Proposing a new iterative learning control algorithm based on a non-linear least square formulation - Minimising draw-in errors
Forming operation are subject to external disturbances and changing operating conditions e.g. new material batch, increasing tool temperature due to plastic work, material properties and lubrication is sensitive to tool temperature. It is generally accepted that forming operations are not stable ove...
Saved in:
Published in | Journal of physics. Conference series Vol. 896; no. 1; pp. 12036 - 12043 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.09.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1742-6588 1742-6596 |
DOI | 10.1088/1742-6596/896/1/012036 |
Cover
Abstract | Forming operation are subject to external disturbances and changing operating conditions e.g. new material batch, increasing tool temperature due to plastic work, material properties and lubrication is sensitive to tool temperature. It is generally accepted that forming operations are not stable over time and it is not uncommon to adjust the process parameters during the first half hour production, indicating that process instability is gradually developing over time. Thus, in-process feedback control scheme might not-be necessary to stabilize the process and an alternative approach is to apply an iterative learning algorithm, which can learn from previously produced parts i.e. a self learning system which gradually reduces error based on historical process information. What is proposed in the paper is a simple algorithm which can be applied to a wide range of sheet-metal forming processes. The input to the algorithm is the final flange edge geometry and the basic idea is to reduce the least-square error between the current flange geometry and a reference geometry using a non-linear least square algorithm. The ILC scheme is applied to a square deep-drawing and the Numisheet'08 S-rail benchmark problem, the numerical tests shows that the proposed control scheme is able control and stabilise both processes. |
---|---|
AbstractList | Forming operation are subject to external disturbances and changing operating conditions e.g. new material batch, increasing tool temperature due to plastic work, material properties and lubrication is sensitive to tool temperature. It is generally accepted that forming operations are not stable over time and it is not uncommon to adjust the process parameters during the first half hour production, indicating that process instability is gradually developing over time. Thus, in-process feedback control scheme might not-be necessary to stabilize the process and an alternative approach is to apply an iterative learning algorithm, which can learn from previously produced parts i.e. a self learning system which gradually reduces error based on historical process information. What is proposed in the paper is a simple algorithm which can be applied to a wide range of sheet-metal forming processes. The input to the algorithm is the final flange edge geometry and the basic idea is to reduce the least-square error between the current flange geometry and a reference geometry using a non-linear least square algorithm. The ILC scheme is applied to a square deep-drawing and the Numisheet'08 S-rail benchmark problem, the numerical tests shows that the proposed control scheme is able control and stabilise both processes. |
Author | Endelt, B. |
Author_xml | – sequence: 1 givenname: B. surname: Endelt fullname: Endelt, B. email: endelt@make.aau.dk organization: Department of Materials and Production, Faculty of engineering and science, Aalborg University , Denmark |
BookMark | eNqFkF1LwzAUhoMouE3_ggS8rkv6mV3K8AsmeqHXIW1OZ0abdCedwyv_uukq89JASOC8z3vgmZJT6ywQcsXZDWdCzHmRxlGeLfK5CJfPGY9Zkp-QyXFwevwLcU6m3m8YS8IpJuT7FV3nvLFrqqiFPTU9oOrNJ9AGFNphUDnbo2uoatYOTf_R0lJ50NTZgXE2aowN2QHwPfXbnUKgtcN214SmkIros7GmNYc1GtU-MpYCokN_Qc5q1Xi4_H1n5P3-7m35GK1eHp6Wt6uoSmLeRxpYzrSqAcpUCy7SuOSqhBx0kSaiKCAvdAIs00mdVSmvKp7FqWZxpfJ6UaYimZHrsbdDt92B7-XG7dCGlTLOijTLODuk8jFVofMeoZYdmlbhl-RMDrLl4FEOTmWQLbkcZQcwHkHjur_mf6AfH-qFYA |
Cites_doi | 10.1016/j.jmatprotec.2012.08.003 10.1016/j.cirp.2016.06.002 |
ContentType | Journal Article |
Copyright | Published under licence by IOP Publishing Ltd 2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Published under licence by IOP Publishing Ltd – notice: 2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1088/1742-6596/896/1/012036 |
DatabaseName | IOP Publishing Free Content IOPscience (Open Access) CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Proposing a new iterative learning control algorithm based on a non-linear least square formulation - Minimising draw-in errors |
EISSN | 1742-6596 |
ExternalDocumentID | 10_1088_1742_6596_896_1_012036 JPCS_896_1_012036 |
GroupedDBID | 1JI 29L 2WC 4.4 5B3 5GY 5PX 5VS 7.Q AAJIO AAJKP AALHV ABHWH ACAFW ACHIP AEFHF AEJGL AFKRA AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EJD EQZZN F5P FRP GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO J9A KNG KQ8 LAP N5L N9A O3W OK1 P2P PIMPY PJBAE RIN RNS RO9 ROL SY9 T37 TR2 TSCCA UCJ W28 XSB ~02 02O 1WK AAYXX ACARI AERVB AGQPQ AHSEE ARNYC BBWZM C1A CITATION FEDTE H13 HVGLF JCGBZ M48 OVT PHGZM PHGZT Q02 S3P 8FD 8FE 8FG ABUWG AZQEC DWQXO H8D L7M P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c321t-de060dafeeb4d81842b1abe6ed743877e67d3e05d3f5c41cc1524d02ca6f9b483 |
IEDL.DBID | O3W |
ISSN | 1742-6588 |
IngestDate | Fri Jul 25 03:57:56 EDT 2025 Tue Jul 01 02:16:02 EDT 2025 Wed Aug 21 03:40:55 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. http://iopscience.iop.org/info/page/text-and-data-mining http://creativecommons.org/licenses/by/3.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c321t-de060dafeeb4d81842b1abe6ed743877e67d3e05d3f5c41cc1524d02ca6f9b483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/1742-6596/896/1/012036 |
PQID | 2574551048 |
PQPubID | 4998668 |
PageCount | 8 |
ParticipantIDs | iop_journals_10_1088_1742_6596_896_1_012036 proquest_journals_2574551048 crossref_primary_10_1088_1742_6596_896_1_012036 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170901 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: 20170901 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | Journal of physics. Conference series |
PublicationTitleAlternate | J. Phys.: Conf. Ser |
PublicationYear | 2017 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | (5) 2008 Hora P (1) 2011 3 Roll K (2) 2008 Endelt B (4) 2013 6 |
References_xml | – year: 2013 ident: 4 publication-title: Proceedings of the IDDRG 2013 Conference, Best in Class Stamping submitted for presentation at the IDDRG 2013 Conference – ident: 6 doi: 10.1016/j.jmatprotec.2012.08.003 – ident: 3 doi: 10.1016/j.cirp.2016.06.002 – year: 2011 ident: 1 publication-title: NUMISHEET 2011 – year: 2008 ident: 5 publication-title: Numisheet Benchmark 2008 – start-page: 3 year: 2008 ident: 2 publication-title: Numisheet 2008 |
SSID | ssj0033337 |
Score | 2.1441 |
Snippet | Forming operation are subject to external disturbances and changing operating conditions e.g. new material batch, increasing tool temperature due to plastic... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 12036 |
