Many Faces of Symmetric Edge Polytopes

Symmetric edge polytopes are a class of lattice polytopes constructed from finite simple graphs. In the present paper we highlight their connections to the Kuramoto synchronization model in physics — where they are called adjacency polytopes — and to Kantorovich-Rubinstein polytopes from finite metr...

Full description

Saved in:
Bibliographic Details
Published inThe Electronic journal of combinatorics Vol. 29; no. 3
Main Authors D'Alì, Alessio, Delucchi, Emanuele, Michałek, Mateusz
Format Journal Article
LanguageEnglish
Published 29.07.2022
Online AccessGet full text

Cover

Loading…
Abstract Symmetric edge polytopes are a class of lattice polytopes constructed from finite simple graphs. In the present paper we highlight their connections to the Kuramoto synchronization model in physics — where they are called adjacency polytopes — and to Kantorovich-Rubinstein polytopes from finite metric space theory. Each of these connections motivates the study of symmetric edge polytopes of particular classes of graphs. We focus on such classes and apply algebraic combinatorial methods to investigate invariants of the associated symmetric edge polytopes.
AbstractList Symmetric edge polytopes are a class of lattice polytopes constructed from finite simple graphs. In the present paper we highlight their connections to the Kuramoto synchronization model in physics — where they are called adjacency polytopes — and to Kantorovich-Rubinstein polytopes from finite metric space theory. Each of these connections motivates the study of symmetric edge polytopes of particular classes of graphs. We focus on such classes and apply algebraic combinatorial methods to investigate invariants of the associated symmetric edge polytopes.
Author Delucchi, Emanuele
D'Alì, Alessio
Michałek, Mateusz
Author_xml – sequence: 1
  givenname: Alessio
  surname: D'Alì
  fullname: D'Alì, Alessio
– sequence: 2
  givenname: Emanuele
  surname: Delucchi
  fullname: Delucchi, Emanuele
– sequence: 3
  givenname: Mateusz
  surname: Michałek
  fullname: Michałek, Mateusz
BookMark eNpdj8FKAzEURYNUsK36DVl15WjyMjbJUkpbhYqCuh5ekxcZmZmUJJv5e6W6kK7uXRwOnBmbDHEgxq6luFUa1PJOCmX0GZtKoXVlLCwn__4Fm-X8JYQEa--nbPGMw8g36CjzGPjb2PdUUuv42n8Sf43dWOKB8iU7D9hluvrbOfvYrN9Xj9XuZfu0ethVToEslVcSjFcCvFbBCkQnyBpHuAfpa-uNtTooJBPAAZE3sgYF-0AIdY3k1Zzd_HpdijknCo1rC5Y2DiVh2zVSNMfG5tj4gy9O8ENqe0zjKfgNWUxQ4A
CitedBy_id crossref_primary_10_1007_s00454_022_00447_z
crossref_primary_10_1137_22M1492799
crossref_primary_10_2140_involve_2024_17_425
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.37236/10387
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1077-8926
ExternalDocumentID 10_37236_10387
GroupedDBID -~9
29G
2WC
5GY
5VS
AAFWJ
AAYXX
ACGFO
ACIPV
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
E3Z
EBS
EJD
FRP
GROUPED_DOAJ
H13
KWQ
M~E
OK1
OVT
P2P
REM
RNS
TR2
XSB
ID FETCH-LOGICAL-c321t-d3128d302d73f90aac0e98ceab21d49d8997f3ae8f2c2eed814232bfea244aed3
ISSN 1077-8926
IngestDate Tue Jul 01 04:24:57 EDT 2025
Thu Apr 24 23:07:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c321t-d3128d302d73f90aac0e98ceab21d49d8997f3ae8f2c2eed814232bfea244aed3
OpenAccessLink https://www.combinatorics.org/ojs/index.php/eljc/article/download/v29i3p24/pdf
ParticipantIDs crossref_citationtrail_10_37236_10387
crossref_primary_10_37236_10387
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-29
PublicationDateYYYYMMDD 2022-07-29
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-29
  day: 29
PublicationDecade 2020
PublicationTitle The Electronic journal of combinatorics
PublicationYear 2022
SSID ssj0012995
Score 2.4418898
Snippet Symmetric edge polytopes are a class of lattice polytopes constructed from finite simple graphs. In the present paper we highlight their connections to the...
SourceID crossref
SourceType Enrichment Source
Index Database
Title Many Faces of Symmetric Edge Polytopes
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLagLDAgTlGOkoGyVIHETppkRFWqCqmIoUhslWO_DJAegnSgA7-dZ8dNSlWJY4kixy9y8tnvsN9ByBUPuQggiWzX557tJQ4uqbaUdhAJCq4rfNCplPoP7d6Td__sP1eFC3V0SZ7ciPnauJL_oIptiKuKkv0DsuVLsQHvEV-8IsJ4_RXGfXVY39VOVSr25GM0UvWxRCtWMViPk-wjn0yNj-BLNSviqvLNUt4IHB8ayVznDKmKzTdpcJfpw_SOCYdRXrPlY8hmQuiywK14xMczyCpXWuWP3-z4zZDCaxEVlMPsfb68zUC1S6rZiyg4oxOgOIuoyVu9ps2w04poYW2vcmkWUFbsGDAjbL-lwV4RT6XTIJormnKo6TbJFkXLQLG2_mdcHhyhdPULN9NiZEU5KU13q-mW9I8lRWKwR3aNBWDdFXDukw0YH5Cdfpk-9_2QXCtgLQ2sNUmtElhLAWuVwB6Rp2486PRsU9DCFoy6uS0ZagOSOVQGLI0czoUDUSiAJ9SVXiTR9g1SxiFMKa4UkKGrjtGTFDgqYRwkOya18WQMJ8SCFDw0BUOaJp7HQo56v1pWKWOcJUEY1Ulz8ZlDYbK9q6Ij2fD7b6yTy7LftMhvstLj9MceZ2S7mjHnpJa_zeACVbU8aegtjoaG6Avvej0C
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Many+Faces+of+Symmetric+Edge+Polytopes&rft.jtitle=The+Electronic+journal+of+combinatorics&rft.au=D%27Al%C3%AC%2C+Alessio&rft.au=Delucchi%2C+Emanuele&rft.au=Micha%C5%82ek%2C+Mateusz&rft.date=2022-07-29&rft.issn=1077-8926&rft.eissn=1077-8926&rft.volume=29&rft.issue=3&rft_id=info:doi/10.37236%2F10387&rft.externalDBID=n%2Fa&rft.externalDocID=10_37236_10387
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-8926&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-8926&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-8926&client=summon