Forage quality in cereal/legume intercropping: A meta-analysis
Meta-analyses have highlighted several advantages of cereal/legume intercropping for food compared to sole cropping, but none report on fodder quality and yield. In forage production, mixtures may more effectively balance fiber and crude protein concentrations of the forage in view of nutrient requi...
Saved in:
Published in | Field crops research Vol. 304; p. 109174 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
01.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Meta-analyses have highlighted several advantages of cereal/legume intercropping for food compared to sole cropping, but none report on fodder quality and yield. In forage production, mixtures may more effectively balance fiber and crude protein concentrations of the forage in view of nutrient requirements of ruminants than sole crops. However, productivity, quality and the trade-off between these in cereal/legume intercropping of fodder species have not been systematically reviewed. This paper reports on a meta-analysis of a database of global literature on intercropping of forage-producing cereal and legume crops to evaluate the effect of intercropping on dry matter (DM), crude protein (CP), acid detergent fiber (ADF), neutral detergent fiber (NDF), non-CP non-NDF yields and concentrations of intercrops as compared with the respective sole crops. A literature search was carried in Web of Science searching in ‘all fields’ with as search terms: (intercrop* OR “mixed crop*” OR “crop mix* ” OR “mixed cultivation*” OR “polyculture*” OR “row crop*”) AND (forage OR fodder) AND (quality OR "nutri* content" OR "nutri* concentration" OR "nutri* value"). Out of the 759 papers further selection yielded a database based on 61 publications on cereal/legume intercropping reporting total biomass and at least one quality component for both sole crops and their intercrops. The net effects for DM (1.76 ± 0.38 Mg/ha), CP (0.20 ± 0.05 Mg/ha), NDF (1.01 ± 0.25 Mg/ha), ADF (0.63 ± 0.15 Mg/ha) and non-CP non-NDF (0.76 ± 0.22 Mg/ha) yields showed production of all increased upon intercropping. The difference in relative increase in total DM and the four components did not lead to any change in %CP, %NDF, %ADF and %non-CP non-NDF. The change in DM yield was due to enhanced cereal yield. Moreover, the cereal %CP in the intercrops was higher than expected and the cereal %NDF and %ADF in the intercrops was lower than expected, while the overall quality of the legume in the intercrops did not change. Intercropping cereal and legume species will neither improve nor reduce the quality of produced feed, but it makes more effective use of the land through a higher production per unit area. This study reports the combined forage quality and quantity in cereal/legume intercropping. The quantity/quality balance of forage production with cereal/legume intercrops is necessary to design intercropping for forage production. The results can be utilized to establish cereal/legume intercropping systems with different forage production aims. |
---|---|
AbstractList | Meta-analyses have highlighted several advantages of cereal/legume intercropping for food compared to sole cropping, but none report on fodder quality and yield. In forage production, mixtures may more effectively balance fiber and crude protein concentrations of the forage in view of nutrient requirements of ruminants than sole crops. However, productivity, quality and the trade-off between these in cereal/legume intercropping of fodder species have not been systematically reviewed. This paper reports on a meta-analysis of a database of global literature on intercropping of forage-producing