Residual flexural tensile strength of normal-weight and lightweight steel fibre-reinforced concrete at elevated temperatures
•A study was conducted on the residual flexural tensile strength of steel fibre reinforced concrete at elevated temperatures.•The flexural tensile strength retention of SFRC exhibited reduces with increase of temperature following a bilinear law.•Simplified equations are proposed to predict SFRC res...
Saved in:
Published in | Construction & building materials Vol. 367; p. 130221 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
27.02.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0950-0618 1879-0526 |
DOI | 10.1016/j.conbuildmat.2022.130221 |
Cover
Loading…
Abstract | •A study was conducted on the residual flexural tensile strength of steel fibre reinforced concrete at elevated temperatures.•The flexural tensile strength retention of SFRC exhibited reduces with increase of temperature following a bilinear law.•Simplified equations are proposed to predict SFRC residual flexural tensile strength at elevated temperatures within 98% accuracy when compared to test results.
In this study, the residual flexural tensile strength (fR,j) of steel fibre reinforced concrete (SFRC) at elevated temperature was investigated through a detailed test program. Sixty pre-notched SFRC prism specimens, cast with both normal-weight and lightweight concrete with different fibre contents, were heated inside a furnace to temperature ranging from 200 °C to 800 °C. The uniformly heated specimens were then subject to three-point bending using a carefully configurated test setup, to evaluate the residual flexural tensile strengths at elevated temperatures. The specimens were also tested at ambient temperature for benchmark comparison. A drop in both the residual flexural tensile strengths and the stiffness of SFRC was observed with the increase of temperature. The flexural tensile strength retention plotted against the elevated temperature exhibited a bilinear relationship. Based on the experimental results, a piecewise linear regression analysis was carried out to propose empirical equations to predict the residual flexural tensile strength of SFRC at elevated temperatures. The proposed equations were able to predict the strength retention factors with an average accuracy of around 98 % and a standard deviation of 18 % on average. The results from this study form the basis for predicting the behaviour of SFRC structural members under fire conditions. |
---|---|
AbstractList | •A study was conducted on the residual flexural tensile strength of steel fibre reinforced concrete at elevated temperatures.•The flexural tensile strength retention of SFRC exhibited reduces with increase of temperature following a bilinear law.•Simplified equations are proposed to predict SFRC residual flexural tensile strength at elevated temperatures within 98% accuracy when compared to test results.
In this study, the residual flexural tensile strength (fR,j) of steel fibre reinforced concrete (SFRC) at elevated temperature was investigated through a detailed test program. Sixty pre-notched SFRC prism specimens, cast with both normal-weight and lightweight concrete with different fibre contents, were heated inside a furnace to temperature ranging from 200 °C to 800 °C. The uniformly heated specimens were then subject to three-point bending using a carefully configurated test setup, to evaluate the residual flexural tensile strengths at elevated temperatures. The specimens were also tested at ambient temperature for benchmark comparison. A drop in both the residual flexural tensile strengths and the stiffness of SFRC was observed with the increase of temperature. The flexural tensile strength retention plotted against the elevated temperature exhibited a bilinear relationship. Based on the experimental results, a piecewise linear regression analysis was carried out to propose empirical equations to predict the residual flexural tensile strength of SFRC at elevated temperatures. The proposed equations were able to predict the strength retention factors with an average accuracy of around 98 % and a standard deviation of 18 % on average. The results from this study form the basis for predicting the behaviour of SFRC structural members under fire conditions. |
ArticleNumber | 130221 |
Author | Gondokusumo, Gilbert Sebastiano Venkateshwaran, Akshay Liew, J.Y. Richard Li, Shan |
Author_xml | – sequence: 1 givenname: Gilbert Sebastiano surname: Gondokusumo fullname: Gondokusumo, Gilbert Sebastiano organization: Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore – sequence: 2 givenname: Akshay surname: Venkateshwaran fullname: Venkateshwaran, Akshay organization: Department of Civil Engineering, Birla Institute of Technology and Science – Pilani, Dubai Campus, United Arab Emirates – sequence: 3 givenname: Shan surname: Li fullname: Li, Shan organization: Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore – sequence: 4 givenname: J.Y. Richard surname: Liew fullname: Liew, J.Y. Richard email: ceeljy@nus.edu.sg organization: Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore |
BookMark | eNqNkMtKAzEUQINUsFb_IX7A1GQemZmVSPEFBUF0HTLJTZuSyZQkUxX8eFPahbjq5r7gHu49l2jiBgcI3VAyp4Sy281cDq4bjVW9iPOc5PmcFinSMzSlTd1mpMrZBE1JW5GMMNpcoMsQNoQQlrN8in7eIBg1Cou1ha_RpyKCC8YCDtGDW8U1HjR2g--FzT7BrNYRC6ew3VfHPkSABDCdh8yDcXrwEhROl0kPEbCIGCzsREzDCP0WvIijh3CFzrWwAa6PeYY-Hh_eF8_Z8vXpZXG_zGSR05gpqZhUpWqqjqmaQFcLWRBWtqXSDVSNlBoKkbqagchFo2ta6bpoGCsrCnVZzFB74Eo_hOBB8603vfDfnBK-18g3_I9GvtfIDxrT7t2_XWmiiGZw0QtjTyIsDgRIL-4MeB6kAZcMGQ8ycjWYEyi_BuCdlQ |
CitedBy_id | crossref_primary_10_1016_j_conbuildmat_2024_138689 crossref_primary_10_1016_j_engstruct_2023_116437 crossref_primary_10_1038_s41598_025_89515_x crossref_primary_10_1016_j_jobe_2024_108440 crossref_primary_10_1016_j_conbuildmat_2023_132786 crossref_primary_10_1016_j_cscm_2024_e03615 crossref_primary_10_1016_j_jobe_2024_109121 crossref_primary_10_3390_ma17133099 crossref_primary_10_1016_j_jobe_2023_107743 crossref_primary_10_1177_13694332231196508 crossref_primary_10_3390_ma17061418 crossref_primary_10_3390_polym15193884 |
Cites_doi | 10.1016/j.commatsci.2018.12.055 10.1016/j.conbuildmat.2018.12.051 10.1061/(ASCE)MT.1943-5533.0001402 10.1617/14175 10.1016/j.conbuildmat.2014.07.074 10.1016/j.conbuildmat.2012.12.066 10.1016/j.cemconres.2013.04.003 10.1016/j.cemconcomp.2015.01.002 10.1002/suco.202100172 10.1016/0262-5075(84)90006-X 10.1016/j.conbuildmat.2010.11.064 10.1016/j.firesaf.2020.103273 10.1016/j.cemconres.2020.106120 10.1016/j.jcsr.2021.106640 10.1007/s10694-012-0322-5 10.1016/j.cemconres.2003.08.029 10.1016/j.cemconcomp.2019.02.016 10.1016/j.matdes.2009.11.025 10.1002/suco.201700030 10.1617/s11527-009-9504-0 10.1016/j.firesaf.2012.07.009 10.1016/j.conbuildmat.2016.06.045 10.1002/9783433604090 10.1016/j.conbuildmat.2022.127845 10.1016/j.cemconres.2006.03.024 10.1617/s11527-014-0312-9 10.1002/suco.201700129 10.1061/(ASCE)0899-1561(2007)19:5(385) 10.1016/j.cemconres.2017.05.016 10.1016/j.conbuildmat.2021.123382 10.1016/j.jcsr.2022.107140 10.1016/j.engstruct.2021.112877 10.1016/j.conbuildmat.2010.06.078 10.1016/S0958-9465(98)00034-1 10.1016/j.cemconres.2011.06.012 10.1016/j.conbuildmat.2014.04.139 10.1023/B:JMSC.0000025827.65956.18 10.1016/j.conbuildmat.2018.12.074 10.1016/j.conbuildmat.2015.05.131 10.1002/suco.201400018 10.1061/(ASCE)MT.1943-5533.0001241 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.conbuildmat.2022.130221 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0526 |
ExternalDocumentID | 10_1016_j_conbuildmat_2022_130221 S0950061822038776 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFRF ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADHUB ADTZH AEBSH AECPX AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BAAKF BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IAO IEA IGG IHE IHM IOF ISM J1W JJJVA KOM LY7 M24 M41 MAGPM MO0 N95 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PV9 Q38 ROL RPZ RZL SDF SDG SES SEW SPC SPCBC SSM SST SSZ T5K UNMZH XI7 ~G- AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHDLI AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ ITC R2- RIG RNS SET SMS SSH VH1 WUQ ZMT |
ID | FETCH-LOGICAL-c321t-dcd6cd4d85b6d70eb7ac306494df8e58ccfe3a94d76ea2a8f715f73866451e743 |
IEDL.DBID | .~1 |
ISSN | 0950-0618 |
IngestDate | Thu Apr 24 22:58:50 EDT 2025 Tue Jul 01 00:59:32 EDT 2025 Fri Feb 23 02:39:20 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Elevated temperature Design equation Three-point bending Steel-fibre reinforced concrete Residual flexural tensile strength |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c321t-dcd6cd4d85b6d70eb7ac306494df8e58ccfe3a94d76ea2a8f715f73866451e743 |
ParticipantIDs | crossref_primary_10_1016_j_conbuildmat_2022_130221 crossref_citationtrail_10_1016_j_conbuildmat_2022_130221 elsevier_sciencedirect_doi_10_1016_j_conbuildmat_2022_130221 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-27 |
PublicationDateYYYYMMDD | 2023-02-27 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-27 day: 27 |
PublicationDecade | 2020 |
PublicationTitle | Construction & building materials |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Giaccio, Zerbino (b0060) 2005; 38 Gao, Yan, Li (b0130) 2012; 54 Marcos-Meson, Fischer, Edvardsen, Skovhus, Michel (b0040) 2019; 200 Fu, Wong, Poon, Tang, Lin (b0215) 2004; 34 Thomas, Ramaswamy (b0025) 2007; 19 Rawat, Lee, Zhang (b0100) 2021; 292 Pliya, Beaucour, Noumowé (b0220) 2011; 25 Venkateshwaran, Tan, Li (b0120) 2018; 19 Ma, Guo, Zhao, Lin, He (b0095) 2015; 93 Caratelli, Meda, Rinaldi (b0035) 2016; 122 Watanabe, Bangi, Horiguchi (b0175) 2013; 51 Venkateshwaran, Tan (b0165) 2018; 19 Wu, Lin, Zhou (b0105) 2020; 135 BS EN 14651, Test method for metallic fibre concrete - Measureing the flexural tensile strength (limit of proportionality (LOP), residual), European Committee for Standardization, Brussels, Belgium, 2007. Li, Pimienta, Pinoteau, Tan (b0055) 2019; 99 Holschemacher, Mueller, Ribakov (b0005) 2010; 31 Chan, Peng, Anson (b0070) 1999; 21 Venkateshwaran, Lai, Liew (b0015) 2021; 118 Kodur (b0090) 2014; 2014 Aslani, Samali (b0110) 2014; 50 Purkiss (b0230) 1984; 6 Mamlouk, Zaniewski (b0190) 2011 Seleem, Rashad, Elsokary (b0210) 2011; 25 International Federation for Structural Concrete, fib Model Code for Concrete Structures 2010, Verlag Ernst & John, Berlin, 2013. https://doi.org/10.1002/9783433604090. Colombo, Di Prisco, Felicetti (b0185) 2015; 58 Gondokusumo, Venkateshwaran, Tan, Liew (b0115) 2021 Li, Liew, Xiong (b0080) 2021; 181 Amin, Foster, Muttoni (b0160) 2015; 16 Zheng, Luo, Wang (b0135) 2013; 41 Way, Wille (b0205) 2016; 28 Marcos-Meson, Michel, Solgaard, Fischer, Edvardsen, Skovhus (b0050) 2018; 103 Colombo, Di Prisco, Felicetti (b0125) 2010; 43 Khaliq, Kodur (b0145) 2011; 41 Marcos-Meson, Geiker, Fischer, Solgaard, Jakobsen, Danner, Edvardsen, Skovhus, Michel (b0045) 2020; 135 Lau, Anson (b0065) 2006; 36 Yu, Dai, Lu, Leung (b0200) 2015; 27 Venkateshwaran, Lai, Liew (b0020) 2022; 190 Caetano, Ferreira, Rodrigues, Pimienta (b0225) 2019; 199 C. Kleinman, X. Destrée, A. Lambrechts, A. Hoekstra, Steel Fibre As Only Reinforcing in Free Suspended One Way Elevated Slabs: Design Conclusions of a Tunnel Formed Slab and Walls Based Upon Full Scale Testing Results, in: 8th RILEM Int. Symp. Fiber Reinf. Concr. Challenges Oppor. (BEFIB 2012), 2012: pp. 1–13. Al Qadi, Al-Zaidyeen (b0195) 2014; 26 Li, Liew, Xiong (b0085) 2021; 245 Zheng, Luo, Wang (b0140) 2015; 48 García-Taengua, Arango, Martí-Vargas, Serna (b0030) 2014; 65 Naser (b0235) 2019; 160 Alonso, Fernandez (b0245) 2004; 39 EN 1992-1-2, Eurocode 2: Design of concrete structures - Part 1-2: General rules - Structural fire design, Eur. Comm. Stand. (2004). Li, Liew (b0170) 2022; 341 Naser (b0240) 2016 Li, Liew, Xiong, Lai (b0075) 2021; 121 Choi, Zi, Hino, Yamaguchi, Kim (b0180) 2014; 69 Caetano (10.1016/j.conbuildmat.2022.130221_b0225) 2019; 199 Caratelli (10.1016/j.conbuildmat.2022.130221_b0035) 2016; 122 Al Qadi (10.1016/j.conbuildmat.2022.130221_b0195) 2014; 26 Wu (10.1016/j.conbuildmat.2022.130221_b0105) 2020; 135 Marcos-Meson (10.1016/j.conbuildmat.2022.130221_b0040) 2019; 200 Li (10.1016/j.conbuildmat.2022.130221_b0080) 2021; 181 Colombo (10.1016/j.conbuildmat.2022.130221_b0125) 2010; 43 Choi (10.1016/j.conbuildmat.2022.130221_b0180) 2014; 69 Gondokusumo (10.1016/j.conbuildmat.2022.130221_b0115) 2021 Yu (10.1016/j.conbuildmat.2022.130221_b0200) 2015; 27 Li (10.1016/j.conbuildmat.2022.130221_b0075) 2021; 121 10.1016/j.conbuildmat.2022.130221_b0150 Li (10.1016/j.conbuildmat.2022.130221_b0085) 2021; 245 Colombo (10.1016/j.conbuildmat.2022.130221_b0185) 2015; 58 10.1016/j.conbuildmat.2022.130221_b0155 Li (10.1016/j.conbuildmat.2022.130221_b0055) 2019; 99 Ma (10.1016/j.conbuildmat.2022.130221_b0095) 2015; 93 Venkateshwaran (10.1016/j.conbuildmat.2022.130221_b0015) 2021; 118 Marcos-Meson (10.1016/j.conbuildmat.2022.130221_b0050) 2018; 103 Naser (10.1016/j.conbuildmat.2022.130221_b0240) 2016 Khaliq (10.1016/j.conbuildmat.2022.130221_b0145) 2011; 41 Way (10.1016/j.conbuildmat.2022.130221_b0205) 2016; 28 Watanabe (10.1016/j.conbuildmat.2022.130221_b0175) 2013; 51 Giaccio (10.1016/j.conbuildmat.2022.130221_b0060) 2005; 38 Venkateshwaran (10.1016/j.conbuildmat.2022.130221_b0165) 2018; 19 Venkateshwaran (10.1016/j.conbuildmat.2022.130221_b0020) 2022; 190 Venkateshwaran (10.1016/j.conbuildmat.2022.130221_b0120) 2018; 19 Mamlouk (10.1016/j.conbuildmat.2022.130221_b0190) 2011 Rawat (10.1016/j.conbuildmat.2022.130221_b0100) 2021; 292 Naser (10.1016/j.conbuildmat.2022.130221_b0235) 2019; 160 Chan (10.1016/j.conbuildmat.2022.130221_b0070) 1999; 21 Holschemacher (10.1016/j.conbuildmat.2022.130221_b0005) 2010; 31 García-Taengua (10.1016/j.conbuildmat.2022.130221_b0030) 2014; 65 Amin (10.1016/j.conbuildmat.2022.130221_b0160) 2015; 16 Li (10.1016/j.conbuildmat.2022.130221_b0170) 2022; 341 Purkiss (10.1016/j.conbuildmat.2022.130221_b0230) 1984; 6 Fu (10.1016/j.conbuildmat.2022.130221_b0215) 2004; 34 10.1016/j.conbuildmat.2022.130221_b0250 10.1016/j.conbuildmat.2022.130221_b0010 Zheng (10.1016/j.conbuildmat.2022.130221_b0140) 2015; 48 Alonso (10.1016/j.conbuildmat.2022.130221_b0245) 2004; 39 Zheng (10.1016/j.conbuildmat.2022.130221_b0135) 2013; 41 Aslani (10.1016/j.conbuildmat.2022.130221_b0110) 2014; 50 Gao (10.1016/j.conbuildmat.2022.130221_b0130) 2012; 54 Seleem (10.1016/j.conbuildmat.2022.130221_b0210) 2011; 25 Lau (10.1016/j.conbuildmat.2022.130221_b0065) 2006; 36 Kodur (10.1016/j.conbuildmat.2022.130221_b0090) 2014; 2014 Pliya (10.1016/j.conbuildmat.2022.130221_b0220) 2011; 25 Thomas (10.1016/j.conbuildmat.2022.130221_b0025) 2007; 19 Marcos-Meson (10.1016/j.conbuildmat.2022.130221_b0045) 2020; 135 |
References_xml | – volume: 41 start-page: 1112 year: 2011 end-page: 1122 ident: b0145 article-title: Thermal and mechanical properties of fiber reinforced high performance self-consolidating concrete at elevated temperatures publication-title: Cem. Concr. Res. – volume: 19 start-page: 670 year: 2018 end-page: 683 ident: b0165 article-title: Load-carrying capacity of steel fiber reinforced concrete beams at large deflections publication-title: Struct. Concr. – volume: 245 year: 2021 ident: b0085 article-title: Prediction of fire resistance of concrete encased steel composite columns using artificial neural network publication-title: Eng. Struct. – volume: 93 start-page: 371 year: 2015 end-page: 383 ident: b0095 article-title: Mechanical properties of concrete at high temperature-A review publication-title: Constr. Build. Mater. – volume: 48 start-page: 2299 year: 2015 end-page: 2314 ident: b0140 article-title: Stress–strain relationship of steel-fibre reinforced reactive powder concrete at elevated temperatures publication-title: Mater. Struct. Constr. – volume: 65 start-page: 321 year: 2014 end-page: 329 ident: b0030 article-title: Flexural creep of steel fiber reinforced concrete in the cracked state publication-title: Constr. Build. Mater. – volume: 2014 year: 2014 ident: b0090 article-title: Properties of concrete at elevated temperatures publication-title: ISRN Civ. Eng. – volume: 50 start-page: 1249 year: 2014 end-page: 1268 ident: b0110 article-title: Constitutive Relationships for Steel Fibre Reinforced Concrete at Elevated Temperatures publication-title: Fire Technol. – volume: 39 start-page: 3015 year: 2004 end-page: 3024 ident: b0245 article-title: Dehydration and rehydration processes of cement paste exposed to high temperature environments publication-title: J. Mater. Sci. – volume: 43 start-page: 475 year: 2010 end-page: 491 ident: b0125 article-title: Mechanical properties of steel fibre reinforced concrete exposed at high temperatures publication-title: Mater. Struct. Constr. – year: 2021 ident: b0115 article-title: Unified equations to predict residual flexural tensile strength of lightweight steel fiber-reinforced concrete publication-title: Struct. Concr. – volume: 99 start-page: 62 year: 2019 end-page: 71 ident: b0055 article-title: Effect of aggregate size and inclusion of polypropylene and steel fibers on explosive spalling and pore pressure in ultra-high-performance concrete (UHPC) at elevated temperature publication-title: Cem. Concr. Compos. – volume: 27 start-page: 4014268 year: 2015 ident: b0200 article-title: Mechanical properties of engineered cementitious composites subjected to elevated temperatures publication-title: J. Mater. Civ. Eng. – volume: 54 start-page: 67 year: 2012 end-page: 73 ident: b0130 article-title: Splitting strength of GGBFS concrete incorporating with steel fiber and polypropylene fiber after exposure to elevated temperatures publication-title: Fire Saf. J. – volume: 25 start-page: 1009 year: 2011 end-page: 1017 ident: b0210 article-title: Effect of elevated temperature on physico-mechanical properties of blended cement concrete publication-title: Constr. Build. Mater. – volume: 135 year: 2020 ident: b0105 article-title: A review of mechanical properties of fibre reinforced concrete at elevated temperatures publication-title: Cem. Concr. Res. – volume: 118 year: 2021 ident: b0015 article-title: Design of Steel Fiber-Reinforced High-Strength Concrete-Encased Steel Short Columns and Beams publication-title: ACI Struct. J. – reference: International Federation for Structural Concrete, fib Model Code for Concrete Structures 2010, Verlag Ernst & John, Berlin, 2013. https://doi.org/10.1002/9783433604090. – volume: 38 start-page: 335 year: 2005 end-page: 342 ident: b0060 article-title: Mechanical behaviour of thermally damaged high-strength steel fibre reinforced concrete publication-title: Mater. Struct. Constr. – volume: 199 start-page: 717 year: 2019 end-page: 736 ident: b0225 article-title: Effect of the high temperatures on the microstructure and compressive strength of high strength fibre concretes publication-title: Constr. Build. Mater. – reference: BS EN 14651, Test method for metallic fibre concrete - Measureing the flexural tensile strength (limit of proportionality (LOP), residual), European Committee for Standardization, Brussels, Belgium, 2007. – volume: 190 year: 2022 ident: b0020 article-title: Buckling resistance of steel fibre-reinforced concrete encased steel composite columns publication-title: J. Constr. Steel Res. – volume: 21 start-page: 23 year: 1999 end-page: 27 ident: b0070 article-title: Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures publication-title: Cem. Concr. Compos. – volume: 122 start-page: 23 year: 2016 end-page: 35 ident: b0035 article-title: Monotonic and cyclic behaviour of lightweight concrete beams with and without steel fiber reinforcement publication-title: Constr. Build. Mater. – volume: 36 start-page: 1698 year: 2006 end-page: 1707 ident: b0065 article-title: Effect of high temperatures on high performance steel fibre reinforced concrete publication-title: Cem. Concr. Res. – volume: 26 start-page: 33 year: 2014 end-page: 39 ident: b0195 article-title: Effect of fibre content and specimen shape on residual strength of polypropylene fibre self-compacting concrete exposed to elevated temperatures publication-title: J. King Saud Univ. Sci. – year: 2016 ident: b0240 article-title: Response of steel and composite beams subjected to combined shear and fire loading – volume: 25 start-page: 1926 year: 2011 end-page: 1934 ident: b0220 article-title: Contribution of cocktail of polypropylene and steel fibres in improving the behaviour of high strength concrete subjected to high temperature publication-title: Constr. Build. Mater. – volume: 181 year: 2021 ident: b0080 article-title: Fire performance of composite columns made of high strength steel and concrete publication-title: J. Constr. Steel Res. – volume: 58 start-page: 81 year: 2015 end-page: 94 ident: b0185 article-title: SFRC exposed to high temperature: Hot vs. residual characterization for thin walled elements publication-title: Cem. Concr. Compos. – volume: 135 year: 2020 ident: b0045 article-title: Durability of cracked SFRC exposed to wet-dry cycles of chlorides and carbon dioxide–Multiscale deterioration phenomena publication-title: Cem. Concr. Res. – volume: 292 year: 2021 ident: b0100 article-title: Performance of fibre-reinforced cementitious composites at elevated temperatures: A review publication-title: Constr. Build. Mater. – volume: 341 year: 2022 ident: b0170 article-title: Experimental and Data-Driven analysis on compressive strength of steel fibre reinforced high strength concrete and mortar at elevated temperature publication-title: Constr. Build. Mater. – volume: 31 start-page: 2604 year: 2010 end-page: 2615 ident: b0005 article-title: Effect of steel fibres on mechanical properties of high-strength concrete publication-title: Mater. Des. – volume: 6 start-page: 179 year: 1984 end-page: 184 ident: b0230 article-title: Steel fibre reinforced concrete at elevated temperatures publication-title: Int. J. Cem. Compos. Light. Concr. – year: 2011 ident: b0190 article-title: Materials for Civil and Construction Engineers – volume: 34 start-page: 789 year: 2004 end-page: 797 ident: b0215 article-title: Experimental study of micro/macro crack development and stress–strain relations of cement-based composite materials at elevated temperatures publication-title: Cem. Concr. Res. – volume: 19 start-page: 352 year: 2018 end-page: 365 ident: b0120 article-title: Residual flexural strengths of steel fiber reinforced concrete with multiple hooked-end fibers publication-title: Struct. Concr. – volume: 121 year: 2021 ident: b0075 article-title: Experimental investigation on fire resistance of high-strength concrete encased steel composite columns publication-title: Fire Saf. J. – volume: 19 start-page: 385 year: 2007 end-page: 392 ident: b0025 article-title: Mechanical Properties of Steel Fiber-Reinforced Concrete publication-title: J. Mater. Civ. Eng. – volume: 16 start-page: 93 year: 2015 end-page: 105 ident: b0160 article-title: Derivation of the σ-w relationship for SFRC from prism bending tests publication-title: Struct. Concr. – volume: 69 start-page: 381 year: 2014 end-page: 389 ident: b0180 article-title: Influence of fiber reinforcement on strength and toughness of all-lightweight concrete publication-title: Constr. Build. Mater. – reference: EN 1992-1-2, Eurocode 2: Design of concrete structures - Part 1-2: General rules - Structural fire design, Eur. Comm. Stand. (2004). – reference: C. Kleinman, X. Destrée, A. Lambrechts, A. Hoekstra, Steel Fibre As Only Reinforcing in Free Suspended One Way Elevated Slabs: Design Conclusions of a Tunnel Formed Slab and Walls Based Upon Full Scale Testing Results, in: 8th RILEM Int. Symp. Fiber Reinf. Concr. Challenges Oppor. (BEFIB 2012), 2012: pp. 1–13. – volume: 200 start-page: 490 year: 2019 end-page: 501 ident: b0040 article-title: Durability of Steel Fibre Reinforced Concrete (SFRC) exposed to acid attack–A literature review publication-title: Constr. Build. Mater. – volume: 51 start-page: 6 year: 2013 end-page: 13 ident: b0175 article-title: The effect of testing conditions (hot and residual) on fracture toughness of fiber reinforced high-strength concrete subjected to high temperatures publication-title: Cem. Concr. Res. – volume: 41 start-page: 844 year: 2013 end-page: 851 ident: b0135 article-title: Compressive and tensile properties of reactive powder concrete with steel fibres at elevated temperatures publication-title: Constr. Build. Mater. – volume: 28 start-page: 04015164 year: 2016 ident: b0205 article-title: Effect of Heat-Induced Chemical Degradation on the Residual Mechanical Properties of Ultrahigh-Performance Fiber-Reinforced Concrete publication-title: J. Mater. Civ. Eng. – volume: 103 start-page: 1 year: 2018 end-page: 20 ident: b0050 article-title: Corrosion resistance of steel fibre reinforced concrete-A literature review publication-title: Cem. Concr. Res. – volume: 160 start-page: 16 year: 2019 end-page: 29 ident: b0235 article-title: Properties and material models for modern construction materials at elevated temperatures publication-title: Comput. Mater. Sci. – volume: 160 start-page: 16 issue: December 2018 year: 2019 ident: 10.1016/j.conbuildmat.2022.130221_b0235 article-title: Properties and material models for modern construction materials at elevated temperatures publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2018.12.055 – volume: 200 start-page: 490 year: 2019 ident: 10.1016/j.conbuildmat.2022.130221_b0040 article-title: Durability of Steel Fibre Reinforced Concrete (SFRC) exposed to acid attack–A literature review publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.12.051 – volume: 135 issue: April year: 2020 ident: 10.1016/j.conbuildmat.2022.130221_b0105 article-title: A review of mechanical properties of fibre reinforced concrete at elevated temperatures publication-title: Cem. Concr. Res. – volume: 28 start-page: 04015164 issue: 4 year: 2016 ident: 10.1016/j.conbuildmat.2022.130221_b0205 article-title: Effect of Heat-Induced Chemical Degradation on the Residual Mechanical Properties of Ultrahigh-Performance Fiber-Reinforced Concrete publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)MT.1943-5533.0001402 – volume: 38 start-page: 335 issue: 277 year: 2005 ident: 10.1016/j.conbuildmat.2022.130221_b0060 article-title: Mechanical behaviour of thermally damaged high-strength steel fibre reinforced concrete publication-title: Mater. Struct. Constr. doi: 10.1617/14175 – volume: 69 start-page: 381 year: 2014 ident: 10.1016/j.conbuildmat.2022.130221_b0180 article-title: Influence of fiber reinforcement on strength and toughness of all-lightweight concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2014.07.074 – volume: 41 start-page: 844 year: 2013 ident: 10.1016/j.conbuildmat.2022.130221_b0135 article-title: Compressive and tensile properties of reactive powder concrete with steel fibres at elevated temperatures publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2012.12.066 – volume: 51 start-page: 6 year: 2013 ident: 10.1016/j.conbuildmat.2022.130221_b0175 article-title: The effect of testing conditions (hot and residual) on fracture toughness of fiber reinforced high-strength concrete subjected to high temperatures publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2013.04.003 – volume: 58 start-page: 81 year: 2015 ident: 10.1016/j.conbuildmat.2022.130221_b0185 article-title: SFRC exposed to high temperature: Hot vs. residual characterization for thin walled elements publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2015.01.002 – year: 2021 ident: 10.1016/j.conbuildmat.2022.130221_b0115 article-title: Unified equations to predict residual flexural tensile strength of lightweight steel fiber-reinforced concrete publication-title: Struct. Concr. doi: 10.1002/suco.202100172 – volume: 6 start-page: 179 issue: 3 year: 1984 ident: 10.1016/j.conbuildmat.2022.130221_b0230 article-title: Steel fibre reinforced concrete at elevated temperatures publication-title: Int. J. Cem. Compos. Light. Concr. doi: 10.1016/0262-5075(84)90006-X – volume: 25 start-page: 1926 issue: 4 year: 2011 ident: 10.1016/j.conbuildmat.2022.130221_b0220 article-title: Contribution of cocktail of polypropylene and steel fibres in improving the behaviour of high strength concrete subjected to high temperature publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2010.11.064 – volume: 121 year: 2021 ident: 10.1016/j.conbuildmat.2022.130221_b0075 article-title: Experimental investigation on fire resistance of high-strength concrete encased steel composite columns publication-title: Fire Saf. J. doi: 10.1016/j.firesaf.2020.103273 – volume: 135 year: 2020 ident: 10.1016/j.conbuildmat.2022.130221_b0045 article-title: Durability of cracked SFRC exposed to wet-dry cycles of chlorides and carbon dioxide–Multiscale deterioration phenomena publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2020.106120 – volume: 181 year: 2021 ident: 10.1016/j.conbuildmat.2022.130221_b0080 article-title: Fire performance of composite columns made of high strength steel and concrete publication-title: J. Constr. Steel Res. doi: 10.1016/j.jcsr.2021.106640 – volume: 50 start-page: 1249 issue: 5 year: 2014 ident: 10.1016/j.conbuildmat.2022.130221_b0110 article-title: Constitutive Relationships for Steel Fibre Reinforced Concrete at Elevated Temperatures publication-title: Fire Technol. doi: 10.1007/s10694-012-0322-5 – volume: 34 start-page: 789 issue: 5 year: 2004 ident: 10.1016/j.conbuildmat.2022.130221_b0215 article-title: Experimental study of micro/macro crack development and stress–strain relations of cement-based composite materials at elevated temperatures publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2003.08.029 – volume: 99 start-page: 62 year: 2019 ident: 10.1016/j.conbuildmat.2022.130221_b0055 article-title: Effect of aggregate size and inclusion of