐8
10.1002/mnfr.202300404
10.3390/pharmaceutics15030716
10.1002/jex2.54
10.1186/s12964‐022‐00889‐1
10.1080/20013078.2018.1440132
10.1002/jex2.138
10.1371/journal.pone.0121123
10.1097/MPG.0000000000002363
10.1126/sciadv.ade5041
10.1038/s41580‐022‐00460‐3
10.1080/15592324.2019.1581559
10.1007/s12602‐023‐10085‐3
10.3390/nu12102908
10.7150/THNO.62046
10.1186/s12967‐018‐1760‐8
10.1080/20013078.2018.1535750
10.1038/s41598‐017‐07288‐4
10.1038/s41598‐017‐02599‐y
10.1074/mcp.M116.060426
10.1007/s10753‐021‐01618‐5
10.1016/j.vph.2017.11.006
10.1038/s41556‐022‐00983‐z
10.1038/mt.2013.64
10.3390/life13020401
10.3390/ijms23147554
10.1021/acsbiomaterials.2c01025
10.1002/jev2.12404
10.3390/foods10010069
10.1016/j.xphs.2022.08.032
10.1038/nature22341
10.1093/jn/nxab031
10.1111/1751‐7915.13614
10.1002/jev2.12283
10.1038/s12276‐019‐0223‐5
10.1093/jn/133.4.975
10.3402/jev.v4.27031
10.3389/fmicb.2023.1165202
10.1002/mnfr.201700082
10.1002/jev2.12194
10.1002/mnfr.202000845
10.1002/0471143030.cb0322s30
10.1002/jev2.12245
10.1038/s41565‐023‐01522‐z
10.1038/mt.2013.190
10.1016/j.jprot.2018.08.010
10.1002/mnfr.201300729
10.1038/s41477‐021‐00863‐8
10.1038/nri2778
10.1038/srep15878
10.1038/s43586‐023‐00240‐z
10.1111/1751‐7915.13657
10.1155/2019/5764740
10.1002/cyto.a.22795
10.3402/jev.v3.24214
10.3390/ijms241411340
10.1016/j.biomaterials.2016.06.018
10.1002/jev2.12202
10.1007/s00281‐018‐0682‐0
10.3390/nu14091808
10.3168/jds.2014‐9076
10.1002/jev2.12164
10.1038/s41556‐018‐0250‐9
10.1111/j.1600‐0854.2004.00169.x
10.1038/417182a
10.3402/jev.v3.25011
10.1002/jev2.12376
10.1016/j.chom.2018.10.001
10.1038/nri3715
10.1016/j.xphs.2016.07.022
10.3168/jds.2018‐14946
10.1038/s41598‐019‐51092‐1
10.1021/acs.jafc.0c04605
10.3402/jev.v3.24641
ContentType Journal Article
Copyright 2024 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Extracellular Vesicles.
2024 The Authors. Journal of Extracellular Biology published by Wiley Periodicals LLC on behalf of International Society for Extracellular Vesicles.
Copyright_xml – notice: 2024 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Extracellular Vesicles.
– notice: 2024 The Authors. Journal of Extracellular Biology published by Wiley Periodicals LLC on behalf of International Society for Extracellular Vesicles.
DBID 24P
WIN
NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1002/jex2.154
DatabaseName Wiley-Blackwell Open Access Collection
Wiley Online Library Free Content
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

CrossRef

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate TURNER
EISSN 2768-2811
EndPage n/a
ExternalDocumentID oai_doaj_org_article_349be2926376418fbb2d9d93eecfa09f
10_1002_jex2_154
38939572
JEX2154
Genre article
Journal Article
GroupedDBID 0R~
24P
AAHHS
ABDBF
ACCFJ
ADPDF
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
BBNVY
BENPR
BHPHI
CCPQU
EBS
GROUPED_DOAJ
HCIFZ
M7P
M~E
OK1
OVD
OVEED
PIMPY
RPM
TEORI
WIN
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c3224-210dfd2fbc0dc765e749f6b1591c9b637bb9393ee233bfbebc117ddd5a3ebc163
IEDL.DBID RPM
ISSN 2768-2811
IngestDate Tue Oct 22 15:16:04 EDT 2024
Tue Sep 17 21:28:51 EDT 2024
Sat Oct 26 04:49:28 EDT 2024
Thu Sep 12 17:08:09 EDT 2024
Sat Nov 02 11:54:11 EDT 2024
Sat Aug 24 00:50:42 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords EV biodistribution
nutrition
EV uptake
Extracellular vesicles
EV therapeutics
health
food
Language English
License Attribution
2024 The Authors. Journal of Extracellular Biology published by Wiley Periodicals LLC on behalf of International Society for Extracellular Vesicles.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3224-210dfd2fbc0dc765e749f6b1591c9b637bb9393ee233bfbebc117ddd5a3ebc163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2641-2295
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11080705/
PMID 38939572
PQID 3073235730
PQPubID 23479
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_349be2926376418fbb2d9d93eecfa09f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11080705
proquest_miscellaneous_3073235730
crossref_primary_10_1002_jex2_154
pubmed_primary_38939572
wiley_primary_10_1002_jex2_154_JEX2154
PublicationCentury 2000
PublicationDate May 2024
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Journal of extracellular biology
PublicationTitleAlternate J Extracell Biol
PublicationYear 2024
Publisher John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley and Sons Inc
– name: Wiley
References 2017; 7
2010; 10
2019; 2019
2021; 65
2006; 30
2019; 51
2013; 21
2023; 9
2019; 14
2022; 23
2019; 17
2022; 24
2016; 101
2004; 5
2020; 13
2018; 40
2020; 12
2022; 20
2023; 3
2020; 10
2014; 22
2018; 7
2023; 24
2014; 3
2023; 67
2019; 21
2019; 69
2014; 14
2021; 151
2014; 58
2024; 3
2016; 89
2017; 61
2021; 7
2019; 9
2023; 13
2019; 192
2015; 5
2023; 14
2015; 4
2023; 12
2023; 15
2018; 101
2023; 19
2015; 98
2015; 10
2022; 45
2019; 102
2002; 417
2024; 13
2016; 15
2003; 133
2018; 24
2021; 14
2021; 10
2021; 12
2021; 11
2023
2022
2023; 112
2022; 14
2020; 68
2022; 1
2022; 11
2017; 546
2017; 106
e_1_2_11_70_1
e_1_2_11_72_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
e_1_2_11_60_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_68_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_62_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_64_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_59_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_50_1
e_1_2_11_71_1
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_61_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
References_xml – volume: 12
  start-page: 3950
  issue: 1
  year: 2021
  article-title: Oral administration of bovine milk‐derived extracellular vesicles induces senescence in the primary tumor but accelerates cancer metastasis
  publication-title: Nature Communications
– volume: 112
  start-page: 525
  issue: 2
  year: 2023
  end-page: 534
  article-title: Functional characterization of extracellular vesicles from Baker's yeast as a novel vaccine material for immune cell maturation
  publication-title: Journal of Pharmaceutical Sciences
– volume: 3
  issue: 2
  year: 2024
  article-title: Scalable purification of extracellular vesicles with high yield and purity using multimodal flowthrough chromatography
  publication-title: Journal of Extracellular Biology
– volume: 133
  start-page: 975
  issue: 4
  year: 2003
  end-page: 984
  article-title: A short history of nutritional science: Part 2 (1885–1912)
  publication-title: The Journal of Nutrition
– volume: 11
  issue: 8
  year: 2022
  article-title: Characterization of protein complexes in extracellular vesicles by intact extracellular vesicle crosslinking mass spectrometry (iEVXL)
  publication-title: Journal of Extracellular Vesicles
– volume: 11
  issue: 3
  year: 2022
  article-title: Light‐induced high‐efficient cellular production of immune functional extracellular vesicles
  publication-title: Journal of Extracellular Vesicles
– volume: 45
  start-page: 1254
  issue: 3
  year: 2022
  end-page: 1268
  article-title: Human breast milk–derived exosomal miR‐148a‐3p protects against necrotizing enterocolitis by regulating p53 and sirtuin 1
  publication-title: Inflammation
– volume: 21
  start-page: 9
  issue: 1
  year: 2019
  end-page: 17
  article-title: Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell‐to‐cell communication
  publication-title: Nature Cell Biology
– volume: 151
  start-page: 1416
  issue: 6
  year: 2021
  end-page: 1425
  article-title: Regular industrial processing of bovine milk impacts the integrity and molecular composition of extracellular vesicles
  publication-title: Journal of Nutrition
– volume: 7
  start-page: 7072
  issue: 1
  year: 2017
  article-title: Bacterial membrane vesicles transport their DNA cargo into host cells
  publication-title: Scientific Reports
– volume: 9
  start-page: 1
  issue: 15
  year: 2023
  end-page: 20
  article-title: Milk‐derived extracellular vesicles protect intestinal barrier integrity in the gut‐liver axis
  publication-title: Science Advances
– volume: 546
  start-page: 498
  issue: 7659
  year: 2017
  end-page: 503
  article-title: Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer
  publication-title: Nature
– volume: 11
  start-page: 8570
  issue: 17
  year: 2021
  end-page: 8586
  article-title: Milk‐derived extracellular vesicles alleviate ulcerative colitis by regulating the gut immunity and reshaping the gut microbiota
  publication-title: Theranostics
– volume: 24
  start-page: 1322
  issue: 9
  year: 2022
  end-page: 1325
  article-title: Opportunities and challenges in studying the extracellular vesicle corona
  publication-title: Nature Cell Biology
– volume: 7
  start-page: 342
  issue: 3
  year: 2021
  end-page: 352
  article-title: RNA‐binding proteins contribute to small RNA loading in plant extracellular vesicles
  publication-title: Nature Plants
– volume: 68
  start-page: 12692
  issue: 45
  year: 2020
  end-page: 12701
  article-title: Comprehensive analysis of the glycome and glycoproteome of bovine milk‐derived exosomes
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 24
  issue: 14
  year: 2023
  article-title: Exploring extracellular vesicles of probiotic yeast as carriers of biologically active molecules transferred to human intestinal cells
  publication-title: International Journal of Molecular Sciences
– volume: 7
  issue: 1
  year: 2018
  article-title: Biocompatibility of highly purified bovine milk‐derived extracellular vesicles
  publication-title: Journal of Extracellular Vesicles
– volume: 3
  issue: 1
  year: 2014
  article-title: Unfiltered beer ‐ a rich source of yeast extracellular vesicles. In: Third International Meeting of ISEV 2014: Rotterdam, The Netherlands, April 30th–May 3rd, 2014
  publication-title: Journal of Extracellular Vesicles
– volume: 106
  start-page: 168
  issue: 1
  year: 2017
  end-page: 175
  article-title: Role of phosphatidylserine‐derived negative surface charges in the recognition and uptake of intravenously injected B16BL6‐derived exosomes by macrophages
  publication-title: Journal of Pharmaceutical Sciences
– volume: 1
  issue: 9
  year: 2022
  article-title: Human milk extracellular vesicles preserve bronchial epithelial barrier integrity and reduce TLR3‐induced inflammation in vitro
  publication-title: Journal of Extracellular Biology
– volume: 10
  issue: 13
  year: 2021
  article-title: Proteomic dissection of large extracellular vesicle surfaceome unravels interactive surface platform
  publication-title: Journal of Extracellular Vesicles
– volume: 102
  start-page: 985
  issue: 2
  year: 2019
  end-page: 996
  article-title: Yak‐milk‐derived exosomes promote proliferation of intestinal epithelial cells in an hypoxic environment
  publication-title: Journal of Dairy Science
– volume: 98
  start-page: 2920
  issue: 5
  year: 2015
  end-page: 2933
  article-title: Bovine milk exosomes contain microRNA and mRNA and are taken up by human macrophages
  publication-title: Journal of Dairy Science
– volume: 61
  issue: 11
  year: 2017
  article-title: Human milk exosomes and their microRNAs survive digestion in vitro and are taken up by human intestinal cells
  publication-title: Molecular Nutrition & Food Research
– volume: 51
  start-page: 32
  issue: 3
  year: 2019
  article-title: Extracellular vesicle‐based therapeutics: Natural versus engineered targeting and trafficking
  publication-title: Experimental & Molecular Medicine
– volume: 89
  start-page: 123
  issue: 2
  year: 2016
  end-page: 134
  article-title: Analytical challenges of extracellular vesicle detection: A comparison of different techniques
  publication-title: Cytometry Part A
– year: 2022
– volume: 192
  start-page: 78
  issue: August 2018
  year: 2019
  end-page: 88
  article-title: Identification of protein markers for extracellular vesicle (EV) subsets in cow's milk
  publication-title: Journal of Proteomics
– volume: 101
  start-page: 321
  year: 2016
  end-page: 340
  article-title: Edible ginger‐derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis‐associated cancer
  publication-title: Biomaterials
– volume: 10
  issue: 3
  year: 2015
  article-title: Commercial cow milk contains physically stable extracellular vesicles expressing immunoregulatory TGF‐beta
  publication-title: PLoS ONE
– volume: 23
  start-page: 369
  issue: 5
  year: 2022
  end-page: 382
  article-title: Challenges and directions in studying cell–cell communication by extracellular vesicles
  publication-title: Nature Reviews Molecular Cell Biology
– volume: 10
  start-page: 69
  issue: 1
  year: 2020
  article-title: Fermentative foods: Microbiology, biochemistry, potential human health benefits and public health issues
  publication-title: Foods
– volume: 65
  start-page: 1
  issue: 10
  year: 2021
  end-page: 8
  article-title: Lipidomic profiling of human milk derived exosomes and their emerging roles in the prevention of necrotizing enterocolitis
  publication-title: Molecular Nutrition & Food Research
– volume: 9
  issue: 1
  year: 2019
  article-title: Concentrates of two subsets of extracellular vesicles from cow's milk modulate symptoms and inflammation in experimental colitis
  publication-title: Scientific Reports
– volume: 15
  start-page: 716
  issue: 3
  year: 2023
  article-title: Oral administration as a potential alternative for the delivery of small extracellular vesicles
  publication-title: Pharmaceutics
– volume: 3
  start-page: 56
  issue: 1
  year: 2023
  article-title: Extracellular vesicle analysis
  publication-title: Nature Reviews Methods Primers
– volume: 14
  start-page: 1
  issue: 2
  year: 2023
  end-page: 9
  article-title: Bacterial extracellular vesicles and associated functional proteins in fermented dairy products with
  publication-title: Frontiers in Microbiology
– volume: 14
  start-page: 1808
  issue: 9
  year: 2022
  article-title: Supplementation with milk‐derived extracellular vesicles shapes the gut microbiota and regulates the transcriptomic landscape in experimental colitis
  publication-title: Nutrients
– volume: 3
  start-page: 1
  issue: 1
  year: 2014
  end-page: 14
  article-title: Routes and mechanisms of extracellular vesicle uptake
  publication-title: Journal of Extracellular Vesicles
– volume: 10
  start-page: 415
  issue: 6
  year: 2010
  end-page: 426
  article-title: Securing the immune tightrope: Mononuclear phagocytes in the intestinal lamina propria
  publication-title: Nature Reviews Immunology
– volume: 12
  issue: 11
  year: 2023
  article-title: Physical association of low density lipoprotein particles and extracellular vesicles unveiled by single particle analysis
  publication-title: Journal of Extracellular Vesicles
– year: 2023
  article-title: Isolation and characteristics of extracellular vesicles produced by probiotics: Yeast CNCM I‐745 and bacterium K12
  publication-title: Probiotics and Antimicrobial Proteins
– volume: 58
  start-page: 1561
  issue: 7
  year: 2014
  end-page: 1573
  article-title: Interspecies communication between plant and mouse gut host cells through edible plant derived exosome‐like nanoparticles
  publication-title: Molecular Nutrition & Food Research
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 6
  article-title: A method for the isolation of exosomes from human and bovine milk
  publication-title: Journal of Nutrition and Metabolism
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  end-page: 12
  article-title: Confounding factors of ultrafiltration and protein analysis in extracellular vesicle research
  publication-title: Scientific Reports
– volume: 13
  issue: 2
  year: 2024
  article-title: Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
  publication-title: Journal of Extracellular Vesicles
– volume: 417
  start-page: 182
  issue: 6885
  year: 2002
  end-page: 187
  article-title: Identification of a factor that links apoptotic cells to phagocytes
  publication-title: Nature
– volume: 14
  start-page: 8
  issue: 1
  year: 2021
  end-page: 11
  article-title: Extracellular vesicles in food biotechnology
  publication-title: Microbial Biotechnology
– volume: 30
  start-page: 3.22.1
  issue: 1
  year: 2006
  end-page: 3.22.29
  article-title: Isolation and characterization of exosomes from cell culture supernatants and biological fluids
  publication-title: Current Protocols in Cell Biology
– volume: 19
  start-page: 13
  issue: 1
  year: 2023
  end-page: 20
  article-title: Entry and exit of extracellular vesicles to and from the blood circulation
  publication-title: Nature Nanotechnology
– volume: 5
  start-page: 194
  issue: 3
  year: 2004
  end-page: 210
  article-title: Protein–protein interactions of ESCRT complexes in the yeast
  publication-title: Traffic (Copenhagen, Denmark)
– volume: 13
  start-page: 1581
  issue: 5
  year: 2020
  end-page: 1596
  article-title: Proteomic characterization of extracellular vesicles produced by several wine yeast species
  publication-title: Microbial Biotechnology
– volume: 3
  issue: 1
  year: 2014
  article-title: Comparative analysis of discrete exosome fractions obtained by differential centrifugation
  publication-title: Journal of Extracellular Vesicles
– volume: 12
  start-page: 2908
  issue: 10
  year: 2020
  article-title: Anti‐inflammatory potential of cow, donkey and goat milk extracellular vesicles as revealed by metabolomic profile
  publication-title: Nutrients
– volume: 23
  start-page: 7554
  issue: 14
  year: 2022
  article-title: Extracellular vesicles—Oral therapeutics of the future
  publication-title: International Journal of Molecular Sciences
– volume: 17
  start-page: 3
  issue: 1
  year: 2019
  article-title: Exosomes of pasteurized milk: Potential pathogens of Western diseases
  publication-title: Journal of Translational Medicine
– volume: 5
  issue: 1
  year: 2015
  article-title: Gut microbe‐derived extracellular vesicles induce insulin resistance, thereby impairing glucose metabolism in skeletal muscle
  publication-title: Scientific Reports
– volume: 69
  start-page: 235
  issue: 2
  year: 2019
  end-page: 238
  article-title: Storage of extracellular vesicles in human milk, and microRNA Profiles in human milk exosomes and infant formulas
  publication-title: Journal of Pediatric Gastroenterology and Nutrition
– volume: 14
  issue: 4
  year: 2019
  article-title: Emerging roles of tetraspanins in plant inter‐cellular and inter‐kingdom communication
  publication-title: Plant Signaling & Behavior
– volume: 9
  start-page: 5924
  issue: 11
  year: 2023
  end-page: 5932
  article-title: Biomimicking extracellular vesicles with fully artificial ones: A rational design of EV‐BIOMIMETICS toward effective theranostic tools in nanomedicine
  publication-title: ACS Biomaterials Science & Engineering
– volume: 22
  start-page: 522
  issue: 3
  year: 2014
  end-page: 534
  article-title: Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit
  publication-title: Molecular Therapy
– volume: 11
  issue: 4
  year: 2022
  article-title: Considerations for extracellular vesicle and lipoprotein interactions in cell culture assays
  publication-title: Journal of Extracellular Vesicles
– volume: 40
  start-page: 453
  issue: 5
  year: 2018
  end-page: 464
  article-title: Molecular interactions at the surface of extracellular vesicles
  publication-title: Seminars in Immunopathology
– volume: 67
  issue: 19
  year: 2023
  article-title: Omics analysis of extracellular vesicles recovered from infant formula products and milk: Towards personalized infant nutrition
  publication-title: Molecular Nutrition & Food Research
– volume: 14
  start-page: 559
  issue: 8
  year: 2014
  end-page: 569
  article-title: Immune modulation by butyrophilins
  publication-title: Nature Reviews Immunology
– volume: 15
  start-page: 3412
  issue: 11
  year: 2016
  end-page: 3423
  article-title: Comprehensive proteomic analysis of human milk‐derived extracellular vesicles unveils a novel functional proteome distinct from other milk components
  publication-title: Molecular & Cellular Proteomics
– volume: 13
  start-page: 1
  issue: 2
  year: 2023
  end-page: 14
  article-title: Protein and lipid content of milk extracellular vesicles: A comparative overview
  publication-title: Life
– volume: 101
  start-page: 21
  issue: July 2017
  year: 2018
  end-page: 28
  article-title: Lactadherin: An unappreciated haemostasis regulator and potential therapeutic agent
  publication-title: Vascular Pharmacology
– volume: 11
  issue: 12
  year: 2022
  article-title: Plant‐derived extracellular vesicles: Recent advancements and current challenges on their use for biomedical applications
  publication-title: Journal of Extracellular Vesicles
– volume: 4
  issue: 1
  year: 2015
  article-title: Optimized exosome isolation protocol for cell culture supernatant and human plasma
  publication-title: Journal of Extracellular Vesicles
– volume: 7
  issue: 1
  year: 2018
  article-title: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines
  publication-title: Journal of Extracellular Vesicles
– volume: 21
  start-page: 1345
  issue: 7
  year: 2013
  end-page: 1357
  article-title: Grape exosome‐like nanoparticles induce intestinal stem cells and protect mice from DSS‐induced colitis
  publication-title: Molecular Therapy
– volume: 20
  start-page: 69
  issue: 1
  year: 2022
  article-title: Plant‐derived extracellular vesicles: A novel nanomedicine approach with advantages and challenges
  publication-title: Cell Communication and Signaling
– volume: 24
  start-page: 637
  issue: 5
  year: 2018
  end-page: 652.e8
  article-title: Plant‐derived exosomal microRNAs shape the gut microbiota
  publication-title: Cell Host & Microbe
– ident: e_1_2_11_59_1
  doi: 10.1038/s41467‐021‐24273‐8
– ident: e_1_2_11_67_1
  doi: 10.1002/mnfr.202300404
– ident: e_1_2_11_18_1
  doi: 10.3390/pharmaceutics15030716
– ident: e_1_2_11_34_1
  doi: 10.1002/jex2.54
– ident: e_1_2_11_53_1
  doi: 10.1186/s12964‐022‐00889‐1
– ident: e_1_2_11_60_1
  doi: 10.1080/20013078.2018.1440132
– ident: e_1_2_11_7_1
  doi: 10.1002/jex2.138
– ident: e_1_2_11_55_1
  doi: 10.1371/journal.pone.0121123
– ident: e_1_2_11_37_1
  doi: 10.1097/MPG.0000000000002363
– ident: e_1_2_11_66_1
  doi: 10.1126/sciadv.ade5041
– ident: e_1_2_11_70_1
  doi: 10.1038/s41580‐022‐00460‐3
– ident: e_1_2_11_30_1
  doi: 10.1080/15592324.2019.1581559
– ident: e_1_2_11_36_1
  doi: 10.1007/s12602‐023‐10085‐3
– ident: e_1_2_11_45_1
  doi: 10.3390/nu12102908
– ident: e_1_2_11_65_1
  doi: 10.7150/THNO.62046
– ident: e_1_2_11_46_1
  doi: 10.1186/s12967‐018‐1760‐8
– ident: e_1_2_11_64_1
  doi: 10.1080/20013078.2018.1535750
– ident: e_1_2_11_6_1
  doi: 10.1038/s41598‐017‐07288‐4
– ident: e_1_2_11_73_1
  doi: 10.1038/s41598‐017‐02599‐y
– ident: e_1_2_11_69_1
  doi: 10.1074/mcp.M116.060426
– ident: e_1_2_11_22_1
  doi: 10.1007/s10753‐021‐01618‐5
– ident: e_1_2_11_33_1
  doi: 10.1016/j.vph.2017.11.006
– ident: e_1_2_11_11_1
  doi: 10.1038/s41556‐022‐00983‐z
– ident: e_1_2_11_31_1
  doi: 10.1038/mt.2013.64
– ident: e_1_2_11_9_1
  doi: 10.3390/life13020401
– ident: e_1_2_11_17_1
  doi: 10.3390/ijms23147554
– ident: e_1_2_11_57_1
  doi: 10.1021/acsbiomaterials.2c01025
– ident: e_1_2_11_76_1
  doi: 10.1002/jev2.12404
– ident: e_1_2_11_74_1
  doi: 10.3390/foods10010069
– ident: e_1_2_11_68_1
– ident: e_1_2_11_26_1
  doi: 10.1016/j.xphs.2022.08.032
– ident: e_1_2_11_32_1
  doi: 10.1038/nature22341
– ident: e_1_2_11_35_1
  doi: 10.1093/jn/nxab031
– ident: e_1_2_11_47_1
  doi: 10.1111/1751‐7915.13614
– ident: e_1_2_11_38_1
  doi: 10.1002/jev2.12283
– ident: e_1_2_11_52_1
  doi: 10.1038/s12276‐019‐0223‐5
– ident: e_1_2_11_13_1
  doi: 10.1093/jn/133.4.975
– ident: e_1_2_11_40_1
  doi: 10.3402/jev.v4.27031
– ident: e_1_2_11_54_1
  doi: 10.3389/fmicb.2023.1165202
– ident: e_1_2_11_39_1
  doi: 10.1002/mnfr.201700082
– ident: e_1_2_11_58_1
  doi: 10.1002/jev2.12194
– ident: e_1_2_11_14_1
  doi: 10.1002/mnfr.202000845
– ident: e_1_2_11_63_1
  doi: 10.1002/0471143030.cb0322s30
– ident: e_1_2_11_3_1
  doi: 10.1002/jev2.12245
– ident: e_1_2_11_27_1
  doi: 10.1038/s41565‐023‐01522‐z
– ident: e_1_2_11_75_1
  doi: 10.1038/mt.2013.190
– ident: e_1_2_11_5_1
  doi: 10.1016/j.jprot.2018.08.010
– ident: e_1_2_11_50_1
  doi: 10.1002/mnfr.201300729
– ident: e_1_2_11_24_1
  doi: 10.1038/s41477‐021‐00863‐8
– ident: e_1_2_11_71_1
  doi: 10.1038/nri2778
– ident: e_1_2_11_16_1
  doi: 10.1038/srep15878
– ident: e_1_2_11_25_1
  doi: 10.1038/s43586‐023‐00240‐z
– ident: e_1_2_11_49_1
  doi: 10.1111/1751‐7915.13657
– ident: e_1_2_11_72_1
  doi: 10.1155/2019/5764740
– ident: e_1_2_11_20_1
  doi: 10.1002/cyto.a.22795
– ident: e_1_2_11_61_1
  doi: 10.3402/jev.v3.24214
– ident: e_1_2_11_48_1
  doi: 10.3390/ijms241411340
– ident: e_1_2_11_77_1
  doi: 10.1016/j.biomaterials.2016.06.018
– ident: e_1_2_11_10_1
  doi: 10.1002/jev2.12202
– ident: e_1_2_11_12_1
  doi: 10.1007/s00281‐018‐0682‐0
– ident: e_1_2_11_19_1
  doi: 10.3390/nu14091808
– ident: e_1_2_11_28_1
  doi: 10.3168/jds.2014‐9076
– ident: e_1_2_11_42_1
– ident: e_1_2_11_56_1
  doi: 10.1002/jev2.12164
– ident: e_1_2_11_43_1
  doi: 10.1038/s41556‐018‐0250‐9
– ident: e_1_2_11_8_1
  doi: 10.1111/j.1600‐0854.2004.00169.x
– ident: e_1_2_11_23_1
  doi: 10.1038/417182a
– ident: e_1_2_11_29_1
  doi: 10.3402/jev.v3.25011
– ident: e_1_2_11_41_1
  doi: 10.1002/jev2.12376
– ident: e_1_2_11_62_1
  doi: 10.1016/j.chom.2018.10.001
– ident: e_1_2_11_2_1
  doi: 10.1038/nri3715
– ident: e_1_2_11_44_1
  doi: 10.1016/j.xphs.2016.07.022
– ident: e_1_2_11_21_1
  doi: 10.3168/jds.2018‐14946
– ident: e_1_2_11_4_1
  doi: 10.1038/s41598‐019‐51092‐1
– ident: e_1_2_11_15_1
  doi: 10.1021/acs.jafc.0c04605
– ident: e_1_2_11_51_1
  doi: 10.3402/jev.v3.24641
SSID ssj0002913925
Score 2.301427
Snippet Food‐derived extracellular vesicles (FDEVs) such as those found in mammalian milk and plants are of great interest for both their health benefits and ability...
Food-derived extracellular vesicles (FDEVs) such as those found in mammalian milk and plants are of great interest for both their health benefits and ability...
Abstract Food‐derived extracellular vesicles (FDEVs) such as those found in mammalian milk and plants are of great interest for both their health benefits and...
Abstract Food‐derived extracellular vesicles (FDEVs) such as those found in mammalian milk and plants are of great interest for both their health benefits and...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e154
SubjectTerms EV biodistribution
EV therapeutics
EV uptake
Extracellular vesicles
food
health
nutrition
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxUxFA5SENyIb6daiSDuhs7kMTNx10ovpaBuLNxdyGu0LjKXO_cW3fUPFPyN_pKek9wp96Lixt2QMHmcR_IlnHyHkDdN52vZm6rsOm5KTK9dWu5lKYyRrTOtcIln-8PH5vRcnM3lfCvVF8aEZXrgLLhDLpQNTLEGPEHUXW8t88orHoKDLlSfVt9KbR2mcA1myHbJ5MQ2W7HDb-E7w2uUnf0n0fT_CVv-HiK5DV3T3jN7QO5vQCM9yoN9SO6E-IjczWkkfzwm17Nh8L-ufnqwpsvgKay3S4M38hhiSi_DmELf6EWkgPZoyspHv5hxtRyQLAJ8HBvHX1bv6KcFAvJ1TESrFBAtXUxwfYSm40TeT030NIeRQ_HWK67xCTmfnXx-f1pu0iyUDrxZlCA-33vWW1d51zYytEL1jQWcUztlQe7WKo4CZ5zb3gbr6rr13kvD8bvhT8leHGJ4TmgPx8PKMOEAFwgngkIAVgECq7g1kjcFeT0JXy8ym4bOvMlMo4I0KKggx6iV23rkv04FYBV6YxX6X1YBHU061eAvKHITw7AeNa5pSPHDq4I8yzq-7QrBm5ItK0i3o_2dsezWxIuviZMbX1PA3GVB3iZD-ev09NnJHGCW2P8f03xB7jEAWTkA8yXZWy3X4QBA0sq-Sv5wAx0HFlM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley-Blackwell Open Access Collection
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoEVIviDcpULkS4hY18SOJuUHVVVUJyoFKe7P8SmkPzmqzW8GtfwCJ38gvYcbZbLuiSNwiO37OjP3ZGn9DyNuq8aVsTZE3DTc5htfOLfcyF8bI2plauMSz_elzdXwmTqZyuvKqxLcwAz_E-sINLSOt12jgxvYHN6Shl-E7w3uRLXIfCWNQu5n4sr5fYch3mWKuMkDUOWvKcuSeLdjBWHhjN0qk_Xchzb8dJm8D2bQTTR6RhysIST8MMn9M7oX4hDwYgkr-eEp-TrrO_77-5UG3roKnsPrODd7Po8MpvQp9coSjF5EC9qMpRh89N_1i3iF1BFg8Vo5FFu_p6Qzh-TIm2lUK-JbORvDeQ9VxpPKnJno6OJVD8q03Xf0zcjY5-np4nK-CLuQObFvkcAT0rWetdYV3dSVDLVRbWUA9pVO24rW1iiseAuPctjZYV5a1914ajt8Vf062YxfDS0JbOCwWhgkHKEE4ERTCsQLwWMGtkbzKyP44-Xo2cGvogUWZaRSQBgFl5CNKZZ2PbNgpoZuf65VxaS6UDUwx6F0lyqa1lnnlsZMO1FC10NAoUw3Wg1NuYuiWvcYVDgl_eJGRF4OM100hlFOyZhlpNqS_0ZfNnHjxLTF049sKGLvMyLukKP8cnj45mgLoErv_--MrssMAVg0ul6_J9mK-DG8AFi3sXtL_P4yBDpk
  priority: 102
  providerName: Wiley-Blackwell
Title Food‐derived extracellular vesicles in the human gastrointestinal tract: Opportunities for personalised nutrition and targeted therapeutics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjex2.154
https://www.ncbi.nlm.nih.gov/pubmed/38939572
https://www.proquest.com/docview/3073235730
https://pubmed.ncbi.nlm.nih.gov/PMC11080705
https://doaj.org/article/349be2926376418fbb2d9d93eecfa09f
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa6RUhcEOUZoCsjIW7pJn4kMTda7aqq1LJCVNpb5FfKIpqsNrsV3PgDSPxGfgkzzqbaFXDhFtmKPfbM2J-t8TeEvM4Kl8pKJ3FRcB1jeu3YcCdjobXMrc6FDTzb5xfZ6aU4m8nZHsn6tzAhaN-a-VH95fqonn8KsZWLazvq48RG0_MTDF0HU5WjARmAhW6d0XH9Zch0yWTPNJuw0Wf_leEVys7eEyj6_4Yr_wyP3IatYd-ZPCD3N4CRvusEOyB7vn5I7nYpJL89Ij8mTeN-ff_pwJJuvKOw1i413sZjeCm98W0YDp3XFJAeDRn56JVuV8sGiSLAv7Fx_GX1lr5fIBhf14FklQKapYseqrfQdN0T91NdO9qFkEPx1guu9jG5nIw_npzGmxQLsQVPFjEc-FzlWGVs4myeSZ8LVWUGME5qlcl4boziinvPODeV8camae6ck5rjd8afkP26qf0zQis4GiaaCQuYQFjhFYKvBNBXwo2WPIvIq37yy0XHpFF2nMmsRAWVoKCIHKNWbuuR-zoUNMurcmMBJRfKeKYYSJeJtKiMYU45FNKC0akKOup1WoKv4JTr2jfrtsT1DOl9eBKRp52Ob7tC4KZkziJS7Gh_R5bdGjDPwMfdm2NE3gRD-efwyrPxDCCWeP7_fbwg9xjAqi7k8iXZXy3X_hBg0coMyYCJ6ZDcOR5fTD8Mw-XCMHjGb4n1GCw
link.rule.ids 230,315,730,783,787,867,888,2109,11576,27938,27939,33759,46066,46490,53806,53808
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB2VIgQb3g_zHCTEzok9Dz_YQdUolKawaEV21rxcAtSOYqcCVvwAEt_Il3DvOK4SHgvYWR55Zux75vqMdXwuIU-SzMayVFGYZVyFWF471NzKUCglU6NSYbzP9uQgGR-JvamcbpGk_xfGi_aNng2qjyeDavbOayvnJ2bY68SGbyY7KF0HqMrhOXIeFmyUrO3SMQMz9LpksveajdjwvfvE8CPKxtvHm_T_iVn-LpBcJ67-zTO6Qt72c-4EJx8Gy1YPzJdf7Bz__aaukssrMkqfd-3XyJarrpMLXXnKzzfIt1Fd2x9fv1tA6amzFPL4QuGXfpSu0lPX-F7prKLAIqmv9kePVdMuajShgNyBneMl7TP6eo5Ef1l5A1cKTJnO-21AA11XfVEAqipLO3k6nF77O6y5SY5Gu4c743BVviE0kCVECJtJW1pWahNZkybSpSIvEw38KTa5Tniqdc5z7hzjXJfaaRPHqbVWKo7HCb9Ftqu6cncILWHbGSkmDPANYYTLkdhFwOwirpXkSUAe92Et5p1LR9H5MbMCQ19A6APyAuN91o6-2v5EvTguVoEouMi1YzmD2SUizkqtmc0tTtIAoPMSBurRUsA6xEeuKlcvmwJzJVoH8Sggtzv0nA2FpDCXKQtItoGrjblstgBKvNd3j4qAPPUQ_OvtFXu7U6Bv4u7_j_GIXBwfTvaL_ZcHr-6RSwzoWyftvE-228XSPQD61eqHfq39BIWCNuU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWgCMSGd2F4GgmxyySxnRc7KB2VQksXVBqJheVXygB1RpOZCljxA0h8I1_Cvc6kmuGx6S7Kw3Zyj2-Oo5NzCXmSlzbNapVEZclVhOW1I81tFgmlssKoQpjgs723n-8cit1xNl6qKtulrNIbPRn6z8dDP_kQtJXTYxP3OrH4YG8LpesA1Sye2jo-Ty7ApE3KlZU6ZmGGfpcs6_1mExZ_dF8YfkhZewMFo_5_scu_RZKr5DW8fUZXyft-3J3o5NNwMddD8-0PS8ez3dg1cmVJSunz7pzr5JzzN8jFrkzl15vkx6hp7K_vPy2g9cRZCvl8pvCLP0pY6YlrQ8t04imwSRqq_tEj1c5nDZpRQA7BxvGS-TP6doqEf-GDkSsFxkyn_XKghaZ9XxyAKm9pJ1OH3St_ibW3yOFo-93WTrQs4xAZyBYigkWlrS2rtUmsKfLMFaKqcw08KjWVznmhdcUr7hzjXNfaaZOmhbU2Uxy3c75JNnzj3R1Ca1h-JooJA7xDGOEqJHgJMLyEa5XxfEAe96GV086tQ3a-zExi-CWEf0BeYMxPj6O_dtjRzI7kMhiSi0o7VjEYXS7Sstaa2criIA0Au6qhox4xEuYjPnLlXbNoJeZMtBDiyYDc7hB02hWSwyor2ICUa9haG8v6EUBK8PzukTEgTwMM_3t7cnd7DDRO3D17H4_IpYOXI_nm1f7re-QyAxbXKTzvk435bOEeAAub64dhuv0G_Gw5ZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Food-derived+extracellular+vesicles+in+the+human+gastrointestinal+tract%3A+Opportunities+for+personalised+nutrition+and+targeted+therapeutics&rft.jtitle=Journal+of+extracellular+biology&rft.au=Turner%2C+Natalie+P&rft.date=2024-05-01&rft.issn=2768-2811&rft.eissn=2768-2811&rft.volume=3&rft.issue=5&rft.spage=e154&rft_id=info:doi/10.1002%2Fjex2.154&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2768-2811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2768-2811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2768-2811&client=summon