cereal and legume crops to evaluate the effect of intercropping on dry matter (DM), crude protein (CP), acid detergent fiber (ADF), neutral detergent fiber (NDF), non-CP non-NDF yields and concentrations of intercrops as compared with the respective sole crops. A literature search was carried in Web of Science searching in ‘all fields’ with as search terms: (intercrop* OR “mixed crop*” OR “crop mix* ” OR “mixed cultivation*” OR “polyculture*” OR “row crop*”) AND (forage OR fodder) AND (quality OR "nutri* content" OR "nutri* concentration" OR "nutri* value"). Out of the 759 papers further selection yielded a database based on 61 publications on cereal/legume intercropping reporting total biomass and at least one quality component for both sole crops and their intercrops. The net effects for DM (1.76 ± 0.38 Mg/ha), CP (0.20 ± 0.05 Mg/ha), NDF (1.01 ± 0.25 Mg/ha), ADF (0.63 ± 0.15 Mg/ha) and non-CP non-NDF (0.76 ± 0.22 Mg/ha) yields showed production of all increased upon intercropping. The difference in relative increase in total DM and the four components did not lead to any change in %CP, %NDF, %ADF and %non-CP non-NDF. The change in DM yield was due to enhanced cereal yield. Moreover, the cereal %CP in the intercrops was higher than expected and the cereal %NDF and %ADF in the intercrops was lower than expected, while the overall quality of the legume in the intercrops did not change. Intercropping cereal and legume species will neither improve nor reduce the quality of produced feed, but it makes more effective use of the land through a higher production per unit area. This study reports the combined forage quality and quantity in cereal/legume intercropping. The quantity/quality balance of forage production with cereal/legume intercrops is necessary to design intercropping for forage production. The results can be utilized to establish cereal/legume intercropping systems with different forage production aims. |
ArticleNumber | 109174 |
Author | Liu, Hao Stomph, Tjeerd-Jan Zhang, Yingjun Jing, Jingying Struik, Paul C. |
Author_xml | – sequence: 1 givenname: Hao surname: Liu fullname: Liu, Hao – sequence: 2 givenname: Paul C. surname: Struik fullname: Struik, Paul C. – sequence: 3 givenname: Yingjun surname: Zhang fullname: Zhang, Yingjun – sequence: 4 givenname: Jingying surname: Jing fullname: Jing, Jingying – sequence: 5 givenname: Tjeerd-Jan surname: Stomph fullname: Stomph, Tjeerd-Jan |
BookMark | eNp9kD1rwzAQhjWk0CTtD-jmsYsTyZZkuUMhhH5BoEs7i7NyCgryRyR5yL-vQzp16HS8x_scx7Mgs67vkJAHRleMMrk-rqwJq4IW5ZRrVvEZmdOyUjkvanpLFjEeKaVSMjknz699gANmpxG8S-fMdZnBgODXHg9ji9MiYTChHwbXHZ6yTdZighw68Ofo4h25seAj3v_OJfl-ffnavue7z7eP7WaXm7JgKUcp0DYNKmQ11IxxoVRT1dZURu0Z5YJyBQ3fCwCmyrqxnHIpqRDGglW1LJfk8Xp3CP1pxJh066JB76HDfoy6ZKJkqlCVmKrVtTo9HWNAq41LkFzfpQDOa0b1xZI-6smSvljSV0sTyf6QQ3AthPM_zA89JG9W |
CitedBy_id | crossref_primary_10_1016_j_fcr_2024_109607 crossref_primary_10_1016_j_heliyon_2024_e39817 crossref_primary_10_3390_agronomy15010083 crossref_primary_10_1016_j_geoderma_2025_117195 crossref_primary_10_1007_s12892_025_00279_2 crossref_primary_10_3390_agronomy13123048 crossref_primary_10_3389_fsufs_2024_1385296 crossref_primary_10_1016_j_fcr_2024_109642 crossref_primary_10_1016_j_soilbio_2024_109318 crossref_primary_10_1021_acsomega_4c03107 |
