Myocyte enhancer factor 2 exerts a pivotal role in larval development in Henosepilachna vigintioctopunctata

[Display omitted] •RNAi of HvMef2 impairs larval-pupal-adult transition.•The HvtMef2 RNAi adults possess undeveloped muscles.•The HvMef2 depleted adults are malformed. Myocyte enhancer factor-2 (MEF2) plays essential roles in a variety of developmental processes. Prominent amongst multiple MEF2 func...

Full description

Saved in:
Bibliographic Details
Published inJournal of Asia-Pacific entomology Vol. 27; no. 3; pp. 102287 - 9
Main Authors Ali Anjum, Ahmad, Lin, Meng-Jiao, Jin, Lin, Li, Guo-Qing
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2024
한국응용곤충학회
Subjects
Online AccessGet full text
ISSN1226-8615
1876-7790
DOI10.1016/j.aspen.2024.102287

Cover

Loading…
Abstract [Display omitted] •RNAi of HvMef2 impairs larval-pupal-adult transition.•The HvtMef2 RNAi adults possess undeveloped muscles.•The HvMef2 depleted adults are malformed. Myocyte enhancer factor-2 (MEF2) plays essential roles in a variety of developmental processes. Prominent amongst multiple MEF2 functions is the regulation of muscle differentiation in Drosophila melanogaster. Nevertheless, the physiological importance of MEF2 has not been explored in non-Drosophilid insect species. Here we found HvMef2 was highly expressed at the first-instar larvae, 0-day-old second- and fourth-instar larvae, pupae and adults, especially in adult muscle in a Coleopteran potato defoliator Henosepilachna vigintioctopunctata. Injection of 200, 500 or 1000 ng of dsMef2 into the third instar larvae significantly reduced the expression of HvMef2 and impaired larval-pupal-adult transition, in a dose-dependent manner. About 68 %, 77 % and 87 % of the resulting larvae arrested as stunted prepupae, which were gradually blackened and eventually died. Around 32 %, 23 % and 13 % of the HvMef2 depleted beetles formed pupae. Among these HvMef2 depleted pupae, 22 %, 16 % and 7 % became shriveled pupae until death; roughly 10 %, 7 % and 6 % emerged as malformed adults. The growth of the adult thorax muscles was repressed. The length and width of dorsal–ventral muscles were significantly reduced. Knockdown of HvMef2 at the fourth larval instar stage caused similar defects. Likewise, introduction of dsMef2 at a dose of 200, 500 or 1000 ng into pupae led to 27 %, 20 % and 11 % emergence percentages respectively, with deformed elytra and hindwings. Therefore, MEF2 plays vital roles during metamorphosis, especially in myogenic regulation network in H. vigintioctopunctata.
AbstractList [Display omitted] •RNAi of HvMef2 impairs larval-pupal-adult transition.•The HvtMef2 RNAi adults possess undeveloped muscles.•The HvMef2 depleted adults are malformed. Myocyte enhancer factor-2 (MEF2) plays essential roles in a variety of developmental processes. Prominent amongst multiple MEF2 functions is the regulation of muscle differentiation in Drosophila melanogaster. Nevertheless, the physiological importance of MEF2 has not been explored in non-Drosophilid insect species. Here we found HvMef2 was highly expressed at the first-instar larvae, 0-day-old second- and fourth-instar larvae, pupae and adults, especially in adult muscle in a Coleopteran potato defoliator Henosepilachna vigintioctopunctata. Injection of 200, 500 or 1000 ng of dsMef2 into the third instar larvae significantly reduced the expression of HvMef2 and impaired larval-pupal-adult transition, in a dose-dependent manner. About 68 %, 77 % and 87 % of the resulting larvae arrested as stunted prepupae, which were gradually blackened and eventually died. Around 32 %, 23 % and 13 % of the HvMef2 depleted beetles formed pupae. Among these HvMef2 depleted pupae, 22 %, 16 % and 7 % became shriveled pupae until death; roughly 10 %, 7 % and 6 % emerged as malformed adults. The growth of the adult thorax muscles was repressed. The length and width of dorsal–ventral muscles were significantly reduced. Knockdown of HvMef2 at the fourth larval instar stage caused similar defects. Likewise, introduction of dsMef2 at a dose of 200, 500 or 1000 ng into pupae led to 27 %, 20 % and 11 % emergence percentages respectively, with deformed elytra and hindwings. Therefore, MEF2 plays vital roles during metamorphosis, especially in myogenic regulation network in H. vigintioctopunctata.
Myocyte enhancer factor-2 (MEF2) plays essential roles in a variety of developmental processes. Prominent amongst multiple MEF2 functions is the regulation of muscle differentiation in Drosophila melanogaster. Nevertheless, the physiological importance of MEF2 has not been explored in non-Drosophilid insect species. Here we found HvMef2 was highly expressed at the first-instar larvae, 0-day-old second- and fourth-instar larvae, pupae and adults, especially in adult muscle in a Coleopteran potato defoliator Henosepilachna vigintioctopunctata. Injection of 200, 500 or 1000 ng of dsMef2 into the third instar larvae significantly reduced the expression of HvMef2 and impaired larval-pupal-adult transition, in a dose-dependent manner. About 68 %, 77 % and 87 % of the resulting larvae arrested as stunted prepupae, which were gradually blackened and eventually died. Around 32 %, 23 % and 13 % of the HvMef2 depleted beetles formed pupae. Among these HvMef2 depleted pupae, 22 %, 16 % and 7 % became shriveled pupae until death; roughly 10 %, 7 % and 6 % emerged as malformed adults. The growth of the adult thorax muscles was repressed. The length and width of dorsal–ventral muscles were significantly reduced. Knockdown of HvMef2 at the fourth larval instar stage caused similar defects. Likewise, introduction of dsMef2 at a dose of 200, 500 or 1000 ng into pupae led to 27 %, 20 % and 11 % emergence percentages respectively, with deformed elytra and hindwings. Therefore, MEF2 plays vital roles during metamorphosis, especially in myogenic regulation network in H. vigintioctopunctata. KCI Citation Count: 0
Myocyte enhancer factor-2 (MEF2) plays essential roles in a variety of developmental processes. Prominent amongst multiple MEF2 functions is the regulation of muscle differentiation in Drosophila melanogaster. Nevertheless, the physiological importance of MEF2 has not been explored in non-Drosophilid insect species. Here we found HvMef2 was highly expressed at the first-instar larvae, 0-day-old second- and fourth-instar larvae, pupae and adults, especially in adult muscle in a Coleopteran potato defoliator Henosepilachna vigintioctopunctata. Injection of 200, 500 or 1000 ng of dsMef2 into the third instar larvae significantly reduced the expression of HvMef2 and impaired larval-pupal-adult transition, in a dose-dependent manner. About 68 %, 77 % and 87 % of the resulting larvae arrested as stunted prepupae, which were gradually blackened and eventually died. Around 32 %, 23 % and 13 % of the HvMef2 depleted beetles formed pupae. Among these HvMef2 depleted pupae, 22 %, 16 % and 7 % became shriveled pupae until death; roughly 10 %, 7 % and 6 % emerged as malformed adults. The growth of the adult thorax muscles was repressed. The length and width of dorsal–ventral muscles were significantly reduced. Knockdown of HvMef2 at the fourth larval instar stage caused similar defects. Likewise, introduction of dsMef2 at a dose of 200, 500 or 1000 ng into pupae led to 27 %, 20 % and 11 % emergence percentages respectively, with deformed elytra and hindwings. Therefore, MEF2 plays vital roles during metamorphosis, especially in myogenic regulation network in H. vigintioctopunctata.
ArticleNumber 102287
Author Li, Guo-Qing
Jin, Lin
Lin, Meng-Jiao
Ali Anjum, Ahmad
Author_xml – sequence: 1
  givenname: Ahmad
  surname: Ali Anjum
  fullname: Ali Anjum, Ahmad
  email: 2018202068@njau.edu.cn
– sequence: 2
  givenname: Meng-Jiao
  surname: Lin
  fullname: Lin, Meng-Jiao
  email: 2020102082@stu.njau.edu.cn
– sequence: 3
  givenname: Lin
  surname: Jin
  fullname: Jin, Lin
  email: jinlin@njau.edu.cn
– sequence: 4
  givenname: Guo-Qing
  orcidid: 0000-0002-7449-8433
  surname: Li
  fullname: Li, Guo-Qing
  email: ligq@njau.edu.cn
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003118367$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9UU1r3DAUFCGFJJv8glx0DAFvLdmW5UMOIaTdhZRCSM9Cfn7e1a5XciWt6f77auOee3ofzAzMzA25tM4iIfcsX7Kcia-7pQ4j2iXPeZk-nMv6glwzWYusrpv8Mu2ci0wKVl2RmxB2eS4Yl-ya7H-cHJwiUrRbbQE97TVE5ymn-Ad9DFTT0Uwu6oF6NyA1lg7aT-nscMLBjQe08fxdoXUBRzNo2FpNJ7MxNhqXxMajhaijviVfej0EvPs3F-TXt9ePl1X29vP7-uX5LYOCs5iBaBpsyxJ63VZVUwiJjagqqNs2mZDQ9boEqDtel03X8bbNZS8KBkI2DCRnxYI8zrrW92oPRjltPufGqb1Xz-8fa8VSADWr8gR-mMGjd7-PGKI6mAA4DNqiOwZVsKpIGbJSJmgxQ8G7EDz2avTmoP0pqalzD2qnPntQ5x7U3ENiPc0sTJYng14FMJii7oxHiKpz5r_8v599lRM
Cites_doi 10.1074/jbc.M707623200
10.1016/j.yexcr.2021.112950
10.1016/S0925-4773(01)00586-X
10.1016/j.pestbp.2021.104934
10.1016/j.ydbio.2005.09.007
10.1073/pnas.93.10.4623
10.1038/sj.cdd.4401222
10.1016/j.semcdb.2017.11.017
10.1126/science.7839146
10.1126/science.1122513
10.1016/j.jinsphys.2022.104457
10.1002/ps.6643
10.1073/pnas.1232352100
10.1002/arch.22063
10.1006/dbio.2000.9676
10.1016/S0003-9861(02)00028-0
10.1371/journal.pone.0271554
10.1101/gad.5.12a.2327
10.1242/dev.077875
10.3389/fphys.2018.01614
10.1126/science.276.5317.1404
10.1016/j.ydbio.2011.09.031
10.1091/mbc.e03-09-0663
10.1038/s41419-023-05665-8
10.1101/gad.9.6.730
10.1046/j.1432-0436.2002.700806.x
10.1016/j.devcel.2006.04.009
10.1016/j.mod.2008.09.002
10.1016/S0896-6273(03)00191-0
10.1002/ps.6948
10.1016/j.semcdb.2017.11.020
10.1371/journal.pone.0144615
10.1074/jbc.C300487200
10.1146/annurev.cellbio.14.1.167
10.1016/S0960-9822(00)80027-5
10.1006/dbio.1995.1269
10.1006/dbio.1999.9307
10.3389/fphys.2022.829675
10.1080/01621459.1958.10501452
10.1080/15384101.2015.1026519
10.1242/dev.01249
10.1242/dev.007088
10.1016/j.ydbio.2015.02.026
10.1128/MCB.01461-14
10.1242/dev.125.22.4565
10.1080/10985549.2023.2198167
10.1126/science.1122511
10.1016/j.semcdb.2020.02.009
10.1126/science.286.5440.790
10.1242/dev.008367
10.1074/jbc.M206653200
10.1016/S0955-0674(99)00036-8
10.1007/s10974-005-9002-0
10.1016/j.mod.2009.03.003
10.1074/jbc.M009302200
10.1127/entomologia/2023/1644
10.1074/jbc.270.40.23246
ContentType Journal Article
Copyright 2024 Korean Society of Applied Entomology
Copyright_xml – notice: 2024 Korean Society of Applied Entomology
DBID AAYXX
CITATION
7S9
L.6
ACYCR
DOI 10.1016/j.aspen.2024.102287
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Korean Citation Index
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 1876-7790
EndPage 9
ExternalDocumentID oai_kci_go_kr_ARTI_10617150
10_1016_j_aspen_2024_102287
S122686152400092X
GroupedDBID --K
--M
.UV
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9ZL
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABGRD
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
J1W
KOM
KVFHK
M41
MO0
MZR
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
SDF
SES
SPCBC
SSA
SSZ
T5K
ZZE
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ACYCR
ID FETCH-LOGICAL-c321t-c699eb44cfab559368e9655c7bb2268cdfa4cc7d2749dd2bb08f631c6891c8213
IEDL.DBID .~1
ISSN 1226-8615
IngestDate Wed Sep 25 09:03:16 EDT 2024
Fri Jul 11 05:40:56 EDT 2025
Tue Jul 01 01:23:29 EDT 2025
Sat Aug 31 16:00:50 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Myocyte enhancer factor-2
Wing
Regulation
Metamorphosis
Myogenesis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-c699eb44cfab559368e9655c7bb2268cdfa4cc7d2749dd2bb08f631c6891c8213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7449-8433
PQID 3153779148
PQPubID 24069
PageCount 9
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10617150
proquest_miscellaneous_3153779148
crossref_primary_10_1016_j_aspen_2024_102287
elsevier_sciencedirect_doi_10_1016_j_aspen_2024_102287
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
20240901
2024-09
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationTitle Journal of Asia-Pacific entomology
PublicationYear 2024
Publisher Elsevier B.V
한국응용곤충학회
Publisher_xml – name: Elsevier B.V
– name: 한국응용곤충학회
References Ze, Xu, Wu, Jin, Anjum, Li (b0290) 2023; 144
Lu, Chen, Guo, Ye, Qiu, Wu, Yang, Pan (b0185) 2018; 9
Vishal, Barajas Alonso, DeAguero, Waters, Chechenova, Cripps (b0265) 2023; 43
Di Giorgio, Gagliostro, Clocchiatti, Brancolini (b0070) 2015; 35
Kaplan, Meier (b0135) 1958; 53
Black, Olson (b0035) 1998; 14
Badodi, Baruffaldi, Ganassi, Battini, Molinari (b0025) 2015; 14
Chechenova, Maes, Cripps (b0065) 2015; 10
Taylor, Hughes (b0260) 2017; 72
Ze, Jin, Li (b0275) 2022; 13
Bu, Cripps (b0055) 2022; 17
Ze, Jin, Li (b0285) 2023; 43
Kolodziejczyk, Wang, Balazsi, DeRepentigny, Kothary, Megeney (b0145) 1999; 9
Naya, Olson (b0200) 1999; 11
Brunetti, Fremin, Cripps (b0045) 2015; 401
Marín, Rodríguez, Ferrús (b0190) 2004; 15
Youn, Sun, Prywes, Liu (b0270) 1999; 286
Lovato, Benjamin, Cripps (b0180) 2005; 288
Gunage, Dhanyasi, Reichert, VijayRaghavan (b0105) 2017; 72
Kelly, Meadows, Cripps (b0140) 2002; 110
Bi, Drake, Schwarz (b0030) 1999; 211
Jiang, Mu, Jin, Anjum, Li (b0120) 2021; 178
Bour, O'Brien, Lockwood, Goldstein, Bodmer, Taghert, Abmayr, Nguyen (b0040) 1995; 9
Anjum, Lin, Jin, Li (b0010) 2024; 115
Arredondo, Ferreres, Maroto, Cripps, Marco, Bernstein, Cervera (b0020) 2001; 276
Chapman (b0060) 1998
Ranganayakulu, Zhao, Dokidis, Molkentin, Olson, Schulz (b0230) 1995; 171
Bryantsev, Baker, Lovato, Jaramillo, Cripps (b0050) 2012; 361
Shalizi, Gaudilliere, Yuan, Stegmuller, Shirogane, Ge, Tan, Schulman, Harper, Bonni (b0245) 2006; 311
Soler, Taylor (b0255) 2009; 126
Nguyen, Wang, Schulz (b0205) 2002; 70
Soler, Han, Taylor (b0250) 2012; 139
Liu, Shen, Randall, Schneider (b0175) 2005; 26
Arakane, Li, Muthukrishnan, Beeman, Kramer, Park (b0015) 2008; 125
Lin, Lu, Yanagisawa, Webb, Lyons, Richardson, Olson (b0160) 1998; 125
Lin, Nguyen, Dybala, Storti (b0165) 1996; 93
Rivlin, Schneiderman, Booker (b0235) 2000; 222
Flavell, Cowan, Kim, Greer, Lin, Paradis, Griffith, Hu, Chen, Greenberg (b0080) 2006; 311
Gong, Tang, Wiedmann, Wang, Peng, Zheng, Blair, Marshall, Mao (b0090) 2003; 38
Gossett, Kelvin, Sternberg, Olson (b0095) 1989; 9
Lin, Schwarz, Bucana, Olson (b0170) 1997; 276
Potthoff, Olson (b0220) 2007; 134
Gaudilliere, Shi, Bonni (b0085) 2002; 277
Pan, Ye, Cheng, Liu (b0210) 2004; 279
Moustafa, Hashemi, Brar, Grigull, Ng, Williams, Schmitt-Ulms, McDermott (b0195) 2023; 14
Zhao, Liu, Bao, Kato, Han, Eaton (b0295) 2002; 400
Lilly, Zhao, Ranganayakulu, Paterson, Schulz, Olson (b0155) 1995; 267
Ramachandran, Yu, Li, Zhu, Gulick (b0225) 2008; 283
Jiang, Mu, Jin, Anjum, Li (b0125) 2022; 78
Dutta, Anant, Ruiz-Gomez, Bate, VijayRaghavan (b0075) 2004; 131
Sandmann, Jensen, Jakobsen, Karzynski, Eichenlaub, Bork, Furlong (b0240) 2006; 10
Handschin, Rhee, Lin, Tarr, Spiegelman (b0110) 2003; 100
Junion, Jagla (b0130) 2022
Andres, Cervera, Mahdavi (b0005) 1995; 270
Laurichesse, Soler (b0150) 2020; 104
Gullaud, Delanoue, Silber (b0100) 2003; 10
Ze, Wang, Peng, Jin, Li (b0280) 2022; 78
Pollock, Treisman (b0215) 1991; 5
Hinits, Hughes (b0115) 2007; 134
Arredondo (10.1016/j.aspen.2024.102287_b0020) 2001; 276
Chapman (10.1016/j.aspen.2024.102287_b0060) 1998
Gong (10.1016/j.aspen.2024.102287_b0090) 2003; 38
Naya (10.1016/j.aspen.2024.102287_b0200) 1999; 11
Lin (10.1016/j.aspen.2024.102287_b0160) 1998; 125
Badodi (10.1016/j.aspen.2024.102287_b0025) 2015; 14
Gossett (10.1016/j.aspen.2024.102287_b0095) 1989; 9
Marín (10.1016/j.aspen.2024.102287_b0190) 2004; 15
Potthoff (10.1016/j.aspen.2024.102287_b0220) 2007; 134
Jiang (10.1016/j.aspen.2024.102287_b0120) 2021; 178
Lin (10.1016/j.aspen.2024.102287_b0170) 1997; 276
Kolodziejczyk (10.1016/j.aspen.2024.102287_b0145) 1999; 9
Lovato (10.1016/j.aspen.2024.102287_b0180) 2005; 288
Moustafa (10.1016/j.aspen.2024.102287_b0195) 2023; 14
Kaplan (10.1016/j.aspen.2024.102287_b0135) 1958; 53
Bi (10.1016/j.aspen.2024.102287_b0030) 1999; 211
Ze (10.1016/j.aspen.2024.102287_b0280) 2022; 78
Black (10.1016/j.aspen.2024.102287_b0035) 1998; 14
Arakane (10.1016/j.aspen.2024.102287_b0015) 2008; 125
Soler (10.1016/j.aspen.2024.102287_b0250) 2012; 139
Junion (10.1016/j.aspen.2024.102287_b0130) 2022
Gaudilliere (10.1016/j.aspen.2024.102287_b0085) 2002; 277
Lin (10.1016/j.aspen.2024.102287_b0165) 1996; 93
Ramachandran (10.1016/j.aspen.2024.102287_b0225) 2008; 283
Zhao (10.1016/j.aspen.2024.102287_b0295) 2002; 400
Dutta (10.1016/j.aspen.2024.102287_b0075) 2004; 131
Handschin (10.1016/j.aspen.2024.102287_b0110) 2003; 100
Pollock (10.1016/j.aspen.2024.102287_b0215) 1991; 5
Vishal (10.1016/j.aspen.2024.102287_b0265) 2023; 43
Ze (10.1016/j.aspen.2024.102287_b0285) 2023; 43
Bu (10.1016/j.aspen.2024.102287_b0055) 2022; 17
Youn (10.1016/j.aspen.2024.102287_b0270) 1999; 286
Lilly (10.1016/j.aspen.2024.102287_b0155) 1995; 267
Ze (10.1016/j.aspen.2024.102287_b0275) 2022; 13
Bryantsev (10.1016/j.aspen.2024.102287_b0050) 2012; 361
Flavell (10.1016/j.aspen.2024.102287_b0080) 2006; 311
Kelly (10.1016/j.aspen.2024.102287_b0140) 2002; 110
Soler (10.1016/j.aspen.2024.102287_b0255) 2009; 126
Lu (10.1016/j.aspen.2024.102287_b0185) 2018; 9
Shalizi (10.1016/j.aspen.2024.102287_b0245) 2006; 311
Liu (10.1016/j.aspen.2024.102287_b0175) 2005; 26
Hinits (10.1016/j.aspen.2024.102287_b0115) 2007; 134
Pan (10.1016/j.aspen.2024.102287_b0210) 2004; 279
Sandmann (10.1016/j.aspen.2024.102287_b0240) 2006; 10
Taylor (10.1016/j.aspen.2024.102287_b0260) 2017; 72
Andres (10.1016/j.aspen.2024.102287_b0005) 1995; 270
Brunetti (10.1016/j.aspen.2024.102287_b0045) 2015; 401
Chechenova (10.1016/j.aspen.2024.102287_b0065) 2015; 10
Rivlin (10.1016/j.aspen.2024.102287_b0235) 2000; 222
Jiang (10.1016/j.aspen.2024.102287_b0125) 2022; 78
Bour (10.1016/j.aspen.2024.102287_b0040) 1995; 9
Nguyen (10.1016/j.aspen.2024.102287_b0205) 2002; 70
Gullaud (10.1016/j.aspen.2024.102287_b0100) 2003; 10
Gunage (10.1016/j.aspen.2024.102287_b0105) 2017; 72
Anjum (10.1016/j.aspen.2024.102287_b0010) 2024; 115
Di Giorgio (10.1016/j.aspen.2024.102287_b0070) 2015; 35
Ze (10.1016/j.aspen.2024.102287_b0290) 2023; 144
Laurichesse (10.1016/j.aspen.2024.102287_b0150) 2020; 104
Ranganayakulu (10.1016/j.aspen.2024.102287_b0230) 1995; 171
References_xml – volume: 93
  start-page: 4623
  year: 1996
  end-page: 4628
  ident: b0165
  article-title: Myocyte-specific enhancer factor 2 acts cooperatively with a muscle activator region to regulate
  publication-title: PNAS
– volume: 134
  start-page: 2511
  year: 2007
  end-page: 2519
  ident: b0115
  article-title: Mef2s are required for think filament formation in nascent muscle fibers
  publication-title: Development
– volume: 11
  start-page: 683
  year: 1999
  end-page: 688
  ident: b0200
  article-title: MEF2: a transcriptional target for signaling path ways controlling skeletal muscle growth and differentiation
  publication-title: Curr. Opin. Cell Biol.
– volume: 9
  start-page: 730
  year: 1995
  end-page: 741
  ident: b0040
  article-title: MEF2, a transcription factor that is essential for myogenesis
  publication-title: Genes Dev.
– volume: 100
  start-page: 7111
  year: 2003
  end-page: 7116
  ident: b0110
  article-title: An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle
  publication-title: PNAS
– volume: 5
  start-page: 2327
  year: 1991
  end-page: 2341
  ident: b0215
  article-title: Human SRF-related proteins: DNAbinding properties and potential regulatory targets
  publication-title: Genes Dev.
– year: 2022
  ident: b0130
  article-title: Diversification of muscle types in
  publication-title: Exp. Cell Res.
– volume: 110
  start-page: 39
  year: 2002
  end-page: 50
  ident: b0140
  article-title: MEF2 is a direct regulator of Actin57B transcription in cardiac, skeletal, and visceral muscle lineages
  publication-title: Mech. Dev.
– volume: 9
  start-page: 1203
  year: 1999
  end-page: 1206
  ident: b0145
  article-title: MEF2 is upregulated during cardiac hypertrophy and is required for normal post-natal growth of the myocardium
  publication-title: Curr. Biol.
– volume: 104
  start-page: 39
  year: 2020
  end-page: 50
  ident: b0150
  article-title: Muscle development: A view from adult myogenesis in
  publication-title: Semin. Cell Dev. Biol.
– volume: 311
  start-page: 1012
  year: 2006
  end-page: 1017
  ident: b0245
  article-title: A calcium-regulated MEF2 sumoylation switch controls postsynaptic differentiation
  publication-title: Science
– volume: 38
  start-page: 33
  year: 2003
  end-page: 46
  ident: b0090
  article-title: Cdk5-mediated inhibition of the protective effects of transcription factor MEF2 in neurotoxicity-induced apoptosis
  publication-title: Neuron
– volume: 125
  start-page: 4565
  year: 1998
  end-page: 4574
  ident: b0160
  article-title: Requirement of the MADS-box transcription factor MEF2C for vascular development
  publication-title: Development
– volume: 134
  start-page: 4131
  year: 2007
  end-page: 4140
  ident: b0220
  article-title: MEF2: a central regulator of diverse developmental programs
  publication-title: Development
– volume: 78
  start-page: 3880
  year: 2022
  end-page: 3893
  ident: b0280
  article-title: Silencing tyrosine hydroxylase or dopadecarboxylase gene disrupts cuticle tanning during larva-pupa-adult transformation in
  publication-title: Pest Manag. Sci.
– volume: 279
  start-page: 14477
  year: 2004
  end-page: 14480
  ident: b0210
  article-title: Myocyte enhancer factor 2 mediates calcium-dependent transcription of the interleukin-2 gene in T lymphocytes: a calcium signaling module that is distinct from but collaborates with the nuclear factor of activated T cells (NFAT)
  publication-title: J. Biol. Chem.
– volume: 10
  start-page: 797
  year: 2006
  end-page: 807
  ident: b0240
  article-title: A temporal map of transcription factor activity: Mef2 directly regulates target genes at all stages of muscle development
  publication-title: Dev. Cell
– volume: 9
  start-page: 5022
  year: 1989
  end-page: 5033
  ident: b0095
  article-title: A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes
  publication-title: Mol. Cell Biol.
– volume: 26
  start-page: 13
  year: 2005
  end-page: 21
  ident: b0175
  article-title: Signaling pathways in activity-dependent fiber type plasticity in adult skeletal muscle
  publication-title: J. Muscle Res. Cell Motil.
– volume: 401
  start-page: 299
  year: 2015
  end-page: 309
  ident: b0045
  article-title: Identification of singles bar as a direct transcriptional target of
  publication-title: Dev. Biol.
– volume: 14
  start-page: 240
  year: 2023
  ident: b0195
  article-title: The MEF2A transcription factor interactome in cardiomyocytes
  publication-title: Cell Death Dis.
– volume: 14
  start-page: 1517
  year: 2015
  end-page: 1528
  ident: b0025
  article-title: Phosphorylationdependent degradation of MEF2C contributes to regulate G2/M transition
  publication-title: Cell Cycle
– volume: 43
  start-page: 117
  year: 2023
  end-page: 126
  ident: b0285
  article-title: The compatible effects of RNA interference targeting
  publication-title: Entomol Gen
– volume: 400
  start-page: 199
  year: 2002
  end-page: 207
  ident: b0295
  article-title: Vascular smooth muscle cell proliferation requires both p38 and BMK1 MAP kinases
  publication-title: Arch. Biochem. Biophys.
– volume: 78
  start-page: 3894
  year: 2022
  end-page: 3902
  ident: b0125
  article-title: Silencing uridine diphosphate N-acetylglucosamine pyrophosphorylase gene impairs larval development in
  publication-title: Pest Manag. Sci.
– volume: 171
  start-page: 169
  year: 1995
  end-page: 181
  ident: b0230
  article-title: A series of mutations in the D-MEF2 transcription factor reveal multiple functions in larval and adult myogenesis in
  publication-title: Dev. Biol.
– volume: 267
  start-page: 688
  year: 1995
  end-page: 693
  ident: b0155
  article-title: Requirement of MADS domain transcription factor D-MEF2 for muscle formation in
  publication-title: Science
– volume: 70
  start-page: 438
  year: 2002
  end-page: 446
  ident: b0205
  article-title: Mutations within the conserved MADS box of the D-MEF2 muscle differentiation factor result in a loss of DNA binding ability and lethality in
  publication-title: Differentiation
– volume: 13
  year: 2022
  ident: b0275
  article-title: Silencing of Adc and Ebony causes abnormal darkening of cuticle in
  publication-title: Front. Physiol.
– volume: 10
  start-page: e0144615
  year: 2015
  ident: b0065
  article-title: Expression of the troponin C at 41C gene in adult
  publication-title: PLoS One
– volume: 361
  start-page: 191
  year: 2012
  end-page: 207
  ident: b0050
  article-title: Differential requirements for Myocyte Enhancer Factor-2 during adult myogenesis in
  publication-title: Dev. Biol.
– volume: 35
  start-page: 1633
  year: 2015
  end-page: 1647
  ident: b0070
  article-title: The control operated by the cell cycle machinery on MEF2 stability contributes to the downregulation of CDKN1A and entry into S phase
  publication-title: Mol. Cell Biol.
– volume: 222
  start-page: 450
  year: 2000
  end-page: 459
  ident: b0235
  article-title: Imaginal pioneers prefigure the formation of adult thoracic muscles in
  publication-title: Dev. Biol.
– volume: 283
  start-page: 10318
  year: 2008
  end-page: 10329
  ident: b0225
  article-title: Myocyte enhancer factor 2A is transcriptionally autoregulated
  publication-title: J. Biol. Chem.
– volume: 131
  start-page: 3761
  year: 2004
  end-page: 3772
  ident: b0075
  article-title: Founder myoblasts and fibre number during adult myogenesis in
  publication-title: Development
– volume: 53
  start-page: 457
  year: 1958
  end-page: 481
  ident: b0135
  article-title: Nonparametric estimation from incomplete observations
  publication-title: J. Am. Stat. Assoc.
– volume: 276
  start-page: 1404
  year: 1997
  end-page: 1407
  ident: b0170
  article-title: Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C
  publication-title: Science
– volume: 72
  start-page: 56
  year: 2017
  end-page: 66
  ident: b0105
  article-title: adult muscle development and regeneration
  publication-title: Semin. Cell Dev. Biol.
– volume: 43
  start-page: 241
  year: 2023
  end-page: 253
  ident: b0265
  article-title: Phosphorylation of the myogenic factor myocyte enhancer factor-2 impacts myogenesis in vivo
  publication-title: Mol. Cell Biol.
– volume: 14
  start-page: 167
  year: 1998
  end-page: 196
  ident: b0035
  article-title: Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 139
  start-page: 1270
  year: 2012
  end-page: 1275
  ident: b0250
  article-title: The conserved transcription factor Mef2 has multiple roles in adult
  publication-title: Development
– volume: 125
  start-page: 984
  year: 2008
  end-page: 995
  ident: b0015
  article-title: Functional analysis of four neuropeptides, EH, ETH, CCAP and bursicon, and their receptors in adult ecdysis behavior of the red flour beetle,
  publication-title: Mech. Dev.
– volume: 178
  year: 2021
  ident: b0120
  article-title: RNAi for chitin synthase 1 rather than 2 causes growth delay and molting defect in
  publication-title: Pestic. Biochem. Physiol.
– volume: 9
  start-page: 1614
  year: 2018
  ident: b0185
  article-title: Selection and validation of reference genes for RT-qPCR analysis of the ladybird beetle
  publication-title: Front. Physiol.
– volume: 126
  start-page: 595
  year: 2009
  end-page: 603
  ident: b0255
  article-title: The him gene inhibits the development of
  publication-title: Mech. Dev.
– year: 1998
  ident: b0060
  article-title: The Insects: Structure and Function
– volume: 211
  start-page: 255
  year: 1999
  end-page: 267
  ident: b0030
  article-title: The transcription factor MEF2C-null mouse exhibits complex vascular malformations and reduced cardiac expression of angiopoietin 1 and VEGF
  publication-title: Dev. Biol.
– volume: 115
  start-page: e22063
  year: 2024
  ident: b0010
  article-title: Twist is required for muscle development of the adult legs in
  publication-title: Arch. Insect Biochem. Physiol.
– volume: 17
  start-page: e0271554
  year: 2022
  ident: b0055
  article-title: Promoter architecture of
  publication-title: PLoS One
– volume: 286
  start-page: 790
  year: 1999
  end-page: 793
  ident: b0270
  article-title: Apoptosis of T cells mediated by Ca2+-induced release of the transcription factor MEF2
  publication-title: Science
– volume: 10
  start-page: 641
  year: 2003
  end-page: 651
  ident: b0100
  article-title: A
  publication-title: Cell Death Differ.
– volume: 72
  start-page: 33
  year: 2017
  end-page: 44
  ident: b0260
  article-title: Mef2 and the skeletal muscle differentiation program
  publication-title: Semin. Cell Dev. Biol.
– volume: 276
  start-page: 8278
  year: 2001
  end-page: 8287
  ident: b0020
  article-title: Control of
  publication-title: J. Biol. Chem.
– volume: 15
  start-page: 1185
  year: 2004
  end-page: 1196
  ident: b0190
  article-title: Transcription of
  publication-title: Mol. Biol. Cell
– volume: 288
  start-page: 612
  year: 2005
  end-page: 621
  ident: b0180
  article-title: Transcription of Myocyte enhancer factor-2 in adult
  publication-title: Dev. Biol.
– volume: 270
  start-page: 23246
  year: 1995
  end-page: 23249
  ident: b0005
  article-title: Determination of the consensus binding site for MEF2 expressed in muscle and brain reveals tissue-specific sequence constraints
  publication-title: J. Biol. Chem.
– volume: 144
  year: 2023
  ident: b0290
  article-title: Disruption of tetrahydrobiopterin (BH4) biosynthesis pathway affects cuticle pigmentation in
  publication-title: J. Insect Physiol.
– volume: 277
  start-page: 46442
  year: 2002
  end-page: 46446
  ident: b0085
  article-title: RNA interference reveals a requirement for myocyte enhancer factor 2A in activity-dependent neuronal survival
  publication-title: J. Biol. Chem.
– volume: 311
  start-page: 1008
  year: 2006
  end-page: 1012
  ident: b0080
  article-title: Activity-dependent regulation of MEF2 transcription factors suppresses excitatory synapse number
  publication-title: Science
– volume: 283
  start-page: 10318
  year: 2008
  ident: 10.1016/j.aspen.2024.102287_b0225
  article-title: Myocyte enhancer factor 2A is transcriptionally autoregulated
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M707623200
– year: 2022
  ident: 10.1016/j.aspen.2024.102287_b0130
  article-title: Diversification of muscle types in Drosophila embryos
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2021.112950
– volume: 110
  start-page: 39
  year: 2002
  ident: 10.1016/j.aspen.2024.102287_b0140
  article-title: Drosophila MEF2 is a direct regulator of Actin57B transcription in cardiac, skeletal, and visceral muscle lineages
  publication-title: Mech. Dev.
  doi: 10.1016/S0925-4773(01)00586-X
– volume: 178
  year: 2021
  ident: 10.1016/j.aspen.2024.102287_b0120
  article-title: RNAi for chitin synthase 1 rather than 2 causes growth delay and molting defect in Henosepilachna vigintioctopunctata
  publication-title: Pestic. Biochem. Physiol.
  doi: 10.1016/j.pestbp.2021.104934
– volume: 288
  start-page: 612
  year: 2005
  ident: 10.1016/j.aspen.2024.102287_b0180
  article-title: Transcription of Myocyte enhancer factor-2 in adult Drosophila myoblasts is induced by the steroid hormone ecdysone
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2005.09.007
– volume: 93
  start-page: 4623
  year: 1996
  ident: 10.1016/j.aspen.2024.102287_b0165
  article-title: Myocyte-specific enhancer factor 2 acts cooperatively with a muscle activator region to regulate Drosophila tropomyosin gene muscle expression
  publication-title: PNAS
  doi: 10.1073/pnas.93.10.4623
– volume: 10
  start-page: 641
  year: 2003
  ident: 10.1016/j.aspen.2024.102287_b0100
  article-title: A Drosophila model to study the functions of TWIST orthologs in apoptosis and proliferation
  publication-title: Cell Death Differ.
  doi: 10.1038/sj.cdd.4401222
– volume: 72
  start-page: 56
  year: 2017
  ident: 10.1016/j.aspen.2024.102287_b0105
  article-title: Drosophila adult muscle development and regeneration
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2017.11.017
– volume: 267
  start-page: 688
  year: 1995
  ident: 10.1016/j.aspen.2024.102287_b0155
  article-title: Requirement of MADS domain transcription factor D-MEF2 for muscle formation in Drosophila
  publication-title: Science
  doi: 10.1126/science.7839146
– volume: 311
  start-page: 1012
  year: 2006
  ident: 10.1016/j.aspen.2024.102287_b0245
  article-title: A calcium-regulated MEF2 sumoylation switch controls postsynaptic differentiation
  publication-title: Science
  doi: 10.1126/science.1122513
– volume: 144
  year: 2023
  ident: 10.1016/j.aspen.2024.102287_b0290
  article-title: Disruption of tetrahydrobiopterin (BH4) biosynthesis pathway affects cuticle pigmentation in Henosepilachna vigintioctopunctata
  publication-title: J. Insect Physiol.
  doi: 10.1016/j.jinsphys.2022.104457
– volume: 78
  start-page: 3894
  year: 2022
  ident: 10.1016/j.aspen.2024.102287_b0125
  article-title: Silencing uridine diphosphate N-acetylglucosamine pyrophosphorylase gene impairs larval development in Henosepilachna vigintioctopunctata
  publication-title: Pest Manag. Sci.
  doi: 10.1002/ps.6643
– volume: 100
  start-page: 7111
  year: 2003
  ident: 10.1016/j.aspen.2024.102287_b0110
  article-title: An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle
  publication-title: PNAS
  doi: 10.1073/pnas.1232352100
– volume: 115
  start-page: e22063
  year: 2024
  ident: 10.1016/j.aspen.2024.102287_b0010
  article-title: Twist is required for muscle development of the adult legs in Henosepilachna vigintioctopunctata
  publication-title: Arch. Insect Biochem. Physiol.
  doi: 10.1002/arch.22063
– volume: 222
  start-page: 450
  year: 2000
  ident: 10.1016/j.aspen.2024.102287_b0235
  article-title: Imaginal pioneers prefigure the formation of adult thoracic muscles in Drosophila melanogaster
  publication-title: Dev. Biol.
  doi: 10.1006/dbio.2000.9676
– volume: 400
  start-page: 199
  year: 2002
  ident: 10.1016/j.aspen.2024.102287_b0295
  article-title: Vascular smooth muscle cell proliferation requires both p38 and BMK1 MAP kinases
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/S0003-9861(02)00028-0
– volume: 17
  start-page: e0271554
  year: 2022
  ident: 10.1016/j.aspen.2024.102287_b0055
  article-title: Promoter architecture of Drosophila genes regulated by Myocyte enhancer factor-2
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0271554
– volume: 5
  start-page: 2327
  year: 1991
  ident: 10.1016/j.aspen.2024.102287_b0215
  article-title: Human SRF-related proteins: DNAbinding properties and potential regulatory targets
  publication-title: Genes Dev.
  doi: 10.1101/gad.5.12a.2327
– volume: 139
  start-page: 1270
  year: 2012
  ident: 10.1016/j.aspen.2024.102287_b0250
  article-title: The conserved transcription factor Mef2 has multiple roles in adult Drosophila musculature formation
  publication-title: Development
  doi: 10.1242/dev.077875
– volume: 9
  start-page: 1614
  year: 2018
  ident: 10.1016/j.aspen.2024.102287_b0185
  article-title: Selection and validation of reference genes for RT-qPCR analysis of the ladybird beetle Henosepilachna vigintioctomaculata
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2018.01614
– volume: 276
  start-page: 1404
  year: 1997
  ident: 10.1016/j.aspen.2024.102287_b0170
  article-title: Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C
  publication-title: Science
  doi: 10.1126/science.276.5317.1404
– volume: 361
  start-page: 191
  year: 2012
  ident: 10.1016/j.aspen.2024.102287_b0050
  article-title: Differential requirements for Myocyte Enhancer Factor-2 during adult myogenesis in Drosophila
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2011.09.031
– volume: 15
  start-page: 1185
  year: 2004
  ident: 10.1016/j.aspen.2024.102287_b0190
  article-title: Transcription of Drosophila troponin I gene is regulated by two conserved, functionally identical, synergistic elements
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e03-09-0663
– volume: 14
  start-page: 240
  year: 2023
  ident: 10.1016/j.aspen.2024.102287_b0195
  article-title: The MEF2A transcription factor interactome in cardiomyocytes
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-023-05665-8
– volume: 9
  start-page: 730
  year: 1995
  ident: 10.1016/j.aspen.2024.102287_b0040
  article-title: Drosophila MEF2, a transcription factor that is essential for myogenesis
  publication-title: Genes Dev.
  doi: 10.1101/gad.9.6.730
– volume: 70
  start-page: 438
  year: 2002
  ident: 10.1016/j.aspen.2024.102287_b0205
  article-title: Mutations within the conserved MADS box of the D-MEF2 muscle differentiation factor result in a loss of DNA binding ability and lethality in Drosophila
  publication-title: Differentiation
  doi: 10.1046/j.1432-0436.2002.700806.x
– volume: 10
  start-page: 797
  year: 2006
  ident: 10.1016/j.aspen.2024.102287_b0240
  article-title: A temporal map of transcription factor activity: Mef2 directly regulates target genes at all stages of muscle development
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2006.04.009
– volume: 125
  start-page: 984
  year: 2008
  ident: 10.1016/j.aspen.2024.102287_b0015
  article-title: Functional analysis of four neuropeptides, EH, ETH, CCAP and bursicon, and their receptors in adult ecdysis behavior of the red flour beetle, Tribolium castaneum
  publication-title: Mech. Dev.
  doi: 10.1016/j.mod.2008.09.002
– volume: 38
  start-page: 33
  year: 2003
  ident: 10.1016/j.aspen.2024.102287_b0090
  article-title: Cdk5-mediated inhibition of the protective effects of transcription factor MEF2 in neurotoxicity-induced apoptosis
  publication-title: Neuron
  doi: 10.1016/S0896-6273(03)00191-0
– volume: 78
  start-page: 3880
  year: 2022
  ident: 10.1016/j.aspen.2024.102287_b0280
  article-title: Silencing tyrosine hydroxylase or dopadecarboxylase gene disrupts cuticle tanning during larva-pupa-adult transformation in Henosepilachna vigintioctopunctata
  publication-title: Pest Manag. Sci.
  doi: 10.1002/ps.6948
– volume: 72
  start-page: 33
  year: 2017
  ident: 10.1016/j.aspen.2024.102287_b0260
  article-title: Mef2 and the skeletal muscle differentiation program
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2017.11.020
– volume: 10
  start-page: e0144615
  year: 2015
  ident: 10.1016/j.aspen.2024.102287_b0065
  article-title: Expression of the troponin C at 41C gene in adult Drosophila Tubular muscles depends upon both positive and negative regulatory inputs
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0144615
– volume: 279
  start-page: 14477
  year: 2004
  ident: 10.1016/j.aspen.2024.102287_b0210
  article-title: Myocyte enhancer factor 2 mediates calcium-dependent transcription of the interleukin-2 gene in T lymphocytes: a calcium signaling module that is distinct from but collaborates with the nuclear factor of activated T cells (NFAT)
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C300487200
– volume: 14
  start-page: 167
  year: 1998
  ident: 10.1016/j.aspen.2024.102287_b0035
  article-title: Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev.cellbio.14.1.167
– volume: 9
  start-page: 1203
  year: 1999
  ident: 10.1016/j.aspen.2024.102287_b0145
  article-title: MEF2 is upregulated during cardiac hypertrophy and is required for normal post-natal growth of the myocardium
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(00)80027-5
– volume: 171
  start-page: 169
  year: 1995
  ident: 10.1016/j.aspen.2024.102287_b0230
  article-title: A series of mutations in the D-MEF2 transcription factor reveal multiple functions in larval and adult myogenesis in Drosophila
  publication-title: Dev. Biol.
  doi: 10.1006/dbio.1995.1269
– volume: 211
  start-page: 255
  year: 1999
  ident: 10.1016/j.aspen.2024.102287_b0030
  article-title: The transcription factor MEF2C-null mouse exhibits complex vascular malformations and reduced cardiac expression of angiopoietin 1 and VEGF
  publication-title: Dev. Biol.
  doi: 10.1006/dbio.1999.9307
– volume: 9
  start-page: 5022
  year: 1989
  ident: 10.1016/j.aspen.2024.102287_b0095
  article-title: A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes
  publication-title: Mol. Cell Biol.
– volume: 13
  year: 2022
  ident: 10.1016/j.aspen.2024.102287_b0275
  article-title: Silencing of Adc and Ebony causes abnormal darkening of cuticle in Henosepilachna vigintioctopunctata
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2022.829675
– volume: 53
  start-page: 457
  year: 1958
  ident: 10.1016/j.aspen.2024.102287_b0135
  article-title: Nonparametric estimation from incomplete observations
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1958.10501452
– volume: 14
  start-page: 1517
  year: 2015
  ident: 10.1016/j.aspen.2024.102287_b0025
  article-title: Phosphorylationdependent degradation of MEF2C contributes to regulate G2/M transition
  publication-title: Cell Cycle
  doi: 10.1080/15384101.2015.1026519
– volume: 131
  start-page: 3761
  year: 2004
  ident: 10.1016/j.aspen.2024.102287_b0075
  article-title: Founder myoblasts and fibre number during adult myogenesis in Drosophila
  publication-title: Development
  doi: 10.1242/dev.01249
– volume: 134
  start-page: 2511
  year: 2007
  ident: 10.1016/j.aspen.2024.102287_b0115
  article-title: Mef2s are required for think filament formation in nascent muscle fibers
  publication-title: Development
  doi: 10.1242/dev.007088
– volume: 401
  start-page: 299
  year: 2015
  ident: 10.1016/j.aspen.2024.102287_b0045
  article-title: Identification of singles bar as a direct transcriptional target of Drosophila Myocyte enhancer factor-2 and a regulator of adult myoblast fusion
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2015.02.026
– volume: 35
  start-page: 1633
  year: 2015
  ident: 10.1016/j.aspen.2024.102287_b0070
  article-title: The control operated by the cell cycle machinery on MEF2 stability contributes to the downregulation of CDKN1A and entry into S phase
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.01461-14
– volume: 125
  start-page: 4565
  year: 1998
  ident: 10.1016/j.aspen.2024.102287_b0160
  article-title: Requirement of the MADS-box transcription factor MEF2C for vascular development
  publication-title: Development
  doi: 10.1242/dev.125.22.4565
– volume: 43
  start-page: 241
  year: 2023
  ident: 10.1016/j.aspen.2024.102287_b0265
  article-title: Phosphorylation of the myogenic factor myocyte enhancer factor-2 impacts myogenesis in vivo
  publication-title: Mol. Cell Biol.
  doi: 10.1080/10985549.2023.2198167
– volume: 311
  start-page: 1008
  year: 2006
  ident: 10.1016/j.aspen.2024.102287_b0080
  article-title: Activity-dependent regulation of MEF2 transcription factors suppresses excitatory synapse number
  publication-title: Science
  doi: 10.1126/science.1122511
– volume: 104
  start-page: 39
  year: 2020
  ident: 10.1016/j.aspen.2024.102287_b0150
  article-title: Muscle development: A view from adult myogenesis in Drosophila
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2020.02.009
– volume: 286
  start-page: 790
  year: 1999
  ident: 10.1016/j.aspen.2024.102287_b0270
  article-title: Apoptosis of T cells mediated by Ca2+-induced release of the transcription factor MEF2
  publication-title: Science
  doi: 10.1126/science.286.5440.790
– year: 1998
  ident: 10.1016/j.aspen.2024.102287_b0060
– volume: 134
  start-page: 4131
  year: 2007
  ident: 10.1016/j.aspen.2024.102287_b0220
  article-title: MEF2: a central regulator of diverse developmental programs
  publication-title: Development
  doi: 10.1242/dev.008367
– volume: 277
  start-page: 46442
  year: 2002
  ident: 10.1016/j.aspen.2024.102287_b0085
  article-title: RNA interference reveals a requirement for myocyte enhancer factor 2A in activity-dependent neuronal survival
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M206653200
– volume: 11
  start-page: 683
  year: 1999
  ident: 10.1016/j.aspen.2024.102287_b0200
  article-title: MEF2: a transcriptional target for signaling path ways controlling skeletal muscle growth and differentiation
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/S0955-0674(99)00036-8
– volume: 26
  start-page: 13
  year: 2005
  ident: 10.1016/j.aspen.2024.102287_b0175
  article-title: Signaling pathways in activity-dependent fiber type plasticity in adult skeletal muscle
  publication-title: J. Muscle Res. Cell Motil.
  doi: 10.1007/s10974-005-9002-0
– volume: 126
  start-page: 595
  year: 2009
  ident: 10.1016/j.aspen.2024.102287_b0255
  article-title: The him gene inhibits the development of Drosophila flight muscles during metamorphosis
  publication-title: Mech. Dev.
  doi: 10.1016/j.mod.2009.03.003
– volume: 276
  start-page: 8278
  year: 2001
  ident: 10.1016/j.aspen.2024.102287_b0020
  article-title: Control of Drosophila paramyosin/miniparamyosin gene expression. Differential regulatory mechanisms for muscle-specific transcription
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M009302200
– volume: 43
  start-page: 117
  year: 2023
  ident: 10.1016/j.aspen.2024.102287_b0285
  article-title: The compatible effects of RNA interference targeting laccase2 with biocontrol in Henosepilachna vigintioctopunctata
  publication-title: Entomol Gen
  doi: 10.1127/entomologia/2023/1644
– volume: 270
  start-page: 23246
  year: 1995
  ident: 10.1016/j.aspen.2024.102287_b0005
  article-title: Determination of the consensus binding site for MEF2 expressed in muscle and brain reveals tissue-specific sequence constraints
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.270.40.23246
SSID ssj0061281
Score 2.3205814
Snippet [Display omitted] •RNAi of HvMef2 impairs larval-pupal-adult transition.•The HvtMef2 RNAi adults possess undeveloped muscles.•The HvMef2 depleted adults are...
Myocyte enhancer factor-2 (MEF2) plays essential roles in a variety of developmental processes. Prominent amongst multiple MEF2 functions is the regulation of...
SourceID nrf
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 102287
SubjectTerms adults
death
defoliating insects
dose response
Drosophila melanogaster
elytra
entomology
Henosepilachna vigintioctopunctata
instars
larvae
larval development
Metamorphosis
muscles
Myocyte enhancer factor-2
Myogenesis
potatoes
prepupae
Regulation
species
thorax
Wing
농학
Title Myocyte enhancer factor 2 exerts a pivotal role in larval development in Henosepilachna vigintioctopunctata
URI https://dx.doi.org/10.1016/j.aspen.2024.102287
https://www.proquest.com/docview/3153779148
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003118367
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Asia-Pacific Entomology, 2024, 27(3), , pp.1-9
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB5qRfBFrBdctWVEH427mcwleSxLy1ZtEbWw-DLMtY27JGE3LfTF3-45uVhE8cGnIcMkDN-ZnMvMN-cQ8iYy5oxgNgkZlwlXmU0gsmWJmUVhhA8uMrycfHomF-f8_VIsd8h8vAuDtMpB9_c6vdPWQ890QHPalOX0SwqeQw4GGVmQs4It8QY7V7jK3_34RfOQeFKEQRcMTnD0mHmo43iZbRMwCSrjmMKAIa_u79bpTrWJf2jrzgQdPyQPBt-RHvbT2yM7oXpE7n2ru53xx2R1elO7mzbQUF2iLDe0L6ZDGcXCSu2WGtqU1zW42xRJhbSs6BpLA62pv6UOYe8CM4iHplwbd1kZeo21s0CA8LEGzCC4p-YJOT8--jpfJEMthcRlLG0TJ4siWM5dNFZgFb88FFIIp6xFGJ2PhjunPASphffM2lkeZZY6mRepy1maPSW7VV2FZ4QqLnLv0uiFUOgO2GCyNI1SZB5EwfMJeTtiqJs-ZYYeuWTfdQe5Rsh1D_mEyBFn_ZvkNSj1f7_4GqSiV67UmCMb24tarzYaIoETjaGuAm93Ql6NUtPw5-BxiKlCfbXVGSh7pQqIB5__7xRekPv41HPOXpLddnMV9sFJae1BtwoPyN3D-eePn7A9-bA4-wmRwuip
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbJhtJeSp9005dKe6zZtSzJ9jGEBm-T3UsTWHoRejbuLrbZdQL595nxg1JaeujJIFvGfGPPfGN9miHkU2DMasFM5BMuI54mJoLMlkV6HoQWztvAcHPyciWLK_51LdYH5HTcC4OyysH39z6989bDyGxAc9aU5exbDMwhg4CMKsh5ztaH5AirU4kJOTpZnBer0SFLXCzCvAuuj3DCWHyok3npfeOxDirjWMWAobTu7wHqsNqFPxx2F4XOnpDHA32kJ_0TPiUHvnpGHnyvu5_jz8lmeVfbu9ZTX12jOXe076dDGcXeSu2eatqUtzUwboq6QlpWdIvdgbbU_VIP4WiBRcR9U261va40vcX2WWBDuFkDkRAYqn5Brs6-XJ4W0dBOIbIJi9vIyjz3hnMbtBHYyC_zuRTCpsYgktYFza1NHeSpuXPMmHkWZBJbmeWxzVicvCSTqq78K0JTLjJn4-CESJERGK-TOA5SJA6swbMp-TxiqJq-aoYa5WQ_VQe5QshVD_mUyBFn9ZvxFfj1f0_8CFZRG1sqLJONxx-12uwUJAMLhdluCoR3Sj6MVlPw8eCKiK58fbNXCfj7NM0hJTz-30d4Tx4Wl8sLdbFYnb8mj_BML0F7Qybt7sa_Bc7SmnfDO3kPRKnpxQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Myocyte+enhancer+factor+2+exerts+a+pivotal+role+in+larval+development+in+Henosepilachna+vigintioctopunctata&rft.jtitle=Journal+of+Asia-Pacific+entomology&rft.au=Ali+Anjum%2C+Ahmad&rft.au=Lin%2C+Meng-Jiao&rft.au=Jin%2C+Lin&rft.au=Li%2C+Guo-Qing&rft.date=2024-09-01&rft.issn=1226-8615&rft.volume=27&rft.issue=3+p.102287-&rft_id=info:doi/10.1016%2Fj.aspen.2024.102287&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-8615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-8615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-8615&client=summon