Axisymmetric motion of a porous sphere through a spherical envelope subject to a stress jump condition

The flow problem of an incompressible axisymmetrical quasisteady translation and steady rotation of a porous sphere in an eccentric spherical container is discussed using a combined analytical–numerical technique. A continuity of velocity components and normal stress together with the stress jump co...

Full description

Saved in:
Bibliographic Details
Published inMeccanica (Milan) Vol. 51; no. 4; pp. 799 - 817
Main Author Saad, E. I.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.04.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The flow problem of an incompressible axisymmetrical quasisteady translation and steady rotation of a porous sphere in an eccentric spherical container is discussed using a combined analytical–numerical technique. A continuity of velocity components and normal stress together with the stress jump condition for the tangential stress are used at the interface between porous and clear-fluid regions. The fluid flow outside the particle is governed by the classical Stokes equations while the fluid flow inside the porous region is treated by Brinkman model. In order to solve the Stokes equations for the flow field, a general solution is constructed from the superposition of the basic solutions in the two spherical coordinate systems based on both the porous sphere and spherical envelope. Solutions for translational and rotational motion of porous eccentric spherical particle in a spherical envelope are obtained using the boundary collocation technique. The hydrodynamic drag force and couple exerted by the surrounding fluid on the porous particle which is proportional to the translational and angular velocities, respectively, are calculated with good convergence for various values of the ratio of porous-to-container radii, the relative distance between the centers of the porous and container, the stress jump coefficient, and a coefficient that is proportional to the permeability. In the limits of the motions of a porous sphere in a concentric container and near a container surface with a small curvature, the numerical values of the normalized drag force and the normalized coupling coefficient are in good agreement with the available values in the literature.
AbstractList The flow problem of an incompressible axisymmetrical quasisteady translation and steady rotation of a porous sphere in an eccentric spherical container is discussed using a combined analytical-numerical technique. A continuity of velocity components and normal stress together with the stress jump condition for the tangential stress are used at the interface between porous and clear-fluid regions. The fluid flow outside the particle is governed by the classical Stokes equations while the fluid flow inside the porous region is treated by Brinkman model. In order to solve the Stokes equations for the flow field, a general solution is constructed from the superposition of the basic solutions in the two spherical coordinate systems based on both the porous sphere and spherical envelope. Solutions for translational and rotational motion of porous eccentric spherical particle in a spherical envelope are obtained using the boundary collocation technique. The hydrodynamic drag force and couple exerted by the surrounding fluid on the porous particle which is proportional to the translational and angular velocities, respectively, are calculated with good convergence for various values of the ratio of porous-to-container radii, the relative distance between the centers of the porous and container, the stress jump coefficient, and a coefficient that is proportional to the permeability. In the limits of the motions of a porous sphere in a concentric container and near a container surface with a small curvature, the numerical values of the normalized drag force and the normalized coupling coefficient are in good agreement with the available values in the literature.
Author Saad, E. I.
Author_xml – sequence: 1
  givenname: E. I.
  surname: Saad
  fullname: Saad, E. I.
  email: elsayedsaad74@yahoo.com
  organization: Department of Mathematics, Faculty of Science, Damanhour University
