Superior energy‐power performance of N‐doped carbon nano‐onions‐based asymmetric and symmetric supercapacitor devices
Summary Highly graphitic nitrogen‐doped carbon nano‐onions (N‐CNO) have attracted much attention in the field of energy storage device applications. Herein, we have synthesized N‐CNO by a simple flame pyrolysis method for symmetric and asymmetric (ASC) supercapacitor devices. The nitrogen doping is...
Saved in:
Published in | International journal of energy research Vol. 46; no. 2; pp. 1234 - 1249 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Inc
01.02.2022
Hindawi Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Highly graphitic nitrogen‐doped carbon nano‐onions (N‐CNO) have attracted much attention in the field of energy storage device applications. Herein, we have synthesized N‐CNO by a simple flame pyrolysis method for symmetric and asymmetric (ASC) supercapacitor devices. The nitrogen doping is performed in‐situ during the pyrolysis of pyrrole. The synthesized N‐CNO has a high surface area of 49 m2 g−1 with 4 at% nitrogen content. The structural properties have confirmed the formation of graphitic N‐CNO with highly ordered concentric graphene layers with proper lattice spacing. The fabricated symmetric and asymmetric devices have shown high specific capacitance and excellent energy‐power performance. Especially, the ASC device shows a specific capacitance value 205 F g−1 with a high energy density (60 Wh kg−1) and power density (5.5 kW kg−1), leading to an increase in the power density by 260% for a mere 60% decrease in the energy density. In addition, both the novel symmetric and asymmetric devices have shown excellent capacity retention of 96% to 98% over 5000 cycles. The demonstrated results show the superior electrochemical performance of the active material, which indicates that the N‐rich‐CNOs can be used as a novel anode material in energy storage devices with high energy density and high power performance.
Symmetric and Asymmetric supercapacitor devices of N‐CNOs. |
---|---|
AbstractList | Highly graphitic nitrogen‐doped carbon nano‐onions (N‐CNO) have attracted much attention in the field of energy storage device applications. Herein, we have synthesized N‐CNO by a simple flame pyrolysis method for symmetric and asymmetric (ASC) supercapacitor devices. The nitrogen doping is performed in‐situ during the pyrolysis of pyrrole. The synthesized N‐CNO has a high surface area of 49 m2 g−1 with 4 at% nitrogen content. The structural properties have confirmed the formation of graphitic N‐CNO with highly ordered concentric graphene layers with proper lattice spacing. The fabricated symmetric and asymmetric devices have shown high specific capacitance and excellent energy‐power performance. Especially, the ASC device shows a specific capacitance value 205 F g−1 with a high energy density (60 Wh kg−1) and power density (5.5 kW kg−1), leading to an increase in the power density by 260% for a mere 60% decrease in the energy density. In addition, both the novel symmetric and asymmetric devices have shown excellent capacity retention of 96% to 98% over 5000 cycles. The demonstrated results show the superior electrochemical performance of the active material, which indicates that the N‐rich‐CNOs can be used as a novel anode material in energy storage devices with high energy density and high power performance. Summary Highly graphitic nitrogen‐doped carbon nano‐onions (N‐CNO) have attracted much attention in the field of energy storage device applications. Herein, we have synthesized N‐CNO by a simple flame pyrolysis method for symmetric and asymmetric (ASC) supercapacitor devices. The nitrogen doping is performed in‐situ during the pyrolysis of pyrrole. The synthesized N‐CNO has a high surface area of 49 m2 g−1 with 4 at% nitrogen content. The structural properties have confirmed the formation of graphitic N‐CNO with highly ordered concentric graphene layers with proper lattice spacing. The fabricated symmetric and asymmetric devices have shown high specific capacitance and excellent energy‐power performance. Especially, the ASC device shows a specific capacitance value 205 F g−1 with a high energy density (60 Wh kg−1) and power density (5.5 kW kg−1), leading to an increase in the power density by 260% for a mere 60% decrease in the energy density. In addition, both the novel symmetric and asymmetric devices have shown excellent capacity retention of 96% to 98% over 5000 cycles. The demonstrated results show the superior electrochemical performance of the active material, which indicates that the N‐rich‐CNOs can be used as a novel anode material in energy storage devices with high energy density and high power performance. Symmetric and Asymmetric supercapacitor devices of N‐CNOs. |
Author | Nallapureddy, Ramesh Reddy Gaddam, Neelima Banerjee, Arghya Narayan Pallavolu, Mohan Reddy Joo, Sang Woo |
Author_xml | – sequence: 1 givenname: Mohan Reddy surname: Pallavolu fullname: Pallavolu, Mohan Reddy organization: Yeungnam University – sequence: 2 givenname: Neelima surname: Gaddam fullname: Gaddam, Neelima organization: National Taiwan University – sequence: 3 givenname: Arghya Narayan surname: Banerjee fullname: Banerjee, Arghya Narayan email: arghya@ynu.ac.kr organization: Yeungnam University – sequence: 4 givenname: Ramesh Reddy surname: Nallapureddy fullname: Nallapureddy, Ramesh Reddy organization: Yeungnam University – sequence: 5 givenname: Sang Woo orcidid: 0000-0001-9102-4224 surname: Joo fullname: Joo, Sang Woo email: swjoo@yu.ac.kr organization: Yeungnam University |
BookMark | eNp1kM9KAzEQxoNUsFbxFQIePMjWTHab7B6l1D9QFPwDvYVsdla2tMmatJY9CD6Cz-iTmFrBk8xhZr7vx3wwh6RnnUVCToANgTF-gX4oecb3SB9YUSQA2axH-iwVaVIwOTsghyHMGYseyD55f1y36BvnKVr0L93Xx2frNuhpVGvnl9oapK6md9GoXIsVNdqXzlKrrYuas42zIQ6lDtHUoVsuceUbQ7Wt6N8WtjFGt9o0qxhW4VtjMByR_VovAh7_9gF5vpo8jW-S6f317fhympiUc56gziDDktVZrkFyDRpyCTXLRqKMpY0sBGRlgUIIlrMSpckrNsKihhJBYDogp7u7rXevawwrNXdrb2Ok4iImSMgZj9TZjjLeheCxVq1vltp3Cpja_lahV9vfRvJ8R26aBXb_YWry8EN_A89Pgd8 |
CitedBy_id | crossref_primary_10_1016_j_eurpolymj_2023_112143 crossref_primary_10_1016_j_cplett_2023_140941 crossref_primary_10_1021_acs_energyfuels_2c03230 crossref_primary_10_1016_j_est_2023_107928 crossref_primary_10_1080_10408436_2024_2322954 crossref_primary_10_1016_j_est_2023_110118 crossref_primary_10_1021_acs_langmuir_4c00009 crossref_primary_10_1016_j_jallcom_2023_171366 crossref_primary_10_1016_j_est_2023_110353 crossref_primary_10_1021_acs_energyfuels_3c02061 crossref_primary_10_2174_1573413719666230329134840 crossref_primary_10_1016_j_jallcom_2022_165609 crossref_primary_10_1021_acs_iecr_3c03851 crossref_primary_10_1007_s00894_023_05753_8 crossref_primary_10_1016_j_apsusc_2022_156046 crossref_primary_10_1016_j_jtice_2024_105441 crossref_primary_10_1016_j_electacta_2022_141379 crossref_primary_10_1039_D4SU00153B crossref_primary_10_1007_s11581_023_05217_2 crossref_primary_10_1016_j_electacta_2022_139868 crossref_primary_10_1016_j_microc_2024_110294 crossref_primary_10_1002_er_7922 crossref_primary_10_1021_acsami_4c02753 crossref_primary_10_1016_j_carbon_2022_10_077 crossref_primary_10_1016_j_est_2023_108725 |
Cites_doi | 10.1016/j.apsusc.2018.04.057 10.1016/S1872-5805(21)60004-5 10.1007/s10008-011-1435-3 10.1016/j.carbon.2012.08.009 10.1039/C9TA00287A 10.1002/macp.201100606 10.1016/j.apsusc.2018.07.103 10.1039/c3ee41444b 10.1039/c2ee23442d 10.1016/j.carbon.2012.02.025 10.1016/j.jmst.2021.05.025 10.1021/acs.energyfuels.0c03874 10.1063/1.1674108 10.1021/jp312490q 10.1039/C7NR09660G 10.1016/j.jiec.2017.05.035 10.1039/C8RA09081E 10.1002/adma.201502057 10.1039/C4TA04439H 10.1002/pssb.200879608 10.1016/j.electacta.2019.135363 10.3390/nano11020424 10.1016/0008-6223(94)00154-R 10.1002/asia.201901318 10.1002/er.3595 10.1039/C5TA08620E 10.1002/batt.201900230 10.1039/C6TA09849E 10.1016/j.jpcs.2020.109733 10.1021/cm5005664 10.1002/pssr.201206206 10.1038/ncomms9503 10.1016/j.apmt.2017.03.006 10.1016/j.tsf.2013.04.070 10.1021/acsami.8b21534 10.1021/jp301642s 10.1038/s41598-017-04597-6 10.1088/1757-899X/207/1/012020 10.1039/C6TA00738D 10.1038/363603a0 10.1039/C5TA09210H 10.1016/j.carbon.2011.07.027 10.13005/ojc/340648 10.3389/fchem.2020.00105 10.1016/j.nanoso.2019.01.011 10.1021/acs.energyfuels.0c01346 10.1002/chem.201700914 10.1016/j.est.2020.101623 10.1016/j.matchemphys.2016.02.057 10.1039/c0jm01213k 10.1021/am505066v 10.1016/j.electacta.2020.137659 10.1021/la403366e 10.3389/fchem.2020.00226 10.1117/1.OE.54.8.084105 10.1016/j.apsusc.2016.12.026 10.1016/j.apsusc.2013.01.040 10.1039/C4TA06715K 10.1039/C6TA05607E 10.1002/advs.201600408 10.1016/j.electacta.2016.01.038 10.1016/j.jallcom.2021.161234 10.1016/j.cap.2018.02.001 |
ContentType | Journal Article |
Copyright | 2021 John Wiley & Sons Ltd. 2022 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2021 John Wiley & Sons Ltd. – notice: 2022 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SP 7ST 7TB 7TN 8FD C1K F1W F28 FR3 H96 KR7 L.G L7M SOI |
DOI | 10.1002/er.7242 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Oceanic Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-114X |
EndPage | 1249 |
ExternalDocumentID | 10_1002_er_7242 ER7242 |
Genre | article |
GrantInformation_xml | – fundername: National Research Foundation of Korea funderid: NRF‐2019R1A5A8080290 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AAJEY AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJCF ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AI. AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BKSAR BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 FEDTE G-S G.N G8K GNP GODZA GROUPED_DOAJ H.T H.X H13 HCIFZ HF~ HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 M7S MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PCBAR PIMPY PTHSS PYCSY Q.N Q11 QB0 QRW R.K RHX RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TN5 UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WWI WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX ABDPE ACRPL ACYXJ CITATION 7SP 7ST 7TB 7TN 8FD C1K F1W F28 FR3 H96 KR7 L.G L7M SOI |
ID | FETCH-LOGICAL-c3222-ea414eb0f48a172a1a1871f0456b6b6ac79614b9e666080be7c8d05e9f1be16e3 |
IEDL.DBID | DR2 |
ISSN | 0363-907X |
IngestDate | Thu Oct 10 15:32:54 EDT 2024 Fri Dec 06 03:13:15 EST 2024 Sat Aug 24 00:58:01 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3222-ea414eb0f48a172a1a1871f0456b6b6ac79614b9e666080be7c8d05e9f1be16e3 |
Notes | Funding information National Research Foundation of Korea, Grant/Award Number: NRF‐2019R1A5A8080290 |
ORCID | 0000-0001-9102-4224 |
OpenAccessLink | https://doi.org/10.1002/er.7242 |
PQID | 2622271802 |
PQPubID | 996365 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2622271802 crossref_primary_10_1002_er_7242 wiley_primary_10_1002_er_7242_ER7242 |
PublicationCentury | 2000 |
PublicationDate | February 2022 2022-02-00 20220201 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
PublicationDecade | 2020 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Bognor Regis |
PublicationTitle | International journal of energy research |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Hindawi Limited |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Hindawi Limited |
References | 2017; 5 2017; 7 2017; 4 2019; 11 2021; 886 1995; 33 2019; 17 2014; 26 2020; 15 2012; 16 2017; 398 2013; 6 1993; 363 2021; 36 2020; 8 2017; 207 2021; 35 2010; 20 2020; 3 2014; 2 2018; 458 2013; 51 2013; 117 2016; 40 2020; 331 2012; 213 2018; 34 2014; 6 2016; 190 2019; 474 2019; 7 2019; 9 2015; 6 2015; 3 2021; 148 2017; 23 2015; 54 2016; 52 2013; 268 1970; 53 2020; 34 2008; 245 2012; 50 2016; 4 2018; 18 2015; 27 2021; 11 2020; 31 2013; 537 2017; 54 2021; 370 2022; 96 2012; 6 2014; 30 2011; 49 2012; 116 2018; 10 2012; 5 2016; 174 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Li S (e_1_2_7_12_1) 2016; 52 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 Bard AJ (e_1_2_7_30_1) e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 49 start-page: 5079 year: 2011 end-page: 5089 article-title: The synthesis and characterization of carbon nano‐onions produced by solution ozonolysis publication-title: Carbon – volume: 458 start-page: 389 year: 2018 end-page: 396 article-title: Growth of polyaniline thorns on hybrid electrospun CNFs with nickel nanoparticles and graphene nanosheets as binder‐free electrodes for high‐performance supercapacitors publication-title: Appl Surf Sci – volume: 5 start-page: 2759 year: 2017 end-page: 2767 article-title: Ultrafast charge/discharge solid‐state thin‐film supercapacitors via regulating the microstructure of transition‐metal‐oxide publication-title: J Mater Chem A – volume: 537 start-page: 49 year: 2013 end-page: 57 article-title: Ambient‐temperature fabrication of microporous carbon terminated with graphene walls by sputtering process for hydrogen storage applications publication-title: Thin Solid Films – volume: 53 start-page: 1126 year: 1970 end-page: 1130 article-title: Raman spectrum of graphite publication-title: J Chem Phys – volume: 116 year: 2012 article-title: Electrochemical study of functionalized carbon nano‐onions for high‐performance supercapacitor electrodes publication-title: J Phys Chem C – volume: 398 start-page: 89 year: 2017 end-page: 96 article-title: Effects of ultraviolet nanosecond laser irradiation on structural modification and optical transmission of single layer graphene publication-title: Appl Surf Sci – volume: 886 year: 2021 article-title: Self‐assembled and highly faceted growth of Mo and V doped ZnO nanoflowers for high‐performance supercapacitors publication-title: J Alloys Compd – volume: 30 start-page: 318 year: 2014 end-page: 324 article-title: Nitrogen‐doped carbon nanoparticles by flame synthesis as anode material for rechargeable lithium‐ion batteries publication-title: Langmuir – volume: 27 start-page: 4634 year: 2015 end-page: 4639 article-title: Macroscopic 3D porous graphitic carbon nitride monolith for enhanced photocatalytic hydrogen evolution publication-title: Adv Mater – volume: 4 start-page: 1251 year: 2016 end-page: 1263 article-title: Phosphorus‐doped carbon–carbon nanotube hierarchical monoliths as true three‐dimensional electrodes in supercapacitor cells publication-title: J Mater Chem A – volume: 474 start-page: 147 year: 2019 end-page: 153 article-title: Three‐demensional porous carbon framework coated with one‐demensional nanostructured polyaniline nanowires composite for high‐performance supercapacitors publication-title: Appl Surf Sci – volume: 8 start-page: 226 year: 2020 article-title: Biomass Juncus derived nitrogen‐doped porous carbon materials for supercapacitor and oxygen reduction reaction publication-title: Front Chem – volume: 4 year: 2016 article-title: Nitrogen‐doped carbon nets with micro/mesoporous structures as electrodes for high‐performance supercapacitors publication-title: J Mater Chem A – volume: 34 start-page: 3058 year: 2018 end-page: 3063 article-title: Electrochemical features of symmetric and asymmetric supercapacitors based on nanostructured Mn‐Cuo electrodes publication-title: Orient J Chem – volume: 245 start-page: 2296 year: 2008 end-page: 2299 article-title: Double layer supercapacitor properties of onion‐like carbon materials publication-title: Phys Status Solidi B – volume: 40 start-page: 2136 year: 2016 end-page: 2149 article-title: Synthesis of nitrogen‐doped graphene catalyst by high‐energy wet ball milling for electrochemical systems publication-title: Int J Energy Res – volume: 207 year: 2017 article-title: Synthesis and electrochemical properties of Co3O4 nanoparticles by hydrothermal method at different temperatures publication-title: IOP Conf Ser: Mater Sci Eng – volume: 4 start-page: 1144 year: 2016 end-page: 1173 article-title: Review on recent advances in nitrogen‐doped carbons: preparations and applications in supercapacitors publication-title: J Mater Chem A – volume: 7 start-page: 212 year: 2017 end-page: 221 article-title: High performance flexible asymmetric CNO‐ZnO//ZnO supercapacitor with an operating voltage of 1.8V in aqueous medium publication-title: Appl Mater Today – volume: 6 start-page: 2839 year: 2013 end-page: 2855 article-title: Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications publication-title: Energy Environ Sci – volume: 96 start-page: 332 year: 2022 end-page: 344 article-title: Urea‐assisted hydrothermal synthesis of MnMoO /MnCO hybrid electrochemical electrode and fabrication of high‐performance asymmetric supercapacitor publication-title: J Mater Sci Technol – volume: 11 start-page: 424 year: 2021 article-title: A short review on the electrochemical performance of hierarchical and nitrogen‐doped activated biocarbon‐based electrodes for supercapacitors publication-title: Nanomaterials – volume: 4 year: 2017 article-title: Recent breakthroughs in supercapacitors boosted by nitrogen‐rich porous carbon materials publication-title: Adv Sci – volume: 370 year: 2021 article-title: Polyaniline integration and interrogation on carbon nano‐onions empowered supercapacitors publication-title: Electrochim Acta – volume: 3 start-page: 860 year: 2020 end-page: 875 article-title: Symmetric, asymmetric, and battery‐type supercapacitors using two‐dimensional nanomaterials and composites publication-title: Batter Supercaps – volume: 5 start-page: 9618 year: 2012 end-page: 9625 article-title: Nitrogen doping of graphene and its effect on quantum capacitance, and a new insight on the enhanced capacitance of N‐doped carbon publication-title: Energy Environ Sci – volume: 54 year: 2015 article-title: Measurement of temperature and temperature profile of candle flame using holo‐shear lens and Fourier fringe analysis technique publication-title: Opt Eng – volume: 190 start-page: 229 year: 2016 end-page: 239 article-title: KOH‐activated nitrogen doped porous carbon nanowires with superior performance in supercapacitors publication-title: Electrochim Acta – volume: 54 start-page: 205 year: 2017 end-page: 217 article-title: Nanostructured 3D zinc cobaltite/nitrogen‐doped reduced graphene oxide composite electrode for supercapacitor applications publication-title: J Ind Eng Chem – volume: 3 start-page: 3480 year: 2015 end-page: 3490 article-title: A high‐rate aqueous symmetric pseudocapacitor based on highly graphitized onion‐like carbon/birnessite‐type manganese oxide nanohybrids publication-title: J Mater Chem A – volume: 4 start-page: 6140 year: 2016 end-page: 6148 article-title: Functionalized, hierarchical and ordered mesoporous carbons for high‐performance supercapacitors publication-title: J Mater Chem A – volume: 35 start-page: 7265 year: 2021 end-page: 7284 article-title: Pyrolysis and combustion chemistry of pyrrole, a reference component for bio‐oil surrogates: jet‐stirred reactor experiments and kinetic modeling publication-title: Energy Fuel – volume: 9 start-page: 1115 year: 2019 end-page: 1122 article-title: Enhanced electrochemical performance of nanoplate nickel cobaltite (NiCo O ) supercapacitor applications publication-title: RSC Adv – volume: 8 start-page: 105 year: 2020 article-title: Nitrogen and phosphorus co‐doped porous carbon for high‐performance supercapacitors publication-title: Front Chem – volume: 31 year: 2020 article-title: Facile synthesis of novel and highly efficient CoNi S ‐Ni(OH) nanosheet arrays as pseudocapacitive‐type electrode material for high‐performance electrochemical supercapacitors publication-title: J Energy Storage – volume: 7 year: 2019 article-title: Characterization of the adsorption site energies and heterogeneous surfaces of porous materials publication-title: J Mater Chem A – volume: 331 year: 2020 article-title: In situ nitrogen‐doped carbon nano‐onions for ultrahigh‐rate asymmetric supercapacitor publication-title: Electrochim Acta – volume: 23 start-page: 7132 year: 2017 end-page: 7141 article-title: Boron‐doped polygonal carbon nano‐onions: synthesis and applications in electrochemical energy storage publication-title: Chem Eur J – volume: 6 start-page: 8503 year: 2015 article-title: Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co‐doped carbon microspheres publication-title: Nat Commun – volume: 363 start-page: 603 year: 1993 end-page: 605 article-title: Single‐shell carbon nanotubes of 1‐nm diameter publication-title: Nature – volume: 33 start-page: 669 year: 1995 end-page: 678 article-title: Carbon structures grown from decomposition of a phenylacetylene and thiophene mixture on Ni nanoparticles publication-title: Carbon – volume: 10 start-page: 4515 year: 2018 end-page: 4522 article-title: Oxygen self‐doped g‐C3N4 with tunable electronic band structure for unprecedentedly enhanced photocatalytic performance publication-title: Nanoscale – volume: 117 start-page: 5610 year: 2013 end-page: 5616 article-title: On the origin of the enhanced supercapacitor performance of nitrogen‐doped graphene publication-title: J Phys Chem C – volume: 213 start-page: 1107 year: 2012 end-page: 1131 article-title: Chemical synthesis of carbon materials with intriguing nanostructure and morphology publication-title: Macromol Chem Phys – volume: 7 start-page: 4178 year: 2017 article-title: Fabrication of nitrogen‐doped nano‐onions and their electrocatalytic activity toward the oxygen reduction reaction publication-title: Sci Rep – volume: 17 start-page: 239 year: 2019 end-page: 247 article-title: Nanoporous gold–nitrogen–doped carbon nano‐onions all‐solid‐state micro‐supercapacitor publication-title: Nano‐Struct Nano‐Objects – volume: 6 start-page: 315 year: 2012 end-page: 317 article-title: Site‐specific fabrication of graphitic microporous carbon terminated with ordered multilayer graphene walls publication-title: Phys Status Solidi ‐ Rapid Res Lett – volume: 51 start-page: 52 year: 2013 end-page: 58 article-title: Chemical activation of carbon nano‐onions for high‐rate supercapacitor electrodes publication-title: Carbon – volume: 26 start-page: 3151 year: 2014 end-page: 3161 article-title: Highly‐ordered mesoporous carbon nitride with ultrahigh surface area and pore volume as a superior dehydrogenation catalyst publication-title: Chem Mater – volume: 36 start-page: 49 year: 2021 end-page: 68 article-title: A review of charge storage in porous carbon‐based supercapacitors publication-title: New Carbon Mater – volume: 20 start-page: 7761 year: 2010 end-page: 7768 article-title: Electrochemical properties of composites containing small carbon nano‐onions and solid polyelectrolytes publication-title: J Mater Chem – volume: 16 start-page: 877 year: 2012 end-page: 882 article-title: A renewable bamboo carbon/polyaniline composite for a high‐performance supercapacitor electrode material publication-title: J Solid State Electrochem – volume: 11 start-page: 8040 year: 2019 end-page: 8050 article-title: Sulfur doping: unique strategy to improve the Supercapacitive performance of carbon nano‐onions publication-title: ACS Appl Mater Interfaces – volume: 18 start-page: 417 year: 2018 end-page: 423 article-title: Nitrogen doped carbon nano‐onions as efficient and robust electrocatalysts for oxygen reduction reactions publication-title: Curr Appl Phys – volume: 268 start-page: 588 year: 2013 end-page: 600 article-title: Synthesis of metal‐incorporated graphitic microporous carbon terminated with highly‐ordered graphene walls—controlling the number of graphene layers by ambient‐temperature metal sputtering publication-title: Appl Surf Sci – volume: 34 start-page: 8966 year: 2020 end-page: 8976 article-title: Green synthesis of nitrogen‐doped porous carbon derived from rice straw for high‐performance supercapacitor application publication-title: Energy Fuel – volume: 174 start-page: 112 year: 2016 end-page: 119 article-title: Facile wick‐and‐oil flame synthesis of high‐quality hydrophilic onion‐like carbon nanoparticles publication-title: Mater Chem Phys – volume: 148 year: 2021 article-title: Enhanced electrochemical properties of Co3O4 with morphological hierarchy for energy storage application: a comparative study with different electrolytes publication-title: J Phys Chem Solids – volume: 50 start-page: 2651 year: 2012 end-page: 2656 article-title: A scheme for fabricating single wall carbon nanocones standing on metal surfaces and an evaluation of their stability publication-title: Carbon – volume: 6 year: 2014 article-title: Formation of carbon nanosheets via simultaneous activation and catalytic carbonization of macroporous anion‐exchange resin for supercapacitors application publication-title: ACS Appl Mater Interfaces – volume: 52 year: 2016 article-title: Plasma‐induced highly efficient synthesis of boron doped reduced graphene oxide for supercapacitors publication-title: Chem Commun – volume: 15 start-page: 2282 year: 2020 end-page: 2293 article-title: Nitrogen‐doped carbon nanomaterials: synthesis, characteristics and applications publication-title: Chem Asian J – volume: 2 year: 2014 article-title: Ternary composites of delaminated‐MnO2/PDDA/functionalized‐CNOs for high‐capacity supercapacitor electrodes publication-title: J Mater Chem A – ident: e_1_2_7_62_1 doi: 10.1016/j.apsusc.2018.04.057 – ident: e_1_2_7_14_1 doi: 10.1016/S1872-5805(21)60004-5 – ident: e_1_2_7_61_1 doi: 10.1007/s10008-011-1435-3 – ident: e_1_2_7_22_1 doi: 10.1016/j.carbon.2012.08.009 – volume: 52 start-page: 10988‐10991 year: 2016 ident: e_1_2_7_12_1 article-title: Plasma‐induced highly efficient synthesis of boron doped reduced graphene oxide for supercapacitors publication-title: Chem Commun contributor: fullname: Li S – ident: e_1_2_7_35_1 doi: 10.1039/C9TA00287A – ident: e_1_2_7_5_1 doi: 10.1002/macp.201100606 – ident: e_1_2_7_63_1 doi: 10.1016/j.apsusc.2018.07.103 – ident: e_1_2_7_7_1 doi: 10.1039/c3ee41444b – ident: e_1_2_7_54_1 doi: 10.1039/c2ee23442d – ident: e_1_2_7_2_1 doi: 10.1016/j.carbon.2012.02.025 – ident: e_1_2_7_31_1 doi: 10.1016/j.jmst.2021.05.025 – ident: e_1_2_7_28_1 doi: 10.1021/acs.energyfuels.0c03874 – ident: e_1_2_7_39_1 doi: 10.1063/1.1674108 – ident: e_1_2_7_55_1 doi: 10.1021/jp312490q – ident: e_1_2_7_49_1 doi: 10.1039/C7NR09660G – ident: e_1_2_7_8_1 doi: 10.1016/j.jiec.2017.05.035 – ident: e_1_2_7_32_1 doi: 10.1039/C8RA09081E – ident: e_1_2_7_43_1 doi: 10.1002/adma.201502057 – ident: e_1_2_7_20_1 doi: 10.1039/C4TA04439H – ident: e_1_2_7_25_1 doi: 10.1002/pssb.200879608 – ident: e_1_2_7_27_1 doi: 10.1016/j.electacta.2019.135363 – ident: e_1_2_7_15_1 doi: 10.3390/nano11020424 – ident: e_1_2_7_3_1 doi: 10.1016/0008-6223(94)00154-R – ident: e_1_2_7_47_1 doi: 10.1002/asia.201901318 – ident: e_1_2_7_46_1 doi: 10.1002/er.3595 – ident: e_1_2_7_52_1 doi: 10.1039/C5TA08620E – ident: e_1_2_7_65_1 doi: 10.1002/batt.201900230 – ident: e_1_2_7_66_1 doi: 10.1039/C6TA09849E – ident: e_1_2_7_56_1 doi: 10.1016/j.jpcs.2020.109733 – ident: e_1_2_7_48_1 doi: 10.1021/cm5005664 – ident: e_1_2_7_40_1 doi: 10.1002/pssr.201206206 – ident: e_1_2_7_11_1 doi: 10.1038/ncomms9503 – ident: e_1_2_7_59_1 doi: 10.1016/j.apmt.2017.03.006 – ident: e_1_2_7_41_1 doi: 10.1016/j.tsf.2013.04.070 – ident: e_1_2_7_6_1 doi: 10.1021/acsami.8b21534 – ident: e_1_2_7_21_1 doi: 10.1021/jp301642s – ident: e_1_2_7_42_1 doi: 10.1038/s41598-017-04597-6 – ident: e_1_2_7_57_1 doi: 10.1088/1757-899X/207/1/012020 – ident: e_1_2_7_51_1 doi: 10.1039/C6TA00738D – volume-title: Electrochemical Methods: Fundamentals and Applications ident: e_1_2_7_30_1 contributor: fullname: Bard AJ – ident: e_1_2_7_4_1 doi: 10.1038/363603a0 – ident: e_1_2_7_10_1 doi: 10.1039/C5TA09210H – ident: e_1_2_7_19_1 doi: 10.1016/j.carbon.2011.07.027 – ident: e_1_2_7_64_1 doi: 10.13005/ojc/340648 – ident: e_1_2_7_18_1 doi: 10.3389/fchem.2020.00105 – ident: e_1_2_7_24_1 doi: 10.1016/j.nanoso.2019.01.011 – ident: e_1_2_7_17_1 doi: 10.1021/acs.energyfuels.0c01346 – ident: e_1_2_7_26_1 doi: 10.1002/chem.201700914 – ident: e_1_2_7_33_1 doi: 10.1016/j.est.2020.101623 – ident: e_1_2_7_58_1 doi: 10.1016/j.matchemphys.2016.02.057 – ident: e_1_2_7_53_1 doi: 10.1039/c0jm01213k – ident: e_1_2_7_36_1 doi: 10.1021/am505066v – ident: e_1_2_7_60_1 doi: 10.1016/j.electacta.2020.137659 – ident: e_1_2_7_45_1 doi: 10.1021/la403366e – ident: e_1_2_7_16_1 doi: 10.3389/fchem.2020.00226 – ident: e_1_2_7_29_1 doi: 10.1117/1.OE.54.8.084105 – ident: e_1_2_7_44_1 doi: 10.1016/j.apsusc.2016.12.026 – ident: e_1_2_7_38_1 doi: 10.1016/j.apsusc.2013.01.040 – ident: e_1_2_7_23_1 doi: 10.1039/C4TA06715K – ident: e_1_2_7_9_1 doi: 10.1039/C6TA05607E – ident: e_1_2_7_13_1 doi: 10.1002/advs.201600408 – ident: e_1_2_7_50_1 doi: 10.1016/j.electacta.2016.01.038 – ident: e_1_2_7_34_1 doi: 10.1016/j.jallcom.2021.161234 – ident: e_1_2_7_37_1 doi: 10.1016/j.cap.2018.02.001 |
SSID | ssj0009917 |
Score | 2.5126388 |
Snippet | Summary
Highly graphitic nitrogen‐doped carbon nano‐onions (N‐CNO) have attracted much attention in the field of energy storage device applications. Herein, we... Highly graphitic nitrogen‐doped carbon nano‐onions (N‐CNO) have attracted much attention in the field of energy storage device applications. Herein, we have... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 1234 |
SubjectTerms | anode electrode Anodes asymmetric and symmetric supercapacitor devices Asymmetry Capacitance Carbon Density Devices Electrochemical analysis Electrochemistry Electrode materials Energy Energy storage Flux density Graphene Nitrogen N‐CNOs Pyrolysis pyrolysis method Supercapacitors Synthesis |
Title | Superior energy‐power performance of N‐doped carbon nano‐onions‐based asymmetric and symmetric supercapacitor devices |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fer.7242 https://www.proquest.com/docview/2622271802 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kJz34FqtV9uA1bTZJN8lRtKUIevABxUvYx-QiTUrSHhQEf4K_0V_iTNKaKggiOeQ57JLdnfl2d-Ybxs6sK5XnQuAEWgtauokc3Y9jJ0pdH4SC2FZ0Tdc3cvQQXI3745VUXzU_xNeCG42MSl_TAFe67DWkoVB0Q7QvqH2FH5Iz3-VtQxyFqCdc7lLi9G9ch8uSZG8h990ONeByFaJWNma4xR6XtatdS56685numpcfxI3_qv4221wgT35ed5UdtgbZLttY4SPcY693cyI-zgsOVUjgx9v7lLKo8WkTXsDzlN_gC5tPwXKjCp1nPFNZjs9QP2AnxguyjZar8nkyoYxdhqvM8uaupGIMmmmD-qTgFip1tc8ehoP7i5GzyM_gGNqfcUAFIgDtpkGkEAcpoQROv1ICiRoPZcIYjb-OAadICEw1hCaybh_iVGgQEvwD1sryDA4Zl6GNUhv54AcySHWkfM_0I-0JKWMrpW4zvmytZFrTcCQ14bKXQJHQn2yzzrIVk8U4LBNPUqwvsdy12VnVHL-JJ4NbOh397bNjtu5RHETlvt1hrVkxhxNEJzN9WnXET6FB51E |
link.rule.ids | 314,780,784,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOEAPLS1U3fKoD1yzxEnWSY6IgpbXHihIK3GI_JhcKpJVdvfQSpX6E_iN_BJmkmwDlZAQyiHPkZPYM_PZnvkMsO98pQMfIy8yRvLQTeKZQZp6Se6HKDWmrqZruhyp4U10Nh6M26hKzoVp-CH-DbixZtT2mhWcB6QPOtZQrPoxOZhlWCVllxzO9f2qo44i3BMv5impAzhuEmZZ9KAVfO6JOnj5FKTWXubkA9wu3q8JLvnZn89M3_7-j7rxbR-wAe9b8CkOm9byEZaw-ATvnlASbsKfH3PmPi4rgXVW4MPf-wkvpCYmXYaBKHMxohuunKATVlemLEShi5KukYmgdkwH7B6d0NNfd3e8aJcVunCiO5tyMZY8tSWTUgmHtcXagpuT4-ujodcu0eBZnqLxUEcyQuPnUaIJCmmpJfXAcsaJhjZt45T8v0mRekmETQ3GNnH-ANNcGpQKw8-wUpQFfgGhYpfkLgkxjFSUm0SHgR0kJpBKpU4p0wOxqK5s0jBxZA3ncpBhlfGf7MHOohqzVhWnWaA43ZeJ7nqwX9fHS-LZ8RXvvr7usW-wNry-vMguTkfn27AecFpEHc29Ayuzao67BFZmZq9ulY8Ohety |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4BlSp6oC1QNZTSPXB18GOzto9VIaLQRoiHFPVi7WN8QdiWkxyKhMRP4Df2l3TGTuoUCQkhH_xc7cozO_PtY74B2He-0qGP0pPGBDx1k3hmkKZekvsRBhpT19A1_Ryp4yt5Mh6Ml1J9tfwQ_ybcuGc09po7eOXyg440FOt-TP5lFV5JFaZMm3943jFHEeyJF8uUNP4bt_GyXPRgXvB_R9Shy2WM2jiZ4Vv4tWheu7fkuj-bmr69fcTc-KL2v4ONOfQUX1tdeQ8rWGzCmyVCwi24u5gx83FZC2xiAv_cP1ScRk1UXXyBKHMxoheurNAJq2tTFqLQRUnPyECQFtMFO0cn9OT3zQ2n7LJCF050dxOuxpKftmRQauGwsVfbcDU8uvx27M0TNHiWF2g81DKQaPxcJpqAkA50QOOvnFGioUPbOCXvb1KkMRIhU4OxTZw_wDQPDAYKow-wVpQFfgShYpfkLokwkkrmJtFRaAeJCQOlUqeU6YFYSCurWh6OrGVcDjOsM_6TPdhdSDGbd8RJFioO9mWaux7sN-J4qnh2dM6nned99gVenx0Osx_fR6efYD3kmIhmK_curE3rGX4mpDI1e41O_gV2Neoh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superior+energy%E2%80%90power+performance+of+N%E2%80%90doped+carbon+nano%E2%80%90onions%E2%80%90based+asymmetric+and+symmetric+supercapacitor+devices&rft.jtitle=International+journal+of+energy+research&rft.au=Mohan+Reddy+Pallavolu&rft.au=Gaddam%2C+Neelima&rft.au=Arghya+Narayan+Banerjee&rft.au=Ramesh+Reddy+Nallapureddy&rft.date=2022-02-01&rft.pub=Hindawi+Limited&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=46&rft.issue=2&rft.spage=1234&rft.epage=1249&rft_id=info:doi/10.1002%2Fer.7242&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon |