Design, modeling, and analysis of a high performance piezoelectric energy harvester for intelligent tires
Summary Basic parameters affecting vehicle safety and performance such as pressure, temperature, friction coefficient, and contact‐patch dimensions are measured in intelligent tires via sensors that require electric power for operation and wireless communication to be synchronized to the vehicle mon...
Saved in:
Published in | International journal of energy research Vol. 43; no. 10; pp. 5199 - 5212 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Hindawi Limited
01.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Basic parameters affecting vehicle safety and performance such as pressure, temperature, friction coefficient, and contact‐patch dimensions are measured in intelligent tires via sensors that require electric power for operation and wireless communication to be synchronized to the vehicle monitoring and control system. Piezoelectric energy harvesters (PEHs) can extract a fraction of energy that is wasted as a result of deflection during rolling of tires, and this extracted energy can be used to power up sensors embedded in intelligent tires. A new design of PEH inspired from Cymbal PEHs is introduced, and its performance is evaluated in this paper. Cymbal PEHs are proven to be useful in vibration energy harvesting, and in this paper, for the first time, the modified shape of Cymbal energy harvester is used as strain‐based energy harvester for the tire application. The shape of the harvester is adjusted in a way that it can be safely embedded on the inner surface of tires. In addition to the high performance, ease of manufacturing is another advantage of this new design. A multiphysics model is developed and validated to determine the output voltage, power, and energy of the designed PEH. The modeling results indicated that the maximum output voltage, the maximum electric power, and the accumulated harvested energy are about 3.5 V, 2.8 mW, and 24 mJ/rev, respectively, which are sufficient to power two sensors. In addition, the possibility is shown to supply power to five sensors by increase in piezoelectric material thickness. The effect of rolling tire temperature on the performance of the proposed PEH is also studied.
Multiphysics modeling have been conducted on a new shape of piezoelectric energy harvester for tire waste strain energy harvesting. The analysis was carried out under varying energy harvester width, thickness, and rolling tire temperature. The potential is shown in the proposed energy harvester to supply enough energy for two tire sensors and can supply to five sensors by increase in piezoelectric material thickness. The results have illustrated that by increase in the air temperature inside the tire, the generated energy increase about 8.6%. |
---|---|
AbstractList | Basic parameters affecting vehicle safety and performance such as pressure, temperature, friction coefficient, and contact‐patch dimensions are measured in intelligent tires via sensors that require electric power for operation and wireless communication to be synchronized to the vehicle monitoring and control system. Piezoelectric energy harvesters (PEHs) can extract a fraction of energy that is wasted as a result of deflection during rolling of tires, and this extracted energy can be used to power up sensors embedded in intelligent tires. A new design of PEH inspired from Cymbal PEHs is introduced, and its performance is evaluated in this paper. Cymbal PEHs are proven to be useful in vibration energy harvesting, and in this paper, for the first time, the modified shape of Cymbal energy harvester is used as strain‐based energy harvester for the tire application. The shape of the harvester is adjusted in a way that it can be safely embedded on the inner surface of tires. In addition to the high performance, ease of manufacturing is another advantage of this new design. A multiphysics model is developed and validated to determine the output voltage, power, and energy of the designed PEH. The modeling results indicated that the maximum output voltage, the maximum electric power, and the accumulated harvested energy are about 3.5 V, 2.8 mW, and 24 mJ/rev, respectively, which are sufficient to power two sensors. In addition, the possibility is shown to supply power to five sensors by increase in piezoelectric material thickness. The effect of rolling tire temperature on the performance of the proposed PEH is also studied. Summary Basic parameters affecting vehicle safety and performance such as pressure, temperature, friction coefficient, and contact‐patch dimensions are measured in intelligent tires via sensors that require electric power for operation and wireless communication to be synchronized to the vehicle monitoring and control system. Piezoelectric energy harvesters (PEHs) can extract a fraction of energy that is wasted as a result of deflection during rolling of tires, and this extracted energy can be used to power up sensors embedded in intelligent tires. A new design of PEH inspired from Cymbal PEHs is introduced, and its performance is evaluated in this paper. Cymbal PEHs are proven to be useful in vibration energy harvesting, and in this paper, for the first time, the modified shape of Cymbal energy harvester is used as strain‐based energy harvester for the tire application. The shape of the harvester is adjusted in a way that it can be safely embedded on the inner surface of tires. In addition to the high performance, ease of manufacturing is another advantage of this new design. A multiphysics model is developed and validated to determine the output voltage, power, and energy of the designed PEH. The modeling results indicated that the maximum output voltage, the maximum electric power, and the accumulated harvested energy are about 3.5 V, 2.8 mW, and 24 mJ/rev, respectively, which are sufficient to power two sensors. In addition, the possibility is shown to supply power to five sensors by increase in piezoelectric material thickness. The effect of rolling tire temperature on the performance of the proposed PEH is also studied. Multiphysics modeling have been conducted on a new shape of piezoelectric energy harvester for tire waste strain energy harvesting. The analysis was carried out under varying energy harvester width, thickness, and rolling tire temperature. The potential is shown in the proposed energy harvester to supply enough energy for two tire sensors and can supply to five sensors by increase in piezoelectric material thickness. The results have illustrated that by increase in the air temperature inside the tire, the generated energy increase about 8.6%. |
Author | Esmaeeli, Roja Farhad, Siamak Aliniagerdroudbari, Haniph Zakri, Waleed Batur, Celal Hashemi, Seyed Reza Alhadri, Muapper |
Author_xml | – sequence: 1 givenname: Roja orcidid: 0000-0003-3805-8550 surname: Esmaeeli fullname: Esmaeeli, Roja organization: The University of Akron – sequence: 2 givenname: Haniph surname: Aliniagerdroudbari fullname: Aliniagerdroudbari, Haniph organization: The University of Akron – sequence: 3 givenname: Seyed Reza surname: Hashemi fullname: Hashemi, Seyed Reza organization: The University of Akron – sequence: 4 givenname: Muapper surname: Alhadri fullname: Alhadri, Muapper organization: The University of Akron – sequence: 5 givenname: Waleed surname: Zakri fullname: Zakri, Waleed organization: The University of Akron – sequence: 6 givenname: Celal surname: Batur fullname: Batur, Celal organization: The University of Akron – sequence: 7 givenname: Siamak orcidid: 0000-0002-5810-166X surname: Farhad fullname: Farhad, Siamak email: sfarhad@uakron.edu organization: The University of Akron |
BookMark | eNp10D1PwzAQBmALFYm2IP6CJQYGmmLHbhKPqJQPqRISMHSzXPucukqdYKeg8OtJKSvD6YZ7dLp7R2jgaw8IXVIypYSktxCmnHN6goaUCJFQylcDNCQsY4kg-eoMjWLcEtLPaD5E7h6iK_0E72oDlfPlBCtv-lJVF13EtcUKb1y5wQ0EW4ed8hpw4-C7hgp0G5zG4CGUHd6o8AmxhYB7h51voapcCb7FrQsQz9GpVVWEi78-Rm8Pi_f5U7J8eXye3y0TzdKUJqlRhhutTCoUGEOKXIHgGtaCUsZ1VmRG5WbNLIdixokVhTJaZ8zaDECzMbo6bm1C_bHvz5Hbeh_6b6JM04yRGUtnolfXR6VDHWMAK5vgdip0khJ5SFFCkIcUe3lzlF-ugu4_Jhevv_oHEz921g |
CitedBy_id | crossref_primary_10_1051_e3sconf_202233600022 crossref_primary_10_1007_s40243_023_00254_3 crossref_primary_10_1016_j_oceaneng_2023_115443 crossref_primary_10_1016_j_polymertesting_2020_106491 crossref_primary_10_1016_j_seta_2021_101891 crossref_primary_10_1016_j_enbuild_2023_113097 crossref_primary_10_3390_en15093294 crossref_primary_10_3390_app112110328 crossref_primary_10_1088_1361_665X_abf41f crossref_primary_10_1016_j_mtcomm_2023_105541 crossref_primary_10_3390_s20205862 crossref_primary_10_1016_j_heliyon_2024_e29043 crossref_primary_10_1080_00150193_2021_1984760 crossref_primary_10_1109_JIOT_2022_3152547 crossref_primary_10_1088_1361_6463_acdadb crossref_primary_10_1016_j_engstruct_2023_116190 crossref_primary_10_1002_er_5429 crossref_primary_10_1002_ese3_829 crossref_primary_10_1016_j_applthermaleng_2019_114106 crossref_primary_10_1016_j_joule_2021_03_006 crossref_primary_10_1115_1_4044956 crossref_primary_10_1016_j_mne_2024_100245 crossref_primary_10_1016_j_jiec_2023_04_028 crossref_primary_10_1007_s11431_023_2535_0 crossref_primary_10_1016_j_nanoen_2022_107219 crossref_primary_10_1002_er_5127 crossref_primary_10_3390_s21124145 crossref_primary_10_1002_er_6832 crossref_primary_10_1007_s40684_021_00344_5 crossref_primary_10_1002_er_8713 crossref_primary_10_1088_1361_6439_ac349d crossref_primary_10_56958_jesi_2023_8_2_171 crossref_primary_10_4271_2020_01_1236 crossref_primary_10_1002_er_5643 |
Cites_doi | 10.1038/s41598-017-13425-w 10.3390/s8128123 10.1109/TMECH.2011.2151203 10.1002/aenm.201401787 10.2109/jcersj2.118.909 10.1002/er.3975 10.1007/s12206-018-0645-3 10.1007/s00542-012-1480-6 10.1007/s42114-018-0046-1 10.1109/MEMSYS.2014.6765704 10.1143/JJAP.45.5836 10.1016/j.engfailanal.2011.01.003 10.1002/er.3357 10.1002/er.3227 10.1109/58.658312 10.1007/s12239-012-0098-0 10.1109/IEDM.2011.6131639 10.1109/19.816111 10.1115/1.4042398 10.1016/j.compscitech.2017.12.030 10.1002/er.3986 10.4271/2012-01-0796 10.1177/1045389X12463459 10.1002/er.3111 10.1088/0964-1726/21/1/015011 10.1115/ES2018-7496 10.1177/1045389X14544138 10.13031/2013.3039 10.1002/er.3149 10.1002/er.2949 10.2346/1.2137541 10.1016/j.enconman.2013.09.054 10.1016/j.ijsolstr.2012.09.004 10.1016/j.joule.2018.03.011 10.1016/S0022-5096(03)00053-X 10.1163/156856192X00430 10.1016/j.compscitech.2018.08.034 10.1002/adma.201102067 10.3390/s17020350 10.1109/GreenCom-iThings-CPSCom.2013.303 10.1016/j.sna.2009.12.007 10.1002/ente.201700785 10.1007/s10832-005-0961-8 10.1002/er.3851 10.1109/SENSOR.2009.5285831 10.1016/j.matcom.2004.07.002 10.1115/POWER2018-7375 10.1016/j.sna.2018.12.002 10.2346/1.2139527 10.2346/tire.14.420102 10.1063/1.2560441 10.4271/2018-01-1188 10.1002/er.1608 10.3139/9783446428713 10.3390/s140100188 10.1002/er.1372 10.1061/(ASCE)MT.1943-5533.0000600 |
ContentType | Journal Article |
Copyright | 2019 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2019 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SP 7ST 7TB 7TN 8FD C1K F1W F28 FR3 H96 KR7 L.G L7M SOI |
DOI | 10.1002/er.4441 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Oceanic Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-114X |
EndPage | 5212 |
ExternalDocumentID | 10_1002_er_4441 ER4441 |
Genre | article |
GrantInformation_xml | – fundername: NSF‐I/UCRC |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AAJEY AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJCF ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AI. AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BKSAR BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 FEDTE G-S G.N G8K GNP GODZA GROUPED_DOAJ H.T H.X H13 HCIFZ HF~ HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 M7S MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PCBAR PIMPY PTHSS PYCSY Q.N Q11 QB0 QRW R.K RHX RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TN5 UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WWI WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX CITATION 7SP 7ST 7TB 7TN 8FD C1K F1W F28 FR3 H96 KR7 L.G L7M SOI |
ID | FETCH-LOGICAL-c3221-2dad4dcad29aedd087ae94ceb91134c686da7db3f4e8540f98adcc63ff6eec3 |
IEDL.DBID | DR2 |
ISSN | 0363-907X |
IngestDate | Thu Oct 10 16:47:14 EDT 2024 Fri Aug 23 02:02:14 EDT 2024 Sat Aug 24 01:13:10 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3221-2dad4dcad29aedd087ae94ceb91134c686da7db3f4e8540f98adcc63ff6eec3 |
ORCID | 0000-0003-3805-8550 0000-0002-5810-166X |
OpenAccessLink | https://doi.org/10.1002/er.4441 |
PQID | 2263053259 |
PQPubID | 996365 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2263053259 crossref_primary_10_1002_er_4441 wiley_primary_10_1002_er_4441_ER4441 |
PublicationCentury | 2000 |
PublicationDate | August 2019 2019-08-00 20190801 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: August 2019 |
PublicationDecade | 2010 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | International journal of energy research |
PublicationYear | 2019 |
Publisher | Hindawi Limited |
Publisher_xml | – name: Hindawi Limited |
References | 2007; 101 2017; 7 2015; 39 1997; 44 2013; 24 2000; 43 2018; 167 1993; 21 1999; 48 2004; 67 2008; 8 2008; 32 2012; 18 2012; 17 2012; 13 2003; 51 2018; 42 2011; 18 2019; 285 1992; 6 2018; 6 2018; 2 2013; 14 2010; 118 1990 2018; 1 2010; 159 2013; 50 1985 2011; 21 2011; 23 2012; 25 2018; 32 2018; 141 2015; 5 2012 2011 2010 1997; 25 2009 1998 2006 2003 2002 2012; 36 2007; 14 2014; 42 2009; 33 2015; 26 2018; 17 2006; 45 2017; 17 2018; 156 2014; 38 2018 2014 2013 2014; 186 2014; 78 2005; 14 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_21_1 e_1_2_10_44_1 Chua H (e_1_2_10_64_1) 2014; 186 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_70_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_24_1 e_1_2_10_45_1 Li H (e_1_2_10_10_1) 2018; 17 e_1_2_10_22_1 e_1_2_10_20_1 Antognetti P (e_1_2_10_68_1) 1990 Sepe M (e_1_2_10_39_1) 1998 e_1_2_10_71_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 Boyer HE (e_1_2_10_43_1) 1985 e_1_2_10_59_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 Makki N (e_1_2_10_34_1) 2011 e_1_2_10_60_1 e_1_2_10_62_1 e_1_2_10_28_1 Pešek L (e_1_2_10_41_1) 2007; 14 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – year: 1985 – volume: 51 start-page: 1477 issue: 8 year: 2003 end-page: 1508 article-title: Experiments and theory in strain gradient elasticity publication-title: J Mech Phys Solids – volume: 32 start-page: 3419 issue: 7 year: 2018 end-page: 3425 article-title: Simulation of temperature rise within a rolling tire by using FE analysis publication-title: J Mech Sci Technol – volume: 141 start-page: 062007 issue: 6 year: 2018 article-title: A rainbow piezoelectric energy harvesting system for intelligent tires monitoring applications publication-title: J Energy Res Technol – start-page: 568 year: 2014 end-page: 571 – volume: 25 start-page: 174 issue: 2 year: 2012 end-page: 182 article-title: Effect of temperature on strength and elastic modulus of high‐strength steel publication-title: J Mater Civ Eng – volume: 17 start-page: 350 issue: 2 year: 2017 article-title: A novel strain‐based method to estimate tire conditions using fuzzy logic for intelligent tires publication-title: Sensors – volume: 285 start-page: 613 year: 2019 end-page: 622 article-title: Design and optimisation of an underfloor energy harvesting system publication-title: Sens Actuators A Phys – volume: 38 start-page: 1318 issue: 10 year: 2014 end-page: 1330 article-title: Power reclamation efficiency of a miniature energy‐harvesting device using external fluid flows publication-title: Int J Energy Res – volume: 78 start-page: 32 year: 2014 end-page: 38 article-title: Development of a piezoelectric energy harvesting system for implementing wireless sensors on the tires publication-title: Energ Conver Manage – volume: 23 start-page: 4068 issue: 35 year: 2011 end-page: 4071 article-title: A nanogenerator for energy harvesting from a rotating tire and its application as a self‐powered pressure/speed sensor publication-title: Adv Mater – volume: 14 start-page: 3 issue: 1–2 year: 2007 end-page: 11 article-title: FEM modeling of thermo‐mechanical interaction in pre‐pressed rubber block publication-title: Eng Mech – volume: 38 start-page: 530 issue: 4 year: 2014 end-page: 537 article-title: Energy harvesting system using reverse electrodialysis with nanoporous polycarbonate track‐etch membranes publication-title: Int J Energy Res – volume: 42 start-page: 684 issue: 2 year: 2018 end-page: 695 article-title: Development of an ocean wave energy harvester with a built‐in frequency conversion function publication-title: Int J Energy Res – volume: 186 start-page: 103 year: 2014 article-title: Modelling and design analyses of a piezoelectric cymbal transducer (PCT) structure for energy harvesting application publication-title: Energy Sustain V – year: 2018 – year: 1990 – volume: 50 start-page: 86 issue: 1 year: 2013 end-page: 96 article-title: Numerical estimation of rolling resistance and temperature distribution of 3‐D periodic patterned tire publication-title: Int J Solids and Struct – volume: 6 start-page: 781 issue: 7 year: 1992 end-page: 789 article-title: Effect of anhydride addition to alkyl cyanoacrylate on its adhesive bond durability publication-title: J Adhes Sci Technol – year: 1998 – start-page: 29.5.1 year: 2011 end-page: 29.5.4 – start-page: 1389 year: 2009 end-page: 1392 – volume: 167 start-page: 404 year: 2018 end-page: 410 article-title: Thermo‐mechanical coupling analysis of transient temperature and rolling resistance for solid rubber tire: numerical simulation and experimental verification publication-title: Compos Sci Technol – volume: 32 start-page: 379 issue: 5 year: 2008 end-page: 407 article-title: Renewable hydrogen production publication-title: Int J Energy Res – volume: 18 start-page: 1645 issue: 7 year: 2011 end-page: 1651 article-title: Useful lifetime prediction of rubber component publication-title: Eng Failure Anal – volume: 8 start-page: 8123 issue: 12 year: 2008 end-page: 8138 article-title: Wireless monitoring of automobile tires for intelligent tires publication-title: Sensors – volume: 13 start-page: 963 issue: 6 year: 2012 end-page: 969 article-title: A self‐powering system based on tire deformation during driving publication-title: Int J Automot Technol – start-page: 1665 year: 2013 end-page: 1667 – volume: 42 start-page: 16 issue: 1 year: 2014 end-page: 34 article-title: Modeling of strain energy harvesting in pneumatic tires using piezoelectric transducer publication-title: Tire Sci Technol – volume: 42 start-page: 1866 issue: 5 year: 2018 end-page: 1893 article-title: Review of vibration‐based energy harvesting technology: mechanism and architectural approach publication-title: Int J Energy Res – volume: 26 start-page: 1404 issue: 11 year: 2015 end-page: 1416 article-title: Strain‐based piezoelectric energy harvesting for wireless sensor systems in a tire publication-title: J Intell Mater Syst Struct – volume: 5 issue: 7 year: 2015 article-title: Energy harvesting technologies for tire pressure monitoring systems publication-title: Adv Energy Mater – volume: 6 start-page: 829 issue: 5 year: 2018 end-page: 848 article-title: Piezoelectric energy harvesting systems—essentials to successful developments publication-title: Energ Technol – volume: 17 start-page: 44 issue: 2 year: 2018 article-title: Energy cooperation in battery‐free wireless communications with radio frequency energy harvesting publication-title: ACM Trans Embed Comput Syst (TECS) – volume: 42 start-page: 1702 issue: 4 year: 2018 end-page: 1713 article-title: Vibration energy harvesting in vehicles by gear segmentation and a virtual displacement filtering algorithm publication-title: Int J Energy Res – volume: 18 start-page: 1201 issue: 7–8 year: 2012 end-page: 1212 article-title: Battery‐and wire‐less tire pressure measurement systems (TPMS) sensor publication-title: Microsyst Technol – volume: 67 start-page: 235 issue: 3 year: 2004 end-page: 249 article-title: Temperature prediction of rolling tires by computer simulation publication-title: Math Comput Simul – volume: 21 issue: 1 year: 2011 article-title: Direct strain energy harvesting in automobile tires using piezoelectric PZT–polymer composites publication-title: Smart Mater Struct – volume: 39 start-page: 1545 issue: 11 year: 2015 end-page: 1553 article-title: Development of an energy harvesting damper using PVDF film publication-title: Int J Energy Res – volume: 36 start-page: 1139 issue: 12 year: 2012 end-page: 1150 article-title: A review of the present situation and future developments of micro‐batteries for wireless autonomous sensor systems publication-title: Int J Energy Res – volume: 118 start-page: 909 issue: 1382 year: 2010 end-page: 915 article-title: Finite element analysis of cymbal piezoelectric transducers for harvesting energy from asphalt pavement publication-title: J Cerma Soc Jpn – year: 2003 – volume: 43 start-page: 1415 issue: 6 year: 2000 end-page: 1419 article-title: Methods for measuring vertical tire stiffness publication-title: Trans ASAE – volume: 14 start-page: 221 issue: 3 year: 2005 end-page: 229 article-title: Tunability of cymbals as piezocomposite transducers publication-title: J Electroceram – volume: 39 start-page: 120 issue: 1 year: 2015 end-page: 127 article-title: Piezoelectric cable macro‐fiber composites for use in energy harvesting publication-title: Int J Energy Res – volume: 24 start-page: 828 issue: 7 year: 2013 end-page: 836 article-title: Modeling and experimental validation of unimorph piezoelectric cymbal design in energy harvesting publication-title: Journal of Intelligent Material Systems and Structures – volume: 156 start-page: 158 year: 2018 end-page: 165 article-title: All‐aromatic SWCNT‐Polyetherimide nanocomposites for thermal energy harvesting applications publication-title: Compos Sci Technol – volume: 25 start-page: 214 issue: 3 year: 1997 end-page: 228 article-title: Analysis of temperature distribution in a rolling tire due to strain energy dissipation publication-title: Tire Sci Technol – volume: 2 start-page: 642 issue: 4 year: 2018 end-page: 697 article-title: High‐performance piezoelectric energy harvesters and their applications publication-title: Joule – volume: 14 start-page: 188 issue: 1 year: 2013 end-page: 211 article-title: Efficiency enhancement of a cantilever‐based vibration energy harvester publication-title: Sensors – year: 2011 article-title: Piezoelectric power generation in automotive tires publication-title: Proceedings of the Smart Materials & Structures/NDT in Aerospace/NDT in Canada – volume: 7 start-page: 12915 issue: 1 year: 2017 article-title: Large piezoelectric strain with ultra‐low strain hysteresis in highly c‐axis oriented Pb(Zr Ti )O films with columnar growth on amorphous glass substrates publication-title: Sci Rep – year: 2010 – volume: 159 start-page: 196 issue: 2 year: 2010 end-page: 203 article-title: Design of a frequency‐adjusting device for harvesting energy from a rotating wheel publication-title: Sens Actuators a – year: 2012 – volume: 101 issue: 6 year: 2007 article-title: Temperature dependence of the complete material coefficients matrix of soft and hard doped piezoelectric lead zirconate titanate ceramics publication-title: J Appl Phys – volume: 17 start-page: 995 issue: 5 year: 2012 end-page: 1005 article-title: Design and modeling of a patterned‐electret‐based energy harvester for tire pressure monitoring systems publication-title: IEEE/ASME Trans Mechatron – volume: 21 start-page: 163 issue: 3 year: 1993 end-page: 178 article-title: A thermomechanical model to predict the temperature distribution of steady state rolling tires publication-title: Tire Sci Technol – start-page: 29 year: 2010 end-page: 32 – volume: 1 start-page: 1 issue: 3 year: 2018 end-page: 28 article-title: Recent progress on piezoelectric energy harvesting: structures and materials publication-title: Adv Compos Hybrid Mater – year: 2002 – year: 2006 – volume: 44 start-page: 597 issue: 3 year: 1997 end-page: 605 article-title: Composite piezoelectric transducer with truncated conical endcaps “cymbal” publication-title: IEEE Trans Ultrason Ferroelectr Freq Control – volume: 48 start-page: 1041 issue: 6 year: 1999 end-page: 1046 article-title: The “intelligent tire” utilizing passive SAW sensors measurement of tire friction publication-title: IEEE Trans Instrum Meas – volume: 45 start-page: 5836 issue: 7R year: 2006 end-page: 5840 article-title: Modeling of piezoelectric energy