BookMark eNp9kE1PxCAQhonRxHX1B3jj6KU6tNCW48b4lZh40TOhdLrLpi0VqNF_L3U9efACYXifycxzRo5HNyIhlwyuGUB1ExgDlmfARAZ5ITN-RFZMVHkmS14fkxVALrKSC3FKzkLYAyQKxIp0m08bvoYBo7eGDi5aN1LXUU0n590caJh26JHGXXptd6n-U7BG9xTHD-zdhDTMzR5NpNEt_9FjCHQ_DxM1bmzt0vKcnHS6D3jxe6_J2_3d6-1j9vzy8HS7ec5MkbOYTgEgCylky3UDIjclNqJFjbyrS90w0WpWljVvihLLStbcaKh5V3QtSCFksSZXh76Td-8zhqgGGwz2vR4xbaNYXScTMmdVilaHqPEuBI-dMjbqZdjote0VA7WYVQezKplVi1nFE8n-kJO3g_Zf_zL5gQkpO27Rq72b_Zhc_AN9A24MjjQ
CitedBy_id crossref_primary_10_1007_s00542_018_4069_x
crossref_primary_10_1007_s10483_017_2287_8
crossref_primary_10_1016_j_euromechflu_2020_12_007
crossref_primary_10_1016_j_euromechflu_2022_05_001
crossref_primary_10_3390_fluids9070154
crossref_primary_10_1016_j_euromechflu_2021_10_009
crossref_primary_10_3390_molecules29153573
crossref_primary_10_1088_1873_7005_ac39f9
crossref_primary_10_1103_PhysRevFluids_4_063601
crossref_primary_10_3390_colloids8020020
crossref_primary_10_1007_s00707_015_1506_0
Cites_doi 10.1007/s10665-012-9580-y
10.1007/s11242-008-9308-7
10.1063/1.864050
10.1007/978-94-009-8352-6
10.1080/00986449608936521
10.1139/cjp-2014-0549
10.1002/aic.690380809
10.1063/1.1630051
10.1063/1.436033
10.1002/cjce.5450520407
10.1007/s11242-012-0036-7
10.1021/la00049a029
10.1007/s11242-013-0263-6
10.1139/P10-040
10.1016/j.euromechflu.2012.04.001
10.1063/1.857544
10.1063/1.4871498
10.1016/0017-9310(85)90190-5
10.1016/0009-2509(93)80035-O
10.1007/s00033-012-0211-2
10.1201/9780415876384
10.1016/j.compfluid.2008.11.006
10.1063/1.3274663
10.1063/1.1746948
10.1017/S0022112080000870
10.1017/S002211207200120X
10.1016/0017-9310(94)00346-W
10.1007/s10409-012-0057-z
10.1016/j.ces.2006.07.016
10.1007/s11012-013-9706-y
10.1007/s11242-005-2721-2
10.1063/1.3681368
10.1017/S0022112071002854
10.1007/978-3-662-04999-0
10.1017/S0022112067001375
10.1016/j.compositesa.2009.04.009
10.1122/1.549514
ContentType Journal Article
Copyright Springer Science+Business Media Dordrecht 2015
Copyright_xml – notice: Springer Science+Business Media Dordrecht 2015
DBID AAYXX
CITATION
7TB
8FD
FR3
DOI 10.1007/s11012-015-0239-4
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1572-9648
EndPage 817
ExternalDocumentID 10_1007_s11012_015_0239_4
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9P
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z86
Z8M
Z8N
Z8P
Z8S
Z8T
ZMTXR
~02
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7TB
8FD
ABRTQ
FR3
ID FETCH-LOGICAL-c321t-c350093959d4ab052c6eb5deae4f86ab15da16684b36e67984ca084f3fd095593
IEDL.DBID U2A
ISSN 0025-6455
IngestDate Fri Jul 11 12:04:18 EDT 2025
Thu Apr 24 22:58:16 EDT 2025
Tue Jul 01 03:42:43 EDT 2025
Fri Feb 21 02:38:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Normalized couple
Normalized drag force
Porous eccentric particles
Stress jump
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-c350093959d4ab052c6eb5deae4f86ab15da16684b36e67984ca084f3fd095593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1880029217
PQPubID 23500
PageCount 19
ParticipantIDs proquest_miscellaneous_1880029217
crossref_citationtrail_10_1007_s11012_015_0239_4
crossref_primary_10_1007_s11012_015_0239_4
springer_journals_10_1007_s11012_015_0239_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160400
2016-4-00
20160401
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 4
  year: 2016
  text: 20160400
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal of Theoretical and Applied Mechanics AIMETA
PublicationTitle Meccanica (Milan)
PublicationTitleAbbrev Meccanica
PublicationYear 2016
Publisher Springer Netherlands
Publisher_xml – name: Springer Netherlands
References FaltasMSSaadEIStokes flow between eccentric rotating spheres with slip regimeZ Angew Math Phys201263905919299122110.1007/s00033-012-0211-21325.76062
BeaversGSJosephDDBoundary conditions at naturally permeable wallJ Fluid Mech1967301972071967JFM....30..197B10.1017/S0022112067001375
SherwoodJDCell models for suspension viscosityChem Eng Sci2006616727673110.1016/j.ces.2006.07.016
ParvaziniaMNassehiVWakemanRJGhoreishyMHRFinite element modelling of flow through a porous medium between two parallel plates using the Brinkman equationTransp Porous Media200663719010.1007/s11242-005-2721-2
AndersonJLMcKenziePFWebberRMModel for hydrodynamic thickness of thin polymer layers at solid/liquid interfacesLangmuir1991716216610.1021/la00049a029
KoplikJLevineHZeeAViscosity renormalization in the Brinkman equationPhys Fluids198326286428701983PhFl...26.2864K10.1063/1.8640500533.76098
FaltasMSSaadEISlow motion of a porous eccentric spherical particle-in-cell modelsTransp Porous Media201295133150299081410.1007/s11242-012-0036-7
NealeGNaderWPractical significance of Brinkman’s extension of darcy’s law: coupled parallel flows within a channel and a bounding porous mediumCan J Chem Eng19745247547810.1002/cjce.5450520407
AndersonJLSolomentsevYHydrodynamic effects of surface layers on colloidal particlesChem Eng Commun1996148–15029131410.1080/00986449608936521
AdlerPMMillsPMMotion and rupture of a porous sphere in a linear flow fieldJ Rheol19792325371979JRheo..23...25A59854810.1122/1.5495140418.76005
CichockiBEkiel-JezewskaMLWajnrybEHydrodynamic radius approximation for spherical particles suspended in a viscous fluid: influence of particle internal structure and boundaryJ Chem Phys20141401649022014JChPh.140p4902C10.1063/1.4871498
NabovatiALlewellinEWSousaACMA general model for the permeability of fibrous porous media based on fluid flow simulations using the lattice Boltzmann methodCompos A20094086086910.1016/j.compositesa.2009.04.009
PrakashJRaja SekharGPKohrMFaxén’s law for arbitrary oscillatory Stokes flow past a porous sphereArch Mech201264416329536261291.76316
Laptev V (2003) Numerical solution of coupled flow in plain and porous media, PhD dissertation, TU Kaiserslautern
AbadeGCCichockiBJeżewskaMLENägeleGWajnrybEShort-time dynamics of permeable particles in concentrated suspensionsJ Chem Phys20101320145032010JChPh.132a4503A10.1063/1.3274663
HappelJBrennerHLow Reynolds number hydrodynamics1983The HagueMartinus Nijoff0612.76032
SaadEIAxisymmetric motion of a spherical porous particle perpendicular to two parallel plates with slip surfacesCan J Phys2015937847952015CaJPh..93..784S10.1139/cjp-2014-0549
VafaiKHandbook of porous media20052New YorkTaylor & Francis10.1201/97804158763841315.76005
PrakashJRaja SekharGPEstimation of the dynamic permeability of an assembly of permeable spherical porous particles using the cell modelJ Eng Math2013806373305562810.1007/s10665-012-9580-y
SrinivasacharyaDPrasadMKSteady rotation of a composite sphere in a concentric spherical cavityActa Mech Sin2012286536582012AcMSn..28..653S295022210.1007/s10409-012-0057-z
LookerJRCarnieSLThe hydrodynamics of an oscillating porous spherePhys Fluids20041662722004PhFl...16...62L10.1063/1.16300511186.76334
KimSKarrilaSJMicrohydrodynamics: principles and selected applications2005New YorkDover
SaadEIFaltasMSSlow motion of a porous sphere translating along the axis of a circular cylindrical pore subject to a stress jump conditionTransp Porous Media201410291109316257910.1007/s11242-013-0263-6
SaadEITranslation and rotation of a porous spheroid in a spheroidal containerCan J Phys2010886897002010CaJPh..88..689S10.1139/P10-040
BrinkmanHCA calculation of the viscous force exerted by a flowing fluid on a dense swarm of particlesAppl Sci Res1947A127340041.54204
SanganiASBehlSThe planar singular solutions of Stokes and Laplace equations and their application to transport processes near porous surfacesPhys Fluids A1989121371989PhFl....1...21S10.1063/1.8575440701.76095
SaadEIStokes flow past an assemblage of axisymmetric porous spherical shell-in-cell models: effect of stress jump conditionMeccanica20134817471759309710310.1007/s11012-013-9706-y1293.76141
StokesGGOn the effect of the internal friction of fluid on pendulumsTrans Camb Phil Soc1851981061851TCaPS...9....8S
Tan H, Chen X, Pillai KM, Papathanasiou TD (2008) Evaluation of boundary conditions at the clear-fluid and porous-medium interface using the boundary element method. In: Proceedings of the 9th international conference on flow processes in composite materials, Montréal (Québec), Canada, 8–10 July (2008)
EhlersWBluhmJPorous media: theory, experiments and numerical applications2002BerlinSpringer10.1007/978-3-662-04999-01001.00011
GanatosPWeinbaumSPfefferRA strong interaction theory for the creeping motion of a sphere between plane parallel boundaries. Part 1. Perpendicular motionJ Fluid Mech1980997397531980JFM....99..739G10.1017/S00221120800008700447.76018
BrinkmanHCOn the permeability of media consisting of closely packed porous particlesAppl Sci Res1947A18186
MichalopoulouACBurganosVNPayatakesACCreeping axisymmetric flow around a solid particle near a permeable obstacleAIChE J1992381213122810.1002/aic.690380809
LundgrenTSSlow flow through stationary random beds and suspensions of spheresJ Fluid Mech1972512732991972JFM....51..273L10.1017/S002211207200120X0229.76067
Ochoa-TapiaJAWhittakerSMomentum transfer at the boundary between a porous medium and a homogeneous fluid I: theoretical development, II: comparison with experimentInt J Heat Mass Transf1995382635265510.1016/0017-9310(94)00346-W0923.76320
MichalopoulouACBurganosVNPayatakesACHydrodynamic interactions of two permeable particles moving slowly along their centerlineChem Eng Sci1993482889290010.1016/0009-2509(93)80035-O
FelderhofBUSellierAMobility matrix of a spherical particle translating and rotating in a viscous fluid confined in a spherical cell, and the rate of escape from the cellJ Chem Phys20121360547032012JChPh.136e4703F10.1063/1.3681368
HsuCTChengPThe Brinkman model for natural convection about a semi-infinite vertical flat plate in a porous mediumInt J Heat Mass Transf19852868369710.1016/0017-9310(85)90190-50576.76079
FreedKFMuthukumarMOn the Stokes problem for a suspension of spheres at finite concentrationsJ Chem Phys197868208820961978JChPh..68.2088F10.1063/1.436033
DebyePBuecheAMIntrinsic viscosity, diffusion, and sedimentation rate of polymers in solutionJ Chem Phys1948165735791948JChPh..16..573D10.1063/1.1746948
AuriaultJ-LOn the domain of validity of Brinkman’s equationTransp Porous Media200979215223253370310.1007/s11242-008-9308-7
EinsteinAInvestigations on the theory of the Brownian movement1956New YorkDover0071.41205
TanHPillaiKMFinite element implementation of stress-jump and stress-continuity conditions at porous-medium, clear-fluid interfaceComput Fluids20093811181131264571410.1016/j.compfluid.2008.11.0061242.76140
EhrhardtMEhrhardtMAn introduction to fluid–porous interface couplingProgress in computational physics2013BussumBentham Science Publishers312
Valdes-ParadaFJGoyeauBRamirezJAOchoa-TapiaJAComputation of jump coefficients for momentum transfer between a porous medium and a fluid using a closed generalized transfer equationTransp Porous Media20097843945710.1007/s11242-009-9343-z
SrinivasacharyaDPrasadMKCreeping motion of a porous approximate sphere with an impermeable core in a spherical containerEur J Mech B Fluids201236104114297517510.1016/j.euromechflu.2012.04.0011291.76317
GluckmanMJPfefferRWeinbaumSA new technique for treating multiparticle slow viscous flow: axisymmetric flow past spheres and spheroidsJ Fluid Mech1971507057401971JFM....50..705G30942210.1017/S00221120710028540227.76049
AC Michalopoulou (239_CR12) 1993; 48
TS Lundgren (239_CR25) 1972; 51
GS Beavers (239_CR10) 1967; 30
MJ Gluckman (239_CR42) 1971; 50
JR Looker (239_CR13) 2004; 16
S Kim (239_CR4) 2005
J-L Auriault (239_CR17) 2009; 79
HC Brinkman (239_CR7) 1947; A1
K Vafai (239_CR5) 2005
M Ehrhardt (239_CR31) 2013
AS Sangani (239_CR44) 1989; 1
P Debye (239_CR9) 1948; 16
FJ Valdes-Parada (239_CR34) 2009; 78
PM Adler (239_CR23) 1979; 23
J Koplik (239_CR22) 1983; 26
J Prakash (239_CR15) 2013; 80
G Neale (239_CR32) 1974; 52
EI Saad (239_CR30) 2013; 48
A Nabovati (239_CR6) 2009; 40
J Happel (239_CR3) 1983
JA Ochoa-Tapia (239_CR33) 1995; 38
BU Felderhof (239_CR46) 2012; 136
H Tan (239_CR36) 2009; 38
JL Anderson (239_CR18) 1991; 7
EI Saad (239_CR40) 2015; 93
JD Sherwood (239_CR27) 2006; 61
MS Faltas (239_CR45) 2012; 63
J Prakash (239_CR14) 2012; 64
JL Anderson (239_CR19) 1996; 148–150
D Srinivasacharya (239_CR37) 2012; 36
HC Brinkman (239_CR8) 1947; A1
A Einstein (239_CR24) 1956
B Cichocki (239_CR20) 2014; 140
W Ehlers (239_CR1) 2002
239_CR16
AC Michalopoulou (239_CR11) 1992; 38
D Srinivasacharya (239_CR38) 2012; 28
239_CR35
MS Faltas (239_CR41) 2012; 95
KF Freed (239_CR26) 1978; 68
GG Stokes (239_CR2) 1851; 9
M Parvazinia (239_CR29) 2006; 63
CT Hsu (239_CR28) 1985; 28
P Ganatos (239_CR43) 1980; 99
EI Saad (239_CR21) 2010; 88
GC Abade (239_CR47) 2010; 132
EI Saad (239_CR39) 2014; 102
References_xml – reference: EhrhardtMEhrhardtMAn introduction to fluid–porous interface couplingProgress in computational physics2013BussumBentham Science Publishers312
– reference: FaltasMSSaadEIStokes flow between eccentric rotating spheres with slip regimeZ Angew Math Phys201263905919299122110.1007/s00033-012-0211-21325.76062
– reference: HappelJBrennerHLow Reynolds number hydrodynamics1983The HagueMartinus Nijoff0612.76032
– reference: EinsteinAInvestigations on the theory of the Brownian movement1956New YorkDover0071.41205
– reference: Ochoa-TapiaJAWhittakerSMomentum transfer at the boundary between a porous medium and a homogeneous fluid I: theoretical development, II: comparison with experimentInt J Heat Mass Transf1995382635265510.1016/0017-9310(94)00346-W0923.76320
– reference: MichalopoulouACBurganosVNPayatakesACCreeping axisymmetric flow around a solid particle near a permeable obstacleAIChE J1992381213122810.1002/aic.690380809
– reference: SherwoodJDCell models for suspension viscosityChem Eng Sci2006616727673110.1016/j.ces.2006.07.016
– reference: DebyePBuecheAMIntrinsic viscosity, diffusion, and sedimentation rate of polymers in solutionJ Chem Phys1948165735791948JChPh..16..573D10.1063/1.1746948
– reference: GluckmanMJPfefferRWeinbaumSA new technique for treating multiparticle slow viscous flow: axisymmetric flow past spheres and spheroidsJ Fluid Mech1971507057401971JFM....50..705G30942210.1017/S00221120710028540227.76049
– reference: KoplikJLevineHZeeAViscosity renormalization in the Brinkman equationPhys Fluids198326286428701983PhFl...26.2864K10.1063/1.8640500533.76098
– reference: NealeGNaderWPractical significance of Brinkman’s extension of darcy’s law: coupled parallel flows within a channel and a bounding porous mediumCan J Chem Eng19745247547810.1002/cjce.5450520407
– reference: GanatosPWeinbaumSPfefferRA strong interaction theory for the creeping motion of a sphere between plane parallel boundaries. Part 1. Perpendicular motionJ Fluid Mech1980997397531980JFM....99..739G10.1017/S00221120800008700447.76018
– reference: AndersonJLMcKenziePFWebberRMModel for hydrodynamic thickness of thin polymer layers at solid/liquid interfacesLangmuir1991716216610.1021/la00049a029
– reference: TanHPillaiKMFinite element implementation of stress-jump and stress-continuity conditions at porous-medium, clear-fluid interfaceComput Fluids20093811181131264571410.1016/j.compfluid.2008.11.0061242.76140
– reference: EhlersWBluhmJPorous media: theory, experiments and numerical applications2002BerlinSpringer10.1007/978-3-662-04999-01001.00011
– reference: FelderhofBUSellierAMobility matrix of a spherical particle translating and rotating in a viscous fluid confined in a spherical cell, and the rate of escape from the cellJ Chem Phys20121360547032012JChPh.136e4703F10.1063/1.3681368
– reference: VafaiKHandbook of porous media20052New YorkTaylor & Francis10.1201/97804158763841315.76005
– reference: Tan H, Chen X, Pillai KM, Papathanasiou TD (2008) Evaluation of boundary conditions at the clear-fluid and porous-medium interface using the boundary element method. In: Proceedings of the 9th international conference on flow processes in composite materials, Montréal (Québec), Canada, 8–10 July (2008)
– reference: AndersonJLSolomentsevYHydrodynamic effects of surface layers on colloidal particlesChem Eng Commun1996148–15029131410.1080/00986449608936521
– reference: AdlerPMMillsPMMotion and rupture of a porous sphere in a linear flow fieldJ Rheol19792325371979JRheo..23...25A59854810.1122/1.5495140418.76005
– reference: BeaversGSJosephDDBoundary conditions at naturally permeable wallJ Fluid Mech1967301972071967JFM....30..197B10.1017/S0022112067001375
– reference: AuriaultJ-LOn the domain of validity of Brinkman’s equationTransp Porous Media200979215223253370310.1007/s11242-008-9308-7
– reference: Valdes-ParadaFJGoyeauBRamirezJAOchoa-TapiaJAComputation of jump coefficients for momentum transfer between a porous medium and a fluid using a closed generalized transfer equationTransp Porous Media20097843945710.1007/s11242-009-9343-z
– reference: SanganiASBehlSThe planar singular solutions of Stokes and Laplace equations and their application to transport processes near porous surfacesPhys Fluids A1989121371989PhFl....1...21S10.1063/1.8575440701.76095
– reference: SaadEITranslation and rotation of a porous spheroid in a spheroidal containerCan J Phys2010886897002010CaJPh..88..689S10.1139/P10-040
– reference: SaadEIAxisymmetric motion of a spherical porous particle perpendicular to two parallel plates with slip surfacesCan J Phys2015937847952015CaJPh..93..784S10.1139/cjp-2014-0549
– reference: StokesGGOn the effect of the internal friction of fluid on pendulumsTrans Camb Phil Soc1851981061851TCaPS...9....8S
– reference: CichockiBEkiel-JezewskaMLWajnrybEHydrodynamic radius approximation for spherical particles suspended in a viscous fluid: influence of particle internal structure and boundaryJ Chem Phys20141401649022014JChPh.140p4902C10.1063/1.4871498
– reference: FreedKFMuthukumarMOn the Stokes problem for a suspension of spheres at finite concentrationsJ Chem Phys197868208820961978JChPh..68.2088F10.1063/1.436033
– reference: Laptev V (2003) Numerical solution of coupled flow in plain and porous media, PhD dissertation, TU Kaiserslautern
– reference: KimSKarrilaSJMicrohydrodynamics: principles and selected applications2005New YorkDover
– reference: PrakashJRaja SekharGPEstimation of the dynamic permeability of an assembly of permeable spherical porous particles using the cell modelJ Eng Math2013806373305562810.1007/s10665-012-9580-y
– reference: BrinkmanHCOn the permeability of media consisting of closely packed porous particlesAppl Sci Res1947A18186
– reference: SaadEIStokes flow past an assemblage of axisymmetric porous spherical shell-in-cell models: effect of stress jump conditionMeccanica20134817471759309710310.1007/s11012-013-9706-y1293.76141
– reference: LundgrenTSSlow flow through stationary random beds and suspensions of spheresJ Fluid Mech1972512732991972JFM....51..273L10.1017/S002211207200120X0229.76067
– reference: PrakashJRaja SekharGPKohrMFaxén’s law for arbitrary oscillatory Stokes flow past a porous sphereArch Mech201264416329536261291.76316
– reference: SrinivasacharyaDPrasadMKSteady rotation of a composite sphere in a concentric spherical cavityActa Mech Sin2012286536582012AcMSn..28..653S295022210.1007/s10409-012-0057-z
– reference: SaadEIFaltasMSSlow motion of a porous sphere translating along the axis of a circular cylindrical pore subject to a stress jump conditionTransp Porous Media201410291109316257910.1007/s11242-013-0263-6
– reference: BrinkmanHCA calculation of the viscous force exerted by a flowing fluid on a dense swarm of particlesAppl Sci Res1947A127340041.54204
– reference: ParvaziniaMNassehiVWakemanRJGhoreishyMHRFinite element modelling of flow through a porous medium between two parallel plates using the Brinkman equationTransp Porous Media200663719010.1007/s11242-005-2721-2
– reference: LookerJRCarnieSLThe hydrodynamics of an oscillating porous spherePhys Fluids20041662722004PhFl...16...62L10.1063/1.16300511186.76334
– reference: FaltasMSSaadEISlow motion of a porous eccentric spherical particle-in-cell modelsTransp Porous Media201295133150299081410.1007/s11242-012-0036-7
– reference: AbadeGCCichockiBJeżewskaMLENägeleGWajnrybEShort-time dynamics of permeable particles in concentrated suspensionsJ Chem Phys20101320145032010JChPh.132a4503A10.1063/1.3274663
– reference: HsuCTChengPThe Brinkman model for natural convection about a semi-infinite vertical flat plate in a porous mediumInt J Heat Mass Transf19852868369710.1016/0017-9310(85)90190-50576.76079
– reference: SrinivasacharyaDPrasadMKCreeping motion of a porous approximate sphere with an impermeable core in a spherical containerEur J Mech B Fluids201236104114297517510.1016/j.euromechflu.2012.04.0011291.76317
– reference: NabovatiALlewellinEWSousaACMA general model for the permeability of fibrous porous media based on fluid flow simulations using the lattice Boltzmann methodCompos A20094086086910.1016/j.compositesa.2009.04.009
– reference: MichalopoulouACBurganosVNPayatakesACHydrodynamic interactions of two permeable particles moving slowly along their centerlineChem Eng Sci1993482889290010.1016/0009-2509(93)80035-O
– volume: 80
  start-page: 63
  year: 2013
  ident: 239_CR15
  publication-title: J Eng Math
  doi: 10.1007/s10665-012-9580-y
– volume: 79
  start-page: 215
  year: 2009
  ident: 239_CR17
  publication-title: Transp Porous Media
  doi: 10.1007/s11242-008-9308-7
– start-page: 3
  volume-title: Progress in computational physics
  year: 2013
  ident: 239_CR31
– volume: 26
  start-page: 2864
  year: 1983
  ident: 239_CR22
  publication-title: Phys Fluids
  doi: 10.1063/1.864050
– volume-title: Low Reynolds number hydrodynamics
  year: 1983
  ident: 239_CR3
  doi: 10.1007/978-94-009-8352-6
– volume: 148–150
  start-page: 291
  year: 1996
  ident: 239_CR19
  publication-title: Chem Eng Commun
  doi: 10.1080/00986449608936521
– volume-title: Investigations on the theory of the Brownian movement
  year: 1956
  ident: 239_CR24
– volume: 93
  start-page: 784
  year: 2015
  ident: 239_CR40
  publication-title: Can J Phys
  doi: 10.1139/cjp-2014-0549
– volume: 38
  start-page: 1213
  year: 1992
  ident: 239_CR11
  publication-title: AIChE J
  doi: 10.1002/aic.690380809
– volume: 16
  start-page: 62
  year: 2004
  ident: 239_CR13
  publication-title: Phys Fluids
  doi: 10.1063/1.1630051
– volume: 68
  start-page: 2088
  year: 1978
  ident: 239_CR26
  publication-title: J Chem Phys
  doi: 10.1063/1.436033
– volume: 52
  start-page: 475
  year: 1974
  ident: 239_CR32
  publication-title: Can J Chem Eng
  doi: 10.1002/cjce.5450520407
– volume: 95
  start-page: 133
  year: 2012
  ident: 239_CR41
  publication-title: Transp Porous Media
  doi: 10.1007/s11242-012-0036-7
– volume: 7
  start-page: 162
  year: 1991
  ident: 239_CR18
  publication-title: Langmuir
  doi: 10.1021/la00049a029
– volume: 102
  start-page: 91
  year: 2014
  ident: 239_CR39
  publication-title: Transp Porous Media
  doi: 10.1007/s11242-013-0263-6
– volume: 9
  start-page: 8
  year: 1851
  ident: 239_CR2
  publication-title: Trans Camb Phil Soc
– volume: 88
  start-page: 689
  year: 2010
  ident: 239_CR21
  publication-title: Can J Phys
  doi: 10.1139/P10-040
– volume: 36
  start-page: 104
  year: 2012
  ident: 239_CR37
  publication-title: Eur J Mech B Fluids
  doi: 10.1016/j.euromechflu.2012.04.001
– volume: 1
  start-page: 21
  year: 1989
  ident: 239_CR44
  publication-title: Phys Fluids A
  doi: 10.1063/1.857544
– volume: 140
  start-page: 164902
  year: 2014
  ident: 239_CR20
  publication-title: J Chem Phys
  doi: 10.1063/1.4871498
– volume: 28
  start-page: 683
  year: 1985
  ident: 239_CR28
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/0017-9310(85)90190-5
– volume: 48
  start-page: 2889
  year: 1993
  ident: 239_CR12
  publication-title: Chem Eng Sci
  doi: 10.1016/0009-2509(93)80035-O
– volume: 63
  start-page: 905
  year: 2012
  ident: 239_CR45
  publication-title: Z Angew Math Phys
  doi: 10.1007/s00033-012-0211-2
– volume-title: Handbook of porous media
  year: 2005
  ident: 239_CR5
  doi: 10.1201/9780415876384
– volume: 78
  start-page: 439
  year: 2009
  ident: 239_CR34
  publication-title: Transp Porous Media
– volume: 38
  start-page: 1118
  year: 2009
  ident: 239_CR36
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2008.11.006
– volume: 132
  start-page: 014503
  year: 2010
  ident: 239_CR47
  publication-title: J Chem Phys
  doi: 10.1063/1.3274663
– volume: 16
  start-page: 573
  year: 1948
  ident: 239_CR9
  publication-title: J Chem Phys
  doi: 10.1063/1.1746948
– ident: 239_CR35
– volume: 99
  start-page: 739
  year: 1980
  ident: 239_CR43
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112080000870
– ident: 239_CR16
– volume-title: Microhydrodynamics: principles and selected applications
  year: 2005
  ident: 239_CR4
– volume: A1
  start-page: 27
  year: 1947
  ident: 239_CR7
  publication-title: Appl Sci Res
– volume: A1
  start-page: 81
  year: 1947
  ident: 239_CR8
  publication-title: Appl Sci Res
– volume: 51
  start-page: 273
  year: 1972
  ident: 239_CR25
  publication-title: J Fluid Mech
  doi: 10.1017/S002211207200120X
– volume: 38
  start-page: 2635
  year: 1995
  ident: 239_CR33
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/0017-9310(94)00346-W
– volume: 28
  start-page: 653
  year: 2012
  ident: 239_CR38
  publication-title: Acta Mech Sin
  doi: 10.1007/s10409-012-0057-z
– volume: 61
  start-page: 6727
  year: 2006
  ident: 239_CR27
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2006.07.016
– volume: 48
  start-page: 1747
  year: 2013
  ident: 239_CR30
  publication-title: Meccanica
  doi: 10.1007/s11012-013-9706-y
– volume: 63
  start-page: 71
  year: 2006
  ident: 239_CR29
  publication-title: Transp Porous Media
  doi: 10.1007/s11242-005-2721-2
– volume: 136
  start-page: 054703
  year: 2012
  ident: 239_CR46
  publication-title: J Chem Phys
  doi: 10.1063/1.3681368
– volume: 50
  start-page: 705
  year: 1971
  ident: 239_CR42
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112071002854
– volume: 64
  start-page: 41
  year: 2012
  ident: 239_CR14
  publication-title: Arch Mech
– volume-title: Porous media: theory, experiments and numerical applications
  year: 2002
  ident: 239_CR1
  doi: 10.1007/978-3-662-04999-0
– volume: 30
  start-page: 197
  year: 1967
  ident: 239_CR10
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112067001375
– volume: 40
  start-page: 860
  year: 2009
  ident: 239_CR6
  publication-title: Compos A
  doi: 10.1016/j.compositesa.2009.04.009
– volume: 23
  start-page: 25
  year: 1979
  ident: 239_CR23
  publication-title: J Rheol
  doi: 10.1122/1.549514
SSID ssj0010005
Score 2.1633294
Snippet The flow problem of an incompressible axisymmetrical quasisteady translation and steady rotation of a porous sphere in an eccentric spherical container is...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 799
SubjectTerms Automotive Engineering
Civil Engineering
Classical Mechanics
Computational fluid dynamics
Containers
Envelopes
Fluid flow
Mathematical analysis
Mathematical models
Mechanical Engineering
Physics
Physics and Astronomy
Stokes law (fluid mechanics)
Stresses
Title Axisymmetric motion of a porous sphere through a spherical envelope subject to a stress jump condition
URI https://link.springer.com/article/10.1007/s11012-015-0239-4
https://www.proquest.com/docview/1880029217
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60RfDioyrWR1nBkxLIY3ebHFNpLQo9WainsJtsQLGpmBb03zuzTVoUFbwksNnsYWYf3-zMfANw2bVZB1I5URhkDg956KgAgZwfCJVnXhp1tQ2QHcnhmN9NxKTK4y7raPfaJWl36nWyG1FRoelLGcXkvtyEpiDTHSfx2I9XrgNCIXWdVsmFqF2ZPw3x9TBaI8xvTlF71gz2YKcCiSxeanUfNkzRgt0KMLJqOZYt2LLxm2l5AHn8_lR-TKdUHytly9I8bJYzxRBfo3HPSqIPMKwqy4PttoE0xExh44YMKxeabmXYfEbfbRIJe0Z1M7SZMxvadQjjQf_hZuhUJRScNPC9OT4F3VlEIsq40q7wU2m0yIwyPA-l0p7IlCdlyHUgDTlkeKrckOdBnlluuuAIGsWsMMfA_AyhjE8pWtrlqHeluxq3B4WKJhIy1Qa3lmWSVvziVObiJVkzI5P4ExR_QuJPeBuuVr-8Lsk1_up8USsowSVAfg1VGJRgQpRyrh-hcdWG61pzSbUWy99HPPlX71PYRrAkl1E7Z9CYvy3MOQKSue5AMx70eiN63z7e9zt2Qn4CQT3Y8Q
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90Ivrix1ScnxF8Ugpdm2Tt4xDH1LmnDfYWkjYFxXViN9D_3rus3VBU8KUPaZqHu17yu9zd7wAuW67qQGovjsLU4xGPPB0ikAtCobO0mcQt4xJk-7I75PcjMSrruIsq270KSbqdelnsRlRU6PpSRTGFL1dhDbFARHlcw6C9CB0QCqn6tEouRBXK_GmJr4fREmF-C4q6s6azA1slSGTtuVZ3YcXmddguASMrzbGow7rL30yKPcja70_Fx3hM_bESNm_NwyYZ0wzxNTr3rCD6AMvKtjw47gZIQ8zmLm_IsmJm6FaGTSf03hWRsGdUN0OfOXWpXfsw7NwObrpe2ULBS8KgOcWnoDuLWMQp18YXQSKtEanVlmeR1KYpUt2UMuImlJYCMjzRfsSzMEsdN114ALV8kttDYEGKUCagEi3jc9S7Ni2D24NGRRMJmW6AX8lSJSW_OLW5eFFLZmQSv0LxKxK_4g24WnzyOifX-GvyRaUghSZAcQ2dW5SgIko5P4jRuWrAdaU5Vdpi8fuKR_-afQ4b3cFjT_Xu-g_HsInASc4zeE6gNn2b2VMEJ1Nz5n7GTwia2NQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7alJZc0mbbkE36UKCnFrN-SFr7uCRZ0gdLDlnYm5AsGVqy3iX2QvLvMyPLu7S0hV58kGUdZvT45G_mG4CPY591IHVU5JmNeM7zSGcI5NJM6MomZTE2PkB2Jq_m_OtCLEKd06aPdu8pyS6ngVSa6na0ttVol_hGslR4DabsYqIyn8Iz3I0TmtbzdLKlEQiR9DVbJReipzX_NMSvB9MObf5GkPpzZ_oKDgJgZJPOw4fwxNUDeBnAIwtLsxnAcx_LWTavoZrc_2gelkuqlVWyrkwPW1VMM8TaeNFnDUkJOBZK9GC7byBvMVf7GCLHmo2hPzSsXdF7n1DCfqLrGRrK-jCvNzCfXt6cX0WhnEJUZmnS4lPQ_4tCFJZrE4u0lM4I67TjVS61SYTViZQ5N5l0RM7wUsc5r7LKep267Aj26lXtjoGlFmFNSulaJuY4B7QZG9wqNDqdBMn0EOLelqoMWuNU8uJW7VSSyfwKza_I_IoP4dP2k3UntPGvzme9gxQuB-I4dO3Qgork5eK0wIvWED73nlNhXTZ_H_Hkv3p_gBfXF1P1_cvs2ynsI4aSXTDPW9hr7zbuHeKU1rz3c_ERt6TdEA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Axisymmetric+motion+of+a+porous+sphere+through+a+spherical+envelope+subject+to+a+stress+jump+condition&rft.jtitle=Meccanica+%28Milan%29&rft.au=Saad%2C+E.+I.&rft.date=2016-04-01&rft.issn=0025-6455&rft.eissn=1572-9648&rft.volume=51&rft.issue=4&rft.spage=799&rft.epage=817&rft_id=info:doi/10.1007%2Fs11012-015-0239-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11012_015_0239_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-6455&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-6455&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-6455&client=summon