Residual flexural tensile strength of normal-weight and lightweight steel fibre-reinforced concrete at elevated temperatures

•A study was conducted on the residual flexural tensile strength of steel fibre reinforced concrete at elevated temperatures.•The flexural tensile strength retention of SFRC exhibited reduces with increase of temperature following a bilinear law.•Simplified equations are proposed to predict SFRC res...

Full description

Saved in:
Bibliographic Details
Published inConstruction & building materials Vol. 367; p. 130221
Main Authors Gondokusumo, Gilbert Sebastiano, Venkateshwaran, Akshay, Li, Shan, Liew, J.Y. Richard
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 27.02.2023
Subjects
Online AccessGet full text
ISSN0950-0618
1879-0526
DOI10.1016/j.conbuildmat.2022.130221

Cover

Loading…
Abstract •A study was conducted on the residual flexural tensile strength of steel fibre reinforced concrete at elevated temperatures.•The flexural tensile strength retention of SFRC exhibited reduces with increase of temperature following a bilinear law.•Simplified equations are proposed to predict SFRC residual flexural tensile strength at elevated temperatures within 98% accuracy when compared to test results. In this study, the residual flexural tensile strength (fR,j) of steel fibre reinforced concrete (SFRC) at elevated temperature was investigated through a detailed test program. Sixty pre-notched SFRC prism specimens, cast with both normal-weight and lightweight concrete with different fibre contents, were heated inside a furnace to temperature ranging from 200 °C to 800 °C. The uniformly heated specimens were then subject to three-point bending using a carefully configurated test setup, to evaluate the residual flexural tensile strengths at elevated temperatures. The specimens were also tested at ambient temperature for benchmark comparison. A drop in both the residual flexural tensile strengths and the stiffness of SFRC was observed with the increase of temperature. The flexural tensile strength retention plotted against the elevated temperature exhibited a bilinear relationship. Based on the experimental results, a piecewise linear regression analysis was carried out to propose empirical equations to predict the residual flexural tensile strength of SFRC at elevated temperatures. The proposed equations were able to predict the strength retention factors with an average accuracy of around 98 % and a standard deviation of 18 % on average. The results from this study form the basis for predicting the behaviour of SFRC structural members under fire conditions.
AbstractList •A study was conducted on the residual flexural tensile strength of steel fibre reinforced concrete at elevated temperatures.•The flexural tensile strength retention of SFRC exhibited reduces with increase of temperature following a bilinear law.•Simplified equations are proposed to predict SFRC residual flexural tensile strength at elevated temperatures within 98% accuracy when compared to test results. In this study, the residual flexural tensile strength (fR,j) of steel fibre reinforced concrete (SFRC) at elevated temperature was investigated through a detailed test program. Sixty pre-notched SFRC prism specimens, cast with both normal-weight and lightweight concrete with different fibre contents, were heated inside a furnace to temperature ranging from 200 °C to 800 °C. The uniformly heated specimens were then subject to three-point bending using a carefully configurated test setup, to evaluate the residual flexural tensile strengths at elevated temperatures. The specimens were also tested at ambient temperature for benchmark comparison. A drop in both the residual flexural tensile strengths and the stiffness of SFRC was observed with the increase of temperature. The flexural tensile strength retention plotted against the elevated temperature exhibited a bilinear relationship. Based on the experimental results, a piecewise linear regression analysis was carried out to propose empirical equations to predict the residual flexural tensile strength of SFRC at elevated temperatures. The proposed equations were able to predict the strength retention factors with an average accuracy of around 98 % and a standard deviation of 18 % on average. The results from this study form the basis for predicting the behaviour of SFRC structural members under fire conditions.
ArticleNumber 130221
Author Gondokusumo, Gilbert Sebastiano
Venkateshwaran, Akshay
Liew, J.Y. Richard
Li, Shan
Author_xml – sequence: 1
  givenname: Gilbert Sebastiano
  surname: Gondokusumo
  fullname: Gondokusumo, Gilbert Sebastiano
  organization: Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
– sequence: 2
  givenname: Akshay
  surname: Venkateshwaran
  fullname: Venkateshwaran, Akshay
  organization: Department of Civil Engineering, Birla Institute of Technology and Science – Pilani, Dubai Campus, United Arab Emirates
– sequence: 3
  givenname: Shan
  surname: Li
  fullname: Li, Shan
  organization: Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
– sequence: 4
  givenname: J.Y. Richard
  surname: Liew
  fullname: Liew, J.Y. Richard
  email: ceeljy@nus.edu.sg
  organization: Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
BookMark eNqNkMtKAzEUQINUsFb_IX7A1GQemZmVSPEFBUF0HTLJTZuSyZQkUxX8eFPahbjq5r7gHu49l2jiBgcI3VAyp4Sy281cDq4bjVW9iPOc5PmcFinSMzSlTd1mpMrZBE1JW5GMMNpcoMsQNoQQlrN8in7eIBg1Cou1ha_RpyKCC8YCDtGDW8U1HjR2g--FzT7BrNYRC6ew3VfHPkSABDCdh8yDcXrwEhROl0kPEbCIGCzsREzDCP0WvIijh3CFzrWwAa6PeYY-Hh_eF8_Z8vXpZXG_zGSR05gpqZhUpWqqjqmaQFcLWRBWtqXSDVSNlBoKkbqagchFo2ta6bpoGCsrCnVZzFB74Eo_hOBB8603vfDfnBK-18g3_I9GvtfIDxrT7t2_XWmiiGZw0QtjTyIsDgRIL-4MeB6kAZcMGQ8ycjWYEyi_BuCdlQ
CitedBy_id crossref_primary_10_1016_j_conbuildmat_2024_138689
crossref_primary_10_1016_j_engstruct_2023_116437
crossref_primary_10_1038_s41598_025_89515_x
crossref_primary_10_1016_j_jobe_2024_108440
crossref_primary_10_1016_j_conbuildmat_2023_132786
crossref_primary_10_1016_j_cscm_2024_e03615
crossref_primary_10_1016_j_jobe_2024_109121
crossref_primary_10_3390_ma17133099
crossref_primary_10_1016_j_jobe_2023_107743
crossref_primary_10_1177_13694332231196508
crossref_primary_10_3390_ma17061418
crossref_primary_10_3390_polym15193884
Cites_doi 10.1016/j.commatsci.2018.12.055
10.1016/j.conbuildmat.2018.12.051
10.1061/(ASCE)MT.1943-5533.0001402
10.1617/14175
10.1016/j.conbuildmat.2014.07.074
10.1016/j.conbuildmat.2012.12.066
10.1016/j.cemconres.2013.04.003
10.1016/j.cemconcomp.2015.01.002
10.1002/suco.202100172
10.1016/0262-5075(84)90006-X
10.1016/j.conbuildmat.2010.11.064
10.1016/j.firesaf.2020.103273
10.1016/j.cemconres.2020.106120
10.1016/j.jcsr.2021.106640
10.1007/s10694-012-0322-5
10.1016/j.cemconres.2003.08.029
10.1016/j.cemconcomp.2019.02.016
10.1016/j.matdes.2009.11.025
10.1002/suco.201700030
10.1617/s11527-009-9504-0
10.1016/j.firesaf.2012.07.009
10.1016/j.conbuildmat.2016.06.045
10.1002/9783433604090
10.1016/j.conbuildmat.2022.127845
10.1016/j.cemconres.2006.03.024
10.1617/s11527-014-0312-9
10.1002/suco.201700129
10.1061/(ASCE)0899-1561(2007)19:5(385)
10.1016/j.cemconres.2017.05.016
10.1016/j.conbuildmat.2021.123382
10.1016/j.jcsr.2022.107140
10.1016/j.engstruct.2021.112877
10.1016/j.conbuildmat.2010.06.078
10.1016/S0958-9465(98)00034-1
10.1016/j.cemconres.2011.06.012
10.1016/j.conbuildmat.2014.04.139
10.1023/B:JMSC.0000025827.65956.18
10.1016/j.conbuildmat.2018.12.074
10.1016/j.conbuildmat.2015.05.131
10.1002/suco.201400018
10.1061/(ASCE)MT.1943-5533.0001241
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.conbuildmat.2022.130221
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0526
ExternalDocumentID 10_1016_j_conbuildmat_2022_130221
S0950061822038776
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFRF
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADHUB
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BAAKF
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IAO
IEA
IGG
IHE
IHM
IOF
ISM
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N95
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PV9
Q38
ROL
RPZ
RZL
SDF
SDG
SES
SEW
SPC
SPCBC
SSM
SST
SSZ
T5K
UNMZH
XI7
~G-
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHDLI
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
ITC
R2-
RIG
RNS
SET
SMS
SSH
VH1
WUQ
ZMT
ID FETCH-LOGICAL-c321t-dcd6cd4d85b6d70eb7ac306494df8e58ccfe3a94d76ea2a8f715f73866451e743
IEDL.DBID .~1
ISSN 0950-0618
IngestDate Thu Apr 24 22:58:50 EDT 2025
Tue Jul 01 00:59:32 EDT 2025
Fri Feb 23 02:39:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Elevated temperature
Design equation
Three-point bending
Steel-fibre reinforced concrete
Residual flexural tensile strength
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-dcd6cd4d85b6d70eb7ac306494df8e58ccfe3a94d76ea2a8f715f73866451e743
ParticipantIDs crossref_primary_10_1016_j_conbuildmat_2022_130221
crossref_citationtrail_10_1016_j_conbuildmat_2022_130221
elsevier_sciencedirect_doi_10_1016_j_conbuildmat_2022_130221
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-27
PublicationDateYYYYMMDD 2023-02-27
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-27
  day: 27
PublicationDecade 2020
PublicationTitle Construction & building materials
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Giaccio, Zerbino (b0060) 2005; 38
Gao, Yan, Li (b0130) 2012; 54
Marcos-Meson, Fischer, Edvardsen, Skovhus, Michel (b0040) 2019; 200
Fu, Wong, Poon, Tang, Lin (b0215) 2004; 34
Thomas, Ramaswamy (b0025) 2007; 19
Rawat, Lee, Zhang (b0100) 2021; 292
Pliya, Beaucour, Noumowé (b0220) 2011; 25
Venkateshwaran, Tan, Li (b0120) 2018; 19
Ma, Guo, Zhao, Lin, He (b0095) 2015; 93
Caratelli, Meda, Rinaldi (b0035) 2016; 122
Watanabe, Bangi, Horiguchi (b0175) 2013; 51
Venkateshwaran, Tan (b0165) 2018; 19
Wu, Lin, Zhou (b0105) 2020; 135
BS EN 14651, Test method for metallic fibre concrete - Measureing the flexural tensile strength (limit of proportionality (LOP), residual), European Committee for Standardization, Brussels, Belgium, 2007.
Li, Pimienta, Pinoteau, Tan (b0055) 2019; 99
Holschemacher, Mueller, Ribakov (b0005) 2010; 31
Chan, Peng, Anson (b0070) 1999; 21
Venkateshwaran, Lai, Liew (b0015) 2021; 118
Kodur (b0090) 2014; 2014
Aslani, Samali (b0110) 2014; 50
Purkiss (b0230) 1984; 6
Mamlouk, Zaniewski (b0190) 2011
Seleem, Rashad, Elsokary (b0210) 2011; 25
International Federation for Structural Concrete, fib Model Code for Concrete Structures 2010, Verlag Ernst & John, Berlin, 2013. https://doi.org/10.1002/9783433604090.
Colombo, Di Prisco, Felicetti (b0185) 2015; 58
Gondokusumo, Venkateshwaran, Tan, Liew (b0115) 2021
Li, Liew, Xiong (b0080) 2021; 181
Amin, Foster, Muttoni (b0160) 2015; 16
Zheng, Luo, Wang (b0135) 2013; 41
Way, Wille (b0205) 2016; 28
Marcos-Meson, Michel, Solgaard, Fischer, Edvardsen, Skovhus (b0050) 2018; 103
Colombo, Di Prisco, Felicetti (b0125) 2010; 43
Khaliq, Kodur (b0145) 2011; 41
Marcos-Meson, Geiker, Fischer, Solgaard, Jakobsen, Danner, Edvardsen, Skovhus, Michel (b0045) 2020; 135
Lau, Anson (b0065) 2006; 36
Yu, Dai, Lu, Leung (b0200) 2015; 27
Venkateshwaran, Lai, Liew (b0020) 2022; 190
Caetano, Ferreira, Rodrigues, Pimienta (b0225) 2019; 199
C. Kleinman, X. Destrée, A. Lambrechts, A. Hoekstra, Steel Fibre As Only Reinforcing in Free Suspended One Way Elevated Slabs: Design Conclusions of a Tunnel Formed Slab and Walls Based Upon Full Scale Testing Results, in: 8th RILEM Int. Symp. Fiber Reinf. Concr. Challenges Oppor. (BEFIB 2012), 2012: pp. 1–13.
Al Qadi, Al-Zaidyeen (b0195) 2014; 26
Li, Liew, Xiong (b0085) 2021; 245
Zheng, Luo, Wang (b0140) 2015; 48
García-Taengua, Arango, Martí-Vargas, Serna (b0030) 2014; 65
Naser (b0235) 2019; 160
Alonso, Fernandez (b0245) 2004; 39
EN 1992-1-2, Eurocode 2: Design of concrete structures - Part 1-2: General rules - Structural fire design, Eur. Comm. Stand. (2004).
Li, Liew (b0170) 2022; 341
Naser (b0240) 2016
Li, Liew, Xiong, Lai (b0075) 2021; 121
Choi, Zi, Hino, Yamaguchi, Kim (b0180) 2014; 69
Caetano (10.1016/j.conbuildmat.2022.130221_b0225) 2019; 199
Caratelli (10.1016/j.conbuildmat.2022.130221_b0035) 2016; 122
Al Qadi (10.1016/j.conbuildmat.2022.130221_b0195) 2014; 26
Wu (10.1016/j.conbuildmat.2022.130221_b0105) 2020; 135
Marcos-Meson (10.1016/j.conbuildmat.2022.130221_b0040) 2019; 200
Li (10.1016/j.conbuildmat.2022.130221_b0080) 2021; 181
Colombo (10.1016/j.conbuildmat.2022.130221_b0125) 2010; 43
Choi (10.1016/j.conbuildmat.2022.130221_b0180) 2014; 69
Gondokusumo (10.1016/j.conbuildmat.2022.130221_b0115) 2021
Yu (10.1016/j.conbuildmat.2022.130221_b0200) 2015; 27
Li (10.1016/j.conbuildmat.2022.130221_b0075) 2021; 121
10.1016/j.conbuildmat.2022.130221_b0150
Li (10.1016/j.conbuildmat.2022.130221_b0085) 2021; 245
Colombo (10.1016/j.conbuildmat.2022.130221_b0185) 2015; 58
10.1016/j.conbuildmat.2022.130221_b0155
Li (10.1016/j.conbuildmat.2022.130221_b0055) 2019; 99
Ma (10.1016/j.conbuildmat.2022.130221_b0095) 2015; 93
Venkateshwaran (10.1016/j.conbuildmat.2022.130221_b0015) 2021; 118
Marcos-Meson (10.1016/j.conbuildmat.2022.130221_b0050) 2018; 103
Naser (10.1016/j.conbuildmat.2022.130221_b0240) 2016
Khaliq (10.1016/j.conbuildmat.2022.130221_b0145) 2011; 41
Way (10.1016/j.conbuildmat.2022.130221_b0205) 2016; 28
Watanabe (10.1016/j.conbuildmat.2022.130221_b0175) 2013; 51
Giaccio (10.1016/j.conbuildmat.2022.130221_b0060) 2005; 38
Venkateshwaran (10.1016/j.conbuildmat.2022.130221_b0165) 2018; 19
Venkateshwaran (10.1016/j.conbuildmat.2022.130221_b0020) 2022; 190
Venkateshwaran (10.1016/j.conbuildmat.2022.130221_b0120) 2018; 19
Mamlouk (10.1016/j.conbuildmat.2022.130221_b0190) 2011
Rawat (10.1016/j.conbuildmat.2022.130221_b0100) 2021; 292
Naser (10.1016/j.conbuildmat.2022.130221_b0235) 2019; 160
Chan (10.1016/j.conbuildmat.2022.130221_b0070) 1999; 21
Holschemacher (10.1016/j.conbuildmat.2022.130221_b0005) 2010; 31
García-Taengua (10.1016/j.conbuildmat.2022.130221_b0030) 2014; 65
Amin (10.1016/j.conbuildmat.2022.130221_b0160) 2015; 16
Li (10.1016/j.conbuildmat.2022.130221_b0170) 2022; 341
Purkiss (10.1016/j.conbuildmat.2022.130221_b0230) 1984; 6
Fu (10.1016/j.conbuildmat.2022.130221_b0215) 2004; 34
10.1016/j.conbuildmat.2022.130221_b0250
10.1016/j.conbuildmat.2022.130221_b0010
Zheng (10.1016/j.conbuildmat.2022.130221_b0140) 2015; 48
Alonso (10.1016/j.conbuildmat.2022.130221_b0245) 2004; 39
Zheng (10.1016/j.conbuildmat.2022.130221_b0135) 2013; 41
Aslani (10.1016/j.conbuildmat.2022.130221_b0110) 2014; 50
Gao (10.1016/j.conbuildmat.2022.130221_b0130) 2012; 54
Seleem (10.1016/j.conbuildmat.2022.130221_b0210) 2011; 25
Lau (10.1016/j.conbuildmat.2022.130221_b0065) 2006; 36
Kodur (10.1016/j.conbuildmat.2022.130221_b0090) 2014; 2014
Pliya (10.1016/j.conbuildmat.2022.130221_b0220) 2011; 25
Thomas (10.1016/j.conbuildmat.2022.130221_b0025) 2007; 19
Marcos-Meson (10.1016/j.conbuildmat.2022.130221_b0045) 2020; 135
References_xml – volume: 41
  start-page: 1112
  year: 2011
  end-page: 1122
  ident: b0145
  article-title: Thermal and mechanical properties of fiber reinforced high performance self-consolidating concrete at elevated temperatures
  publication-title: Cem. Concr. Res.
– volume: 19
  start-page: 670
  year: 2018
  end-page: 683
  ident: b0165
  article-title: Load-carrying capacity of steel fiber reinforced concrete beams at large deflections
  publication-title: Struct. Concr.
– volume: 245
  year: 2021
  ident: b0085
  article-title: Prediction of fire resistance of concrete encased steel composite columns using artificial neural network
  publication-title: Eng. Struct.
– volume: 93
  start-page: 371
  year: 2015
  end-page: 383
  ident: b0095
  article-title: Mechanical properties of concrete at high temperature-A review
  publication-title: Constr. Build. Mater.
– volume: 48
  start-page: 2299
  year: 2015
  end-page: 2314
  ident: b0140
  article-title: Stress–strain relationship of steel-fibre reinforced reactive powder concrete at elevated temperatures
  publication-title: Mater. Struct. Constr.
– volume: 65
  start-page: 321
  year: 2014
  end-page: 329
  ident: b0030
  article-title: Flexural creep of steel fiber reinforced concrete in the cracked state
  publication-title: Constr. Build. Mater.
– volume: 2014
  year: 2014
  ident: b0090
  article-title: Properties of concrete at elevated temperatures
  publication-title: ISRN Civ. Eng.
– volume: 50
  start-page: 1249
  year: 2014
  end-page: 1268
  ident: b0110
  article-title: Constitutive Relationships for Steel Fibre Reinforced Concrete at Elevated Temperatures
  publication-title: Fire Technol.
– volume: 39
  start-page: 3015
  year: 2004
  end-page: 3024
  ident: b0245
  article-title: Dehydration and rehydration processes of cement paste exposed to high temperature environments
  publication-title: J. Mater. Sci.
– volume: 43
  start-page: 475
  year: 2010
  end-page: 491
  ident: b0125
  article-title: Mechanical properties of steel fibre reinforced concrete exposed at high temperatures
  publication-title: Mater. Struct. Constr.
– year: 2021
  ident: b0115
  article-title: Unified equations to predict residual flexural tensile strength of lightweight steel fiber-reinforced concrete
  publication-title: Struct. Concr.
– volume: 99
  start-page: 62
  year: 2019
  end-page: 71
  ident: b0055
  article-title: Effect of aggregate size and inclusion of polypropylene and steel fibers on explosive spalling and pore pressure in ultra-high-performance concrete (UHPC) at elevated temperature
  publication-title: Cem. Concr. Compos.
– volume: 27
  start-page: 4014268
  year: 2015
  ident: b0200
  article-title: Mechanical properties of engineered cementitious composites subjected to elevated temperatures
  publication-title: J. Mater. Civ. Eng.
– volume: 54
  start-page: 67
  year: 2012
  end-page: 73
  ident: b0130
  article-title: Splitting strength of GGBFS concrete incorporating with steel fiber and polypropylene fiber after exposure to elevated temperatures
  publication-title: Fire Saf. J.
– volume: 25
  start-page: 1009
  year: 2011
  end-page: 1017
  ident: b0210
  article-title: Effect of elevated temperature on physico-mechanical properties of blended cement concrete
  publication-title: Constr. Build. Mater.
– volume: 135
  year: 2020
  ident: b0105
  article-title: A review of mechanical properties of fibre reinforced concrete at elevated temperatures
  publication-title: Cem. Concr. Res.
– volume: 118
  year: 2021
  ident: b0015
  article-title: Design of Steel Fiber-Reinforced High-Strength Concrete-Encased Steel Short Columns and Beams
  publication-title: ACI Struct. J.
– reference: International Federation for Structural Concrete, fib Model Code for Concrete Structures 2010, Verlag Ernst & John, Berlin, 2013. https://doi.org/10.1002/9783433604090.
– volume: 38
  start-page: 335
  year: 2005
  end-page: 342
  ident: b0060
  article-title: Mechanical behaviour of thermally damaged high-strength steel fibre reinforced concrete
  publication-title: Mater. Struct. Constr.
– volume: 199
  start-page: 717
  year: 2019
  end-page: 736
  ident: b0225
  article-title: Effect of the high temperatures on the microstructure and compressive strength of high strength fibre concretes
  publication-title: Constr. Build. Mater.
– reference: BS EN 14651, Test method for metallic fibre concrete - Measureing the flexural tensile strength (limit of proportionality (LOP), residual), European Committee for Standardization, Brussels, Belgium, 2007.
– volume: 190
  year: 2022
  ident: b0020
  article-title: Buckling resistance of steel fibre-reinforced concrete encased steel composite columns
  publication-title: J. Constr. Steel Res.
– volume: 21
  start-page: 23
  year: 1999
  end-page: 27
  ident: b0070
  article-title: Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures
  publication-title: Cem. Concr. Compos.
– volume: 122
  start-page: 23
  year: 2016
  end-page: 35
  ident: b0035
  article-title: Monotonic and cyclic behaviour of lightweight concrete beams with and without steel fiber reinforcement
  publication-title: Constr. Build. Mater.
– volume: 36
  start-page: 1698
  year: 2006
  end-page: 1707
  ident: b0065
  article-title: Effect of high temperatures on high performance steel fibre reinforced concrete
  publication-title: Cem. Concr. Res.
– volume: 26
  start-page: 33
  year: 2014
  end-page: 39
  ident: b0195
  article-title: Effect of fibre content and specimen shape on residual strength of polypropylene fibre self-compacting concrete exposed to elevated temperatures
  publication-title: J. King Saud Univ. Sci.
– year: 2016
  ident: b0240
  article-title: Response of steel and composite beams subjected to combined shear and fire loading
– volume: 25
  start-page: 1926
  year: 2011
  end-page: 1934
  ident: b0220
  article-title: Contribution of cocktail of polypropylene and steel fibres in improving the behaviour of high strength concrete subjected to high temperature
  publication-title: Constr. Build. Mater.
– volume: 181
  year: 2021
  ident: b0080
  article-title: Fire performance of composite columns made of high strength steel and concrete
  publication-title: J. Constr. Steel Res.
– volume: 58
  start-page: 81
  year: 2015
  end-page: 94
  ident: b0185
  article-title: SFRC exposed to high temperature: Hot vs. residual characterization for thin walled elements
  publication-title: Cem. Concr. Compos.
– volume: 135
  year: 2020
  ident: b0045
  article-title: Durability of cracked SFRC exposed to wet-dry cycles of chlorides and carbon dioxide–Multiscale deterioration phenomena
  publication-title: Cem. Concr. Res.
– volume: 292
  year: 2021
  ident: b0100
  article-title: Performance of fibre-reinforced cementitious composites at elevated temperatures: A review
  publication-title: Constr. Build. Mater.
– volume: 341
  year: 2022
  ident: b0170
  article-title: Experimental and Data-Driven analysis on compressive strength of steel fibre reinforced high strength concrete and mortar at elevated temperature
  publication-title: Constr. Build. Mater.
– volume: 31
  start-page: 2604
  year: 2010
  end-page: 2615
  ident: b0005
  article-title: Effect of steel fibres on mechanical properties of high-strength concrete
  publication-title: Mater. Des.
– volume: 6
  start-page: 179
  year: 1984
  end-page: 184
  ident: b0230
  article-title: Steel fibre reinforced concrete at elevated temperatures
  publication-title: Int. J. Cem. Compos. Light. Concr.
– year: 2011
  ident: b0190
  article-title: Materials for Civil and Construction Engineers
– volume: 34
  start-page: 789
  year: 2004
  end-page: 797
  ident: b0215
  article-title: Experimental study of micro/macro crack development and stress–strain relations of cement-based composite materials at elevated temperatures
  publication-title: Cem. Concr. Res.
– volume: 19
  start-page: 352
  year: 2018
  end-page: 365
  ident: b0120
  article-title: Residual flexural strengths of steel fiber reinforced concrete with multiple hooked-end fibers
  publication-title: Struct. Concr.
– volume: 121
  year: 2021
  ident: b0075
  article-title: Experimental investigation on fire resistance of high-strength concrete encased steel composite columns
  publication-title: Fire Saf. J.
– volume: 19
  start-page: 385
  year: 2007
  end-page: 392
  ident: b0025
  article-title: Mechanical Properties of Steel Fiber-Reinforced Concrete
  publication-title: J. Mater. Civ. Eng.
– volume: 16
  start-page: 93
  year: 2015
  end-page: 105
  ident: b0160
  article-title: Derivation of the σ-w relationship for SFRC from prism bending tests
  publication-title: Struct. Concr.
– volume: 69
  start-page: 381
  year: 2014
  end-page: 389
  ident: b0180
  article-title: Influence of fiber reinforcement on strength and toughness of all-lightweight concrete
  publication-title: Constr. Build. Mater.
– reference: EN 1992-1-2, Eurocode 2: Design of concrete structures - Part 1-2: General rules - Structural fire design, Eur. Comm. Stand. (2004).
– reference: C. Kleinman, X. Destrée, A. Lambrechts, A. Hoekstra, Steel Fibre As Only Reinforcing in Free Suspended One Way Elevated Slabs: Design Conclusions of a Tunnel Formed Slab and Walls Based Upon Full Scale Testing Results, in: 8th RILEM Int. Symp. Fiber Reinf. Concr. Challenges Oppor. (BEFIB 2012), 2012: pp. 1–13.
– volume: 200
  start-page: 490
  year: 2019
  end-page: 501
  ident: b0040
  article-title: Durability of Steel Fibre Reinforced Concrete (SFRC) exposed to acid attack–A literature review
  publication-title: Constr. Build. Mater.
– volume: 51
  start-page: 6
  year: 2013
  end-page: 13
  ident: b0175
  article-title: The effect of testing conditions (hot and residual) on fracture toughness of fiber reinforced high-strength concrete subjected to high temperatures
  publication-title: Cem. Concr. Res.
– volume: 41
  start-page: 844
  year: 2013
  end-page: 851
  ident: b0135
  article-title: Compressive and tensile properties of reactive powder concrete with steel fibres at elevated temperatures
  publication-title: Constr. Build. Mater.
– volume: 28
  start-page: 04015164
  year: 2016
  ident: b0205
  article-title: Effect of Heat-Induced Chemical Degradation on the Residual Mechanical Properties of Ultrahigh-Performance Fiber-Reinforced Concrete
  publication-title: J. Mater. Civ. Eng.
– volume: 103
  start-page: 1
  year: 2018
  end-page: 20
  ident: b0050
  article-title: Corrosion resistance of steel fibre reinforced concrete-A literature review
  publication-title: Cem. Concr. Res.
– volume: 160
  start-page: 16
  year: 2019
  end-page: 29
  ident: b0235
  article-title: Properties and material models for modern construction materials at elevated temperatures
  publication-title: Comput. Mater. Sci.
– volume: 160
  start-page: 16
  issue: December 2018
  year: 2019
  ident: 10.1016/j.conbuildmat.2022.130221_b0235
  article-title: Properties and material models for modern construction materials at elevated temperatures
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2018.12.055
– volume: 200
  start-page: 490
  year: 2019
  ident: 10.1016/j.conbuildmat.2022.130221_b0040
  article-title: Durability of Steel Fibre Reinforced Concrete (SFRC) exposed to acid attack–A literature review
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.12.051
– volume: 135
  issue: April
  year: 2020
  ident: 10.1016/j.conbuildmat.2022.130221_b0105
  article-title: A review of mechanical properties of fibre reinforced concrete at elevated temperatures
  publication-title: Cem. Concr. Res.
– volume: 28
  start-page: 04015164
  issue: 4
  year: 2016
  ident: 10.1016/j.conbuildmat.2022.130221_b0205
  article-title: Effect of Heat-Induced Chemical Degradation on the Residual Mechanical Properties of Ultrahigh-Performance Fiber-Reinforced Concrete
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0001402
– volume: 38
  start-page: 335
  issue: 277
  year: 2005
  ident: 10.1016/j.conbuildmat.2022.130221_b0060
  article-title: Mechanical behaviour of thermally damaged high-strength steel fibre reinforced concrete
  publication-title: Mater. Struct. Constr.
  doi: 10.1617/14175
– volume: 69
  start-page: 381
  year: 2014
  ident: 10.1016/j.conbuildmat.2022.130221_b0180
  article-title: Influence of fiber reinforcement on strength and toughness of all-lightweight concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2014.07.074
– volume: 41
  start-page: 844
  year: 2013
  ident: 10.1016/j.conbuildmat.2022.130221_b0135
  article-title: Compressive and tensile properties of reactive powder concrete with steel fibres at elevated temperatures
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2012.12.066
– volume: 51
  start-page: 6
  year: 2013
  ident: 10.1016/j.conbuildmat.2022.130221_b0175
  article-title: The effect of testing conditions (hot and residual) on fracture toughness of fiber reinforced high-strength concrete subjected to high temperatures
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2013.04.003
– volume: 58
  start-page: 81
  year: 2015
  ident: 10.1016/j.conbuildmat.2022.130221_b0185
  article-title: SFRC exposed to high temperature: Hot vs. residual characterization for thin walled elements
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2015.01.002
– year: 2021
  ident: 10.1016/j.conbuildmat.2022.130221_b0115
  article-title: Unified equations to predict residual flexural tensile strength of lightweight steel fiber-reinforced concrete
  publication-title: Struct. Concr.
  doi: 10.1002/suco.202100172
– volume: 6
  start-page: 179
  issue: 3
  year: 1984
  ident: 10.1016/j.conbuildmat.2022.130221_b0230
  article-title: Steel fibre reinforced concrete at elevated temperatures
  publication-title: Int. J. Cem. Compos. Light. Concr.
  doi: 10.1016/0262-5075(84)90006-X
– volume: 25
  start-page: 1926
  issue: 4
  year: 2011
  ident: 10.1016/j.conbuildmat.2022.130221_b0220
  article-title: Contribution of cocktail of polypropylene and steel fibres in improving the behaviour of high strength concrete subjected to high temperature
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2010.11.064
– volume: 121
  year: 2021
  ident: 10.1016/j.conbuildmat.2022.130221_b0075
  article-title: Experimental investigation on fire resistance of high-strength concrete encased steel composite columns
  publication-title: Fire Saf. J.
  doi: 10.1016/j.firesaf.2020.103273
– volume: 135
  year: 2020
  ident: 10.1016/j.conbuildmat.2022.130221_b0045
  article-title: Durability of cracked SFRC exposed to wet-dry cycles of chlorides and carbon dioxide–Multiscale deterioration phenomena
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2020.106120
– volume: 181
  year: 2021
  ident: 10.1016/j.conbuildmat.2022.130221_b0080
  article-title: Fire performance of composite columns made of high strength steel and concrete
  publication-title: J. Constr. Steel Res.
  doi: 10.1016/j.jcsr.2021.106640
– volume: 50
  start-page: 1249
  issue: 5
  year: 2014
  ident: 10.1016/j.conbuildmat.2022.130221_b0110
  article-title: Constitutive Relationships for Steel Fibre Reinforced Concrete at Elevated Temperatures
  publication-title: Fire Technol.
  doi: 10.1007/s10694-012-0322-5
– volume: 34
  start-page: 789
  issue: 5
  year: 2004
  ident: 10.1016/j.conbuildmat.2022.130221_b0215
  article-title: Experimental study of micro/macro crack development and stress–strain relations of cement-based composite materials at elevated temperatures
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2003.08.029
– volume: 99
  start-page: 62
  year: 2019
  ident: 10.1016/j.conbuildmat.2022.130221_b0055
  article-title: Effect of aggregate size and inclusion of polypropylene and steel fibers on explosive spalling and pore pressure in ultra-high-performance concrete (UHPC) at elevated temperature
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2019.02.016
– volume: 31
  start-page: 2604
  issue: 5
  year: 2010
  ident: 10.1016/j.conbuildmat.2022.130221_b0005
  article-title: Effect of steel fibres on mechanical properties of high-strength concrete
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2009.11.025
– volume: 19
  start-page: 352
  issue: 2
  year: 2018
  ident: 10.1016/j.conbuildmat.2022.130221_b0120
  article-title: Residual flexural strengths of steel fiber reinforced concrete with multiple hooked-end fibers
  publication-title: Struct. Concr.
  doi: 10.1002/suco.201700030
– volume: 26
  start-page: 33
  issue: 1
  year: 2014
  ident: 10.1016/j.conbuildmat.2022.130221_b0195
  article-title: Effect of fibre content and specimen shape on residual strength of polypropylene fibre self-compacting concrete exposed to elevated temperatures
  publication-title: J. King Saud Univ. Sci.
– volume: 43
  start-page: 475
  issue: 4
  year: 2010
  ident: 10.1016/j.conbuildmat.2022.130221_b0125
  article-title: Mechanical properties of steel fibre reinforced concrete exposed at high temperatures
  publication-title: Mater. Struct. Constr.
  doi: 10.1617/s11527-009-9504-0
– ident: 10.1016/j.conbuildmat.2022.130221_b0250
– volume: 54
  start-page: 67
  year: 2012
  ident: 10.1016/j.conbuildmat.2022.130221_b0130
  article-title: Splitting strength of GGBFS concrete incorporating with steel fiber and polypropylene fiber after exposure to elevated temperatures
  publication-title: Fire Saf. J.
  doi: 10.1016/j.firesaf.2012.07.009
– volume: 122
  start-page: 23
  year: 2016
  ident: 10.1016/j.conbuildmat.2022.130221_b0035
  article-title: Monotonic and cyclic behaviour of lightweight concrete beams with and without steel fiber reinforcement
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.06.045
– ident: 10.1016/j.conbuildmat.2022.130221_b0155
  doi: 10.1002/9783433604090
– volume: 341
  year: 2022
  ident: 10.1016/j.conbuildmat.2022.130221_b0170
  article-title: Experimental and Data-Driven analysis on compressive strength of steel fibre reinforced high strength concrete and mortar at elevated temperature
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.127845
– volume: 118
  year: 2021
  ident: 10.1016/j.conbuildmat.2022.130221_b0015
  article-title: Design of Steel Fiber-Reinforced High-Strength Concrete-Encased Steel Short Columns and Beams
  publication-title: ACI Struct. J.
– volume: 36
  start-page: 1698
  issue: 9
  year: 2006
  ident: 10.1016/j.conbuildmat.2022.130221_b0065
  article-title: Effect of high temperatures on high performance steel fibre reinforced concrete
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2006.03.024
– volume: 48
  start-page: 2299
  issue: 7
  year: 2015
  ident: 10.1016/j.conbuildmat.2022.130221_b0140
  article-title: Stress–strain relationship of steel-fibre reinforced reactive powder concrete at elevated temperatures
  publication-title: Mater. Struct. Constr.
  doi: 10.1617/s11527-014-0312-9
– volume: 19
  start-page: 670
  issue: 3
  year: 2018
  ident: 10.1016/j.conbuildmat.2022.130221_b0165
  article-title: Load-carrying capacity of steel fiber reinforced concrete beams at large deflections
  publication-title: Struct. Concr.
  doi: 10.1002/suco.201700129
– volume: 19
  start-page: 385
  issue: 5
  year: 2007
  ident: 10.1016/j.conbuildmat.2022.130221_b0025
  article-title: Mechanical Properties of Steel Fiber-Reinforced Concrete
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)0899-1561(2007)19:5(385)
– volume: 103
  start-page: 1
  year: 2018
  ident: 10.1016/j.conbuildmat.2022.130221_b0050
  article-title: Corrosion resistance of steel fibre reinforced concrete-A literature review
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2017.05.016
– year: 2016
  ident: 10.1016/j.conbuildmat.2022.130221_b0240
– ident: 10.1016/j.conbuildmat.2022.130221_b0150
– volume: 292
  year: 2021
  ident: 10.1016/j.conbuildmat.2022.130221_b0100
  article-title: Performance of fibre-reinforced cementitious composites at elevated temperatures: A review
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.123382
– volume: 190
  year: 2022
  ident: 10.1016/j.conbuildmat.2022.130221_b0020
  article-title: Buckling resistance of steel fibre-reinforced concrete encased steel composite columns
  publication-title: J. Constr. Steel Res.
  doi: 10.1016/j.jcsr.2022.107140
– ident: 10.1016/j.conbuildmat.2022.130221_b0010
– volume: 245
  year: 2021
  ident: 10.1016/j.conbuildmat.2022.130221_b0085
  article-title: Prediction of fire resistance of concrete encased steel composite columns using artificial neural network
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2021.112877
– volume: 25
  start-page: 1009
  issue: 2
  year: 2011
  ident: 10.1016/j.conbuildmat.2022.130221_b0210
  article-title: Effect of elevated temperature on physico-mechanical properties of blended cement concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2010.06.078
– year: 2011
  ident: 10.1016/j.conbuildmat.2022.130221_b0190
– volume: 21
  start-page: 23
  issue: 1
  year: 1999
  ident: 10.1016/j.conbuildmat.2022.130221_b0070
  article-title: Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/S0958-9465(98)00034-1
– volume: 41
  start-page: 1112
  issue: 11
  year: 2011
  ident: 10.1016/j.conbuildmat.2022.130221_b0145
  article-title: Thermal and mechanical properties of fiber reinforced high performance self-consolidating concrete at elevated temperatures
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2011.06.012
– volume: 65
  start-page: 321
  year: 2014
  ident: 10.1016/j.conbuildmat.2022.130221_b0030
  article-title: Flexural creep of steel fiber reinforced concrete in the cracked state
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2014.04.139
– volume: 2014
  year: 2014
  ident: 10.1016/j.conbuildmat.2022.130221_b0090
  article-title: Properties of concrete at elevated temperatures
  publication-title: ISRN Civ. Eng.
– volume: 39
  start-page: 3015
  issue: 9
  year: 2004
  ident: 10.1016/j.conbuildmat.2022.130221_b0245
  article-title: Dehydration and rehydration processes of cement paste exposed to high temperature environments
  publication-title: J. Mater. Sci.
  doi: 10.1023/B:JMSC.0000025827.65956.18
– volume: 199
  start-page: 717
  year: 2019
  ident: 10.1016/j.conbuildmat.2022.130221_b0225
  article-title: Effect of the high temperatures on the microstructure and compressive strength of high strength fibre concretes
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.12.074
– volume: 93
  start-page: 371
  year: 2015
  ident: 10.1016/j.conbuildmat.2022.130221_b0095
  article-title: Mechanical properties of concrete at high temperature-A review
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.05.131
– volume: 16
  start-page: 93
  issue: 1
  year: 2015
  ident: 10.1016/j.conbuildmat.2022.130221_b0160
  article-title: Derivation of the σ-w relationship for SFRC from prism bending tests
  publication-title: Struct. Concr.
  doi: 10.1002/suco.201400018
– volume: 27
  start-page: 4014268
  issue: 10
  year: 2015
  ident: 10.1016/j.conbuildmat.2022.130221_b0200
  article-title: Mechanical properties of engineered cementitious composites subjected to elevated temperatures
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0001241
SSID ssj0006262
Score 2.4716876
Snippet •A study was conducted on the residual flexural tensile strength of steel fibre reinforced concrete at elevated temperatures.•The flexural tensile strength...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 130221
SubjectTerms Design equation
Elevated temperature
Residual flexural tensile strength
Steel-fibre reinforced concrete
Three-point bending
Title Residual flexural tensile strength of normal-weight and lightweight steel fibre-reinforced concrete at elevated temperatures
URI https://dx.doi.org/10.1016/j.conbuildmat.2022.130221
Volume 367
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KBdGD-MT6KCt4je1uXhvwUoqlWuyhWuwtbHY3WglpaSN6EH-7M0lqKwgKXpJsyIRlZtn5Jpn5hpBzHnmxDTjY4jYcnAjCHelxYenAaSqtbcMYViPf9r3u0LkZuaMKaS9qYTCtstz7iz09363LO41Sm43peNy4A3CADhg8HP6C9ZF223F8XOUXH8s0DwDsvODbwwYrTKyTs2WOF4ScEXafBnAIoSLn2BuZc_azj1rxO51tslUCRtoq5rRDKibdJZsrNIJ75H1g5nlNFY0T84Y8GjTPS08MxVKQ9DF7opOYpghPE-s1_xhKZappglflGKxt4AUQPRtrZnI-VVAOhbkDrswMlRnFUnSAppoin1VJxjzfJ8PO1X27a5VdFSxlc5ZZWmlPaUcLN_K03zSRLxWGIYGjY2FcoVRsbAkj3zOSSxH7zI2xNajnuMwA4Dgg1XSSmkNCwbUHMQSAiruAEpQUksHTzUgBzAh0wGpELPQYqpJyHDtfJOEit-w5XDFBiCYICxPUCP8SnRa8G38RulwYK_y2iELwD7-LH_1P_JhsYC_6vN7dPyHVbPZiTgGxZFE9X5J1sta67nX7eO4NHnqfSI3xNw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60go-D-MT6XMFraHfzBi9FlGq1Bx_gLWx2N1oJadGIHvzxziTbWkFQ8BKyIROWnWXmm83MNwBHIg0yF3GwI1y8eCmGOzIQkaNjr620dg3nVI181Q-6d97FvX8_AyfjWhhKq7S2v7bplbW2T1p2NVujwaB1g-CAHDB6OPoFGwazMEfsVH4D5jrnvW5_YpARs4uaco96rPBoHg6_0rww6kypATXiQ4wWhaD2yELwn93UlOs5W4FlixlZp57WKsyYYg2WppgE1-Hj2rxUZVUsy807UWmwKjU9N4yqQYqH8pENM1YQQs2dt-o8lMlCs5zu7BgVbvADGEAb59lUlKq4PgznjtCyNEyWjKrREZ1qRpRWlo_5ZQPuzk5vT7qObazgKFfw0tFKB0p7OvLTQIdtk4ZSUSQSezqLjB8plRlX4igMjBQyykLuZ9QdNPB8bhBzbEKjGBZmCxh69zjDGFAJH4GCkpHk-HY7VYg0Yh3zJkTjdUyUZR2n5hd5Mk4ve0qmVJCQCpJaBU0QE9FRTb3xF6HjsbKSb_soQRfxu_j2_8QPYKF7e3WZXJ73ezuwSK3pq_L3cBca5fOr2UMAU6b7doN-AvHi8kU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Residual+flexural+tensile+strength+of+normal-weight+and+lightweight+steel+fibre-reinforced+concrete+at+elevated+temperatures&rft.jtitle=Construction+%26+building+materials&rft.au=Gondokusumo%2C+Gilbert+Sebastiano&rft.au=Venkateshwaran%2C+Akshay&rft.au=Li%2C+Shan&rft.au=Liew%2C+J.Y.+Richard&rft.date=2023-02-27&rft.pub=Elsevier+Ltd&rft.issn=0950-0618&rft.eissn=1879-0526&rft.volume=367&rft_id=info:doi/10.1016%2Fj.conbuildmat.2022.130221&rft.externalDocID=S0950061822038776
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-0618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-0618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-0618&client=summon