polypropylene and steel fibers on explosive spalling and pore pressure in ultra-high-performance concrete (UHPC) at elevated temperature publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2019.02.016 – volume: 31 start-page: 2604 issue: 5 year: 2010 ident: 10.1016/j.conbuildmat.2022.130221_b0005 article-title: Effect of steel fibres on mechanical properties of high-strength concrete publication-title: Mater. Des. doi: 10.1016/j.matdes.2009.11.025 – volume: 19 start-page: 352 issue: 2 year: 2018 ident: 10.1016/j.conbuildmat.2022.130221_b0120 article-title: Residual flexural strengths of steel fiber reinforced concrete with multiple hooked-end fibers publication-title: Struct. Concr. doi: 10.1002/suco.201700030 – volume: 26 start-page: 33 issue: 1 year: 2014 ident: 10.1016/j.conbuildmat.2022.130221_b0195 article-title: Effect of fibre content and specimen shape on residual strength of polypropylene fibre self-compacting concrete exposed to elevated temperatures publication-title: J. King Saud Univ. Sci. – volume: 43 start-page: 475 issue: 4 year: 2010 ident: 10.1016/j.conbuildmat.2022.130221_b0125 article-title: Mechanical properties of steel fibre reinforced concrete exposed at high temperatures publication-title: Mater. Struct. Constr. doi: 10.1617/s11527-009-9504-0 – ident: 10.1016/j.conbuildmat.2022.130221_b0250 – volume: 54 start-page: 67 year: 2012 ident: 10.1016/j.conbuildmat.2022.130221_b0130 article-title: Splitting strength of GGBFS concrete incorporating with steel fiber and polypropylene fiber after exposure to elevated temperatures publication-title: Fire Saf. J. doi: 10.1016/j.firesaf.2012.07.009 – volume: 122 start-page: 23 year: 2016 ident: 10.1016/j.conbuildmat.2022.130221_b0035 article-title: Monotonic and cyclic behaviour of lightweight concrete beams with and without steel fiber reinforcement publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.06.045 – ident: 10.1016/j.conbuildmat.2022.130221_b0155 doi: 10.1002/9783433604090 – volume: 341 year: 2022 ident: 10.1016/j.conbuildmat.2022.130221_b0170 article-title: Experimental and Data-Driven analysis on compressive strength of steel fibre reinforced high strength concrete and mortar at elevated temperature publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2022.127845 – volume: 118 year: 2021 ident: 10.1016/j.conbuildmat.2022.130221_b0015 article-title: Design of Steel Fiber-Reinforced High-Strength Concrete-Encased Steel Short Columns and Beams publication-title: ACI Struct. J. – volume: 36 start-page: 1698 issue: 9 year: 2006 ident: 10.1016/j.conbuildmat.2022.130221_b0065 article-title: Effect of high temperatures on high performance steel fibre reinforced concrete publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2006.03.024 – volume: 48 start-page: 2299 issue: 7 year: 2015 ident: 10.1016/j.conbuildmat.2022.130221_b0140 article-title: Stress–strain relationship of steel-fibre reinforced reactive powder concrete at elevated temperatures publication-title: Mater. Struct. Constr. doi: 10.1617/s11527-014-0312-9 – volume: 19 start-page: 670 issue: 3 year: 2018 ident: 10.1016/j.conbuildmat.2022.130221_b0165 article-title: Load-carrying capacity of steel fiber reinforced concrete beams at large deflections publication-title: Struct. Concr. doi: 10.1002/suco.201700129 – volume: 19 start-page: 385 issue: 5 year: 2007 ident: 10.1016/j.conbuildmat.2022.130221_b0025 article-title: Mechanical Properties of Steel Fiber-Reinforced Concrete publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)0899-1561(2007)19:5(385) – volume: 103 start-page: 1 year: 2018 ident: 10.1016/j.conbuildmat.2022.130221_b0050 article-title: Corrosion resistance of steel fibre reinforced concrete-A literature review publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2017.05.016 – year: 2016 ident: 10.1016/j.conbuildmat.2022.130221_b0240 – ident: 10.1016/j.conbuildmat.2022.130221_b0150 – volume: 292 year: 2021 ident: 10.1016/j.conbuildmat.2022.130221_b0100 article-title: Performance of fibre-reinforced cementitious composites at elevated temperatures: A review publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.123382 – volume: 190 year: 2022 ident: 10.1016/j.conbuildmat.2022.130221_b0020 article-title: Buckling resistance of steel fibre-reinforced concrete encased steel composite columns publication-title: J. Constr. Steel Res. doi: 10.1016/j.jcsr.2022.107140 – ident: 10.1016/j.conbuildmat.2022.130221_b0010 – volume: 245 year: 2021 ident: 10.1016/j.conbuildmat.2022.130221_b0085 article-title: Prediction of fire resistance of concrete encased steel composite columns using artificial neural network publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2021.112877 – volume: 25 start-page: 1009 issue: 2 year: 2011 ident: 10.1016/j.conbuildmat.2022.130221_b0210 article-title: Effect of elevated temperature on physico-mechanical properties of blended cement concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2010.06.078 – year: 2011 ident: 10.1016/j.conbuildmat.2022.130221_b0190 – volume: 21 start-page: 23 issue: 1 year: 1999 ident: 10.1016/j.conbuildmat.2022.130221_b0070 article-title: Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures publication-title: Cem. Concr. Compos. doi: 10.1016/S0958-9465(98)00034-1 – volume: 41 start-page: 1112 issue: 11 year: 2011 ident: 10.1016/j.conbuildmat.2022.130221_b0145 article-title: Thermal and mechanical properties of fiber reinforced high performance self-consolidating concrete at elevated temperatures publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2011.06.012 – volume: 65 start-page: 321 year: 2014 ident: 10.1016/j.conbuildmat.2022.130221_b0030 article-title: Flexural creep of steel fiber reinforced concrete in the cracked state publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2014.04.139 – volume: 2014 year: 2014 ident: 10.1016/j.conbuildmat.2022.130221_b0090 article-title: Properties of concrete at elevated temperatures publication-title: ISRN Civ. Eng. – volume: 39 start-page: 3015 issue: 9 year: 2004 ident: 10.1016/j.conbuildmat.2022.130221_b0245 article-title: Dehydration and rehydration processes of cement paste exposed to high temperature environments publication-title: J. Mater. Sci. doi: 10.1023/B:JMSC.0000025827.65956.18 – volume: 199 start-page: 717 year: 2019 ident: 10.1016/j.conbuildmat.2022.130221_b0225 article-title: Effect of the high temperatures on the microstructure and compressive strength of high strength fibre concretes publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.12.074 – volume: 93 start-page: 371 year: 2015 ident: 10.1016/j.conbuildmat.2022.130221_b0095 article-title: Mechanical properties of concrete at high temperature-A review publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2015.05.131 – volume: 16 start-page: 93 issue: 1 year: 2015 ident: 10.1016/j.conbuildmat.2022.130221_b0160 article-title: Derivation of the σ-w relationship for SFRC from prism bending tests publication-title: Struct. Concr. doi: 10.1002/suco.201400018 – volume: 27 start-page: 4014268 issue: 10 year: 2015 ident: 10.1016/j.conbuildmat.2022.130221_b0200 article-title: Mechanical properties of engineered cementitious composites subjected to elevated temperatures publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)MT.1943-5533.0001241 |
SSID | ssj0006262 |
Score | 2.4716876 |
Snippet | •A study was conducted on the residual flexural tensile strength of steel fibre reinforced concrete at elevated temperatures.•The flexural tensile strength... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 130221 |
SubjectTerms | Design equation Elevated temperature Residual flexural tensile strength Steel-fibre reinforced concrete Three-point bending |
Title | Residual flexural tensile strength of normal-weight and lightweight steel fibre-reinforced concrete at elevated temperatures |
URI | https://dx.doi.org/10.1016/j.conbuildmat.2022.130221 |
Volume | 367 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KBdGD-MT6KCt4je1uXhvwUoqlWuyhWuwtbHY3WglpaSN6EH-7M0lqKwgKXpJsyIRlZtn5Jpn5hpBzHnmxDTjY4jYcnAjCHelxYenAaSqtbcMYViPf9r3u0LkZuaMKaS9qYTCtstz7iz09363LO41Sm43peNy4A3CADhg8HP6C9ZF223F8XOUXH8s0DwDsvODbwwYrTKyTs2WOF4ScEXafBnAIoSLn2BuZc_azj1rxO51tslUCRtoq5rRDKibdJZsrNIJ75H1g5nlNFY0T84Y8GjTPS08MxVKQ9DF7opOYpghPE-s1_xhKZappglflGKxt4AUQPRtrZnI-VVAOhbkDrswMlRnFUnSAppoin1VJxjzfJ8PO1X27a5VdFSxlc5ZZWmlPaUcLN_K03zSRLxWGIYGjY2FcoVRsbAkj3zOSSxH7zI2xNajnuMwA4Dgg1XSSmkNCwbUHMQSAiruAEpQUksHTzUgBzAh0wGpELPQYqpJyHDtfJOEit-w5XDFBiCYICxPUCP8SnRa8G38RulwYK_y2iELwD7-LH_1P_JhsYC_6vN7dPyHVbPZiTgGxZFE9X5J1sta67nX7eO4NHnqfSI3xNw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60go-D-MT6XMFraHfzBi9FlGq1Bx_gLWx2N1oJadGIHvzxziTbWkFQ8BKyIROWnWXmm83MNwBHIg0yF3GwI1y8eCmGOzIQkaNjr620dg3nVI181Q-6d97FvX8_AyfjWhhKq7S2v7bplbW2T1p2NVujwaB1g-CAHDB6OPoFGwazMEfsVH4D5jrnvW5_YpARs4uaco96rPBoHg6_0rww6kypATXiQ4wWhaD2yELwn93UlOs5W4FlixlZp57WKsyYYg2WppgE1-Hj2rxUZVUsy807UWmwKjU9N4yqQYqH8pENM1YQQs2dt-o8lMlCs5zu7BgVbvADGEAb59lUlKq4PgznjtCyNEyWjKrREZ1qRpRWlo_5ZQPuzk5vT7qObazgKFfw0tFKB0p7OvLTQIdtk4ZSUSQSezqLjB8plRlX4igMjBQyykLuZ9QdNPB8bhBzbEKjGBZmCxh69zjDGFAJH4GCkpHk-HY7VYg0Yh3zJkTjdUyUZR2n5hd5Mk4ve0qmVJCQCpJaBU0QE9FRTb3xF6HjsbKSb_soQRfxu_j2_8QPYKF7e3WZXJ73ezuwSK3pq_L3cBca5fOr2UMAU6b7doN-AvHi8kU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Residual+flexural+tensile+strength+of+normal-weight+and+lightweight+steel+fibre-reinforced+concrete+at+elevated+temperatures&rft.jtitle=Construction+%26+building+materials&rft.au=Gondokusumo%2C+Gilbert+Sebastiano&rft.au=Venkateshwaran%2C+Akshay&rft.au=Li%2C+Shan&rft.au=Liew%2C+J.Y.+Richard&rft.date=2023-02-27&rft.pub=Elsevier+Ltd&rft.issn=0950-0618&rft.eissn=1879-0526&rft.volume=367&rft_id=info:doi/10.1016%2Fj.conbuildmat.2022.130221&rft.externalDocID=S0950061822038776 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-0618&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-0618&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-0618&client=summon |