Many Faces of Symmetric Edge Polytopes
Symmetric edge polytopes are a class of lattice polytopes constructed from finite simple graphs. In the present paper we highlight their connections to the Kuramoto synchronization model in physics — where they are called adjacency polytopes — and to Kantorovich-Rubinstein polytopes from finite metr...
Saved in:
Published in | The Electronic journal of combinatorics Vol. 29; no. 3 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
29.07.2022
|
Online Access | Get full text |
Cover
Loading…
Abstract | Symmetric edge polytopes are a class of lattice polytopes constructed from finite simple graphs. In the present paper we highlight their connections to the Kuramoto synchronization model in physics — where they are called adjacency polytopes — and to Kantorovich-Rubinstein polytopes from finite metric space theory. Each of these connections motivates the study of symmetric edge polytopes of particular classes of graphs. We focus on such classes and apply algebraic combinatorial methods to investigate invariants of the associated symmetric edge polytopes. |
---|---|
AbstractList | Symmetric edge polytopes are a class of lattice polytopes constructed from finite simple graphs. In the present paper we highlight their connections to the Kuramoto synchronization model in physics — where they are called adjacency polytopes — and to Kantorovich-Rubinstein polytopes from finite metric space theory. Each of these connections motivates the study of symmetric edge polytopes of particular classes of graphs. We focus on such classes and apply algebraic combinatorial methods to investigate invariants of the associated symmetric edge polytopes. |
Author | Delucchi, Emanuele D'Alì, Alessio Michałek, Mateusz |
Author_xml | – sequence: 1 givenname: Alessio surname: D'Alì fullname: D'Alì, Alessio – sequence: 2 givenname: Emanuele surname: Delucchi fullname: Delucchi, Emanuele – sequence: 3 givenname: Mateusz surname: Michałek fullname: Michałek, Mateusz |
BookMark | eNpdj8FKAzEURYNUsK36DVl15WjyMjbJUkpbhYqCuh5ekxcZmZmUJJv5e6W6kK7uXRwOnBmbDHEgxq6luFUa1PJOCmX0GZtKoXVlLCwn__4Fm-X8JYQEa--nbPGMw8g36CjzGPjb2PdUUuv42n8Sf43dWOKB8iU7D9hluvrbOfvYrN9Xj9XuZfu0ethVToEslVcSjFcCvFbBCkQnyBpHuAfpa-uNtTooJBPAAZE3sgYF-0AIdY3k1Zzd_HpdijknCo1rC5Y2DiVh2zVSNMfG5tj4gy9O8ENqe0zjKfgNWUxQ4A |
CitedBy_id | crossref_primary_10_1007_s00454_022_00447_z crossref_primary_10_1137_22M1492799 crossref_primary_10_2140_involve_2024_17_425 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.37236/10387 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1077-8926 |
ExternalDocumentID | 10_37236_10387 |
GroupedDBID | -~9 29G 2WC 5GY 5VS AAFWJ AAYXX ACGFO ACIPV ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION E3Z EBS EJD FRP GROUPED_DOAJ H13 KWQ M~E OK1 OVT P2P REM RNS TR2 XSB |
ID | FETCH-LOGICAL-c321t-d3128d302d73f90aac0e98ceab21d49d8997f3ae8f2c2eed814232bfea244aed3 |
ISSN | 1077-8926 |
IngestDate | Tue Jul 01 04:24:57 EDT 2025 Thu Apr 24 23:07:27 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c321t-d3128d302d73f90aac0e98ceab21d49d8997f3ae8f2c2eed814232bfea244aed3 |
OpenAccessLink | https://www.combinatorics.org/ojs/index.php/eljc/article/download/v29i3p24/pdf |
ParticipantIDs | crossref_citationtrail_10_37236_10387 crossref_primary_10_37236_10387 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-29 |
PublicationDateYYYYMMDD | 2022-07-29 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-29 day: 29 |
PublicationDecade | 2020 |
PublicationTitle | The Electronic journal of combinatorics |
PublicationYear | 2022 |
SSID | ssj0012995 |
Score | 2.4418898 |
Snippet | Symmetric edge polytopes are a class of lattice polytopes constructed from finite simple graphs. In the present paper we highlight their connections to the... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
Title | Many Faces of Symmetric Edge Polytopes |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLagLDAgTlGOkoGyVIHETppkRFWqCqmIoUhslWO_DJAegnSgA7-dZ8dNSlWJY4kixy9y8tnvsN9ByBUPuQggiWzX557tJQ4uqbaUdhAJCq4rfNCplPoP7d6Td__sP1eFC3V0SZ7ciPnauJL_oIptiKuKkv0DsuVLsQHvEV-8IsJ4_RXGfXVY39VOVSr25GM0UvWxRCtWMViPk-wjn0yNj-BLNSviqvLNUt4IHB8ayVznDKmKzTdpcJfpw_SOCYdRXrPlY8hmQuiywK14xMczyCpXWuWP3-z4zZDCaxEVlMPsfb68zUC1S6rZiyg4oxOgOIuoyVu9ps2w04poYW2vcmkWUFbsGDAjbL-lwV4RT6XTIJormnKo6TbJFkXLQLG2_mdcHhyhdPULN9NiZEU5KU13q-mW9I8lRWKwR3aNBWDdFXDukw0YH5Cdfpk-9_2QXCtgLQ2sNUmtElhLAWuVwB6Rp2486PRsU9DCFoy6uS0ZagOSOVQGLI0czoUDUSiAJ9SVXiTR9g1SxiFMKa4UkKGrjtGTFDgqYRwkOya18WQMJ8SCFDw0BUOaJp7HQo56v1pWKWOcJUEY1Ulz8ZlDYbK9q6Ij2fD7b6yTy7LftMhvstLj9MceZ2S7mjHnpJa_zeACVbU8aegtjoaG6Avvej0C |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Many+Faces+of+Symmetric+Edge+Polytopes&rft.jtitle=The+Electronic+journal+of+combinatorics&rft.au=D%27Al%C3%AC%2C+Alessio&rft.au=Delucchi%2C+Emanuele&rft.au=Micha%C5%82ek%2C+Mateusz&rft.date=2022-07-29&rft.issn=1077-8926&rft.eissn=1077-8926&rft.volume=29&rft.issue=3&rft_id=info:doi/10.37236%2F10387&rft.externalDBID=n%2Fa&rft.externalDocID=10_37236_10387 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-8926&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-8926&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-8926&client=summon |