Cites_doi | 10.1016/S0065-2113(10)07001-X 10.1590/1678-4499.20200423 10.1007/BF00011315 10.1038/35083573 10.3168/jds.2016-10925 10.1023/A:1022352229863 10.3390/plants10051015 10.3390/agriculture10010005 10.1016/j.fcr.2015.09.010 10.1016/j.agee.2021.107658 10.1007/s10113-017-1131-7 10.1016/j.eja.2017.09.009 10.3168/jds.2010-3860 10.1007/s10658-019-01711-4 10.1016/j.eja.2019.125987 10.1016/j.fcr.2013.03.021 10.1016/j.fcr.2014.09.004 10.1016/j.fcr.2017.01.010 10.1016/bs.agron.2019.10.002 10.1007/s13593-014-0277-7 10.2527/jas1978.473747x 10.1111/nph.13132 10.1016/S0749-0720(15)30790-8 10.1016/j.fcr.2019.107661 10.1016/j.scitotenv.2017.10.024 10.1016/j.fcr.2016.08.001 10.1016/j.eja.2020.126077 10.1073/pnas.0709069104 10.1038/s41477-020-0680-9 10.1017/S0021859602002149 10.1007/s11104-020-04768-x |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.fcr.2023.109174 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
ExternalDocumentID | 10_1016_j_fcr_2023_109174 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM AAEDT AAEDW AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO AAYWO AAYXX ABFNM ABFRF ABGRD ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADQTV AEBSH AEFWE AEGFY AEIPS AEKER AENEX AEQOU AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CITATION CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SES SEW SPCBC SSA SSH SSZ T5K UNMZH WUQ Y6R ~G- ~KM 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c321t-e65efbbe8e19a9114588b79fc7c8d1045048ab4d5aa1839bf40466055cfaf8963 |
ISSN | 0378-4290 |
IngestDate | Fri Aug 22 20:23:20 EDT 2025 Thu Apr 24 22:58:36 EDT 2025 Tue Jul 01 04:25:08 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c321t-e65efbbe8e19a9114588b79fc7c8d1045048ab4d5aa1839bf40466055cfaf8963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doi.org/10.1016/j.fcr.2023.109174 |
PQID | 3153182875 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153182875 crossref_citationtrail_10_1016_j_fcr_2023_109174 crossref_primary_10_1016_j_fcr_2023_109174 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-00 20231201 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-00 |
PublicationDecade | 2020 |
PublicationTitle | Field crops research |
PublicationYear | 2023 |
References | Cardinale (10.1016/j.fcr.2023.109174_bib5) 2007; 104 van der Werf (10.1016/j.fcr.2023.109174_bib32) 2021; 8 Rodriguez (10.1016/j.fcr.2023.109174_bib25) 2020; 118 Zhang (10.1016/j.fcr.2023.109174_bib41) 2010; 107 Li (10.1016/j.fcr.2023.109174_bib15) 2021; 8 Ashoori (10.1016/j.fcr.2023.109174_bib1) 2021; 80 Bedoussac (10.1016/j.fcr.2023.109174_bib3) 2015; 35 Zhang (10.1016/j.fcr.2023.109174_bib39) 2019; 154 Lemaire (10.1016/j.fcr.2023.109174_bib11) 2019; 10 Rohweder (10.1016/j.fcr.2023.109174_bib26) 1978; 47 Li (10.1016/j.fcr.2023.109174_bib12) 2020; 113 R Core Team (10.1016/j.fcr.2023.109174_bib23) 2022 Fujita (10.1016/j.fcr.2023.109174_bib7) 1992; 141 Raseduzzaman (10.1016/j.fcr.2023.109174_bib24) 2017; 91 Zhang (10.1016/j.fcr.2023.109174_bib40) 2003; 248 Baghdadi (10.1016/j.fcr.2023.109174_bib2) 2016; 39 Li (10.1016/j.fcr.2023.109174_bib14) 2023; 120 Verret (10.1016/j.fcr.2023.109174_bib33) 2017; 204 Steen Jensen (10.1016/j.fcr.2023.109174_bib28) 1996 Ghanbari-bonjar (10.1016/j.fcr.2023.109174_bib8) 2002; 138 10.1016/j.fcr.2023.109174_bib6 Yu (10.1016/j.fcr.2023.109174_bib36) 2016; 198 Brooker (10.1016/j.fcr.2023.109174_bib4) 2015 Stoltz (10.1016/j.fcr.2023.109174_bib29) 2014; 169 Tang (10.1016/j.fcr.2023.109174_bib31) 2021; 460 Yu (10.1016/j.fcr.2023.109174_bib35) 2015; 184 10.1016/j.fcr.2023.109174_bib21 Linn (10.1016/j.fcr.2023.109174_bib17) 1991; 7 Xu (10.1016/j.fcr.2023.109174_bib34) 2020; 246 Gu (10.1016/j.fcr.2023.109174_bib9) 2021; 322 Lichtfouse (10.1016/j.fcr.2023.109174_bib16) 2009 Zebeli (10.1016/j.fcr.2023.109174_bib38) 2011; 94 Hassen (10.1016/j.fcr.2023.109174_bib10) 2017; 17 Puhakka (10.1016/j.fcr.2023.109174_bib22) 2016; 99 Sadeghpour (10.1016/j.fcr.2023.109174_bib27) 2013; 148 Martin-Guay (10.1016/j.fcr.2023.109174_bib19) 2018; 615 Loreau (10.1016/j.fcr.2023.109174_bib18) 2001; 412 Zaeem (10.1016/j.fcr.2023.109174_bib37) 2021; 10 Stomph (10.1016/j.fcr.2023.109174_bib30) 2020; 160 Li (10.1016/j.fcr.2023.109174_bib13) 2020; 6 National Academies of Sciences and Medicine (10.1016/j.fcr.2023.109174_bib20) 2021 |
References_xml | – volume: 107 start-page: 1 year: 2010 ident: 10.1016/j.fcr.2023.109174_bib41 article-title: Rhizosphere processes and management for improving nutrient use efficiency and crop productivity publication-title: Implic. China Adv. Agron. doi: 10.1016/S0065-2113(10)07001-X – volume: 80 start-page: 1 year: 2021 ident: 10.1016/j.fcr.2023.109174_bib1 article-title: Forage potential of sorghum-clover intercropping systems in semi-arid conditions publication-title: Bragantia doi: 10.1590/1678-4499.20200423 – volume: 141 start-page: 155 year: 1992 ident: 10.1016/j.fcr.2023.109174_bib7 article-title: Biological nitrogen fixation in mixed cereal-legume cropping systems publication-title: Plant Soil doi: 10.1007/BF00011315 – volume: 412 start-page: 72 year: 2001 ident: 10.1016/j.fcr.2023.109174_bib18 article-title: Partitioning selection and complementarity in biodiversity experiments publication-title: Nature doi: 10.1038/35083573 – volume: 99 start-page: 7993 year: 2016 ident: 10.1016/j.fcr.2023.109174_bib22 article-title: Effects of replacing rapeseed meal with fava bean at 2 concentrate crude protein levels on feed intake, nutrient digestion, and milk production in cows fed grass silage–based diets publication-title: J. Dairy Sci. doi: 10.3168/jds.2016-10925 – volume: 248 start-page: 305 year: 2003 ident: 10.1016/j.fcr.2023.109174_bib40 article-title: Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency publication-title: Plant Soil doi: 10.1023/A:1022352229863 – volume: 39 start-page: 976 year: 2016 ident: 10.1016/j.fcr.2023.109174_bib2 article-title: Effect of intercropping of corn and soybean on dry matter yield and nutritive value of forage corn publication-title: Legume Res. – ident: 10.1016/j.fcr.2023.109174_bib6 – year: 2022 ident: 10.1016/j.fcr.2023.109174_bib23 – volume: 10 year: 2021 ident: 10.1016/j.fcr.2023.109174_bib37 article-title: Corn-soybean intercropping improved the nutritional quality of forage cultivated on podzols in boreal climate publication-title: Plants doi: 10.3390/plants10051015 – volume: 10 start-page: 5 year: 2019 ident: 10.1016/j.fcr.2023.109174_bib11 article-title: Allometries in plants as drivers of forage nutritive value: a review publication-title: Agriculture doi: 10.3390/agriculture10010005 – volume: 184 start-page: 133 year: 2015 ident: 10.1016/j.fcr.2023.109174_bib35 article-title: Temporal niche differentiation increases the land equivalent ratio of annual intercrops: a meta-analysis publication-title: Field Crops Res. doi: 10.1016/j.fcr.2015.09.010 – volume: 322 year: 2021 ident: 10.1016/j.fcr.2023.109174_bib9 article-title: Annual intercropping suppresses weeds: a meta-analysis publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2021.107658 – volume: 17 start-page: 1713 year: 2017 ident: 10.1016/j.fcr.2023.109174_bib10 article-title: Potential use of forage-legume intercropping technologies to adapt to climate-change impacts on mixed crop-livestock systems in Africa: a review publication-title: Reg. Environ. Change doi: 10.1007/s10113-017-1131-7 – volume: 91 start-page: 25 year: 2017 ident: 10.1016/j.fcr.2023.109174_bib24 article-title: Does intercropping enhance yield stability in arable crop production? A meta-analysis publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2017.09.009 – volume: 94 start-page: 2374 year: 2011 ident: 10.1016/j.fcr.2023.109174_bib38 article-title: Perturbations of plasma metabolites correlated with the rise of rumen endotoxin in dairy cows fed diets rich in easily degradable carbohydrates publication-title: J. Dairy Sci. doi: 10.3168/jds.2010-3860 – volume: 154 start-page: 931 year: 2019 ident: 10.1016/j.fcr.2023.109174_bib39 article-title: Intercropping cereals with faba bean reduces plant disease incidence regardless of fertilizer input; a meta-analysis publication-title: Eur. J. Plant Pathol. doi: 10.1007/s10658-019-01711-4 – volume: 113 year: 2020 ident: 10.1016/j.fcr.2023.109174_bib12 article-title: Yield gain, complementarity and competitive dominance in intercropping in China: a meta-analysis of drivers of yield gain using additive partitioning publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2019.125987 – volume: 148 start-page: 43 year: 2013 ident: 10.1016/j.fcr.2023.109174_bib27 article-title: Forage yield, quality and economic benefit of intercropped barley and annual medic in semi-arid conditions: additive series publication-title: Field Crops Res doi: 10.1016/j.fcr.2013.03.021 – volume: 8 year: 2021 ident: 10.1016/j.fcr.2023.109174_bib15 article-title: Crop diversity and sustainable agriculture: mechanisms, designs and applications publication-title: Front. Agric. Sci. Eng. – volume: 169 start-page: 21 year: 2014 ident: 10.1016/j.fcr.2023.109174_bib29 article-title: Effects of intercropping on yield, weed incidence, forage quality and soil residual N in organically grown forage maize (Zea mays L.) and faba bean (Vicia faba L.) publication-title: Field Crops Res. doi: 10.1016/j.fcr.2014.09.004 – volume: 204 start-page: 158 year: 2017 ident: 10.1016/j.fcr.2023.109174_bib33 article-title: Can legume companion plants control weeds without decreasing crop yield? A meta-analysis publication-title: Field Crops Res. doi: 10.1016/j.fcr.2017.01.010 – volume: 160 start-page: 1 year: 2020 ident: 10.1016/j.fcr.2023.109174_bib30 article-title: Designing intercrops for high yield, yield stability and efficient use of resources: are there principles? publication-title: Adv. Agron. doi: 10.1016/bs.agron.2019.10.002 – volume: 35 start-page: 911 year: 2015 ident: 10.1016/j.fcr.2023.109174_bib3 article-title: Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-014-0277-7 – year: 2009 ident: 10.1016/j.fcr.2023.109174_bib16 – volume: 47 start-page: 747 year: 1978 ident: 10.1016/j.fcr.2023.109174_bib26 article-title: Proposed hay grading standards based on laboratory analyses for evaluating quality publication-title: J. Anim. Sci. doi: 10.2527/jas1978.473747x – year: 2015 ident: 10.1016/j.fcr.2023.109174_bib4 article-title: Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology publication-title: N. Phytol. doi: 10.1111/nph.13132 – volume: 7 start-page: 509 year: 1991 ident: 10.1016/j.fcr.2023.109174_bib17 article-title: Forage quality analyses and interpretation publication-title: Vet. Clin. North Am. Food Anim. Pract. doi: 10.1016/S0749-0720(15)30790-8 – volume: 246 year: 2020 ident: 10.1016/j.fcr.2023.109174_bib34 article-title: Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use; A meta-analysis publication-title: Field Crops Res doi: 10.1016/j.fcr.2019.107661 – volume: 615 start-page: 767 year: 2018 ident: 10.1016/j.fcr.2023.109174_bib19 article-title: The new Green Revolution: sustainable intensification of agriculture by intercropping publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.10.024 – volume: 8 start-page: 481 year: 2021 ident: 10.1016/j.fcr.2023.109174_bib32 article-title: Comparing performance of crop species mixtures and pure stands publication-title: Front. Agric. Sci. Eng. – volume: 120 year: 2023 ident: 10.1016/j.fcr.2023.109174_bib14 article-title: The productive performance of intercropping publication-title: Proc. Natl. Acad. Sci. USA – ident: 10.1016/j.fcr.2023.109174_bib21 – volume: 198 start-page: 269 year: 2016 ident: 10.1016/j.fcr.2023.109174_bib36 article-title: A meta-analysis of relative crop yields in cereal/legume mixtures suggests options for management publication-title: Field Crops Res. doi: 10.1016/j.fcr.2016.08.001 – year: 2021 ident: 10.1016/j.fcr.2023.109174_bib20 – volume: 118 year: 2020 ident: 10.1016/j.fcr.2023.109174_bib25 article-title: Grain cereal-legume intercropping enhances the use of soil-derived and biologically fixed nitrogen in temperate agroecosystems. A meta-analysis publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2020.126077 – volume: 104 start-page: 18123 year: 2007 ident: 10.1016/j.fcr.2023.109174_bib5 article-title: Impacts of plant diversity on biomass production increase through time because of species complementarity publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0709069104 – volume: 6 start-page: 653 year: 2020 ident: 10.1016/j.fcr.2023.109174_bib13 article-title: Syndromes of production in intercropping impact yield gains publication-title: Nat. Plants doi: 10.1038/s41477-020-0680-9 – volume: 138 start-page: 311 year: 2002 ident: 10.1016/j.fcr.2023.109174_bib8 article-title: Intercropped field beans (Vicia faba) and wheat (Triticum aestivum) for whole crop forage: effect of nitrogen on forage yield and quality publication-title: J. Agric. Sci. doi: 10.1017/S0021859602002149 – year: 1996 ident: 10.1016/j.fcr.2023.109174_bib28 article-title: Grain yield, symbiotic N2 fixation and interspecific competition for inorganic N in pea-barley intercrops publication-title: Plant Soil – volume: 460 start-page: 89 year: 2021 ident: 10.1016/j.fcr.2023.109174_bib31 article-title: Intercropping legumes and cereals increases phosphorus use efficiency; a meta-analysis publication-title: Plant Soil doi: 10.1007/s11104-020-04768-x |
SSID | ssj0006616 |
Score | 2.495467 |
Snippet | Meta-analyses have highlighted several advantages of cereal/legume intercropping for food compared to sole cropping, but none report on fodder quality and... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 109174 |
SubjectTerms | acid detergent fiber biomass crude protein forage production forage quality legumes meta-analysis neutral detergent fiber species |
Title | Forage quality in cereal/legume intercropping: A meta-analysis |
URI | https://www.proquest.com/docview/3153182875 |
Volume | 304 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF7S9JIeStqmNG1TFOipQc7aK_mRQ8CUmBCS9GKDc1p2pVGwa2Tj2of20N_eb7QryS6hpLlIQqwe7LfMfDM7DyE-g3FAKZg4lNKoMCKbhZadOKSoKSWekUXI_81t-3IUXY3jcd2br8guWdlG8uvBvJKnoIp7wJWzZP8D2eqluIFr4IsjEMbxURgPgB-MfpcYWSTwJQQSOMMbZ3QPqVNUg1hyl66FT2zuc89oExpfi2STmw44mO2EB_NWwoaXi-N1JutCSZl55ZJZLdeT72VwYe1srTzQd_jidF2tvSvfPIXPP0t96d0NLbURuuHTrGB2QonJTRGqZHSy4MpUsG_CBwWz8xFMG1nCRVhbyg-utVC58377TQ9G19d6eDEePhPPW2D_3Jii8buO3AGlcFvQ_k_KzeoibO-vD2zTjW1tW1CI4b546bl_0HdAvhI7lL8WL_r3S1__hN6Icwdp4CENJnngID11gAZbgJ4F_WALzgMxGlwMv16GvsVFmKhWcxVSO6bMWupSs2egdzhv2HZ6WdJJuiks5RgC1tgojY1hKmuzSEZtWKBxkpmsC-H5Vuzm85zeiSBKqaOIiy-B0XdJGUltA_5n08jEWdo7FLKcCZ34-u_chmSmy0C_qcbkaZ487SbvUHypHlm44if_GnxcTq-GiOJ9J5PTfP1DK2jVJjdWiN8_YswHsVevu49iF6uZjkD8VvZTsQz-AIeEVpg |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forage+quality+in+cereal%2Flegume+intercropping%3A+A+meta-analysis&rft.jtitle=Field+crops+research&rft.au=Liu%2C+Hao&rft.au=Struik%2C+Paul+C&rft.au=Zhang%2C+Yingjun&rft.au=Jing%2C+Jingying&rft.date=2023-12-01&rft.issn=0378-4290&rft.volume=304+p.109174-&rft_id=info:doi/10.1016%2Fj.fcr.2023.109174&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4290&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4290&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4290&client=summon |