Food‐derived extracellular vesicles in the human gastrointestinal tract: Opportunities for personalised nutrition and targeted therapeutics
Food‐derived extracellular vesicles (FDEVs) such as those found in mammalian milk and plants are of great interest for both their health benefits and ability to act as biological nanocarriers. While the extracellular vesicle (EV) field is expanding rapidly to perform characterisation studies on FDEV...
Saved in:
Published in | Journal of extracellular biology Vol. 3; no. 5; pp. e154 - n/a |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley and Sons Inc
01.05.2024
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Food‐derived extracellular vesicles (FDEVs) such as those found in mammalian milk and plants are of great interest for both their health benefits and ability to act as biological nanocarriers. While the extracellular vesicle (EV) field is expanding rapidly to perform characterisation studies on FDEVs from plants, yeasts and bacteria, species‐specific differences in EV uptake and function in the human gastrointestinal (GI) tract are poorly understood. Moreover, the effects of food processing on the EV surfaceome and intraluminal content also raises questions surrounding biological viability once consumed. Here, I present a case for increasing community‐wide focus on understanding the cellular uptake of FDEVs from different animal, plant, yeast, and bacterial species and how this may impact their function in the human, which will have implications for human health and therapeutic strategies alike. |
---|---|
AbstractList | Abstract Food‐derived extracellular vesicles (FDEVs) such as those found in mammalian milk and plants are of great interest for both their health benefits and ability to act as biological nanocarriers. While the extracellular vesicle (EV) field is expanding rapidly to perform characterisation studies on FDEVs from plants, yeasts and bacteria, species‐specific differences in EV uptake and function in the human gastrointestinal (GI) tract are poorly understood. Moreover, the effects of food processing on the EV surfaceome and intraluminal content also raises questions surrounding biological viability once consumed. Here, I present a case for increasing community‐wide focus on understanding the cellular uptake of FDEVs from different animal, plant, yeast, and bacterial species and how this may impact their function in the human, which will have implications for human health and therapeutic strategies alike. Food-derived extracellular vesicles (FDEVs) such as those found in mammalian milk and plants are of great interest for both their health benefits and ability to act as biological nanocarriers. While the extracellular vesicle (EV) field is expanding rapidly to perform characterisation studies on FDEVs from plants, yeasts and bacteria, species-specific differences in EV uptake and function in the human gastrointestinal (GI) tract are poorly understood. Moreover, the effects of food processing on the EV surfaceome and intraluminal content also raises questions surrounding biological viability once consumed. Here, I present a case for increasing community-wide focus on understanding the cellular uptake of FDEVs from different animal, plant, yeast, and bacterial species and how this may impact their function in the human, which will have implications for human health and therapeutic strategies alike.Food-derived extracellular vesicles (FDEVs) such as those found in mammalian milk and plants are of great interest for both their health benefits and ability to act as biological nanocarriers. While the extracellular vesicle (EV) field is expanding rapidly to perform characterisation studies on FDEVs from plants, yeasts and bacteria, species-specific differences in EV uptake and function in the human gastrointestinal (GI) tract are poorly understood. Moreover, the effects of food processing on the EV surfaceome and intraluminal content also raises questions surrounding biological viability once consumed. Here, I present a case for increasing community-wide focus on understanding the cellular uptake of FDEVs from different animal, plant, yeast, and bacterial species and how this may impact their function in the human, which will have implications for human health and therapeutic strategies alike. Food‐derived extracellular vesicles (FDEVs) such as those found in mammalian milk and plants are of great interest for both their health benefits and ability to act as biological nanocarriers. While the extracellular vesicle (EV) field is expanding rapidly to perform characterisation studies on FDEVs from plants, yeasts and bacteria, species‐specific differences in EV uptake and function in the human gastrointestinal (GI) tract are poorly understood. Moreover, the effects of food processing on the EV surfaceome and intraluminal content also raises questions surrounding biological viability once consumed. Here, I present a case for increasing community‐wide focus on understanding the cellular uptake of FDEVs from different animal, plant, yeast, and bacterial species and how this may impact their function in the human, which will have implications for human health and therapeutic strategies alike. Abstract Food‐derived extracellular vesicles (FDEVs) such as those found in mammalian milk and plants are of great interest for both their health benefits and ability to act as biological nanocarriers. While the extracellular vesicle (EV) field is expanding rapidly to perform characterisation studies on FDEVs from plants, yeasts and bacteria, species‐specific differences in EV uptake and function in the human gastrointestinal (GI) tract are poorly understood. Moreover, the effects of food processing on the EV surfaceome and intraluminal content also raises questions surrounding biological viability once consumed. Here, I present a case for increasing community‐wide focus on understanding the cellular uptake of FDEVs from different animal, plant, yeast, and bacterial species and how this may impact their function in the human, which will have implications for human health and therapeutic strategies alike. |
Author | Turner, Natalie P. |
AuthorAffiliation | 1 Faculty of Health Queensland University of Technology Kelvin Grove Queensland Australia |
AuthorAffiliation_xml | – name: 1 Faculty of Health Queensland University of Technology Kelvin Grove Queensland Australia |
Author_xml | – sequence: 1 givenname: Natalie P. orcidid: 0000-0002-2641-2295 surname: Turner fullname: Turner, Natalie P. email: natalie.turner@connect.qut.edu.au organization: Queensland University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38939572$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ksluFDEQhlsoiCxE4gmQj1w6eOllzAWhKIGgSLmAxM3yUp7xqMdubPckufECSDxjngQ3E0Jy4ORS1V9fuZbDas8HD1X1iuATgjF9u4YbekLa5ll1QPtuUdMFIXuP7P3qOKU1LlJOGKfti2qfLTjjbU8Pqp_nIZi7H78MRLcFg-AmR6lhGKZBRrSF5PQACTmP8grQatpIj5Yy5Ricz5Cy83JAc0p-h67GMcQ8eZddSbEhohFiCkXhUkH7KccSCh5Jb1CWcQm5uAs3yhGm7HR6WT23ckhwfP8eVV_Pz76cfqovrz5enH64rDWjtKkpwcYaapXGRvddC33DbadIy4nmqmO9UqU_BkAZU1aB0oT0xphWstnu2FF1seOaINdijG4j460I0ok_jhCXQsY8ty5YwxVQTgu1a8jCKkUNNzNcW4m5Laz3O9Y4qQ0YDb6MY3gCfRrxbiWWYSsIwQvc47YQ3twTYvg-laGKjUvzDqSHMCXBcM8oa3uG_0l1DClFsA91CBbzNYj5GkS5hiJ9_fhfD8K_uy-Ceie4dgPc_hckPp99ozPwN1oHxvg |
CitedBy_id | crossref_primary_10_1002_pmic_202400074 |
Cites_doi | 10.1038/s41467‐021‐24273‐8 10.1002/mnfr.202300404 10.3390/pharmaceutics15030716 10.1002/jex2.54 10.1186/s12964‐022‐00889‐1 10.1080/20013078.2018.1440132 10.1002/jex2.138 10.1371/journal.pone.0121123 10.1097/MPG.0000000000002363 10.1126/sciadv.ade5041 10.1038/s41580‐022‐00460‐3 10.1080/15592324.2019.1581559 10.1007/s12602‐023‐10085‐3 10.3390/nu12102908 10.7150/THNO.62046 10.1186/s12967‐018‐1760‐8 10.1080/20013078.2018.1535750 10.1038/s41598‐017‐07288‐4 10.1038/s41598‐017‐02599‐y 10.1074/mcp.M116.060426 10.1007/s10753‐021‐01618‐5 10.1016/j.vph.2017.11.006 10.1038/s41556‐022‐00983‐z 10.1038/mt.2013.64 10.3390/life13020401 10.3390/ijms23147554 10.1021/acsbiomaterials.2c01025 10.1002/jev2.12404 10.3390/foods10010069 10.1016/j.xphs.2022.08.032 10.1038/nature22341 10.1093/jn/nxab031 10.1111/1751‐7915.13614 10.1002/jev2.12283 10.1038/s12276‐019‐0223‐5 10.1093/jn/133.4.975 10.3402/jev.v4.27031 10.3389/fmicb.2023.1165202 10.1002/mnfr.201700082 10.1002/jev2.12194 10.1002/mnfr.202000845 10.1002/0471143030.cb0322s30 10.1002/jev2.12245 10.1038/s41565‐023‐01522‐z 10.1038/mt.2013.190 10.1016/j.jprot.2018.08.010 10.1002/mnfr.201300729 10.1038/s41477‐021‐00863‐8 10.1038/nri2778 10.1038/srep15878 10.1038/s43586‐023‐00240‐z 10.1111/1751‐7915.13657 10.1155/2019/5764740 10.1002/cyto.a.22795 10.3402/jev.v3.24214 10.3390/ijms241411340 10.1016/j.biomaterials.2016.06.018 10.1002/jev2.12202 10.1007/s00281‐018‐0682‐0 10.3390/nu14091808 10.3168/jds.2014‐9076 10.1002/jev2.12164 10.1038/s41556‐018‐0250‐9 10.1111/j.1600‐0854.2004.00169.x 10.1038/417182a 10.3402/jev.v3.25011 10.1002/jev2.12376 10.1016/j.chom.2018.10.001 10.1038/nri3715 10.1016/j.xphs.2016.07.022 10.3168/jds.2018‐14946 10.1038/s41598‐019‐51092‐1 10.1021/acs.jafc.0c04605 10.3402/jev.v3.24641 |
ContentType | Journal Article |
Copyright | 2024 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Extracellular Vesicles. 2024 The Authors. Journal of Extracellular Biology published by Wiley Periodicals LLC on behalf of International Society for Extracellular Vesicles. |
Copyright_xml | – notice: 2024 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Extracellular Vesicles. – notice: 2024 The Authors. Journal of Extracellular Biology published by Wiley Periodicals LLC on behalf of International Society for Extracellular Vesicles. |
DBID | 24P WIN NPM AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1002/jex2.154 |
DatabaseName | Wiley-Blackwell Open Access Collection Wiley Online Library Free Content PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | TURNER |
EISSN | 2768-2811 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_349be2926376418fbb2d9d93eecfa09f 10_1002_jex2_154 38939572 JEX2154 |
Genre | article Journal Article |
GroupedDBID | 0R~ 24P AAHHS ABDBF ACCFJ ADPDF AEEZP AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN BBNVY BENPR BHPHI CCPQU EBS GROUPED_DOAJ HCIFZ M7P M~E OK1 OVD OVEED PIMPY RPM TEORI WIN NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c3224-210dfd2fbc0dc765e749f6b1591c9b637bb9393ee233bfbebc117ddd5a3ebc163 |
IEDL.DBID | RPM |
ISSN | 2768-2811 |
IngestDate | Tue Oct 22 15:16:04 EDT 2024 Tue Sep 17 21:28:51 EDT 2024 Sat Oct 26 04:49:28 EDT 2024 Thu Sep 12 17:08:09 EDT 2024 Sat Nov 02 11:54:11 EDT 2024 Sat Aug 24 00:50:42 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | EV biodistribution nutrition EV uptake Extracellular vesicles EV therapeutics health food |
Language | English |
License | Attribution 2024 The Authors. Journal of Extracellular Biology published by Wiley Periodicals LLC on behalf of International Society for Extracellular Vesicles. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3224-210dfd2fbc0dc765e749f6b1591c9b637bb9393ee233bfbebc117ddd5a3ebc163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2641-2295 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11080705/ |
PMID | 38939572 |
PQID | 3073235730 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_349be2926376418fbb2d9d93eecfa09f pubmedcentral_primary_oai_pubmedcentral_nih_gov_11080705 proquest_miscellaneous_3073235730 crossref_primary_10_1002_jex2_154 pubmed_primary_38939572 wiley_primary_10_1002_jex2_154_JEX2154 |
PublicationCentury | 2000 |
PublicationDate | May 2024 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: May 2024 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Journal of extracellular biology |
PublicationTitleAlternate | J Extracell Biol |
PublicationYear | 2024 |
Publisher | John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley and Sons Inc – name: Wiley |
References | 2017; 7 2010; 10 2019; 2019 2021; 65 2006; 30 2019; 51 2013; 21 2023; 9 2019; 14 2022; 23 2019; 17 2022; 24 2016; 101 2004; 5 2020; 13 2018; 40 2020; 12 2022; 20 2023; 3 2020; 10 2014; 22 2018; 7 2023; 24 2014; 3 2023; 67 2019; 21 2019; 69 2014; 14 2021; 151 2014; 58 2024; 3 2016; 89 2017; 61 2021; 7 2019; 9 2023; 13 2019; 192 2015; 5 2023; 14 2015; 4 2023; 12 2023; 15 2018; 101 2023; 19 2015; 98 2015; 10 2022; 45 2019; 102 2002; 417 2024; 13 2016; 15 2003; 133 2018; 24 2021; 14 2021; 10 2021; 12 2021; 11 2023 2022 2023; 112 2022; 14 2020; 68 2022; 1 2022; 11 2017; 546 2017; 106 e_1_2_11_70_1 e_1_2_11_72_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 e_1_2_11_60_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_68_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_62_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_64_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_59_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_50_1 e_1_2_11_71_1 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_56_1 e_1_2_11_77_1 e_1_2_11_58_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_54_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_61_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 |
References_xml | – volume: 12 start-page: 3950 issue: 1 year: 2021 article-title: Oral administration of bovine milk‐derived extracellular vesicles induces senescence in the primary tumor but accelerates cancer metastasis publication-title: Nature Communications – volume: 112 start-page: 525 issue: 2 year: 2023 end-page: 534 article-title: Functional characterization of extracellular vesicles from Baker's yeast as a novel vaccine material for immune cell maturation publication-title: Journal of Pharmaceutical Sciences – volume: 3 issue: 2 year: 2024 article-title: Scalable purification of extracellular vesicles with high yield and purity using multimodal flowthrough chromatography publication-title: Journal of Extracellular Biology – volume: 133 start-page: 975 issue: 4 year: 2003 end-page: 984 article-title: A short history of nutritional science: Part 2 (1885–1912) publication-title: The Journal of Nutrition – volume: 11 issue: 8 year: 2022 article-title: Characterization of protein complexes in extracellular vesicles by intact extracellular vesicle crosslinking mass spectrometry (iEVXL) publication-title: Journal of Extracellular Vesicles – volume: 11 issue: 3 year: 2022 article-title: Light‐induced high‐efficient cellular production of immune functional extracellular vesicles publication-title: Journal of Extracellular Vesicles – volume: 45 start-page: 1254 issue: 3 year: 2022 end-page: 1268 article-title: Human breast milk–derived exosomal miR‐148a‐3p protects against necrotizing enterocolitis by regulating p53 and sirtuin 1 publication-title: Inflammation – volume: 21 start-page: 9 issue: 1 year: 2019 end-page: 17 article-title: Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell‐to‐cell communication publication-title: Nature Cell Biology – volume: 151 start-page: 1416 issue: 6 year: 2021 end-page: 1425 article-title: Regular industrial processing of bovine milk impacts the integrity and molecular composition of extracellular vesicles publication-title: Journal of Nutrition – volume: 7 start-page: 7072 issue: 1 year: 2017 article-title: Bacterial membrane vesicles transport their DNA cargo into host cells publication-title: Scientific Reports – volume: 9 start-page: 1 issue: 15 year: 2023 end-page: 20 article-title: Milk‐derived extracellular vesicles protect intestinal barrier integrity in the gut‐liver axis publication-title: Science Advances – volume: 546 start-page: 498 issue: 7659 year: 2017 end-page: 503 article-title: Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer publication-title: Nature – volume: 11 start-page: 8570 issue: 17 year: 2021 end-page: 8586 article-title: Milk‐derived extracellular vesicles alleviate ulcerative colitis by regulating the gut immunity and reshaping the gut microbiota publication-title: Theranostics – volume: 24 start-page: 1322 issue: 9 year: 2022 end-page: 1325 article-title: Opportunities and challenges in studying the extracellular vesicle corona publication-title: Nature Cell Biology – volume: 7 start-page: 342 issue: 3 year: 2021 end-page: 352 article-title: RNA‐binding proteins contribute to small RNA loading in plant extracellular vesicles publication-title: Nature Plants – volume: 68 start-page: 12692 issue: 45 year: 2020 end-page: 12701 article-title: Comprehensive analysis of the glycome and glycoproteome of bovine milk‐derived exosomes publication-title: Journal of Agricultural and Food Chemistry – volume: 24 issue: 14 year: 2023 article-title: Exploring extracellular vesicles of probiotic yeast as carriers of biologically active molecules transferred to human intestinal cells publication-title: International Journal of Molecular Sciences – volume: 7 issue: 1 year: 2018 article-title: Biocompatibility of highly purified bovine milk‐derived extracellular vesicles publication-title: Journal of Extracellular Vesicles – volume: 3 issue: 1 year: 2014 article-title: Unfiltered beer ‐ a rich source of yeast extracellular vesicles. In: Third International Meeting of ISEV 2014: Rotterdam, The Netherlands, April 30th–May 3rd, 2014 publication-title: Journal of Extracellular Vesicles – volume: 106 start-page: 168 issue: 1 year: 2017 end-page: 175 article-title: Role of phosphatidylserine‐derived negative surface charges in the recognition and uptake of intravenously injected B16BL6‐derived exosomes by macrophages publication-title: Journal of Pharmaceutical Sciences – volume: 1 issue: 9 year: 2022 article-title: Human milk extracellular vesicles preserve bronchial epithelial barrier integrity and reduce TLR3‐induced inflammation in vitro publication-title: Journal of Extracellular Biology – volume: 10 issue: 13 year: 2021 article-title: Proteomic dissection of large extracellular vesicle surfaceome unravels interactive surface platform publication-title: Journal of Extracellular Vesicles – volume: 102 start-page: 985 issue: 2 year: 2019 end-page: 996 article-title: Yak‐milk‐derived exosomes promote proliferation of intestinal epithelial cells in an hypoxic environment publication-title: Journal of Dairy Science – volume: 98 start-page: 2920 issue: 5 year: 2015 end-page: 2933 article-title: Bovine milk exosomes contain microRNA and mRNA and are taken up by human macrophages publication-title: Journal of Dairy Science – volume: 61 issue: 11 year: 2017 article-title: Human milk exosomes and their microRNAs survive digestion in vitro and are taken up by human intestinal cells publication-title: Molecular Nutrition & Food Research – volume: 51 start-page: 32 issue: 3 year: 2019 article-title: Extracellular vesicle‐based therapeutics: Natural versus engineered targeting and trafficking publication-title: Experimental & Molecular Medicine – volume: 89 start-page: 123 issue: 2 year: 2016 end-page: 134 article-title: Analytical challenges of extracellular vesicle detection: A comparison of different techniques publication-title: Cytometry Part A – year: 2022 – volume: 192 start-page: 78 issue: August 2018 year: 2019 end-page: 88 article-title: Identification of protein markers for extracellular vesicle (EV) subsets in cow's milk publication-title: Journal of Proteomics – volume: 101 start-page: 321 year: 2016 end-page: 340 article-title: Edible ginger‐derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis‐associated cancer publication-title: Biomaterials – volume: 10 issue: 3 year: 2015 article-title: Commercial cow milk contains physically stable extracellular vesicles expressing immunoregulatory TGF‐beta publication-title: PLoS ONE – volume: 23 start-page: 369 issue: 5 year: 2022 end-page: 382 article-title: Challenges and directions in studying cell–cell communication by extracellular vesicles publication-title: Nature Reviews Molecular Cell Biology – volume: 10 start-page: 69 issue: 1 year: 2020 article-title: Fermentative foods: Microbiology, biochemistry, potential human health benefits and public health issues publication-title: Foods – volume: 65 start-page: 1 issue: 10 year: 2021 end-page: 8 article-title: Lipidomic profiling of human milk derived exosomes and their emerging roles in the prevention of necrotizing enterocolitis publication-title: Molecular Nutrition & Food Research – volume: 9 issue: 1 year: 2019 article-title: Concentrates of two subsets of extracellular vesicles from cow's milk modulate symptoms and inflammation in experimental colitis publication-title: Scientific Reports – volume: 15 start-page: 716 issue: 3 year: 2023 article-title: Oral administration as a potential alternative for the delivery of small extracellular vesicles publication-title: Pharmaceutics – volume: 3 start-page: 56 issue: 1 year: 2023 article-title: Extracellular vesicle analysis publication-title: Nature Reviews Methods Primers – volume: 14 start-page: 1 issue: 2 year: 2023 end-page: 9 article-title: Bacterial extracellular vesicles and associated functional proteins in fermented dairy products with publication-title: Frontiers in Microbiology – volume: 14 start-page: 1808 issue: 9 year: 2022 article-title: Supplementation with milk‐derived extracellular vesicles shapes the gut microbiota and regulates the transcriptomic landscape in experimental colitis publication-title: Nutrients – volume: 3 start-page: 1 issue: 1 year: 2014 end-page: 14 article-title: Routes and mechanisms of extracellular vesicle uptake publication-title: Journal of Extracellular Vesicles – volume: 10 start-page: 415 issue: 6 year: 2010 end-page: 426 article-title: Securing the immune tightrope: Mononuclear phagocytes in the intestinal lamina propria publication-title: Nature Reviews Immunology – volume: 12 issue: 11 year: 2023 article-title: Physical association of low density lipoprotein particles and extracellular vesicles unveiled by single particle analysis publication-title: Journal of Extracellular Vesicles – year: 2023 article-title: Isolation and characteristics of extracellular vesicles produced by probiotics: Yeast CNCM I‐745 and bacterium K12 publication-title: Probiotics and Antimicrobial Proteins – volume: 58 start-page: 1561 issue: 7 year: 2014 end-page: 1573 article-title: Interspecies communication between plant and mouse gut host cells through edible plant derived exosome‐like nanoparticles publication-title: Molecular Nutrition & Food Research – volume: 2019 start-page: 1 year: 2019 end-page: 6 article-title: A method for the isolation of exosomes from human and bovine milk publication-title: Journal of Nutrition and Metabolism – volume: 7 start-page: 1 issue: 1 year: 2017 end-page: 12 article-title: Confounding factors of ultrafiltration and protein analysis in extracellular vesicle research publication-title: Scientific Reports – volume: 13 issue: 2 year: 2024 article-title: Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches publication-title: Journal of Extracellular Vesicles – volume: 417 start-page: 182 issue: 6885 year: 2002 end-page: 187 article-title: Identification of a factor that links apoptotic cells to phagocytes publication-title: Nature – volume: 14 start-page: 8 issue: 1 year: 2021 end-page: 11 article-title: Extracellular vesicles in food biotechnology publication-title: Microbial Biotechnology – volume: 30 start-page: 3.22.1 issue: 1 year: 2006 end-page: 3.22.29 article-title: Isolation and characterization of exosomes from cell culture supernatants and biological fluids publication-title: Current Protocols in Cell Biology – volume: 19 start-page: 13 issue: 1 year: 2023 end-page: 20 article-title: Entry and exit of extracellular vesicles to and from the blood circulation publication-title: Nature Nanotechnology – volume: 5 start-page: 194 issue: 3 year: 2004 end-page: 210 article-title: Protein–protein interactions of ESCRT complexes in the yeast publication-title: Traffic (Copenhagen, Denmark) – volume: 13 start-page: 1581 issue: 5 year: 2020 end-page: 1596 article-title: Proteomic characterization of extracellular vesicles produced by several wine yeast species publication-title: Microbial Biotechnology – volume: 3 issue: 1 year: 2014 article-title: Comparative analysis of discrete exosome fractions obtained by differential centrifugation publication-title: Journal of Extracellular Vesicles – volume: 12 start-page: 2908 issue: 10 year: 2020 article-title: Anti‐inflammatory potential of cow, donkey and goat milk extracellular vesicles as revealed by metabolomic profile publication-title: Nutrients – volume: 23 start-page: 7554 issue: 14 year: 2022 article-title: Extracellular vesicles—Oral therapeutics of the future publication-title: International Journal of Molecular Sciences – volume: 17 start-page: 3 issue: 1 year: 2019 article-title: Exosomes of pasteurized milk: Potential pathogens of Western diseases publication-title: Journal of Translational Medicine – volume: 5 issue: 1 year: 2015 article-title: Gut microbe‐derived extracellular vesicles induce insulin resistance, thereby impairing glucose metabolism in skeletal muscle publication-title: Scientific Reports – volume: 69 start-page: 235 issue: 2 year: 2019 end-page: 238 article-title: Storage of extracellular vesicles in human milk, and microRNA Profiles in human milk exosomes and infant formulas publication-title: Journal of Pediatric Gastroenterology and Nutrition – volume: 14 issue: 4 year: 2019 article-title: Emerging roles of tetraspanins in plant inter‐cellular and inter‐kingdom communication publication-title: Plant Signaling & Behavior – volume: 9 start-page: 5924 issue: 11 year: 2023 end-page: 5932 article-title: Biomimicking extracellular vesicles with fully artificial ones: A rational design of EV‐BIOMIMETICS toward effective theranostic tools in nanomedicine publication-title: ACS Biomaterials Science & Engineering – volume: 22 start-page: 522 issue: 3 year: 2014 end-page: 534 article-title: Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit publication-title: Molecular Therapy – volume: 11 issue: 4 year: 2022 article-title: Considerations for extracellular vesicle and lipoprotein interactions in cell culture assays publication-title: Journal of Extracellular Vesicles – volume: 40 start-page: 453 issue: 5 year: 2018 end-page: 464 article-title: Molecular interactions at the surface of extracellular vesicles publication-title: Seminars in Immunopathology – volume: 67 issue: 19 year: 2023 article-title: Omics analysis of extracellular vesicles recovered from infant formula products and milk: Towards personalized infant nutrition publication-title: Molecular Nutrition & Food Research – volume: 14 start-page: 559 issue: 8 year: 2014 end-page: 569 article-title: Immune modulation by butyrophilins publication-title: Nature Reviews Immunology – volume: 15 start-page: 3412 issue: 11 year: 2016 end-page: 3423 article-title: Comprehensive proteomic analysis of human milk‐derived extracellular vesicles unveils a novel functional proteome distinct from other milk components publication-title: Molecular & Cellular Proteomics – volume: 13 start-page: 1 issue: 2 year: 2023 end-page: 14 article-title: Protein and lipid content of milk extracellular vesicles: A comparative overview publication-title: Life – volume: 101 start-page: 21 issue: July 2017 year: 2018 end-page: 28 article-title: Lactadherin: An unappreciated haemostasis regulator and potential therapeutic agent publication-title: Vascular Pharmacology – volume: 11 issue: 12 year: 2022 article-title: Plant‐derived extracellular vesicles: Recent advancements and current challenges on their use for biomedical applications publication-title: Journal of Extracellular Vesicles – volume: 4 issue: 1 year: 2015 article-title: Optimized exosome isolation protocol for cell culture supernatant and human plasma publication-title: Journal of Extracellular Vesicles – volume: 7 issue: 1 year: 2018 article-title: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines publication-title: Journal of Extracellular Vesicles – volume: 21 start-page: 1345 issue: 7 year: 2013 end-page: 1357 article-title: Grape exosome‐like nanoparticles induce intestinal stem cells and protect mice from DSS‐induced colitis publication-title: Molecular Therapy – volume: 20 start-page: 69 issue: 1 year: 2022 article-title: Plant‐derived extracellular vesicles: A novel nanomedicine approach with advantages and challenges publication-title: Cell Communication and Signaling – volume: 24 start-page: 637 issue: 5 year: 2018 end-page: 652.e8 article-title: Plant‐derived exosomal microRNAs shape the gut microbiota publication-title: Cell Host & Microbe – ident: e_1_2_11_59_1 doi: 10.1038/s41467‐021‐24273‐8 – ident: e_1_2_11_67_1 doi: 10.1002/mnfr.202300404 – ident: e_1_2_11_18_1 doi: 10.3390/pharmaceutics15030716 – ident: e_1_2_11_34_1 doi: 10.1002/jex2.54 – ident: e_1_2_11_53_1 doi: 10.1186/s12964‐022‐00889‐1 – ident: e_1_2_11_60_1 doi: 10.1080/20013078.2018.1440132 – ident: e_1_2_11_7_1 doi: 10.1002/jex2.138 – ident: e_1_2_11_55_1 doi: 10.1371/journal.pone.0121123 – ident: e_1_2_11_37_1 doi: 10.1097/MPG.0000000000002363 – ident: e_1_2_11_66_1 doi: 10.1126/sciadv.ade5041 – ident: e_1_2_11_70_1 doi: 10.1038/s41580‐022‐00460‐3 – ident: e_1_2_11_30_1 doi: 10.1080/15592324.2019.1581559 – ident: e_1_2_11_36_1 doi: 10.1007/s12602‐023‐10085‐3 – ident: e_1_2_11_45_1 doi: 10.3390/nu12102908 – ident: e_1_2_11_65_1 doi: 10.7150/THNO.62046 – ident: e_1_2_11_46_1 doi: 10.1186/s12967‐018‐1760‐8 – ident: e_1_2_11_64_1 doi: 10.1080/20013078.2018.1535750 – ident: e_1_2_11_6_1 doi: 10.1038/s41598‐017‐07288‐4 – ident: e_1_2_11_73_1 doi: 10.1038/s41598‐017‐02599‐y – ident: e_1_2_11_69_1 doi: 10.1074/mcp.M116.060426 – ident: e_1_2_11_22_1 doi: 10.1007/s10753‐021‐01618‐5 – ident: e_1_2_11_33_1 doi: 10.1016/j.vph.2017.11.006 – ident: e_1_2_11_11_1 doi: 10.1038/s41556‐022‐00983‐z – ident: e_1_2_11_31_1 doi: 10.1038/mt.2013.64 – ident: e_1_2_11_9_1 doi: 10.3390/life13020401 – ident: e_1_2_11_17_1 doi: 10.3390/ijms23147554 – ident: e_1_2_11_57_1 doi: 10.1021/acsbiomaterials.2c01025 – ident: e_1_2_11_76_1 doi: 10.1002/jev2.12404 – ident: e_1_2_11_74_1 doi: 10.3390/foods10010069 – ident: e_1_2_11_68_1 – ident: e_1_2_11_26_1 doi: 10.1016/j.xphs.2022.08.032 – ident: e_1_2_11_32_1 doi: 10.1038/nature22341 – ident: e_1_2_11_35_1 doi: 10.1093/jn/nxab031 – ident: e_1_2_11_47_1 doi: 10.1111/1751‐7915.13614 – ident: e_1_2_11_38_1 doi: 10.1002/jev2.12283 – ident: e_1_2_11_52_1 doi: 10.1038/s12276‐019‐0223‐5 – ident: e_1_2_11_13_1 doi: 10.1093/jn/133.4.975 – ident: e_1_2_11_40_1 doi: 10.3402/jev.v4.27031 – ident: e_1_2_11_54_1 doi: 10.3389/fmicb.2023.1165202 – ident: e_1_2_11_39_1 doi: 10.1002/mnfr.201700082 – ident: e_1_2_11_58_1 doi: 10.1002/jev2.12194 – ident: e_1_2_11_14_1 doi: 10.1002/mnfr.202000845 – ident: e_1_2_11_63_1 doi: 10.1002/0471143030.cb0322s30 – ident: e_1_2_11_3_1 doi: 10.1002/jev2.12245 – ident: e_1_2_11_27_1 doi: 10.1038/s41565‐023‐01522‐z – ident: e_1_2_11_75_1 doi: 10.1038/mt.2013.190 – ident: e_1_2_11_5_1 doi: 10.1016/j.jprot.2018.08.010 – ident: e_1_2_11_50_1 doi: 10.1002/mnfr.201300729 – ident: e_1_2_11_24_1 doi: 10.1038/s41477‐021‐00863‐8 – ident: e_1_2_11_71_1 doi: 10.1038/nri2778 – ident: e_1_2_11_16_1 doi: 10.1038/srep15878 – ident: e_1_2_11_25_1 doi: 10.1038/s43586‐023‐00240‐z – ident: e_1_2_11_49_1 doi: 10.1111/1751‐7915.13657 – ident: e_1_2_11_72_1 doi: 10.1155/2019/5764740 – ident: e_1_2_11_20_1 doi: 10.1002/cyto.a.22795 – ident: e_1_2_11_61_1 doi: 10.3402/jev.v3.24214 – ident: e_1_2_11_48_1 doi: 10.3390/ijms241411340 – ident: e_1_2_11_77_1 doi: 10.1016/j.biomaterials.2016.06.018 – ident: e_1_2_11_10_1 doi: 10.1002/jev2.12202 – ident: e_1_2_11_12_1 doi: 10.1007/s00281‐018‐0682‐0 – ident: e_1_2_11_19_1 doi: 10.3390/nu14091808 – ident: e_1_2_11_28_1 doi: 10.3168/jds.2014‐9076 – ident: e_1_2_11_42_1 – ident: e_1_2_11_56_1 doi: 10.1002/jev2.12164 – ident: e_1_2_11_43_1 doi: 10.1038/s41556‐018‐0250‐9 – ident: e_1_2_11_8_1 doi: 10.1111/j.1600‐0854.2004.00169.x – ident: e_1_2_11_23_1 doi: 10.1038/417182a – ident: e_1_2_11_29_1 doi: 10.3402/jev.v3.25011 – ident: e_1_2_11_41_1 doi: 10.1002/jev2.12376 – ident: e_1_2_11_62_1 doi: 10.1016/j.chom.2018.10.001 – ident: e_1_2_11_2_1 doi: 10.1038/nri3715 – ident: e_1_2_11_44_1 doi: 10.1016/j.xphs.2016.07.022 – ident: e_1_2_11_21_1 doi: 10.3168/jds.2018‐14946 – ident: e_1_2_11_4_1 doi: 10.1038/s41598‐019‐51092‐1 – ident: e_1_2_11_15_1 doi: 10.1021/acs.jafc.0c04605 – ident: e_1_2_11_51_1 doi: 10.3402/jev.v3.24641 |
SSID | ssj0002913925 |
Score | 2.301427 |
Snippet | Food‐derived extracellular vesicles (FDEVs) such as those found in mammalian milk and plants are of great interest for both their health benefits and ability... Food-derived extracellular vesicles (FDEVs) such as those found in mammalian milk and plants are of great interest for both their health benefits and ability... Abstract Food‐derived extracellular vesicles (FDEVs) such as those found in mammalian milk and plants are of great interest for both their health benefits and... Abstract Food‐derived extracellular vesicles (FDEVs) such as those found in mammalian milk and plants are of great interest for both their health benefits and... |
SourceID | doaj pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e154 |
SubjectTerms | EV biodistribution EV therapeutics EV uptake Extracellular vesicles food health nutrition |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxUxFA5SENyIb6daiSDuhs7kMTNx10ovpaBuLNxdyGu0LjKXO_cW3fUPFPyN_pKek9wp96Lixt2QMHmcR_IlnHyHkDdN52vZm6rsOm5KTK9dWu5lKYyRrTOtcIln-8PH5vRcnM3lfCvVF8aEZXrgLLhDLpQNTLEGPEHUXW8t88orHoKDLlSfVt9KbR2mcA1myHbJ5MQ2W7HDb-E7w2uUnf0n0fT_CVv-HiK5DV3T3jN7QO5vQCM9yoN9SO6E-IjczWkkfzwm17Nh8L-ufnqwpsvgKay3S4M38hhiSi_DmELf6EWkgPZoyspHv5hxtRyQLAJ8HBvHX1bv6KcFAvJ1TESrFBAtXUxwfYSm40TeT030NIeRQ_HWK67xCTmfnXx-f1pu0iyUDrxZlCA-33vWW1d51zYytEL1jQWcUztlQe7WKo4CZ5zb3gbr6rr13kvD8bvhT8leHGJ4TmgPx8PKMOEAFwgngkIAVgECq7g1kjcFeT0JXy8ym4bOvMlMo4I0KKggx6iV23rkv04FYBV6YxX6X1YBHU061eAvKHITw7AeNa5pSPHDq4I8yzq-7QrBm5ItK0i3o_2dsezWxIuviZMbX1PA3GVB3iZD-ev09NnJHGCW2P8f03xB7jEAWTkA8yXZWy3X4QBA0sq-Sv5wAx0HFlM priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley-Blackwell Open Access Collection dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoEVIviDcpULkS4hY18SOJuUHVVVUJyoFKe7P8SmkPzmqzW8GtfwCJ38gvYcbZbLuiSNwiO37OjP3ZGn9DyNuq8aVsTZE3DTc5htfOLfcyF8bI2plauMSz_elzdXwmTqZyuvKqxLcwAz_E-sINLSOt12jgxvYHN6Shl-E7w3uRLXIfCWNQu5n4sr5fYch3mWKuMkDUOWvKcuSeLdjBWHhjN0qk_Xchzb8dJm8D2bQTTR6RhysIST8MMn9M7oX4hDwYgkr-eEp-TrrO_77-5UG3roKnsPrODd7Po8MpvQp9coSjF5EC9qMpRh89N_1i3iF1BFg8Vo5FFu_p6Qzh-TIm2lUK-JbORvDeQ9VxpPKnJno6OJVD8q03Xf0zcjY5-np4nK-CLuQObFvkcAT0rWetdYV3dSVDLVRbWUA9pVO24rW1iiseAuPctjZYV5a1914ajt8Vf062YxfDS0JbOCwWhgkHKEE4ERTCsQLwWMGtkbzKyP44-Xo2cGvogUWZaRSQBgFl5CNKZZ2PbNgpoZuf65VxaS6UDUwx6F0lyqa1lnnlsZMO1FC10NAoUw3Wg1NuYuiWvcYVDgl_eJGRF4OM100hlFOyZhlpNqS_0ZfNnHjxLTF049sKGLvMyLukKP8cnj45mgLoErv_--MrssMAVg0ul6_J9mK-DG8AFi3sXtL_P4yBDpk priority: 102 providerName: Wiley-Blackwell |
Title | Food‐derived extracellular vesicles in the human gastrointestinal tract: Opportunities for personalised nutrition and targeted therapeutics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjex2.154 https://www.ncbi.nlm.nih.gov/pubmed/38939572 https://www.proquest.com/docview/3073235730 https://pubmed.ncbi.nlm.nih.gov/PMC11080705 https://doaj.org/article/349be2926376418fbb2d9d93eecfa09f |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa6RUhcEOUZoCsjIW7pJn4kMTda7aqq1LJCVNpb5FfKIpqsNrsV3PgDSPxGfgkzzqbaFXDhFtmKPfbM2J-t8TeEvM4Kl8pKJ3FRcB1jeu3YcCdjobXMrc6FDTzb5xfZ6aU4m8nZHsn6tzAhaN-a-VH95fqonn8KsZWLazvq48RG0_MTDF0HU5WjARmAhW6d0XH9Zch0yWTPNJuw0Wf_leEVys7eEyj6_4Yr_wyP3IatYd-ZPCD3N4CRvusEOyB7vn5I7nYpJL89Ij8mTeN-ff_pwJJuvKOw1i413sZjeCm98W0YDp3XFJAeDRn56JVuV8sGiSLAv7Fx_GX1lr5fIBhf14FklQKapYseqrfQdN0T91NdO9qFkEPx1guu9jG5nIw_npzGmxQLsQVPFjEc-FzlWGVs4myeSZ8LVWUGME5qlcl4boziinvPODeV8camae6ck5rjd8afkP26qf0zQis4GiaaCQuYQFjhFYKvBNBXwo2WPIvIq37yy0XHpFF2nMmsRAWVoKCIHKNWbuuR-zoUNMurcmMBJRfKeKYYSJeJtKiMYU45FNKC0akKOup1WoKv4JTr2jfrtsT1DOl9eBKRp52Ob7tC4KZkziJS7Gh_R5bdGjDPwMfdm2NE3gRD-efwyrPxDCCWeP7_fbwg9xjAqi7k8iXZXy3X_hBg0coMyYCJ6ZDcOR5fTD8Mw-XCMHjGb4n1GCw |
link.rule.ids | 230,315,730,783,787,867,888,2109,11576,27938,27939,33759,46066,46490,53806,53808 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB2VIgQb3g_zHCTEzok9Dz_YQdUolKawaEV21rxcAtSOYqcCVvwAEt_Il3DvOK4SHgvYWR55Zux75vqMdXwuIU-SzMayVFGYZVyFWF471NzKUCglU6NSYbzP9uQgGR-JvamcbpGk_xfGi_aNng2qjyeDavbOayvnJ2bY68SGbyY7KF0HqMrhOXIeFmyUrO3SMQMz9LpksveajdjwvfvE8CPKxtvHm_T_iVn-LpBcJ67-zTO6Qt72c-4EJx8Gy1YPzJdf7Bz__aaukssrMkqfd-3XyJarrpMLXXnKzzfIt1Fd2x9fv1tA6amzFPL4QuGXfpSu0lPX-F7prKLAIqmv9kePVdMuajShgNyBneMl7TP6eo5Ef1l5A1cKTJnO-21AA11XfVEAqipLO3k6nF77O6y5SY5Gu4c743BVviE0kCVECJtJW1pWahNZkybSpSIvEw38KTa5Tniqdc5z7hzjXJfaaRPHqbVWKo7HCb9Ftqu6cncILWHbGSkmDPANYYTLkdhFwOwirpXkSUAe92Et5p1LR9H5MbMCQ19A6APyAuN91o6-2v5EvTguVoEouMi1YzmD2SUizkqtmc0tTtIAoPMSBurRUsA6xEeuKlcvmwJzJVoH8Sggtzv0nA2FpDCXKQtItoGrjblstgBKvNd3j4qAPPUQ_OvtFXu7U6Bv4u7_j_GIXBwfTvaL_ZcHr-6RSwzoWyftvE-228XSPQD61eqHfq39BIWCNuU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWgCMSGd2F4GgmxyySxnRc7KB2VQksXVBqJheVXygB1RpOZCljxA0h8I1_Cvc6kmuGx6S7Kw3Zyj2-Oo5NzCXmSlzbNapVEZclVhOW1I81tFgmlssKoQpjgs723n-8cit1xNl6qKtulrNIbPRn6z8dDP_kQtJXTYxP3OrH4YG8LpesA1Sye2jo-Ty7ApE3KlZU6ZmGGfpcs6_1mExZ_dF8YfkhZewMFo_5_scu_RZKr5DW8fUZXyft-3J3o5NNwMddD8-0PS8ez3dg1cmVJSunz7pzr5JzzN8jFrkzl15vkx6hp7K_vPy2g9cRZCvl8pvCLP0pY6YlrQ8t04imwSRqq_tEj1c5nDZpRQA7BxvGS-TP6doqEf-GDkSsFxkyn_XKghaZ9XxyAKm9pJ1OH3St_ibW3yOFo-93WTrQs4xAZyBYigkWlrS2rtUmsKfLMFaKqcw08KjWVznmhdcUr7hzjXNfaaZOmhbU2Uxy3c75JNnzj3R1Ca1h-JooJA7xDGOEqJHgJMLyEa5XxfEAe96GV086tQ3a-zExi-CWEf0BeYMxPj6O_dtjRzI7kMhiSi0o7VjEYXS7Sstaa2criIA0Au6qhox4xEuYjPnLlXbNoJeZMtBDiyYDc7hB02hWSwyor2ICUa9haG8v6EUBK8PzukTEgTwMM_3t7cnd7DDRO3D17H4_IpYOXI_nm1f7re-QyAxbXKTzvk435bOEeAAub64dhuv0G_Gw5ZQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Food-derived+extracellular+vesicles+in+the+human+gastrointestinal+tract%3A+Opportunities+for+personalised+nutrition+and+targeted+therapeutics&rft.jtitle=Journal+of+extracellular+biology&rft.au=Turner%2C+Natalie+P&rft.date=2024-05-01&rft.issn=2768-2811&rft.eissn=2768-2811&rft.volume=3&rft.issue=5&rft.spage=e154&rft_id=info:doi/10.1002%2Fjex2.154&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2768-2811&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2768-2811&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2768-2811&client=summon |