Correlation between figure of merit function and deviation in the assessment of kinetic parameters in realistic TLD-100 behavior using fully-connected neural networks
In this study, a realistic model was employed to research the LiF:Mg:Ti behavior (commercially known as TLD-100), a widely employed as thermoluminescent (TL) material in dosimetry services. The research was focused on exploring the association between the Figure of Merit (FOM) function and deviation...
Saved in:
Published in | Radiation physics and chemistry (Oxford, England : 1993) Vol. 213; p. 111259 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0969-806X |
DOI | 10.1016/j.radphyschem.2023.111259 |
Cover
Loading…
Abstract | In this study, a realistic model was employed to research the LiF:Mg:Ti behavior (commercially known as TLD-100), a widely employed as thermoluminescent (TL) material in dosimetry services. The research was focused on exploring the association between the Figure of Merit (FOM) function and deviations from the true kinetic parameter values, that were obtained through fitting experimental measures. FOM function is the most used magnitude to measure the quality of a fit achieved between a mathematical model and experimental data. Indeed, FOM function is particularly relevant when the TL glow curve deconvolution method is implemented to obtain the kinetic parameters: Activation Energy E (eV), Frequency Factor s (s−1), value of kinetic order b, Temperature at which the intensity maximum TMax(oC), Intensity Maximum IMax (a.u.) and Distribution Width σ (eV) of every peak. FOM function is subject to degeneracy under certain conditions, this means that different sets of kinetic parameters can lead to similar FOM values. Furthermore, as the obtained kinetic parameters are deemed acceptable when the FOM value is below 5%, then the physical degeneracy is greater than the mathematical ones. This contribution provides a rigorous analysis of how the FOM values can be impacted by deviations between experimental and estimated data of kinetic parameters from the analysis process. This studio was carried out using a mathematical method based on Artificial Intelligence with a high capability to manage a large volume of data. Another advantage of this method is that the analysis to be extended to a wide range of experimental data.
•Study of TLD-100 behavior as a thermoluminescent material in dosimetry services.•Relationship between FOM function and deviations from kinetic parameters.•FOM can be degenerate: different kinetic parameters can lead to similar FOM values.•Using AI-based math methods for extensive analysis of large experimental data. |
---|---|
AbstractList | In this study, a realistic model was employed to research the LiF:Mg:Ti behavior (commercially known as TLD-100), a widely employed as thermoluminescent (TL) material in dosimetry services. The research was focused on exploring the association between the Figure of Merit (FOM) function and deviations from the true kinetic parameter values, that were obtained through fitting experimental measures. FOM function is the most used magnitude to measure the quality of a fit achieved between a mathematical model and experimental data. Indeed, FOM function is particularly relevant when the TL glow curve deconvolution method is implemented to obtain the kinetic parameters: Activation Energy E (eV), Frequency Factor s (s−1), value of kinetic order b, Temperature at which the intensity maximum TMax(oC), Intensity Maximum IMax (a.u.) and Distribution Width σ (eV) of every peak. FOM function is subject to degeneracy under certain conditions, this means that different sets of kinetic parameters can lead to similar FOM values. Furthermore, as the obtained kinetic parameters are deemed acceptable when the FOM value is below 5%, then the physical degeneracy is greater than the mathematical ones. This contribution provides a rigorous analysis of how the FOM values can be impacted by deviations between experimental and estimated data of kinetic parameters from the analysis process. This studio was carried out using a mathematical method based on Artificial Intelligence with a high capability to manage a large volume of data. Another advantage of this method is that the analysis to be extended to a wide range of experimental data.
•Study of TLD-100 behavior as a thermoluminescent material in dosimetry services.•Relationship between FOM function and deviations from kinetic parameters.•FOM can be degenerate: different kinetic parameters can lead to similar FOM values.•Using AI-based math methods for extensive analysis of large experimental data. |
ArticleNumber | 111259 |
Author | Benavente, J.F. Olmedo, F.M. Correcher, V. Romero-Salido, A. Berenguer-Antequera, J. |
Author_xml | – sequence: 1 givenname: A. surname: Romero-Salido fullname: Romero-Salido, A. organization: CIEMAT, Av. Complutense 40, 28040, Madrid, Spain – sequence: 2 givenname: F.M. surname: Olmedo fullname: Olmedo, F.M. organization: Córdoba University, Science Faculty, N-IV, km 396, 14014, Córdoba, Spain – sequence: 3 givenname: J. surname: Berenguer-Antequera fullname: Berenguer-Antequera, J. organization: Córdoba University, Science Faculty, N-IV, km 396, 14014, Córdoba, Spain – sequence: 4 givenname: V. surname: Correcher fullname: Correcher, V. organization: CIEMAT, Av. Complutense 40, 28040, Madrid, Spain – sequence: 5 givenname: J.F. orcidid: 0000-0001-5532-4043 surname: Benavente fullname: Benavente, J.F. email: jf.benavente@ciemat.es organization: CIEMAT, Av. Complutense 40, 28040, Madrid, Spain |
BookMark | eNqNkM1qGzEQx3VIIV99B-UB1h2t7LV8CsFJ24ChlwR6E_JoNpazK5mR7OAX6nN2N86h9JTTH4b_B_O7FGcxRRLiRsFEgWq-bSfs_G5zzLihflJDrSdKqXq2OBMXsGgWlYHm97m4zHkLAHMz0xfizzIxU-dKSFGuqbwRRdmGlz2TTK3siUOR7T7iu8FFLz0dwskeoiwbki5nyrmnWMbEa4hUAsqdY9dTIc6jj8l1IY_3p9V9pQCGrY07hMRyn0N8GSa67lhhipGwkJeR9uy6Qcpb4td8Lb60rsv09UOvxPP3h6flz2r168fj8m5Voa5VqTxMZ0BovKrXoBU6ms7BzE2jzNxrwLUxdYPgtMbBOTW6xgbV2hMoRE1OX4nbUy9yypmptRjK-7eFXeisAjuitlv7D2o7orYn1EPD4r-GHYfe8fFT2eUpS8OLh0BsMwaKSD7wgMX6FD7R8hdHIKm4 |
CitedBy_id | crossref_primary_10_1016_j_radmeas_2025_107418 crossref_primary_10_1007_s10653_024_02070_8 crossref_primary_10_1016_j_jallcom_2025_178570 crossref_primary_10_1016_j_radphyschem_2024_111696 crossref_primary_10_1016_j_mssp_2024_109132 |
Cites_doi | 10.1016/j.jcp.2021.110117 10.1016/j.jcp.2022.111722 10.1016/j.radphyschem.2019.108671 10.1016/j.apradiso.2019.108843 10.1088/0022-3727/31/19/037 10.1016/j.radphyschem.2023.110968 10.1016/j.radmeas.2020.106342 10.1016/j.radmeas.2020.106427 10.1016/j.radmeas.2007.01.003 10.1016/j.jcp.2022.111770 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.radphyschem.2023.111259 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
ExternalDocumentID | 10_1016_j_radphyschem_2023_111259 S0969806X23005054 |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 8WZ 9JN A6W AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ACDAQ ACFVG ACGFS ACIWK ACNCT ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSQ SSZ T5K WUQ XPP ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c321t-d0450ec8d12b031cae4708786187d30cb8826c0a33c0454832c6c1bde01cc3ea3 |
IEDL.DBID | .~1 |
ISSN | 0969-806X |
IngestDate | Tue Jul 01 00:22:28 EDT 2025 Thu Apr 24 23:07:26 EDT 2025 Tue Dec 03 03:44:40 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Neural network Artificial intelligence Glow curve Figure of merit Thermoluminescence TLD-100 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c321t-d0450ec8d12b031cae4708786187d30cb8826c0a33c0454832c6c1bde01cc3ea3 |
ORCID | 0000-0001-5532-4043 |
ParticipantIDs | crossref_citationtrail_10_1016_j_radphyschem_2023_111259 crossref_primary_10_1016_j_radphyschem_2023_111259 elsevier_sciencedirect_doi_10_1016_j_radphyschem_2023_111259 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2023 2023-12-00 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: December 2023 |
PublicationDecade | 2020 |
PublicationTitle | Radiation physics and chemistry (Oxford, England : 1993) |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yossian (bib16) 1995; 60 Umuroglu, Akhauri, Fraser, Blott (bib15) 2020 Kitis, Gómez-Ros, Tuyn (bib10) 1998; 31 Kitis, Pagonis (bib9) 2023; 209 Zhao, Spanier (bib17) 2021; 431 McKeever (bib12) 1985 Benavente, Gómez-Ros, Romero (bib3) 2020; 170 Benavente, Gómez-Ros, Romero (bib1) 2019; 153 Benavente, Gómez-Ros, Correcher (bib2) 2020; 137 McClenny, Braga-Neto (bib11) 2023; 474 Muñiz, Correcher, Delgado (bib13) 1999; 85 Exposito, Gai, Neely (bib6) 2023; 474 Bos (bib4) 2007; 41 Garson (bib7) 1991 Sorger, Stadtmann, Sprengel (bib14) 2020; 135 Chen, McKeever (bib5) 1997 Chen (10.1016/j.radphyschem.2023.111259_bib5) 1997 McKeever (10.1016/j.radphyschem.2023.111259_bib12) 1985 Umuroglu (10.1016/j.radphyschem.2023.111259_bib15) 2020 Benavente (10.1016/j.radphyschem.2023.111259_bib3) 2020; 170 Kitis (10.1016/j.radphyschem.2023.111259_bib9) 2023; 209 Kitis (10.1016/j.radphyschem.2023.111259_bib10) 1998; 31 Zhao (10.1016/j.radphyschem.2023.111259_bib17) 2021; 431 Muñiz (10.1016/j.radphyschem.2023.111259_bib13) 1999; 85 Yossian (10.1016/j.radphyschem.2023.111259_bib16) 1995; 60 Benavente (10.1016/j.radphyschem.2023.111259_bib2) 2020; 137 Garson (10.1016/j.radphyschem.2023.111259_bib7) 1991 Benavente (10.1016/j.radphyschem.2023.111259_bib1) 2019; 153 McClenny (10.1016/j.radphyschem.2023.111259_bib11) 2023; 474 Sorger (10.1016/j.radphyschem.2023.111259_bib14) 2020; 135 Bos (10.1016/j.radphyschem.2023.111259_bib4) 2007; 41 Exposito (10.1016/j.radphyschem.2023.111259_bib6) 2023; 474 |
References_xml | – volume: 41 start-page: 45 year: 2007 end-page: 56 ident: bib4 article-title: ’Theory of thermoluminescence’ publication-title: Radiat. Meas. – volume: 474 year: 2023 ident: bib11 article-title: ’Self-adaptive physicsinformed neural networks' publication-title: J. Comput. Phys. – volume: 85 start-page: 63 year: 1999 end-page: 66 ident: bib13 article-title: ’PTTL dose re-estimation applied to quality control in TLD-100 based personal dosimetry’ publication-title: Radiat. Protect. Dosim. – volume: 431 year: 2021 ident: bib17 article-title: ’Hybrid Monte Carlo estimators for multilayer transport problems' publication-title: J. Comput. Phys. – volume: 153 year: 2019 ident: bib1 article-title: ’Thermoluminescence glow curve deconvolution for discrete and continuous trap distributions' publication-title: Appl. Radiat. Isot. – year: 1985 ident: bib12 article-title: ’Thermoluminescence of Solids' – start-page: 291 year: 2020 end-page: 297 ident: bib15 article-title: ’LogicNets: Co-designed neural networks and circuits for extreme-throughput applications' publication-title: International Conference on Field Programmable Logic and Applications – volume: 60 year: 1995 ident: bib16 article-title: ’Computerised glow curve deconvolution: application to thermoluminescence °dosimetry’ publication-title: Radiat. Protect. Dosim. – volume: 474 year: 2023 ident: bib6 article-title: ’On wave-packets and discontinuities in triple-deck solutions of supersonic separated flows at a compression corner’ publication-title: J. Comput. Phys. – year: 1997 ident: bib5 article-title: ’Theory of Thermoluminescence and Related Phenomena’ – volume: 31 start-page: 2636 year: 1998 end-page: 2641 ident: bib10 article-title: ’Thermoluminescence glow-curve deconvolution functions for first, second and general orders of kinetics' publication-title: J. Phys. Appl. Phys. – volume: 170 year: 2020 ident: bib3 article-title: Numerical analysis of the irradiation and heating processes of thermoluminescent materials publication-title: Radiat. Phys. Chem. – year: 1991 ident: bib7 article-title: ’Interpreting neural network connection weights' publication-title: Artif. Intell. – volume: 137 year: 2020 ident: bib2 article-title: Characterization of the thermoluminescence glow curve of Li2B4O7: Cu, Ag publication-title: Radiat. Meas. – volume: 135 year: 2020 ident: bib14 article-title: ’Fading study and readout optimization for routinely use of LiF:Mg,Ti thermoluminescent detectors for personal dosimetry’ publication-title: Radiat. Meas. – volume: 209 year: 2023 ident: bib9 article-title: ’Simulation of thermoluminescence signals at very low dose rates and low doses: implications for dosimetric applications' publication-title: Radiat. Phys. Chem. – year: 1991 ident: 10.1016/j.radphyschem.2023.111259_bib7 article-title: ’Interpreting neural network connection weights' publication-title: Artif. Intell. – volume: 431 year: 2021 ident: 10.1016/j.radphyschem.2023.111259_bib17 article-title: ’Hybrid Monte Carlo estimators for multilayer transport problems' publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2021.110117 – volume: 474 year: 2023 ident: 10.1016/j.radphyschem.2023.111259_bib11 article-title: ’Self-adaptive physicsinformed neural networks' publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2022.111722 – volume: 170 year: 2020 ident: 10.1016/j.radphyschem.2023.111259_bib3 article-title: Numerical analysis of the irradiation and heating processes of thermoluminescent materials publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2019.108671 – volume: 85 start-page: 63 issue: 1–4 year: 1999 ident: 10.1016/j.radphyschem.2023.111259_bib13 article-title: ’PTTL dose re-estimation applied to quality control in TLD-100 based personal dosimetry’ publication-title: Radiat. Protect. Dosim. – volume: 153 year: 2019 ident: 10.1016/j.radphyschem.2023.111259_bib1 article-title: ’Thermoluminescence glow curve deconvolution for discrete and continuous trap distributions' publication-title: Appl. Radiat. Isot. doi: 10.1016/j.apradiso.2019.108843 – volume: 31 start-page: 2636 year: 1998 ident: 10.1016/j.radphyschem.2023.111259_bib10 article-title: ’Thermoluminescence glow-curve deconvolution functions for first, second and general orders of kinetics' publication-title: J. Phys. Appl. Phys. doi: 10.1088/0022-3727/31/19/037 – year: 1997 ident: 10.1016/j.radphyschem.2023.111259_bib5 – volume: 209 year: 2023 ident: 10.1016/j.radphyschem.2023.111259_bib9 article-title: ’Simulation of thermoluminescence signals at very low dose rates and low doses: implications for dosimetric applications' publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2023.110968 – volume: 135 year: 2020 ident: 10.1016/j.radphyschem.2023.111259_bib14 article-title: ’Fading study and readout optimization for routinely use of LiF:Mg,Ti thermoluminescent detectors for personal dosimetry’ publication-title: Radiat. Meas. doi: 10.1016/j.radmeas.2020.106342 – volume: 137 year: 2020 ident: 10.1016/j.radphyschem.2023.111259_bib2 article-title: Characterization of the thermoluminescence glow curve of Li2B4O7: Cu, Ag publication-title: Radiat. Meas. doi: 10.1016/j.radmeas.2020.106427 – volume: 41 start-page: 45 year: 2007 ident: 10.1016/j.radphyschem.2023.111259_bib4 article-title: ’Theory of thermoluminescence’ publication-title: Radiat. Meas. doi: 10.1016/j.radmeas.2007.01.003 – year: 1985 ident: 10.1016/j.radphyschem.2023.111259_bib12 – start-page: 291 year: 2020 ident: 10.1016/j.radphyschem.2023.111259_bib15 article-title: ’LogicNets: Co-designed neural networks and circuits for extreme-throughput applications' – volume: 474 year: 2023 ident: 10.1016/j.radphyschem.2023.111259_bib6 article-title: ’On wave-packets and discontinuities in triple-deck solutions of supersonic separated flows at a compression corner’ publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2022.111770 – volume: 60 year: 1995 ident: 10.1016/j.radphyschem.2023.111259_bib16 article-title: ’Computerised glow curve deconvolution: application to thermoluminescence °dosimetry’ publication-title: Radiat. Protect. Dosim. |
SSID | ssj0007853 |
Score | 2.4124427 |
Snippet | In this study, a realistic model was employed to research the LiF:Mg:Ti behavior (commercially known as TLD-100), a widely employed as thermoluminescent (TL)... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 111259 |
SubjectTerms | Artificial intelligence Figure of merit Glow curve Neural network Thermoluminescence TLD-100 |
Title | Correlation between figure of merit function and deviation in the assessment of kinetic parameters in realistic TLD-100 behavior using fully-connected neural networks |
URI | https://dx.doi.org/10.1016/j.radphyschem.2023.111259 |
Volume | 213 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hEI8LojxUKEVG6tVdJzaOV-oFLUVLoVwK0t6iZOxF29KAdpcDF34Ov5OZOOEhIYHEMdGMnHicmU_O528Avg33EK1BlITth9L4DGVZKi-NSwJV-zQNis87_z61_XPza7A3mIFeexaGaZVN7o85vc7WzZ1OM5ud69Go84fAd9cpO0h13Y6NNUGNyXiVf797onlkLipRkrFk6wXYfeJ4jQvPGwg0PXwoPdWcQFKWLX2tRj2rO4crsNwARrEfn-kTzIRqFRZ7bZ-2VZivSZw4WYP7HrfaiOQ20RCwxHB0cTMO4moo-N_MVHAhqw2KygtPQ0bzUSUICoriUaiTPf4RBKVhBeuD_2fezITtCGZe1vLO4uzkgBKsEu1Zf8Es-gvBW_q3EplCgwRoBWtm0itUkXE-WYfzw59nvb5s-jBI1GkylZ5gnwrofJKWlAOwCCZTLnM2cZnXCktC6RZVoTWyoB_lCLSYlD6oBFGHQm_AbHVVhc8grCtK26XPnmFF0MZ1rXHKZwSbGDqpTXDtzOfYiJRzr4zLvGWj_c2fBS3noOUxaJuQPrpeR6WO9zj9aMObv1h2OVWUt923Pub-BZb4KrJjtmF2Or4JXwnjTMudehHvwNz-0XH_9AHE-QAB |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED5B0YCXCdgmfmzgSXu16sSp40q8oG6ojNKXFalvUXJ2qwILqC0P_EP7O3cXJx2TJg2J18QnJz7n7pPz3XcAXyYdRJMgSsL2E5m4FGVRKCcTG3nK9nHsFdc7Xw1N_zr5Pu6M16DX1MIwrbKO_SGmV9G6vtKuV7P9MJu1fxD47lplxrGu2rEl67DB6lSdFmycXVz2h6uAnNogRknjJRtswuc_NK957vgMgVaI69JjzTEkZuXSf6WpZ6nnfAfe1phRnIXH2oU1X-7BVq9p1bYHbyoeJy7ewa8ed9sI_DZRc7DEZDZ9nHtxPxH8e2YpOJdVA_LSCUdThuGzUhAaFPlKq5MtbgmF0rSCJcJ_MnVmweMIad5VCs9iNPhKMVaJptxfMJF-KvhU_0kis2iQMK1g2Ux6hTKQzhfv4fr826jXl3UrBok6jpbSEfJTHq2L4oLCAOY-SZVNrYls6rTCgoC6QZVrjazpR2ECDUaF8ypC1D7XH6BV3pd-H4SxeWG69OUzsvA6sV2TWOVSQk6MntQB2GblM6x1yrldxl3WENJusmdOy9hpWXDaAcQr04cg1vESo9PGvdlfOy-jpPJ_88PXmZ_AVn90NcgGF8PLI9jmO4Es8xFay_mj_0SQZ1kc11v6N3yCArI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Correlation+between+figure+of+merit+function+and+deviation+in+the+assessment+of+kinetic+parameters+in+realistic+TLD-100+behavior+using+fully-connected+neural+networks&rft.jtitle=Radiation+physics+and+chemistry+%28Oxford%2C+England+%3A+1993%29&rft.au=Romero-Salido%2C+A.&rft.au=Olmedo%2C+F.M.&rft.au=Berenguer-Antequera%2C+J.&rft.au=Correcher%2C+V.&rft.date=2023-12-01&rft.issn=0969-806X&rft.volume=213&rft.spage=111259&rft_id=info:doi/10.1016%2Fj.radphyschem.2023.111259&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_radphyschem_2023_111259 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0969-806X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0969-806X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0969-806X&client=summon |