harvesting using cymbal transducers publication-title: Jpn J Appl Phys – volume: 33 start-page: 1180 issue: 13 year: 2009 end-page: 1190 article-title: The advantages and potential of electret‐based vibration‐driven micro energy harvesters publication-title: Int J Energy Res – ident: e_1_2_10_62_1 doi: 10.1038/s41598-017-13425-w – ident: e_1_2_10_19_1 doi: 10.3390/s8128123 – volume: 17 start-page: 44 issue: 2 year: 2018 ident: e_1_2_10_10_1 article-title: Energy cooperation in battery‐free wireless communications with radio frequency energy harvesting publication-title: ACM Trans Embed Comput Syst (TECS) contributor: fullname: Li H – ident: e_1_2_10_24_1 doi: 10.1109/TMECH.2011.2151203 – ident: e_1_2_10_16_1 doi: 10.1002/aenm.201401787 – ident: e_1_2_10_65_1 doi: 10.2109/jcersj2.118.909 – ident: e_1_2_10_14_1 doi: 10.1002/er.3975 – ident: e_1_2_10_36_1 – ident: e_1_2_10_44_1 doi: 10.1007/s12206-018-0645-3 – volume-title: Semiconductor Device Modeling with SPICE year: 1990 ident: e_1_2_10_68_1 contributor: fullname: Antognetti P – ident: e_1_2_10_29_1 doi: 10.1007/s00542-012-1480-6 – ident: e_1_2_10_53_1 doi: 10.1007/s42114-018-0046-1 – ident: e_1_2_10_27_1 doi: 10.1109/MEMSYS.2014.6765704 – ident: e_1_2_10_52_1 doi: 10.1143/JJAP.45.5836 – ident: e_1_2_10_40_1 doi: 10.1016/j.engfailanal.2011.01.003 – ident: e_1_2_10_8_1 doi: 10.1002/er.3357 – ident: e_1_2_10_6_1 doi: 10.1002/er.3227 – ident: e_1_2_10_51_1 doi: 10.1109/58.658312 – ident: e_1_2_10_26_1 – ident: e_1_2_10_55_1 doi: 10.1007/s12239-012-0098-0 – ident: e_1_2_10_30_1 doi: 10.1109/IEDM.2011.6131639 – volume: 186 start-page: 103 year: 2014 ident: e_1_2_10_64_1 article-title: Modelling and design analyses of a piezoelectric cymbal transducer (PCT) structure for energy harvesting application publication-title: Energy Sustain V contributor: fullname: Chua H – ident: e_1_2_10_18_1 doi: 10.1109/19.816111 – ident: e_1_2_10_33_1 doi: 10.1115/1.4042398 – ident: e_1_2_10_9_1 doi: 10.1016/j.compscitech.2017.12.030 – ident: e_1_2_10_15_1 doi: 10.1002/er.3986 – ident: e_1_2_10_69_1 doi: 10.4271/2012-01-0796 – volume-title: Dynamic Mechanical Analysis For Plastics Engineering year: 1998 ident: e_1_2_10_39_1 contributor: fullname: Sepe M – ident: e_1_2_10_66_1 doi: 10.1177/1045389X12463459 – ident: e_1_2_10_4_1 doi: 10.1002/er.3111 – ident: e_1_2_10_38_1 doi: 10.1088/0964-1726/21/1/015011 – ident: e_1_2_10_59_1 – ident: e_1_2_10_13_1 doi: 10.1115/ES2018-7496 – ident: e_1_2_10_57_1 doi: 10.1177/1045389X14544138 – ident: e_1_2_10_58_1 doi: 10.13031/2013.3039 – ident: e_1_2_10_3_1 doi: 10.1002/er.3149 – ident: e_1_2_10_22_1 doi: 10.1002/er.2949 – volume: 14 start-page: 3 issue: 1 year: 2007 ident: e_1_2_10_41_1 article-title: FEM modeling of thermo‐mechanical interaction in pre‐pressed rubber block publication-title: Eng Mech contributor: fullname: Pešek L – ident: e_1_2_10_47_1 doi: 10.2346/1.2137541 – ident: e_1_2_10_32_1 doi: 10.1016/j.enconman.2013.09.054 – ident: e_1_2_10_49_1 doi: 10.1016/j.ijsolstr.2012.09.004 – ident: e_1_2_10_17_1 doi: 10.1016/j.joule.2018.03.011 – ident: e_1_2_10_56_1 – ident: e_1_2_10_61_1 doi: 10.1016/S0022-5096(03)00053-X – ident: e_1_2_10_60_1 doi: 10.1163/156856192X00430 – ident: e_1_2_10_45_1 doi: 10.1016/j.compscitech.2018.08.034 – ident: e_1_2_10_2_1 – ident: e_1_2_10_37_1 doi: 10.1002/adma.201102067 – ident: e_1_2_10_63_1 doi: 10.3390/s17020350 – ident: e_1_2_10_71_1 doi: 10.1109/GreenCom-iThings-CPSCom.2013.303 – ident: e_1_2_10_23_1 doi: 10.1016/j.sna.2009.12.007 – ident: e_1_2_10_54_1 doi: 10.1002/ente.201700785 – ident: e_1_2_10_67_1 doi: 10.1007/s10832-005-0961-8 – ident: e_1_2_10_7_1 doi: 10.1002/er.3851 – volume-title: Metals Handbook; Desk Edition year: 1985 ident: e_1_2_10_43_1 contributor: fullname: Boyer HE – ident: e_1_2_10_28_1 doi: 10.1109/SENSOR.2009.5285831 – year: 2011 ident: e_1_2_10_34_1 article-title: Piezoelectric power generation in automotive tires publication-title: Proceedings of the Smart Materials & Structures/NDT in Aerospace/NDT in Canada contributor: fullname: Makki N – ident: e_1_2_10_48_1 doi: 10.1016/j.matcom.2004.07.002 – ident: e_1_2_10_21_1 doi: 10.1115/POWER2018-7375 – ident: e_1_2_10_12_1 doi: 10.1016/j.sna.2018.12.002 – ident: e_1_2_10_46_1 doi: 10.2346/1.2139527 – ident: e_1_2_10_35_1 doi: 10.2346/tire.14.420102 – ident: e_1_2_10_50_1 doi: 10.1063/1.2560441 – ident: e_1_2_10_20_1 doi: 10.4271/2018-01-1188 – ident: e_1_2_10_25_1 – ident: e_1_2_10_11_1 doi: 10.1002/er.1608 – ident: e_1_2_10_42_1 doi: 10.3139/9783446428713 – ident: e_1_2_10_31_1 doi: 10.3390/s140100188 – ident: e_1_2_10_5_1 doi: 10.1002/er.1372 – ident: e_1_2_10_70_1 doi: 10.1061/(ASCE)MT.1943-5533.0000600 |
SSID | ssj0009917 |
Score | 2.4766948 |
Snippet | Summary
Basic parameters affecting vehicle safety and performance such as pressure, temperature, friction coefficient, and contact‐patch dimensions are... Basic parameters affecting vehicle safety and performance such as pressure, temperature, friction coefficient, and contact‐patch dimensions are measured in... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 5199 |
SubjectTerms | Automotive parts Coefficient of friction Communication Contact pressure Design Dimensions Electric contacts Electric potential Electric power Electric power sources Energy Energy harvesting intelligent tire Modelling multiphysics modeling performance analysis piezoelectric energy harvesting Piezoelectricity Sensors Shape Temperature tire deflection Tires Vehicle safety Vibration Voltage Wireless communications |
Title | Design, modeling, and analysis of a high performance piezoelectric energy harvester for intelligent tires |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fer.4441 https://www.proquest.com/docview/2263053259 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMeD7KQHf4vTKTnsuO5H0185itsYgh6mwvBSXpNXLMI2us7D_nrzo12nIIiHUigJhCQv-aZ57_MIabtuKBlniZP4GqotAnDUPq8Prh4i9MFnBurz-BRMXr2HmT_bSfVl-RDbH27aMsx6rQ0cklWvhoZi3vU8E7I-YKF25hpOa3CUUj1hdUupjn8zGy6ra_bKet_3oVpc7kpUs8eMj8hb1TrrWvLRXRdJV2x-gBv_1fxjclgqT3pnp8oJ2cP5KTnY4RGekWxo_Dk61OTHUZ86FOZSPRZcQhcpBaoBx3RZxxvQZYabhU2nkwmKJpiQvkP-aSAMVJWj2Rb8WdBCLbKrc_I8Hr3cT5wyF4MjlMkPHFeC9KQA6XJAKftRCMg9gYlaLJka4iiQEMqEpR5GSgSmPAIpRMDSNEAU7II05os5XhIKnEmdRDAcSOGF6IMMgAe-1PMCI45NQqtxiZcWuBFbtLIbYx7rPmuSVjVecWlxq1jJSKazXPi8Sdqm43-rHo-m-nX1t2LXZF9pJG59_lqkUeRrvFE6pEhuzZT7AsqG3Eo |
link.rule.ids | 315,783,787,1378,27938,27939,46308,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LS8MwHMeDzIN68C1Op-aw47pH01eO4jambjvMCQMPJU1-xSJ0o-s87K83j-6hIIiHUigJtEl-yTfp7_f5IVS1bV8QSiIrchVUm3vMkuu82rg6AKzJXKKhPoOh13t1nibupPCqVLEwhg-xPnBTlqHna2Xg6kC6saGGQlZ3HBWzviuNnajsBe3RBh0ldY-_-k8pN4ATEzCrqjaKit9Xoo283BapepXpHqG31fsZ55KP-iKP6nz5A934vw84RoeF-MT3ZrScoB1IT9HBFpLwDCVt7dJRwzpFjnxUwywV8jLsEjyNMcOKcYxnm5ADPEtgOTUZdRKOQccT4neWfWoOA5blcLJmf-Y4l_Ps_By9dDvjh55VpGOwuLT6lmULJhzBmbApAyGagc-AOhwiOV8S2cuBJ5gvIhI7EEgdGNOACc49EsceACcXqJROU7hEmFEiVB5BvyW444PLhMeo5wo1NCCgUEZ41THhzDA3QkNXtkPIQtVmZVRZdVhYGN08lEqSqEQXLi2jqm7536qHnZG6Xf2t2B3a640H_bD_OHy-RvtSMlHjAlhBpTxbwI2UJXl0q8ffF4U84GQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMeDTBB98C5Op-Zhj-suTXrJo7iNeRsyFYYvJU1OsQjb2Dof9unNZV2nIIgPpVASCElO8k9zzu8gVHXdQBJGYif2NFRb-NxR-7w-uFIA3uQeMVCfx77fe6V3Q2-4lurL8iFWP9y0ZZj1Whv4RCaNAhoK0zqlOmR9k_qkqb252oOCHKVkT5BfU6rz39DGy-qqjWXF7xtRoS7XNarZZLp76C1vnvUt-ajPs7guFj_Ijf9q_z7aXUpPfG3nygHagNEh2lkDEh6htG0cOmrYJMhRn2qYj6R6LLkEjxPMsSYc40kRcIAnKSzGNp9OKjCYaEL8zqefhsKAVTmcrsifGc7UKjs7Rs_dzstNz1kmY3CEsvmW40ouqRRcuoyDlM0w4MCogFitlkSNcehLHsiYJBRCpQITFnIphE-SxAcQ5ASVRuMRnCLMGZE6i2DQkoIG4HHpc-Z7Uk8MCBmUEc7HJZpY4kZk2cpuBNNI91kZVfLxipYmN4uUjiQ6zYXHyqhqOv636lFnoF9nfyt2hbae2t3o4bZ_f462lV5i1v-vgkrZdA4XSpNk8aWZfV8N7N8T |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design%2C+modeling%2C+and+analysis+of+a+high+performance+piezoelectric+energy+harvester+for+intelligent+tires&rft.jtitle=International+journal+of+energy+research&rft.au=Esmaeeli%2C+Roja&rft.au=Aliniagerdroudbari%2C+Haniph&rft.au=Hashemi%2C+Seyed+Reza&rft.au=Alhadri%2C+Muapper&rft.date=2019-08-01&rft.pub=Hindawi+Limited&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=43&rft.issue=10&rft.spage=5199&rft.epage=5212&rft_id=info:doi/10.1002%2Fer.4441&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon |