Design, modeling, and analysis of a high performance piezoelectric energy harvester for intelligent tires

Summary Basic parameters affecting vehicle safety and performance such as pressure, temperature, friction coefficient, and contact‐patch dimensions are measured in intelligent tires via sensors that require electric power for operation and wireless communication to be synchronized to the vehicle mon...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of energy research Vol. 43; no. 10; pp. 5199 - 5212
Main Authors Esmaeeli, Roja, Aliniagerdroudbari, Haniph, Hashemi, Seyed Reza, Alhadri, Muapper, Zakri, Waleed, Batur, Celal, Farhad, Siamak
Format Journal Article
LanguageEnglish
Published Bognor Regis Hindawi Limited 01.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Basic parameters affecting vehicle safety and performance such as pressure, temperature, friction coefficient, and contact‐patch dimensions are measured in intelligent tires via sensors that require electric power for operation and wireless communication to be synchronized to the vehicle monitoring and control system. Piezoelectric energy harvesters (PEHs) can extract a fraction of energy that is wasted as a result of deflection during rolling of tires, and this extracted energy can be used to power up sensors embedded in intelligent tires. A new design of PEH inspired from Cymbal PEHs is introduced, and its performance is evaluated in this paper. Cymbal PEHs are proven to be useful in vibration energy harvesting, and in this paper, for the first time, the modified shape of Cymbal energy harvester is used as strain‐based energy harvester for the tire application. The shape of the harvester is adjusted in a way that it can be safely embedded on the inner surface of tires. In addition to the high performance, ease of manufacturing is another advantage of this new design. A multiphysics model is developed and validated to determine the output voltage, power, and energy of the designed PEH. The modeling results indicated that the maximum output voltage, the maximum electric power, and the accumulated harvested energy are about 3.5 V, 2.8 mW, and 24 mJ/rev, respectively, which are sufficient to power two sensors. In addition, the possibility is shown to supply power to five sensors by increase in piezoelectric material thickness. The effect of rolling tire temperature on the performance of the proposed PEH is also studied. Multiphysics modeling have been conducted on a new shape of piezoelectric energy harvester for tire waste strain energy harvesting. The analysis was carried out under varying energy harvester width, thickness, and rolling tire temperature. The potential is shown in the proposed energy harvester to supply enough energy for two tire sensors and can supply to five sensors by increase in piezoelectric material thickness. The results have illustrated that by increase in the air temperature inside the tire, the generated energy increase about 8.6%.
AbstractList Basic parameters affecting vehicle safety and performance such as pressure, temperature, friction coefficient, and contact‐patch dimensions are measured in intelligent tires via sensors that require electric power for operation and wireless communication to be synchronized to the vehicle monitoring and control system. Piezoelectric energy harvesters (PEHs) can extract a fraction of energy that is wasted as a result of deflection during rolling of tires, and this extracted energy can be used to power up sensors embedded in intelligent tires. A new design of PEH inspired from Cymbal PEHs is introduced, and its performance is evaluated in this paper. Cymbal PEHs are proven to be useful in vibration energy harvesting, and in this paper, for the first time, the modified shape of Cymbal energy harvester is used as strain‐based energy harvester for the tire application. The shape of the harvester is adjusted in a way that it can be safely embedded on the inner surface of tires. In addition to the high performance, ease of manufacturing is another advantage of this new design. A multiphysics model is developed and validated to determine the output voltage, power, and energy of the designed PEH. The modeling results indicated that the maximum output voltage, the maximum electric power, and the accumulated harvested energy are about 3.5 V, 2.8 mW, and 24 mJ/rev, respectively, which are sufficient to power two sensors. In addition, the possibility is shown to supply power to five sensors by increase in piezoelectric material thickness. The effect of rolling tire temperature on the performance of the proposed PEH is also studied.
Summary Basic parameters affecting vehicle safety and performance such as pressure, temperature, friction coefficient, and contact‐patch dimensions are measured in intelligent tires via sensors that require electric power for operation and wireless communication to be synchronized to the vehicle monitoring and control system. Piezoelectric energy harvesters (PEHs) can extract a fraction of energy that is wasted as a result of deflection during rolling of tires, and this extracted energy can be used to power up sensors embedded in intelligent tires. A new design of PEH inspired from Cymbal PEHs is introduced, and its performance is evaluated in this paper. Cymbal PEHs are proven to be useful in vibration energy harvesting, and in this paper, for the first time, the modified shape of Cymbal energy harvester is used as strain‐based energy harvester for the tire application. The shape of the harvester is adjusted in a way that it can be safely embedded on the inner surface of tires. In addition to the high performance, ease of manufacturing is another advantage of this new design. A multiphysics model is developed and validated to determine the output voltage, power, and energy of the designed PEH. The modeling results indicated that the maximum output voltage, the maximum electric power, and the accumulated harvested energy are about 3.5 V, 2.8 mW, and 24 mJ/rev, respectively, which are sufficient to power two sensors. In addition, the possibility is shown to supply power to five sensors by increase in piezoelectric material thickness. The effect of rolling tire temperature on the performance of the proposed PEH is also studied. Multiphysics modeling have been conducted on a new shape of piezoelectric energy harvester for tire waste strain energy harvesting. The analysis was carried out under varying energy harvester width, thickness, and rolling tire temperature. The potential is shown in the proposed energy harvester to supply enough energy for two tire sensors and can supply to five sensors by increase in piezoelectric material thickness. The results have illustrated that by increase in the air temperature inside the tire, the generated energy increase about 8.6%.
Author Esmaeeli, Roja
Farhad, Siamak
Aliniagerdroudbari, Haniph
Zakri, Waleed
Batur, Celal
Hashemi, Seyed Reza
Alhadri, Muapper
Author_xml – sequence: 1
  givenname: Roja
  orcidid: 0000-0003-3805-8550
  surname: Esmaeeli
  fullname: Esmaeeli, Roja
  organization: The University of Akron
– sequence: 2
  givenname: Haniph
  surname: Aliniagerdroudbari
  fullname: Aliniagerdroudbari, Haniph
  organization: The University of Akron
– sequence: 3
  givenname: Seyed Reza
  surname: Hashemi
  fullname: Hashemi, Seyed Reza
  organization: The University of Akron
– sequence: 4
  givenname: Muapper
  surname: Alhadri
  fullname: Alhadri, Muapper
  organization: The University of Akron
– sequence: 5
  givenname: Waleed
  surname: Zakri
  fullname: Zakri, Waleed
  organization: The University of Akron
– sequence: 6
  givenname: Celal
  surname: Batur
  fullname: Batur, Celal
  organization: The University of Akron
– sequence: 7
  givenname: Siamak
  orcidid: 0000-0002-5810-166X
  surname: Farhad
  fullname: Farhad, Siamak
  email: sfarhad@uakron.edu
  organization: The University of Akron
BookMark eNp10D1PwzAQBmALFYm2IP6CJQYGmmLHbhKPqJQPqRISMHSzXPucukqdYKeg8OtJKSvD6YZ7dLp7R2jgaw8IXVIypYSktxCmnHN6goaUCJFQylcDNCQsY4kg-eoMjWLcEtLPaD5E7h6iK_0E72oDlfPlBCtv-lJVF13EtcUKb1y5wQ0EW4ed8hpw4-C7hgp0G5zG4CGUHd6o8AmxhYB7h51voapcCb7FrQsQz9GpVVWEi78-Rm8Pi_f5U7J8eXye3y0TzdKUJqlRhhutTCoUGEOKXIHgGtaCUsZ1VmRG5WbNLIdixokVhTJaZ8zaDECzMbo6bm1C_bHvz5Hbeh_6b6JM04yRGUtnolfXR6VDHWMAK5vgdip0khJ5SFFCkIcUe3lzlF-ugu4_Jhevv_oHEz921g
CitedBy_id crossref_primary_10_1051_e3sconf_202233600022
crossref_primary_10_1007_s40243_023_00254_3
crossref_primary_10_1016_j_oceaneng_2023_115443
crossref_primary_10_1016_j_polymertesting_2020_106491
crossref_primary_10_1016_j_seta_2021_101891
crossref_primary_10_1016_j_enbuild_2023_113097
crossref_primary_10_3390_en15093294
crossref_primary_10_3390_app112110328
crossref_primary_10_1088_1361_665X_abf41f
crossref_primary_10_1016_j_mtcomm_2023_105541
crossref_primary_10_3390_s20205862
crossref_primary_10_1016_j_heliyon_2024_e29043
crossref_primary_10_1080_00150193_2021_1984760
crossref_primary_10_1109_JIOT_2022_3152547
crossref_primary_10_1088_1361_6463_acdadb
crossref_primary_10_1016_j_engstruct_2023_116190
crossref_primary_10_1002_er_5429
crossref_primary_10_1002_ese3_829
crossref_primary_10_1016_j_applthermaleng_2019_114106
crossref_primary_10_1016_j_joule_2021_03_006
crossref_primary_10_1115_1_4044956
crossref_primary_10_1016_j_mne_2024_100245
crossref_primary_10_1016_j_jiec_2023_04_028
crossref_primary_10_1007_s11431_023_2535_0
crossref_primary_10_1016_j_nanoen_2022_107219
crossref_primary_10_1002_er_5127
crossref_primary_10_3390_s21124145
crossref_primary_10_1002_er_6832
crossref_primary_10_1007_s40684_021_00344_5
crossref_primary_10_1002_er_8713
crossref_primary_10_1088_1361_6439_ac349d
crossref_primary_10_56958_jesi_2023_8_2_171
crossref_primary_10_4271_2020_01_1236
crossref_primary_10_1002_er_5643
Cites_doi 10.1038/s41598-017-13425-w
10.3390/s8128123
10.1109/TMECH.2011.2151203
10.1002/aenm.201401787
10.2109/jcersj2.118.909
10.1002/er.3975
10.1007/s12206-018-0645-3
10.1007/s00542-012-1480-6
10.1007/s42114-018-0046-1
10.1109/MEMSYS.2014.6765704
10.1143/JJAP.45.5836
10.1016/j.engfailanal.2011.01.003
10.1002/er.3357
10.1002/er.3227
10.1109/58.658312
10.1007/s12239-012-0098-0
10.1109/IEDM.2011.6131639
10.1109/19.816111
10.1115/1.4042398
10.1016/j.compscitech.2017.12.030
10.1002/er.3986
10.4271/2012-01-0796
10.1177/1045389X12463459
10.1002/er.3111
10.1088/0964-1726/21/1/015011
10.1115/ES2018-7496
10.1177/1045389X14544138
10.13031/2013.3039
10.1002/er.3149
10.1002/er.2949
10.2346/1.2137541
10.1016/j.enconman.2013.09.054
10.1016/j.ijsolstr.2012.09.004
10.1016/j.joule.2018.03.011
10.1016/S0022-5096(03)00053-X
10.1163/156856192X00430
10.1016/j.compscitech.2018.08.034
10.1002/adma.201102067
10.3390/s17020350
10.1109/GreenCom-iThings-CPSCom.2013.303
10.1016/j.sna.2009.12.007
10.1002/ente.201700785
10.1007/s10832-005-0961-8
10.1002/er.3851
10.1109/SENSOR.2009.5285831
10.1016/j.matcom.2004.07.002
10.1115/POWER2018-7375
10.1016/j.sna.2018.12.002
10.2346/1.2139527
10.2346/tire.14.420102
10.1063/1.2560441
10.4271/2018-01-1188
10.1002/er.1608
10.3139/9783446428713
10.3390/s140100188
10.1002/er.1372
10.1061/(ASCE)MT.1943-5533.0000600
ContentType Journal Article
Copyright 2019 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2019 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SP
7ST
7TB
7TN
8FD
C1K
F1W
F28
FR3
H96
KR7
L.G
L7M
SOI
DOI 10.1002/er.4441
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Oceanic Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-114X
EndPage 5212
ExternalDocumentID 10_1002_er_4441
ER4441
Genre article
GrantInformation_xml – fundername: NSF‐I/UCRC
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAJEY
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AI.
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BKSAR
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
FEDTE
G-S
G.N
G8K
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
H13
HCIFZ
HF~
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PCBAR
PIMPY
PTHSS
PYCSY
Q.N
Q11
QB0
QRW
R.K
RHX
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WWI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
7SP
7ST
7TB
7TN
8FD
C1K
F1W
F28
FR3
H96
KR7
L.G
L7M
SOI
ID FETCH-LOGICAL-c3221-2dad4dcad29aedd087ae94ceb91134c686da7db3f4e8540f98adcc63ff6eec3
IEDL.DBID DR2
ISSN 0363-907X
IngestDate Thu Oct 10 16:47:14 EDT 2024
Fri Aug 23 02:02:14 EDT 2024
Sat Aug 24 01:13:10 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3221-2dad4dcad29aedd087ae94ceb91134c686da7db3f4e8540f98adcc63ff6eec3
ORCID 0000-0003-3805-8550
0000-0002-5810-166X
OpenAccessLink https://doi.org/10.1002/er.4441
PQID 2263053259
PQPubID 996365
PageCount 14
ParticipantIDs proquest_journals_2263053259
crossref_primary_10_1002_er_4441
wiley_primary_10_1002_er_4441_ER4441
PublicationCentury 2000
PublicationDate August 2019
2019-08-00
20190801
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: August 2019
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal of energy research
PublicationYear 2019
Publisher Hindawi Limited
Publisher_xml – name: Hindawi Limited
References 2007; 101
2017; 7
2015; 39
1997; 44
2013; 24
2000; 43
2018; 167
1993; 21
1999; 48
2004; 67
2008; 8
2008; 32
2012; 18
2012; 17
2012; 13
2003; 51
2018; 42
2011; 18
2019; 285
1992; 6
2018; 6
2018; 2
2013; 14
2010; 118
1990
2018; 1
2010; 159
2013; 50
1985
2011; 21
2011; 23
2012; 25
2018; 32
2018; 141
2015; 5
2012
2011
2010
1997; 25
2009
1998
2006
2003
2002
2012; 36
2007; 14
2014; 42
2009; 33
2015; 26
2018; 17
2006; 45
2017; 17
2018; 156
2014; 38
2018
2014
2013
2014; 186
2014; 78
2005; 14
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
Chua H (e_1_2_10_64_1) 2014; 186
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
Li H (e_1_2_10_10_1) 2018; 17
e_1_2_10_22_1
e_1_2_10_20_1
Antognetti P (e_1_2_10_68_1) 1990
Sepe M (e_1_2_10_39_1) 1998
e_1_2_10_71_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
Boyer HE (e_1_2_10_43_1) 1985
e_1_2_10_59_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
Makki N (e_1_2_10_34_1) 2011
e_1_2_10_60_1
e_1_2_10_62_1
e_1_2_10_28_1
Pešek L (e_1_2_10_41_1) 2007; 14
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – year: 1985
– volume: 51
  start-page: 1477
  issue: 8
  year: 2003
  end-page: 1508
  article-title: Experiments and theory in strain gradient elasticity
  publication-title: J Mech Phys Solids
– volume: 32
  start-page: 3419
  issue: 7
  year: 2018
  end-page: 3425
  article-title: Simulation of temperature rise within a rolling tire by using FE analysis
  publication-title: J Mech Sci Technol
– volume: 141
  start-page: 062007
  issue: 6
  year: 2018
  article-title: A rainbow piezoelectric energy harvesting system for intelligent tires monitoring applications
  publication-title: J Energy Res Technol
– start-page: 568
  year: 2014
  end-page: 571
– volume: 25
  start-page: 174
  issue: 2
  year: 2012
  end-page: 182
  article-title: Effect of temperature on strength and elastic modulus of high‐strength steel
  publication-title: J Mater Civ Eng
– volume: 17
  start-page: 350
  issue: 2
  year: 2017
  article-title: A novel strain‐based method to estimate tire conditions using fuzzy logic for intelligent tires
  publication-title: Sensors
– volume: 285
  start-page: 613
  year: 2019
  end-page: 622
  article-title: Design and optimisation of an underfloor energy harvesting system
  publication-title: Sens Actuators A Phys
– volume: 38
  start-page: 1318
  issue: 10
  year: 2014
  end-page: 1330
  article-title: Power reclamation efficiency of a miniature energy‐harvesting device using external fluid flows
  publication-title: Int J Energy Res
– volume: 78
  start-page: 32
  year: 2014
  end-page: 38
  article-title: Development of a piezoelectric energy harvesting system for implementing wireless sensors on the tires
  publication-title: Energ Conver Manage
– volume: 23
  start-page: 4068
  issue: 35
  year: 2011
  end-page: 4071
  article-title: A nanogenerator for energy harvesting from a rotating tire and its application as a self‐powered pressure/speed sensor
  publication-title: Adv Mater
– volume: 14
  start-page: 3
  issue: 1–2
  year: 2007
  end-page: 11
  article-title: FEM modeling of thermo‐mechanical interaction in pre‐pressed rubber block
  publication-title: Eng Mech
– volume: 38
  start-page: 530
  issue: 4
  year: 2014
  end-page: 537
  article-title: Energy harvesting system using reverse electrodialysis with nanoporous polycarbonate track‐etch membranes
  publication-title: Int J Energy Res
– volume: 42
  start-page: 684
  issue: 2
  year: 2018
  end-page: 695
  article-title: Development of an ocean wave energy harvester with a built‐in frequency conversion function
  publication-title: Int J Energy Res
– volume: 186
  start-page: 103
  year: 2014
  article-title: Modelling and design analyses of a piezoelectric cymbal transducer (PCT) structure for energy harvesting application
  publication-title: Energy Sustain V
– year: 2018
– year: 1990
– volume: 50
  start-page: 86
  issue: 1
  year: 2013
  end-page: 96
  article-title: Numerical estimation of rolling resistance and temperature distribution of 3‐D periodic patterned tire
  publication-title: Int J Solids and Struct
– volume: 6
  start-page: 781
  issue: 7
  year: 1992
  end-page: 789
  article-title: Effect of anhydride addition to alkyl cyanoacrylate on its adhesive bond durability
  publication-title: J Adhes Sci Technol
– year: 1998
– start-page: 29.5.1
  year: 2011
  end-page: 29.5.4
– start-page: 1389
  year: 2009
  end-page: 1392
– volume: 167
  start-page: 404
  year: 2018
  end-page: 410
  article-title: Thermo‐mechanical coupling analysis of transient temperature and rolling resistance for solid rubber tire: numerical simulation and experimental verification
  publication-title: Compos Sci Technol
– volume: 32
  start-page: 379
  issue: 5
  year: 2008
  end-page: 407
  article-title: Renewable hydrogen production
  publication-title: Int J Energy Res
– volume: 18
  start-page: 1645
  issue: 7
  year: 2011
  end-page: 1651
  article-title: Useful lifetime prediction of rubber component
  publication-title: Eng Failure Anal
– volume: 8
  start-page: 8123
  issue: 12
  year: 2008
  end-page: 8138
  article-title: Wireless monitoring of automobile tires for intelligent tires
  publication-title: Sensors
– volume: 13
  start-page: 963
  issue: 6
  year: 2012
  end-page: 969
  article-title: A self‐powering system based on tire deformation during driving
  publication-title: Int J Automot Technol
– start-page: 1665
  year: 2013
  end-page: 1667
– volume: 42
  start-page: 16
  issue: 1
  year: 2014
  end-page: 34
  article-title: Modeling of strain energy harvesting in pneumatic tires using piezoelectric transducer
  publication-title: Tire Sci Technol
– volume: 42
  start-page: 1866
  issue: 5
  year: 2018
  end-page: 1893
  article-title: Review of vibration‐based energy harvesting technology: mechanism and architectural approach
  publication-title: Int J Energy Res
– volume: 26
  start-page: 1404
  issue: 11
  year: 2015
  end-page: 1416
  article-title: Strain‐based piezoelectric energy harvesting for wireless sensor systems in a tire
  publication-title: J Intell Mater Syst Struct
– volume: 5
  issue: 7
  year: 2015
  article-title: Energy harvesting technologies for tire pressure monitoring systems
  publication-title: Adv Energy Mater
– volume: 6
  start-page: 829
  issue: 5
  year: 2018
  end-page: 848
  article-title: Piezoelectric energy harvesting systems—essentials to successful developments
  publication-title: Energ Technol
– volume: 17
  start-page: 44
  issue: 2
  year: 2018
  article-title: Energy cooperation in battery‐free wireless communications with radio frequency energy harvesting
  publication-title: ACM Trans Embed Comput Syst (TECS)
– volume: 42
  start-page: 1702
  issue: 4
  year: 2018
  end-page: 1713
  article-title: Vibration energy harvesting in vehicles by gear segmentation and a virtual displacement filtering algorithm
  publication-title: Int J Energy Res
– volume: 18
  start-page: 1201
  issue: 7–8
  year: 2012
  end-page: 1212
  article-title: Battery‐and wire‐less tire pressure measurement systems (TPMS) sensor
  publication-title: Microsyst Technol
– volume: 67
  start-page: 235
  issue: 3
  year: 2004
  end-page: 249
  article-title: Temperature prediction of rolling tires by computer simulation
  publication-title: Math Comput Simul
– volume: 21
  issue: 1
  year: 2011
  article-title: Direct strain energy harvesting in automobile tires using piezoelectric PZT–polymer composites
  publication-title: Smart Mater Struct
– volume: 39
  start-page: 1545
  issue: 11
  year: 2015
  end-page: 1553
  article-title: Development of an energy harvesting damper using PVDF film
  publication-title: Int J Energy Res
– volume: 36
  start-page: 1139
  issue: 12
  year: 2012
  end-page: 1150
  article-title: A review of the present situation and future developments of micro‐batteries for wireless autonomous sensor systems
  publication-title: Int J Energy Res
– volume: 118
  start-page: 909
  issue: 1382
  year: 2010
  end-page: 915
  article-title: Finite element analysis of cymbal piezoelectric transducers for harvesting energy from asphalt pavement
  publication-title: J Cerma Soc Jpn
– year: 2003
– volume: 43
  start-page: 1415
  issue: 6
  year: 2000
  end-page: 1419
  article-title: Methods for measuring vertical tire stiffness
  publication-title: Trans ASAE
– volume: 14
  start-page: 221
  issue: 3
  year: 2005
  end-page: 229
  article-title: Tunability of cymbals as piezocomposite transducers
  publication-title: J Electroceram
– volume: 39
  start-page: 120
  issue: 1
  year: 2015
  end-page: 127
  article-title: Piezoelectric cable macro‐fiber composites for use in energy harvesting
  publication-title: Int J Energy Res
– volume: 24
  start-page: 828
  issue: 7
  year: 2013
  end-page: 836
  article-title: Modeling and experimental validation of unimorph piezoelectric cymbal design in energy harvesting
  publication-title: Journal of Intelligent Material Systems and Structures
– volume: 156
  start-page: 158
  year: 2018
  end-page: 165
  article-title: All‐aromatic SWCNT‐Polyetherimide nanocomposites for thermal energy harvesting applications
  publication-title: Compos Sci Technol
– volume: 25
  start-page: 214
  issue: 3
  year: 1997
  end-page: 228
  article-title: Analysis of temperature distribution in a rolling tire due to strain energy dissipation
  publication-title: Tire Sci Technol
– volume: 2
  start-page: 642
  issue: 4
  year: 2018
  end-page: 697
  article-title: High‐performance piezoelectric energy harvesters and their applications
  publication-title: Joule
– volume: 14
  start-page: 188
  issue: 1
  year: 2013
  end-page: 211
  article-title: Efficiency enhancement of a cantilever‐based vibration energy harvester
  publication-title: Sensors
– year: 2011
  article-title: Piezoelectric power generation in automotive tires
  publication-title: Proceedings of the Smart Materials & Structures/NDT in Aerospace/NDT in Canada
– volume: 7
  start-page: 12915
  issue: 1
  year: 2017
  article-title: Large piezoelectric strain with ultra‐low strain hysteresis in highly c‐axis oriented Pb(Zr Ti )O films with columnar growth on amorphous glass substrates
  publication-title: Sci Rep
– year: 2010
– volume: 159
  start-page: 196
  issue: 2
  year: 2010
  end-page: 203
  article-title: Design of a frequency‐adjusting device for harvesting energy from a rotating wheel
  publication-title: Sens Actuators a
– year: 2012
– volume: 101
  issue: 6
  year: 2007
  article-title: Temperature dependence of the complete material coefficients matrix of soft and hard doped piezoelectric lead zirconate titanate ceramics
  publication-title: J Appl Phys
– volume: 17
  start-page: 995
  issue: 5
  year: 2012
  end-page: 1005
  article-title: Design and modeling of a patterned‐electret‐based energy harvester for tire pressure monitoring systems
  publication-title: IEEE/ASME Trans Mechatron
– volume: 21
  start-page: 163
  issue: 3
  year: 1993
  end-page: 178
  article-title: A thermomechanical model to predict the temperature distribution of steady state rolling tires
  publication-title: Tire Sci Technol
– start-page: 29
  year: 2010
  end-page: 32
– volume: 1
  start-page: 1
  issue: 3
  year: 2018
  end-page: 28
  article-title: Recent progress on piezoelectric energy harvesting: structures and materials
  publication-title: Adv Compos Hybrid Mater
– year: 2002
– year: 2006
– volume: 44
  start-page: 597
  issue: 3
  year: 1997
  end-page: 605
  article-title: Composite piezoelectric transducer with truncated conical endcaps “cymbal”
  publication-title: IEEE Trans Ultrason Ferroelectr Freq Control
– volume: 48
  start-page: 1041
  issue: 6
  year: 1999
  end-page: 1046
  article-title: The “intelligent tire” utilizing passive SAW sensors measurement of tire friction
  publication-title: IEEE Trans Instrum Meas
– volume: 45
  start-page: 5836
  issue: 7R
  year: 2006
  end-page: 5840
  article-title: Modeling of piezoelectric energy harvesting using cymbal transducers
  publication-title: Jpn J Appl Phys
– volume: 33
  start-page: 1180
  issue: 13
  year: 2009
  end-page: 1190
  article-title: The advantages and potential of electret‐based vibration‐driven micro energy harvesters
  publication-title: Int J Energy Res
– ident: e_1_2_10_62_1
  doi: 10.1038/s41598-017-13425-w
– ident: e_1_2_10_19_1
  doi: 10.3390/s8128123
– volume: 17
  start-page: 44
  issue: 2
  year: 2018
  ident: e_1_2_10_10_1
  article-title: Energy cooperation in battery‐free wireless communications with radio frequency energy harvesting
  publication-title: ACM Trans Embed Comput Syst (TECS)
  contributor:
    fullname: Li H
– ident: e_1_2_10_24_1
  doi: 10.1109/TMECH.2011.2151203
– ident: e_1_2_10_16_1
  doi: 10.1002/aenm.201401787
– ident: e_1_2_10_65_1
  doi: 10.2109/jcersj2.118.909
– ident: e_1_2_10_14_1
  doi: 10.1002/er.3975
– ident: e_1_2_10_36_1
– ident: e_1_2_10_44_1
  doi: 10.1007/s12206-018-0645-3
– volume-title: Semiconductor Device Modeling with SPICE
  year: 1990
  ident: e_1_2_10_68_1
  contributor:
    fullname: Antognetti P
– ident: e_1_2_10_29_1
  doi: 10.1007/s00542-012-1480-6
– ident: e_1_2_10_53_1
  doi: 10.1007/s42114-018-0046-1
– ident: e_1_2_10_27_1
  doi: 10.1109/MEMSYS.2014.6765704
– ident: e_1_2_10_52_1
  doi: 10.1143/JJAP.45.5836
– ident: e_1_2_10_40_1
  doi: 10.1016/j.engfailanal.2011.01.003
– ident: e_1_2_10_8_1
  doi: 10.1002/er.3357
– ident: e_1_2_10_6_1
  doi: 10.1002/er.3227
– ident: e_1_2_10_51_1
  doi: 10.1109/58.658312
– ident: e_1_2_10_26_1
– ident: e_1_2_10_55_1
  doi: 10.1007/s12239-012-0098-0
– ident: e_1_2_10_30_1
  doi: 10.1109/IEDM.2011.6131639
– volume: 186
  start-page: 103
  year: 2014
  ident: e_1_2_10_64_1
  article-title: Modelling and design analyses of a piezoelectric cymbal transducer (PCT) structure for energy harvesting application
  publication-title: Energy Sustain V
  contributor:
    fullname: Chua H
– ident: e_1_2_10_18_1
  doi: 10.1109/19.816111
– ident: e_1_2_10_33_1
  doi: 10.1115/1.4042398
– ident: e_1_2_10_9_1
  doi: 10.1016/j.compscitech.2017.12.030
– ident: e_1_2_10_15_1
  doi: 10.1002/er.3986
– ident: e_1_2_10_69_1
  doi: 10.4271/2012-01-0796
– volume-title: Dynamic Mechanical Analysis For Plastics Engineering
  year: 1998
  ident: e_1_2_10_39_1
  contributor:
    fullname: Sepe M
– ident: e_1_2_10_66_1
  doi: 10.1177/1045389X12463459
– ident: e_1_2_10_4_1
  doi: 10.1002/er.3111
– ident: e_1_2_10_38_1
  doi: 10.1088/0964-1726/21/1/015011
– ident: e_1_2_10_59_1
– ident: e_1_2_10_13_1
  doi: 10.1115/ES2018-7496
– ident: e_1_2_10_57_1
  doi: 10.1177/1045389X14544138
– ident: e_1_2_10_58_1
  doi: 10.13031/2013.3039
– ident: e_1_2_10_3_1
  doi: 10.1002/er.3149
– ident: e_1_2_10_22_1
  doi: 10.1002/er.2949
– volume: 14
  start-page: 3
  issue: 1
  year: 2007
  ident: e_1_2_10_41_1
  article-title: FEM modeling of thermo‐mechanical interaction in pre‐pressed rubber block
  publication-title: Eng Mech
  contributor:
    fullname: Pešek L
– ident: e_1_2_10_47_1
  doi: 10.2346/1.2137541
– ident: e_1_2_10_32_1
  doi: 10.1016/j.enconman.2013.09.054
– ident: e_1_2_10_49_1
  doi: 10.1016/j.ijsolstr.2012.09.004
– ident: e_1_2_10_17_1
  doi: 10.1016/j.joule.2018.03.011
– ident: e_1_2_10_56_1
– ident: e_1_2_10_61_1
  doi: 10.1016/S0022-5096(03)00053-X
– ident: e_1_2_10_60_1
  doi: 10.1163/156856192X00430
– ident: e_1_2_10_45_1
  doi: 10.1016/j.compscitech.2018.08.034
– ident: e_1_2_10_2_1
– ident: e_1_2_10_37_1
  doi: 10.1002/adma.201102067
– ident: e_1_2_10_63_1
  doi: 10.3390/s17020350
– ident: e_1_2_10_71_1
  doi: 10.1109/GreenCom-iThings-CPSCom.2013.303
– ident: e_1_2_10_23_1
  doi: 10.1016/j.sna.2009.12.007
– ident: e_1_2_10_54_1
  doi: 10.1002/ente.201700785
– ident: e_1_2_10_67_1
  doi: 10.1007/s10832-005-0961-8
– ident: e_1_2_10_7_1
  doi: 10.1002/er.3851
– volume-title: Metals Handbook; Desk Edition
  year: 1985
  ident: e_1_2_10_43_1
  contributor:
    fullname: Boyer HE
– ident: e_1_2_10_28_1
  doi: 10.1109/SENSOR.2009.5285831
– year: 2011
  ident: e_1_2_10_34_1
  article-title: Piezoelectric power generation in automotive tires
  publication-title: Proceedings of the Smart Materials & Structures/NDT in Aerospace/NDT in Canada
  contributor:
    fullname: Makki N
– ident: e_1_2_10_48_1
  doi: 10.1016/j.matcom.2004.07.002
– ident: e_1_2_10_21_1
  doi: 10.1115/POWER2018-7375
– ident: e_1_2_10_12_1
  doi: 10.1016/j.sna.2018.12.002
– ident: e_1_2_10_46_1
  doi: 10.2346/1.2139527
– ident: e_1_2_10_35_1
  doi: 10.2346/tire.14.420102
– ident: e_1_2_10_50_1
  doi: 10.1063/1.2560441
– ident: e_1_2_10_20_1
  doi: 10.4271/2018-01-1188
– ident: e_1_2_10_25_1
– ident: e_1_2_10_11_1
  doi: 10.1002/er.1608
– ident: e_1_2_10_42_1
  doi: 10.3139/9783446428713
– ident: e_1_2_10_31_1
  doi: 10.3390/s140100188
– ident: e_1_2_10_5_1
  doi: 10.1002/er.1372
– ident: e_1_2_10_70_1
  doi: 10.1061/(ASCE)MT.1943-5533.0000600
SSID ssj0009917
Score 2.4766948
Snippet Summary Basic parameters affecting vehicle safety and performance such as pressure, temperature, friction coefficient, and contact‐patch dimensions are...
Basic parameters affecting vehicle safety and performance such as pressure, temperature, friction coefficient, and contact‐patch dimensions are measured in...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 5199
SubjectTerms Automotive parts
Coefficient of friction
Communication
Contact pressure
Design
Dimensions
Electric contacts
Electric potential
Electric power
Electric power sources
Energy
Energy harvesting
intelligent tire
Modelling
multiphysics modeling
performance analysis
piezoelectric energy harvesting
Piezoelectricity
Sensors
Shape
Temperature
tire deflection
Tires
Vehicle safety
Vibration
Voltage
Wireless communications
Title Design, modeling, and analysis of a high performance piezoelectric energy harvester for intelligent tires
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fer.4441
https://www.proquest.com/docview/2263053259
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMeD7KQHf4vTKTnsuO5H0185itsYgh6mwvBSXpNXLMI2us7D_nrzo12nIIiHUigJhCQv-aZ57_MIabtuKBlniZP4GqotAnDUPq8Prh4i9MFnBurz-BRMXr2HmT_bSfVl-RDbH27aMsx6rQ0cklWvhoZi3vU8E7I-YKF25hpOa3CUUj1hdUupjn8zGy6ra_bKet_3oVpc7kpUs8eMj8hb1TrrWvLRXRdJV2x-gBv_1fxjclgqT3pnp8oJ2cP5KTnY4RGekWxo_Dk61OTHUZ86FOZSPRZcQhcpBaoBx3RZxxvQZYabhU2nkwmKJpiQvkP-aSAMVJWj2Rb8WdBCLbKrc_I8Hr3cT5wyF4MjlMkPHFeC9KQA6XJAKftRCMg9gYlaLJka4iiQEMqEpR5GSgSmPAIpRMDSNEAU7II05os5XhIKnEmdRDAcSOGF6IMMgAe-1PMCI45NQqtxiZcWuBFbtLIbYx7rPmuSVjVecWlxq1jJSKazXPi8Sdqm43-rHo-m-nX1t2LXZF9pJG59_lqkUeRrvFE6pEhuzZT7AsqG3Eo
link.rule.ids 315,783,787,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LS8MwHMeDzIN68C1Op-aw47pH01eO4jambjvMCQMPJU1-xSJ0o-s87K83j-6hIIiHUigJtEl-yTfp7_f5IVS1bV8QSiIrchVUm3vMkuu82rg6AKzJXKKhPoOh13t1nibupPCqVLEwhg-xPnBTlqHna2Xg6kC6saGGQlZ3HBWzviuNnajsBe3RBh0ldY-_-k8pN4ATEzCrqjaKit9Xoo283BapepXpHqG31fsZ55KP-iKP6nz5A934vw84RoeF-MT3ZrScoB1IT9HBFpLwDCVt7dJRwzpFjnxUwywV8jLsEjyNMcOKcYxnm5ADPEtgOTUZdRKOQccT4neWfWoOA5blcLJmf-Y4l_Ps_By9dDvjh55VpGOwuLT6lmULJhzBmbApAyGagc-AOhwiOV8S2cuBJ5gvIhI7EEgdGNOACc49EsceACcXqJROU7hEmFEiVB5BvyW444PLhMeo5wo1NCCgUEZ41THhzDA3QkNXtkPIQtVmZVRZdVhYGN08lEqSqEQXLi2jqm7536qHnZG6Xf2t2B3a640H_bD_OHy-RvtSMlHjAlhBpTxbwI2UJXl0q8ffF4U84GQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMeDTBB98C5Op-Zhj-suTXrJo7iNeRsyFYYvJU1OsQjb2Dof9unNZV2nIIgPpVASCElO8k9zzu8gVHXdQBJGYif2NFRb-NxR-7w-uFIA3uQeMVCfx77fe6V3Q2-4lurL8iFWP9y0ZZj1Whv4RCaNAhoK0zqlOmR9k_qkqb252oOCHKVkT5BfU6rz39DGy-qqjWXF7xtRoS7XNarZZLp76C1vnvUt-ajPs7guFj_Ijf9q_z7aXUpPfG3nygHagNEh2lkDEh6htG0cOmrYJMhRn2qYj6R6LLkEjxPMsSYc40kRcIAnKSzGNp9OKjCYaEL8zqefhsKAVTmcrsifGc7UKjs7Rs_dzstNz1kmY3CEsvmW40ouqRRcuoyDlM0w4MCogFitlkSNcehLHsiYJBRCpQITFnIphE-SxAcQ5ASVRuMRnCLMGZE6i2DQkoIG4HHpc-Z7Uk8MCBmUEc7HJZpY4kZk2cpuBNNI91kZVfLxipYmN4uUjiQ6zYXHyqhqOv636lFnoF9nfyt2hbae2t3o4bZ_f462lV5i1v-vgkrZdA4XSpNk8aWZfV8N7N8T
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design%2C+modeling%2C+and+analysis+of+a+high+performance+piezoelectric+energy+harvester+for+intelligent+tires&rft.jtitle=International+journal+of+energy+research&rft.au=Esmaeeli%2C+Roja&rft.au=Aliniagerdroudbari%2C+Haniph&rft.au=Hashemi%2C+Seyed+Reza&rft.au=Alhadri%2C+Muapper&rft.date=2019-08-01&rft.pub=Hindawi+Limited&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=43&rft.issue=10&rft.spage=5199&rft.epage=5212&rft_id=info:doi/10.1002%2Fer.4441&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon