Correlation between figure of merit function and deviation in the assessment of kinetic parameters in realistic TLD-100 behavior using fully-connected neural networks

In this study, a realistic model was employed to research the LiF:Mg:Ti behavior (commercially known as TLD-100), a widely employed as thermoluminescent (TL) material in dosimetry services. The research was focused on exploring the association between the Figure of Merit (FOM) function and deviation...

Full description

Saved in:
Bibliographic Details
Published inRadiation physics and chemistry (Oxford, England : 1993) Vol. 213; p. 111259
Main Authors Romero-Salido, A., Olmedo, F.M., Berenguer-Antequera, J., Correcher, V., Benavente, J.F.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2023
Subjects
Online AccessGet full text
ISSN0969-806X
DOI10.1016/j.radphyschem.2023.111259

Cover

Loading…
Abstract In this study, a realistic model was employed to research the LiF:Mg:Ti behavior (commercially known as TLD-100), a widely employed as thermoluminescent (TL) material in dosimetry services. The research was focused on exploring the association between the Figure of Merit (FOM) function and deviations from the true kinetic parameter values, that were obtained through fitting experimental measures. FOM function is the most used magnitude to measure the quality of a fit achieved between a mathematical model and experimental data. Indeed, FOM function is particularly relevant when the TL glow curve deconvolution method is implemented to obtain the kinetic parameters: Activation Energy E (eV), Frequency Factor s (s−1), value of kinetic order b, Temperature at which the intensity maximum TMax(oC), Intensity Maximum IMax (a.u.) and Distribution Width σ (eV) of every peak. FOM function is subject to degeneracy under certain conditions, this means that different sets of kinetic parameters can lead to similar FOM values. Furthermore, as the obtained kinetic parameters are deemed acceptable when the FOM value is below 5%, then the physical degeneracy is greater than the mathematical ones. This contribution provides a rigorous analysis of how the FOM values can be impacted by deviations between experimental and estimated data of kinetic parameters from the analysis process. This studio was carried out using a mathematical method based on Artificial Intelligence with a high capability to manage a large volume of data. Another advantage of this method is that the analysis to be extended to a wide range of experimental data. •Study of TLD-100 behavior as a thermoluminescent material in dosimetry services.•Relationship between FOM function and deviations from kinetic parameters.•FOM can be degenerate: different kinetic parameters can lead to similar FOM values.•Using AI-based math methods for extensive analysis of large experimental data.
AbstractList In this study, a realistic model was employed to research the LiF:Mg:Ti behavior (commercially known as TLD-100), a widely employed as thermoluminescent (TL) material in dosimetry services. The research was focused on exploring the association between the Figure of Merit (FOM) function and deviations from the true kinetic parameter values, that were obtained through fitting experimental measures. FOM function is the most used magnitude to measure the quality of a fit achieved between a mathematical model and experimental data. Indeed, FOM function is particularly relevant when the TL glow curve deconvolution method is implemented to obtain the kinetic parameters: Activation Energy E (eV), Frequency Factor s (s−1), value of kinetic order b, Temperature at which the intensity maximum TMax(oC), Intensity Maximum IMax (a.u.) and Distribution Width σ (eV) of every peak. FOM function is subject to degeneracy under certain conditions, this means that different sets of kinetic parameters can lead to similar FOM values. Furthermore, as the obtained kinetic parameters are deemed acceptable when the FOM value is below 5%, then the physical degeneracy is greater than the mathematical ones. This contribution provides a rigorous analysis of how the FOM values can be impacted by deviations between experimental and estimated data of kinetic parameters from the analysis process. This studio was carried out using a mathematical method based on Artificial Intelligence with a high capability to manage a large volume of data. Another advantage of this method is that the analysis to be extended to a wide range of experimental data. •Study of TLD-100 behavior as a thermoluminescent material in dosimetry services.•Relationship between FOM function and deviations from kinetic parameters.•FOM can be degenerate: different kinetic parameters can lead to similar FOM values.•Using AI-based math methods for extensive analysis of large experimental data.
ArticleNumber 111259
Author Benavente, J.F.
Olmedo, F.M.
Correcher, V.
Romero-Salido, A.
Berenguer-Antequera, J.
Author_xml – sequence: 1
  givenname: A.
  surname: Romero-Salido
  fullname: Romero-Salido, A.
  organization: CIEMAT, Av. Complutense 40, 28040, Madrid, Spain
– sequence: 2
  givenname: F.M.
  surname: Olmedo
  fullname: Olmedo, F.M.
  organization: Córdoba University, Science Faculty, N-IV, km 396, 14014, Córdoba, Spain
– sequence: 3
  givenname: J.
  surname: Berenguer-Antequera
  fullname: Berenguer-Antequera, J.
  organization: Córdoba University, Science Faculty, N-IV, km 396, 14014, Córdoba, Spain
– sequence: 4
  givenname: V.
  surname: Correcher
  fullname: Correcher, V.
  organization: CIEMAT, Av. Complutense 40, 28040, Madrid, Spain
– sequence: 5
  givenname: J.F.
  orcidid: 0000-0001-5532-4043
  surname: Benavente
  fullname: Benavente, J.F.
  email: jf.benavente@ciemat.es
  organization: CIEMAT, Av. Complutense 40, 28040, Madrid, Spain
BookMark eNqNkM1qGzEQx3VIIV99B-UB1h2t7LV8CsFJ24ChlwR6E_JoNpazK5mR7OAX6nN2N86h9JTTH4b_B_O7FGcxRRLiRsFEgWq-bSfs_G5zzLihflJDrSdKqXq2OBMXsGgWlYHm97m4zHkLAHMz0xfizzIxU-dKSFGuqbwRRdmGlz2TTK3siUOR7T7iu8FFLz0dwskeoiwbki5nyrmnWMbEa4hUAsqdY9dTIc6jj8l1IY_3p9V9pQCGrY07hMRyn0N8GSa67lhhipGwkJeR9uy6Qcpb4td8Lb60rsv09UOvxPP3h6flz2r168fj8m5Voa5VqTxMZ0BovKrXoBU6ms7BzE2jzNxrwLUxdYPgtMbBOTW6xgbV2hMoRE1OX4nbUy9yypmptRjK-7eFXeisAjuitlv7D2o7orYn1EPD4r-GHYfe8fFT2eUpS8OLh0BsMwaKSD7wgMX6FD7R8hdHIKm4
CitedBy_id crossref_primary_10_1016_j_radmeas_2025_107418
crossref_primary_10_1007_s10653_024_02070_8
crossref_primary_10_1016_j_jallcom_2025_178570
crossref_primary_10_1016_j_radphyschem_2024_111696
crossref_primary_10_1016_j_mssp_2024_109132
Cites_doi 10.1016/j.jcp.2021.110117
10.1016/j.jcp.2022.111722
10.1016/j.radphyschem.2019.108671
10.1016/j.apradiso.2019.108843
10.1088/0022-3727/31/19/037
10.1016/j.radphyschem.2023.110968
10.1016/j.radmeas.2020.106342
10.1016/j.radmeas.2020.106427
10.1016/j.radmeas.2007.01.003
10.1016/j.jcp.2022.111770
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.radphyschem.2023.111259
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
ExternalDocumentID 10_1016_j_radphyschem_2023_111259
S0969806X23005054
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
53G
5VS
7-5
71M
8P~
8WZ
9JN
A6W
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ACDAQ
ACFVG
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
WUQ
XPP
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c321t-d0450ec8d12b031cae4708786187d30cb8826c0a33c0454832c6c1bde01cc3ea3
IEDL.DBID .~1
ISSN 0969-806X
IngestDate Tue Jul 01 00:22:28 EDT 2025
Thu Apr 24 23:07:26 EDT 2025
Tue Dec 03 03:44:40 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Neural network
Artificial intelligence
Glow curve
Figure of merit
Thermoluminescence
TLD-100
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-d0450ec8d12b031cae4708786187d30cb8826c0a33c0454832c6c1bde01cc3ea3
ORCID 0000-0001-5532-4043
ParticipantIDs crossref_citationtrail_10_1016_j_radphyschem_2023_111259
crossref_primary_10_1016_j_radphyschem_2023_111259
elsevier_sciencedirect_doi_10_1016_j_radphyschem_2023_111259
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2023
2023-12-00
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationTitle Radiation physics and chemistry (Oxford, England : 1993)
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yossian (bib16) 1995; 60
Umuroglu, Akhauri, Fraser, Blott (bib15) 2020
Kitis, Gómez-Ros, Tuyn (bib10) 1998; 31
Kitis, Pagonis (bib9) 2023; 209
Zhao, Spanier (bib17) 2021; 431
McKeever (bib12) 1985
Benavente, Gómez-Ros, Romero (bib3) 2020; 170
Benavente, Gómez-Ros, Romero (bib1) 2019; 153
Benavente, Gómez-Ros, Correcher (bib2) 2020; 137
McClenny, Braga-Neto (bib11) 2023; 474
Muñiz, Correcher, Delgado (bib13) 1999; 85
Exposito, Gai, Neely (bib6) 2023; 474
Bos (bib4) 2007; 41
Garson (bib7) 1991
Sorger, Stadtmann, Sprengel (bib14) 2020; 135
Chen, McKeever (bib5) 1997
Chen (10.1016/j.radphyschem.2023.111259_bib5) 1997
McKeever (10.1016/j.radphyschem.2023.111259_bib12) 1985
Umuroglu (10.1016/j.radphyschem.2023.111259_bib15) 2020
Benavente (10.1016/j.radphyschem.2023.111259_bib3) 2020; 170
Kitis (10.1016/j.radphyschem.2023.111259_bib9) 2023; 209
Kitis (10.1016/j.radphyschem.2023.111259_bib10) 1998; 31
Zhao (10.1016/j.radphyschem.2023.111259_bib17) 2021; 431
Muñiz (10.1016/j.radphyschem.2023.111259_bib13) 1999; 85
Yossian (10.1016/j.radphyschem.2023.111259_bib16) 1995; 60
Benavente (10.1016/j.radphyschem.2023.111259_bib2) 2020; 137
Garson (10.1016/j.radphyschem.2023.111259_bib7) 1991
Benavente (10.1016/j.radphyschem.2023.111259_bib1) 2019; 153
McClenny (10.1016/j.radphyschem.2023.111259_bib11) 2023; 474
Sorger (10.1016/j.radphyschem.2023.111259_bib14) 2020; 135
Bos (10.1016/j.radphyschem.2023.111259_bib4) 2007; 41
Exposito (10.1016/j.radphyschem.2023.111259_bib6) 2023; 474
References_xml – volume: 41
  start-page: 45
  year: 2007
  end-page: 56
  ident: bib4
  article-title: ’Theory of thermoluminescence’
  publication-title: Radiat. Meas.
– volume: 474
  year: 2023
  ident: bib11
  article-title: ’Self-adaptive physicsinformed neural networks'
  publication-title: J. Comput. Phys.
– volume: 85
  start-page: 63
  year: 1999
  end-page: 66
  ident: bib13
  article-title: ’PTTL dose re-estimation applied to quality control in TLD-100 based personal dosimetry’
  publication-title: Radiat. Protect. Dosim.
– volume: 431
  year: 2021
  ident: bib17
  article-title: ’Hybrid Monte Carlo estimators for multilayer transport problems'
  publication-title: J. Comput. Phys.
– volume: 153
  year: 2019
  ident: bib1
  article-title: ’Thermoluminescence glow curve deconvolution for discrete and continuous trap distributions'
  publication-title: Appl. Radiat. Isot.
– year: 1985
  ident: bib12
  article-title: ’Thermoluminescence of Solids'
– start-page: 291
  year: 2020
  end-page: 297
  ident: bib15
  article-title: ’LogicNets: Co-designed neural networks and circuits for extreme-throughput applications'
  publication-title: International Conference on Field Programmable Logic and Applications
– volume: 60
  year: 1995
  ident: bib16
  article-title: ’Computerised glow curve deconvolution: application to thermoluminescence °dosimetry’
  publication-title: Radiat. Protect. Dosim.
– volume: 474
  year: 2023
  ident: bib6
  article-title: ’On wave-packets and discontinuities in triple-deck solutions of supersonic separated flows at a compression corner’
  publication-title: J. Comput. Phys.
– year: 1997
  ident: bib5
  article-title: ’Theory of Thermoluminescence and Related Phenomena’
– volume: 31
  start-page: 2636
  year: 1998
  end-page: 2641
  ident: bib10
  article-title: ’Thermoluminescence glow-curve deconvolution functions for first, second and general orders of kinetics'
  publication-title: J. Phys. Appl. Phys.
– volume: 170
  year: 2020
  ident: bib3
  article-title: Numerical analysis of the irradiation and heating processes of thermoluminescent materials
  publication-title: Radiat. Phys. Chem.
– year: 1991
  ident: bib7
  article-title: ’Interpreting neural network connection weights'
  publication-title: Artif. Intell.
– volume: 137
  year: 2020
  ident: bib2
  article-title: Characterization of the thermoluminescence glow curve of Li2B4O7: Cu, Ag
  publication-title: Radiat. Meas.
– volume: 135
  year: 2020
  ident: bib14
  article-title: ’Fading study and readout optimization for routinely use of LiF:Mg,Ti thermoluminescent detectors for personal dosimetry’
  publication-title: Radiat. Meas.
– volume: 209
  year: 2023
  ident: bib9
  article-title: ’Simulation of thermoluminescence signals at very low dose rates and low doses: implications for dosimetric applications'
  publication-title: Radiat. Phys. Chem.
– year: 1991
  ident: 10.1016/j.radphyschem.2023.111259_bib7
  article-title: ’Interpreting neural network connection weights'
  publication-title: Artif. Intell.
– volume: 431
  year: 2021
  ident: 10.1016/j.radphyschem.2023.111259_bib17
  article-title: ’Hybrid Monte Carlo estimators for multilayer transport problems'
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110117
– volume: 474
  year: 2023
  ident: 10.1016/j.radphyschem.2023.111259_bib11
  article-title: ’Self-adaptive physicsinformed neural networks'
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2022.111722
– volume: 170
  year: 2020
  ident: 10.1016/j.radphyschem.2023.111259_bib3
  article-title: Numerical analysis of the irradiation and heating processes of thermoluminescent materials
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2019.108671
– volume: 85
  start-page: 63
  issue: 1–4
  year: 1999
  ident: 10.1016/j.radphyschem.2023.111259_bib13
  article-title: ’PTTL dose re-estimation applied to quality control in TLD-100 based personal dosimetry’
  publication-title: Radiat. Protect. Dosim.
– volume: 153
  year: 2019
  ident: 10.1016/j.radphyschem.2023.111259_bib1
  article-title: ’Thermoluminescence glow curve deconvolution for discrete and continuous trap distributions'
  publication-title: Appl. Radiat. Isot.
  doi: 10.1016/j.apradiso.2019.108843
– volume: 31
  start-page: 2636
  year: 1998
  ident: 10.1016/j.radphyschem.2023.111259_bib10
  article-title: ’Thermoluminescence glow-curve deconvolution functions for first, second and general orders of kinetics'
  publication-title: J. Phys. Appl. Phys.
  doi: 10.1088/0022-3727/31/19/037
– year: 1997
  ident: 10.1016/j.radphyschem.2023.111259_bib5
– volume: 209
  year: 2023
  ident: 10.1016/j.radphyschem.2023.111259_bib9
  article-title: ’Simulation of thermoluminescence signals at very low dose rates and low doses: implications for dosimetric applications'
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2023.110968
– volume: 135
  year: 2020
  ident: 10.1016/j.radphyschem.2023.111259_bib14
  article-title: ’Fading study and readout optimization for routinely use of LiF:Mg,Ti thermoluminescent detectors for personal dosimetry’
  publication-title: Radiat. Meas.
  doi: 10.1016/j.radmeas.2020.106342
– volume: 137
  year: 2020
  ident: 10.1016/j.radphyschem.2023.111259_bib2
  article-title: Characterization of the thermoluminescence glow curve of Li2B4O7: Cu, Ag
  publication-title: Radiat. Meas.
  doi: 10.1016/j.radmeas.2020.106427
– volume: 41
  start-page: 45
  year: 2007
  ident: 10.1016/j.radphyschem.2023.111259_bib4
  article-title: ’Theory of thermoluminescence’
  publication-title: Radiat. Meas.
  doi: 10.1016/j.radmeas.2007.01.003
– year: 1985
  ident: 10.1016/j.radphyschem.2023.111259_bib12
– start-page: 291
  year: 2020
  ident: 10.1016/j.radphyschem.2023.111259_bib15
  article-title: ’LogicNets: Co-designed neural networks and circuits for extreme-throughput applications'
– volume: 474
  year: 2023
  ident: 10.1016/j.radphyschem.2023.111259_bib6
  article-title: ’On wave-packets and discontinuities in triple-deck solutions of supersonic separated flows at a compression corner’
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2022.111770
– volume: 60
  year: 1995
  ident: 10.1016/j.radphyschem.2023.111259_bib16
  article-title: ’Computerised glow curve deconvolution: application to thermoluminescence °dosimetry’
  publication-title: Radiat. Protect. Dosim.
SSID ssj0007853
Score 2.4124427
Snippet In this study, a realistic model was employed to research the LiF:Mg:Ti behavior (commercially known as TLD-100), a widely employed as thermoluminescent (TL)...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111259
SubjectTerms Artificial intelligence
Figure of merit
Glow curve
Neural network
Thermoluminescence
TLD-100
Title Correlation between figure of merit function and deviation in the assessment of kinetic parameters in realistic TLD-100 behavior using fully-connected neural networks
URI https://dx.doi.org/10.1016/j.radphyschem.2023.111259
Volume 213
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hEI8LojxUKEVG6tVdJzaOV-oFLUVLoVwK0t6iZOxF29KAdpcDF34Ov5OZOOEhIYHEMdGMnHicmU_O528Avg33EK1BlITth9L4DGVZKi-NSwJV-zQNis87_z61_XPza7A3mIFeexaGaZVN7o85vc7WzZ1OM5ud69Go84fAd9cpO0h13Y6NNUGNyXiVf797onlkLipRkrFk6wXYfeJ4jQvPGwg0PXwoPdWcQFKWLX2tRj2rO4crsNwARrEfn-kTzIRqFRZ7bZ-2VZivSZw4WYP7HrfaiOQ20RCwxHB0cTMO4moo-N_MVHAhqw2KygtPQ0bzUSUICoriUaiTPf4RBKVhBeuD_2fezITtCGZe1vLO4uzkgBKsEu1Zf8Es-gvBW_q3EplCgwRoBWtm0itUkXE-WYfzw59nvb5s-jBI1GkylZ5gnwrofJKWlAOwCCZTLnM2cZnXCktC6RZVoTWyoB_lCLSYlD6oBFGHQm_AbHVVhc8grCtK26XPnmFF0MZ1rXHKZwSbGDqpTXDtzOfYiJRzr4zLvGWj_c2fBS3noOUxaJuQPrpeR6WO9zj9aMObv1h2OVWUt923Pub-BZb4KrJjtmF2Or4JXwnjTMudehHvwNz-0XH_9AHE-QAB
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED5B0YCXCdgmfmzgSXu16sSp40q8oG6ojNKXFalvUXJ2qwILqC0P_EP7O3cXJx2TJg2J18QnJz7n7pPz3XcAXyYdRJMgSsL2E5m4FGVRKCcTG3nK9nHsFdc7Xw1N_zr5Pu6M16DX1MIwrbKO_SGmV9G6vtKuV7P9MJu1fxD47lplxrGu2rEl67DB6lSdFmycXVz2h6uAnNogRknjJRtswuc_NK957vgMgVaI69JjzTEkZuXSf6WpZ6nnfAfe1phRnIXH2oU1X-7BVq9p1bYHbyoeJy7ewa8ed9sI_DZRc7DEZDZ9nHtxPxH8e2YpOJdVA_LSCUdThuGzUhAaFPlKq5MtbgmF0rSCJcJ_MnVmweMIad5VCs9iNPhKMVaJptxfMJF-KvhU_0kis2iQMK1g2Ux6hTKQzhfv4fr826jXl3UrBok6jpbSEfJTHq2L4oLCAOY-SZVNrYls6rTCgoC6QZVrjazpR2ECDUaF8ypC1D7XH6BV3pd-H4SxeWG69OUzsvA6sV2TWOVSQk6MntQB2GblM6x1yrldxl3WENJusmdOy9hpWXDaAcQr04cg1vESo9PGvdlfOy-jpPJ_88PXmZ_AVn90NcgGF8PLI9jmO4Es8xFay_mj_0SQZ1kc11v6N3yCArI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Correlation+between+figure+of+merit+function+and+deviation+in+the+assessment+of+kinetic+parameters+in+realistic+TLD-100+behavior+using+fully-connected+neural+networks&rft.jtitle=Radiation+physics+and+chemistry+%28Oxford%2C+England+%3A+1993%29&rft.au=Romero-Salido%2C+A.&rft.au=Olmedo%2C+F.M.&rft.au=Berenguer-Antequera%2C+J.&rft.au=Correcher%2C+V.&rft.date=2023-12-01&rft.issn=0969-806X&rft.volume=213&rft.spage=111259&rft_id=info:doi/10.1016%2Fj.radphyschem.2023.111259&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_radphyschem_2023_111259
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0969-806X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0969-806X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0969-806X&client=summon