SubjectTerms | Algorithms Control algorithms Control stability Control theory Deep drawing Error reduction Feedback control Geometry Iterative methods Least squares Machine learning Material properties Metal forming Metal sheets Physics Process parameters |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8QwEA7uiuBFfOLqKjl4k9B3mj2JiOsiKB5c2FtJk3QtaLvbVjz6151pU_YgaKGXtlPayXS-L-k8CLmKsMIQTnICyQ3D1Esm0ihlMVYr1zwLY9NG-T7z2Tx8XEQLu-BW27DK3ie2jlqXCtfIHTCtENAdDO5mtWbYNQr_rtoWGgOy7QHSoJ2L6UPviQPY4i4h0meAtKLPEIZJnz024Y6A3XMwh7Qt07wBp0Fern556BZ2pvtkz_JFetsN8AHZMsUh2WnjNlV9RL5fsMsBzveppMCQaVclGVwYtf0gltRGo1P5voQXat4-KEKXpmWBMmXBkGnKCgXqhtZrMBpDkcvazl6U0ae8yMEg8G66kl8sL6ipqrKqj8l8ev96N2O2pwJTge81TBuXu1pmxqShhmEK_dSTqeFGA5UQcWx4rAPjRjrIIhV6SgG-h9r1leTZJA1FcEKG8GTmlFCpgHz4nppwkPU0x8RD4WsFnEiqTPMRcXplJquudEbS_vIWIkH1J6j-BNSfeEmn_hG5Bp0n9iuq_7163I_NRmRjJmd_nz4nuz4idBsuNibDpvo0F8AvmvSyNaIfbb7J_w priority: 102 providerName: ProQuest |
Title | Proposing a new iterative learning control algorithm based on a non-linear least square formulation - Minimising draw-in errors |
URI | https://iopscience.iop.org/article/10.1088/1742-6596/896/1/012036 https://www.proquest.com/docview/2574551048 |
Volume | 896 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5uQ_BFvOJ0jjz4JnFr06bZo8rmBZxDFH0raZLqQNvZVnz0r3tOL4iIiIWWPvSEw5fknC_0XAg58LHCEB5yuBKWYeolk5EfsQCrlRsRe4Eto3yn4vzOu3zwm2jCMhcmXdSm_wheq0LBFYR1QJwcAId2mfBHYiDhdgaY_slFi3S4FBL35jW_b4wxhyuociJRRsomSfjXcb75pxbo8MNIl55nskZWa8pIjysF18mSTTbIchm6qfNN8jHDRgd45KeKAkmmVaFksGK0bgnxSOuAdKqeH9NsXjy9UPRehqYJyqQJQ7KpMhTIC5q_wrqxFOls3dyLMno1T-awJnA0k6l3Nk-ozbI0y7fI3WR8e3rO6rYKTHPXKZixQzE0KrY28gzMlOdGjoqssAbYhAwCKwLD7dA3PPa152gNLt4zQ1crEY8iT_Jt0gbN7A6hSgP_cB09EiDrGIG5h9I1GmiR0rERXTJowAwXVfWMsPzrLWWI8IcIfwjwh05Ywd8lh4B5WG-k_M-ve83cfImAEfKAB4Jp2v3XYHtkxUWfXQaQ9Ui7yN7sPjCOIuqTlpyc9UnnZDyd3fTR-vvwvLie9cvV9gkIMM5f |
linkProvider | IOP Publishing |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BoqpcEPQhaHn40J4qazeO42QPVdUHaCmwQhVI3FzHduhKJVmSINRT_xG_kZk8tAckOBEplyRjWeMv_sb2PAA-RJRhiBY5oVGeU-glT9Io5TFlK3cqk7FvvHynanIuf15EF0tw18fCkFtlPyc2E7UrLO2RDxFaEtkdAfdlfs2pahSdrvYlNFpYHPl_t7hkqz4f_sDx_SjEwf7Z9wnvqgpwG4qg5s6P1MiZzPtUOuyoFGlgUq-8QzJN4tir2IV-FLkwi6wMrEWGk24krFHZOJVJiO0uw4qkiNYBrHzbn57-6uf-EK-4DcEUHLk96WOScZnZPRurYYJ3MKSo1SYx9IIOl2fF_AEnNER3sA5rnYXKvraQ2oAln7-CF42nqK1ew_9TqqtAOwzMMLTJWZuXGSdN1lWguGSd_zszfy9RhfWfK0Zk6ViRk0yRc7JtTUkCVc2qa4SpZ2Q9d7XEGGcns3yGEKTWXGlu-SxnviyLsnoD58-i77cwwJ75TWDGorkjAjtWKBs4RaGOiXAWrTBjM6e2YNgrU8_bZB26OWRPEk3q16R-jerXgW7VvwWfUOe6-2-rJ7_e7sdmIbIA5rvHX-_By8nZybE-PpwevYdVQfZB46y2DYO6vPE7aN3U6W4HKQa_nxvF97y_CY8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66ongRn_hYNQdvErtt2jR7FHXxrQdFbyFNUl3Qdm0rHv3rzrRdRUTEQqGHzhC-TGe-0HkQshNhhyE85HAtHMPSSyaTKGExdiu3Ig1jV2f5Xorj2_D0PrqfIEeftTD5qHX9e_DYNApuIGwT4qQHHDpgIuoLT8Lte1j-yYU3sukkmYq4iLCF_hW_GztkDlfc1EWinJTjQuFfdX2LUZOwjh-Ouo4-g3ky19JGut8scoFMuGyRTNfpm6ZcIu_XOOwAj_1UUyDKtGmWDJ6MtmMhHmiblE7100NeDKvHZ4oRzNI8Q5k8Y0g4dYECZUXLF7AdR5HStgO-KKMXw2wIdoHabKHf2DCjrijyolwmt4Ojm4Nj1o5WYIYHfsWs64me1alzSWhht8Ig8XXihLPAKGQcOxFb7nqR5WlkQt8YCPOh7QVGi7SfhJKvkA6szK0Sqg1wkMA3fQGyvhVYfygDa4AaaZNasUa8MZhq1HTQUPWfbykVwq8QfgXwK1818K-RXcBctR9T-efb3fHefImAIwqBC4J7Wv-Xsm0yc304UOcnl2cbZDbAEF7nk3VJpype3SYQkCrZqs3rAwDezeg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proposing+a+new+iterative+learning+control+algorithm+based+on+a+non-linear+least+square+formulation+-+Minimising+draw-in+errors&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Endelt%2C+B.&rft.date=2017-09-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=896&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F896%2F1%2F012036&rft.externalDocID=JPCS_896_1_012036 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon |