Axisymmetric motion of a porous sphere through a spherical envelope subject to a stress jump condition
The flow problem of an incompressible axisymmetrical quasisteady translation and steady rotation of a porous sphere in an eccentric spherical container is discussed using a combined analytical–numerical technique. A continuity of velocity components and normal stress together with the stress jump co...
Saved in:
Published in | Meccanica (Milan) Vol. 51; no. 4; pp. 799 - 817 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.04.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The flow problem of an incompressible axisymmetrical quasisteady translation and steady rotation of a porous sphere in an eccentric spherical container is discussed using a combined analytical–numerical technique. A continuity of velocity components and normal stress together with the stress jump condition for the tangential stress are used at the interface between porous and clear-fluid regions. The fluid flow outside the particle is governed by the classical Stokes equations while the fluid flow inside the porous region is treated by Brinkman model. In order to solve the Stokes equations for the flow field, a general solution is constructed from the superposition of the basic solutions in the two spherical coordinate systems based on both the porous sphere and spherical envelope. Solutions for translational and rotational motion of porous eccentric spherical particle in a spherical envelope are obtained using the boundary collocation technique. The hydrodynamic drag force and couple exerted by the surrounding fluid on the porous particle which is proportional to the translational and angular velocities, respectively, are calculated with good convergence for various values of the ratio of porous-to-container radii, the relative distance between the centers of the porous and container, the stress jump coefficient, and a coefficient that is proportional to the permeability. In the limits of the motions of a porous sphere in a concentric container and near a container surface with a small curvature, the numerical values of the normalized drag force and the normalized coupling coefficient are in good agreement with the available values in the literature. |
---|---|
AbstractList | The flow problem of an incompressible axisymmetrical quasisteady translation and steady rotation of a porous sphere in an eccentric spherical container is discussed using a combined analytical-numerical technique. A continuity of velocity components and normal stress together with the stress jump condition for the tangential stress are used at the interface between porous and clear-fluid regions. The fluid flow outside the particle is governed by the classical Stokes equations while the fluid flow inside the porous region is treated by Brinkman model. In order to solve the Stokes equations for the flow field, a general solution is constructed from the superposition of the basic solutions in the two spherical coordinate systems based on both the porous sphere and spherical envelope. Solutions for translational and rotational motion of porous eccentric spherical particle in a spherical envelope are obtained using the boundary collocation technique. The hydrodynamic drag force and couple exerted by the surrounding fluid on the porous particle which is proportional to the translational and angular velocities, respectively, are calculated with good convergence for various values of the ratio of porous-to-container radii, the relative distance between the centers of the porous and container, the stress jump coefficient, and a coefficient that is proportional to the permeability. In the limits of the motions of a porous sphere in a concentric container and near a container surface with a small curvature, the numerical values of the normalized drag force and the normalized coupling coefficient are in good agreement with the available values in the literature. |
Author | Saad, E. I. |
Author_xml | – sequence: 1 givenname: E. I. surname: Saad fullname: Saad, E. I. email: elsayedsaad74@yahoo.com organization: Department of Mathematics, Faculty of Science, Damanhour University |
BookMark | eNp9kE1PxCAQhonRxHX1B3jj6KU6tNCW48b4lZh40TOhdLrLpi0VqNF_L3U9efACYXifycxzRo5HNyIhlwyuGUB1ExgDlmfARAZ5ITN-RFZMVHkmS14fkxVALrKSC3FKzkLYAyQKxIp0m08bvoYBo7eGDi5aN1LXUU0n590caJh26JHGXXptd6n-U7BG9xTHD-zdhDTMzR5NpNEt_9FjCHQ_DxM1bmzt0vKcnHS6D3jxe6_J2_3d6-1j9vzy8HS7ec5MkbOYTgEgCylky3UDIjclNqJFjbyrS90w0WpWljVvihLLStbcaKh5V3QtSCFksSZXh76Td-8zhqgGGwz2vR4xbaNYXScTMmdVilaHqPEuBI-dMjbqZdjote0VA7WYVQezKplVi1nFE8n-kJO3g_Zf_zL5gQkpO27Rq72b_Zhc_AN9A24MjjQ |
CitedBy_id | crossref_primary_10_1007_s00542_018_4069_x crossref_primary_10_1007_s10483_017_2287_8 crossref_primary_10_1016_j_euromechflu_2020_12_007 crossref_primary_10_1016_j_euromechflu_2022_05_001 crossref_primary_10_3390_fluids9070154 crossref_primary_10_1016_j_euromechflu_2021_10_009 crossref_primary_10_3390_molecules29153573 crossref_primary_10_1088_1873_7005_ac39f9 crossref_primary_10_1103_PhysRevFluids_4_063601 crossref_primary_10_3390_colloids8020020 crossref_primary_10_1007_s00707_015_1506_0 |
Cites_doi | 10.1007/s10665-012-9580-y 10.1007/s11242-008-9308-7 10.1063/1.864050 10.1007/978-94-009-8352-6 10.1080/00986449608936521 10.1139/cjp-2014-0549 10.1002/aic.690380809 10.1063/1.1630051 10.1063/1.436033 10.1002/cjce.5450520407 10.1007/s11242-012-0036-7 10.1021/la00049a029 10.1007/s11242-013-0263-6 10.1139/P10-040 10.1016/j.euromechflu.2012.04.001 10.1063/1.857544 10.1063/1.4871498 10.1016/0017-9310(85)90190-5 10.1016/0009-2509(93)80035-O 10.1007/s00033-012-0211-2 10.1201/9780415876384 10.1016/j.compfluid.2008.11.006 10.1063/1.3274663 10.1063/1.1746948 10.1017/S0022112080000870 10.1017/S002211207200120X 10.1016/0017-9310(94)00346-W 10.1007/s10409-012-0057-z 10.1016/j.ces.2006.07.016 10.1007/s11012-013-9706-y 10.1007/s11242-005-2721-2 10.1063/1.3681368 10.1017/S0022112071002854 10.1007/978-3-662-04999-0 10.1017/S0022112067001375 10.1016/j.compositesa.2009.04.009 10.1122/1.549514 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media Dordrecht 2015 |
Copyright_xml | – notice: Springer Science+Business Media Dordrecht 2015 |
DBID | AAYXX CITATION 7TB 8FD FR3 |
DOI | 10.1007/s11012-015-0239-4 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1572-9648 |
EndPage | 817 |
ExternalDocumentID | 10_1007_s11012_015_0239_4 |
GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9P PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z86 Z8M Z8N Z8P Z8S Z8T ZMTXR ~02 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 7TB 8FD ABRTQ FR3 |
ID | FETCH-LOGICAL-c321t-c350093959d4ab052c6eb5deae4f86ab15da16684b36e67984ca084f3fd095593 |
IEDL.DBID | U2A |
ISSN | 0025-6455 |
IngestDate | Fri Jul 11 12:04:18 EDT 2025 Thu Apr 24 22:58:16 EDT 2025 Tue Jul 01 03:42:43 EDT 2025 Fri Feb 21 02:38:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Normalized couple Normalized drag force Porous eccentric particles Stress jump |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c321t-c350093959d4ab052c6eb5deae4f86ab15da16684b36e67984ca084f3fd095593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1880029217 |
PQPubID | 23500 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_1880029217 crossref_citationtrail_10_1007_s11012_015_0239_4 crossref_primary_10_1007_s11012_015_0239_4 springer_journals_10_1007_s11012_015_0239_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20160400 2016-4-00 20160401 |
PublicationDateYYYYMMDD | 2016-04-01 |
PublicationDate_xml | – month: 4 year: 2016 text: 20160400 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | An International Journal of Theoretical and Applied Mechanics AIMETA |
PublicationTitle | Meccanica (Milan) |
PublicationTitleAbbrev | Meccanica |
PublicationYear | 2016 |
Publisher | Springer Netherlands |
Publisher_xml | – name: Springer Netherlands |
References | FaltasMSSaadEIStokes flow between eccentric rotating spheres with slip regimeZ Angew Math Phys201263905919299122110.1007/s00033-012-0211-21325.76062 BeaversGSJosephDDBoundary conditions at naturally permeable wallJ Fluid Mech1967301972071967JFM....30..197B10.1017/S0022112067001375 SherwoodJDCell models for suspension viscosityChem Eng Sci2006616727673110.1016/j.ces.2006.07.016 ParvaziniaMNassehiVWakemanRJGhoreishyMHRFinite element modelling of flow through a porous medium between two parallel plates using the Brinkman equationTransp Porous Media200663719010.1007/s11242-005-2721-2 AndersonJLMcKenziePFWebberRMModel for hydrodynamic thickness of thin polymer layers at solid/liquid interfacesLangmuir1991716216610.1021/la00049a029 KoplikJLevineHZeeAViscosity renormalization in the Brinkman equationPhys Fluids198326286428701983PhFl...26.2864K10.1063/1.8640500533.76098 FaltasMSSaadEISlow motion of a porous eccentric spherical particle-in-cell modelsTransp Porous Media201295133150299081410.1007/s11242-012-0036-7 NealeGNaderWPractical significance of Brinkman’s extension of darcy’s law: coupled parallel flows within a channel and a bounding porous mediumCan J Chem Eng19745247547810.1002/cjce.5450520407 AndersonJLSolomentsevYHydrodynamic effects of surface layers on colloidal particlesChem Eng Commun1996148–15029131410.1080/00986449608936521 AdlerPMMillsPMMotion and rupture of a porous sphere in a linear flow fieldJ Rheol19792325371979JRheo..23...25A59854810.1122/1.5495140418.76005 CichockiBEkiel-JezewskaMLWajnrybEHydrodynamic radius approximation for spherical particles suspended in a viscous fluid: influence of particle internal structure and boundaryJ Chem Phys20141401649022014JChPh.140p4902C10.1063/1.4871498 NabovatiALlewellinEWSousaACMA general model for the permeability of fibrous porous media based on fluid flow simulations using the lattice Boltzmann methodCompos A20094086086910.1016/j.compositesa.2009.04.009 PrakashJRaja SekharGPKohrMFaxén’s law for arbitrary oscillatory Stokes flow past a porous sphereArch Mech201264416329536261291.76316 Laptev V (2003) Numerical solution of coupled flow in plain and porous media, PhD dissertation, TU Kaiserslautern AbadeGCCichockiBJeżewskaMLENägeleGWajnrybEShort-time dynamics of permeable particles in concentrated suspensionsJ Chem Phys20101320145032010JChPh.132a4503A10.1063/1.3274663 HappelJBrennerHLow Reynolds number hydrodynamics1983The HagueMartinus Nijoff0612.76032 SaadEIAxisymmetric motion of a spherical porous particle perpendicular to two parallel plates with slip surfacesCan J Phys2015937847952015CaJPh..93..784S10.1139/cjp-2014-0549 VafaiKHandbook of porous media20052New YorkTaylor & Francis10.1201/97804158763841315.76005 PrakashJRaja SekharGPEstimation of the dynamic permeability of an assembly of permeable spherical porous particles using the cell modelJ Eng Math2013806373305562810.1007/s10665-012-9580-y SrinivasacharyaDPrasadMKSteady rotation of a composite sphere in a concentric spherical cavityActa Mech Sin2012286536582012AcMSn..28..653S295022210.1007/s10409-012-0057-z LookerJRCarnieSLThe hydrodynamics of an oscillating porous spherePhys Fluids20041662722004PhFl...16...62L10.1063/1.16300511186.76334 KimSKarrilaSJMicrohydrodynamics: principles and selected applications2005New YorkDover SaadEIFaltasMSSlow motion of a porous sphere translating along the axis of a circular cylindrical pore subject to a stress jump conditionTransp Porous Media201410291109316257910.1007/s11242-013-0263-6 SaadEITranslation and rotation of a porous spheroid in a spheroidal containerCan J Phys2010886897002010CaJPh..88..689S10.1139/P10-040 BrinkmanHCA calculation of the viscous force exerted by a flowing fluid on a dense swarm of particlesAppl Sci Res1947A127340041.54204 SanganiASBehlSThe planar singular solutions of Stokes and Laplace equations and their application to transport processes near porous surfacesPhys Fluids A1989121371989PhFl....1...21S10.1063/1.8575440701.76095 SaadEIStokes flow past an assemblage of axisymmetric porous spherical shell-in-cell models: effect of stress jump conditionMeccanica20134817471759309710310.1007/s11012-013-9706-y1293.76141 StokesGGOn the effect of the internal friction of fluid on pendulumsTrans Camb Phil Soc1851981061851TCaPS...9....8S Tan H, Chen X, Pillai KM, Papathanasiou TD (2008) Evaluation of boundary conditions at the clear-fluid and porous-medium interface using the boundary element method. In: Proceedings of the 9th international conference on flow processes in composite materials, Montréal (Québec), Canada, 8–10 July (2008) EhlersWBluhmJPorous media: theory, experiments and numerical applications2002BerlinSpringer10.1007/978-3-662-04999-01001.00011 GanatosPWeinbaumSPfefferRA strong interaction theory for the creeping motion of a sphere between plane parallel boundaries. Part 1. Perpendicular motionJ Fluid Mech1980997397531980JFM....99..739G10.1017/S00221120800008700447.76018 BrinkmanHCOn the permeability of media consisting of closely packed porous particlesAppl Sci Res1947A18186 MichalopoulouACBurganosVNPayatakesACCreeping axisymmetric flow around a solid particle near a permeable obstacleAIChE J1992381213122810.1002/aic.690380809 LundgrenTSSlow flow through stationary random beds and suspensions of spheresJ Fluid Mech1972512732991972JFM....51..273L10.1017/S002211207200120X0229.76067 Ochoa-TapiaJAWhittakerSMomentum transfer at the boundary between a porous medium and a homogeneous fluid I: theoretical development, II: comparison with experimentInt J Heat Mass Transf1995382635265510.1016/0017-9310(94)00346-W0923.76320 MichalopoulouACBurganosVNPayatakesACHydrodynamic interactions of two permeable particles moving slowly along their centerlineChem Eng Sci1993482889290010.1016/0009-2509(93)80035-O FelderhofBUSellierAMobility matrix of a spherical particle translating and rotating in a viscous fluid confined in a spherical cell, and the rate of escape from the cellJ Chem Phys20121360547032012JChPh.136e4703F10.1063/1.3681368 HsuCTChengPThe Brinkman model for natural convection about a semi-infinite vertical flat plate in a porous mediumInt J Heat Mass Transf19852868369710.1016/0017-9310(85)90190-50576.76079 FreedKFMuthukumarMOn the Stokes problem for a suspension of spheres at finite concentrationsJ Chem Phys197868208820961978JChPh..68.2088F10.1063/1.436033 DebyePBuecheAMIntrinsic viscosity, diffusion, and sedimentation rate of polymers in solutionJ Chem Phys1948165735791948JChPh..16..573D10.1063/1.1746948 AuriaultJ-LOn the domain of validity of Brinkman’s equationTransp Porous Media200979215223253370310.1007/s11242-008-9308-7 EinsteinAInvestigations on the theory of the Brownian movement1956New YorkDover0071.41205 TanHPillaiKMFinite element implementation of stress-jump and stress-continuity conditions at porous-medium, clear-fluid interfaceComput Fluids20093811181131264571410.1016/j.compfluid.2008.11.0061242.76140 EhrhardtMEhrhardtMAn introduction to fluid–porous interface couplingProgress in computational physics2013BussumBentham Science Publishers312 Valdes-ParadaFJGoyeauBRamirezJAOchoa-TapiaJAComputation of jump coefficients for momentum transfer between a porous medium and a fluid using a closed generalized transfer equationTransp Porous Media20097843945710.1007/s11242-009-9343-z SrinivasacharyaDPrasadMKCreeping motion of a porous approximate sphere with an impermeable core in a spherical containerEur J Mech B Fluids201236104114297517510.1016/j.euromechflu.2012.04.0011291.76317 GluckmanMJPfefferRWeinbaumSA new technique for treating multiparticle slow viscous flow: axisymmetric flow past spheres and spheroidsJ Fluid Mech1971507057401971JFM....50..705G30942210.1017/S00221120710028540227.76049 AC Michalopoulou (239_CR12) 1993; 48 TS Lundgren (239_CR25) 1972; 51 GS Beavers (239_CR10) 1967; 30 MJ Gluckman (239_CR42) 1971; 50 JR Looker (239_CR13) 2004; 16 S Kim (239_CR4) 2005 J-L Auriault (239_CR17) 2009; 79 HC Brinkman (239_CR7) 1947; A1 K Vafai (239_CR5) 2005 M Ehrhardt (239_CR31) 2013 AS Sangani (239_CR44) 1989; 1 P Debye (239_CR9) 1948; 16 FJ Valdes-Parada (239_CR34) 2009; 78 PM Adler (239_CR23) 1979; 23 J Koplik (239_CR22) 1983; 26 J Prakash (239_CR15) 2013; 80 G Neale (239_CR32) 1974; 52 EI Saad (239_CR30) 2013; 48 A Nabovati (239_CR6) 2009; 40 J Happel (239_CR3) 1983 JA Ochoa-Tapia (239_CR33) 1995; 38 BU Felderhof (239_CR46) 2012; 136 H Tan (239_CR36) 2009; 38 JL Anderson (239_CR18) 1991; 7 EI Saad (239_CR40) 2015; 93 JD Sherwood (239_CR27) 2006; 61 MS Faltas (239_CR45) 2012; 63 J Prakash (239_CR14) 2012; 64 JL Anderson (239_CR19) 1996; 148–150 D Srinivasacharya (239_CR37) 2012; 36 HC Brinkman (239_CR8) 1947; A1 A Einstein (239_CR24) 1956 B Cichocki (239_CR20) 2014; 140 W Ehlers (239_CR1) 2002 239_CR16 AC Michalopoulou (239_CR11) 1992; 38 D Srinivasacharya (239_CR38) 2012; 28 239_CR35 MS Faltas (239_CR41) 2012; 95 KF Freed (239_CR26) 1978; 68 GG Stokes (239_CR2) 1851; 9 M Parvazinia (239_CR29) 2006; 63 CT Hsu (239_CR28) 1985; 28 P Ganatos (239_CR43) 1980; 99 EI Saad (239_CR21) 2010; 88 GC Abade (239_CR47) 2010; 132 EI Saad (239_CR39) 2014; 102 |
References_xml | – reference: EhrhardtMEhrhardtMAn introduction to fluid–porous interface couplingProgress in computational physics2013BussumBentham Science Publishers312 – reference: FaltasMSSaadEIStokes flow between eccentric rotating spheres with slip regimeZ Angew Math Phys201263905919299122110.1007/s00033-012-0211-21325.76062 – reference: HappelJBrennerHLow Reynolds number hydrodynamics1983The HagueMartinus Nijoff0612.76032 – reference: EinsteinAInvestigations on the theory of the Brownian movement1956New YorkDover0071.41205 – reference: Ochoa-TapiaJAWhittakerSMomentum transfer at the boundary between a porous medium and a homogeneous fluid I: theoretical development, II: comparison with experimentInt J Heat Mass Transf1995382635265510.1016/0017-9310(94)00346-W0923.76320 – reference: MichalopoulouACBurganosVNPayatakesACCreeping axisymmetric flow around a solid particle near a permeable obstacleAIChE J1992381213122810.1002/aic.690380809 – reference: SherwoodJDCell models for suspension viscosityChem Eng Sci2006616727673110.1016/j.ces.2006.07.016 – reference: DebyePBuecheAMIntrinsic viscosity, diffusion, and sedimentation rate of polymers in solutionJ Chem Phys1948165735791948JChPh..16..573D10.1063/1.1746948 – reference: GluckmanMJPfefferRWeinbaumSA new technique for treating multiparticle slow viscous flow: axisymmetric flow past spheres and spheroidsJ Fluid Mech1971507057401971JFM....50..705G30942210.1017/S00221120710028540227.76049 – reference: KoplikJLevineHZeeAViscosity renormalization in the Brinkman equationPhys Fluids198326286428701983PhFl...26.2864K10.1063/1.8640500533.76098 – reference: NealeGNaderWPractical significance of Brinkman’s extension of darcy’s law: coupled parallel flows within a channel and a bounding porous mediumCan J Chem Eng19745247547810.1002/cjce.5450520407 – reference: GanatosPWeinbaumSPfefferRA strong interaction theory for the creeping motion of a sphere between plane parallel boundaries. Part 1. Perpendicular motionJ Fluid Mech1980997397531980JFM....99..739G10.1017/S00221120800008700447.76018 – reference: AndersonJLMcKenziePFWebberRMModel for hydrodynamic thickness of thin polymer layers at solid/liquid interfacesLangmuir1991716216610.1021/la00049a029 – reference: TanHPillaiKMFinite element implementation of stress-jump and stress-continuity conditions at porous-medium, clear-fluid interfaceComput Fluids20093811181131264571410.1016/j.compfluid.2008.11.0061242.76140 – reference: EhlersWBluhmJPorous media: theory, experiments and numerical applications2002BerlinSpringer10.1007/978-3-662-04999-01001.00011 – reference: FelderhofBUSellierAMobility matrix of a spherical particle translating and rotating in a viscous fluid confined in a spherical cell, and the rate of escape from the cellJ Chem Phys20121360547032012JChPh.136e4703F10.1063/1.3681368 – reference: VafaiKHandbook of porous media20052New YorkTaylor & Francis10.1201/97804158763841315.76005 – reference: Tan H, Chen X, Pillai KM, Papathanasiou TD (2008) Evaluation of boundary conditions at the clear-fluid and porous-medium interface using the boundary element method. In: Proceedings of the 9th international conference on flow processes in composite materials, Montréal (Québec), Canada, 8–10 July (2008) – reference: AndersonJLSolomentsevYHydrodynamic effects of surface layers on colloidal particlesChem Eng Commun1996148–15029131410.1080/00986449608936521 – reference: AdlerPMMillsPMMotion and rupture of a porous sphere in a linear flow fieldJ Rheol19792325371979JRheo..23...25A59854810.1122/1.5495140418.76005 – reference: BeaversGSJosephDDBoundary conditions at naturally permeable wallJ Fluid Mech1967301972071967JFM....30..197B10.1017/S0022112067001375 – reference: AuriaultJ-LOn the domain of validity of Brinkman’s equationTransp Porous Media200979215223253370310.1007/s11242-008-9308-7 – reference: Valdes-ParadaFJGoyeauBRamirezJAOchoa-TapiaJAComputation of jump coefficients for momentum transfer between a porous medium and a fluid using a closed generalized transfer equationTransp Porous Media20097843945710.1007/s11242-009-9343-z – reference: SanganiASBehlSThe planar singular solutions of Stokes and Laplace equations and their application to transport processes near porous surfacesPhys Fluids A1989121371989PhFl....1...21S10.1063/1.8575440701.76095 – reference: SaadEITranslation and rotation of a porous spheroid in a spheroidal containerCan J Phys2010886897002010CaJPh..88..689S10.1139/P10-040 – reference: SaadEIAxisymmetric motion of a spherical porous particle perpendicular to two parallel plates with slip surfacesCan J Phys2015937847952015CaJPh..93..784S10.1139/cjp-2014-0549 – reference: StokesGGOn the effect of the internal friction of fluid on pendulumsTrans Camb Phil Soc1851981061851TCaPS...9....8S – reference: CichockiBEkiel-JezewskaMLWajnrybEHydrodynamic radius approximation for spherical particles suspended in a viscous fluid: influence of particle internal structure and boundaryJ Chem Phys20141401649022014JChPh.140p4902C10.1063/1.4871498 – reference: FreedKFMuthukumarMOn the Stokes problem for a suspension of spheres at finite concentrationsJ Chem Phys197868208820961978JChPh..68.2088F10.1063/1.436033 – reference: Laptev V (2003) Numerical solution of coupled flow in plain and porous media, PhD dissertation, TU Kaiserslautern – reference: KimSKarrilaSJMicrohydrodynamics: principles and selected applications2005New YorkDover – reference: PrakashJRaja SekharGPEstimation of the dynamic permeability of an assembly of permeable spherical porous particles using the cell modelJ Eng Math2013806373305562810.1007/s10665-012-9580-y – reference: BrinkmanHCOn the permeability of media consisting of closely packed porous particlesAppl Sci Res1947A18186 – reference: SaadEIStokes flow past an assemblage of axisymmetric porous spherical shell-in-cell models: effect of stress jump conditionMeccanica20134817471759309710310.1007/s11012-013-9706-y1293.76141 – reference: LundgrenTSSlow flow through stationary random beds and suspensions of spheresJ Fluid Mech1972512732991972JFM....51..273L10.1017/S002211207200120X0229.76067 – reference: PrakashJRaja SekharGPKohrMFaxén’s law for arbitrary oscillatory Stokes flow past a porous sphereArch Mech201264416329536261291.76316 – reference: SrinivasacharyaDPrasadMKSteady rotation of a composite sphere in a concentric spherical cavityActa Mech Sin2012286536582012AcMSn..28..653S295022210.1007/s10409-012-0057-z – reference: SaadEIFaltasMSSlow motion of a porous sphere translating along the axis of a circular cylindrical pore subject to a stress jump conditionTransp Porous Media201410291109316257910.1007/s11242-013-0263-6 – reference: BrinkmanHCA calculation of the viscous force exerted by a flowing fluid on a dense swarm of particlesAppl Sci Res1947A127340041.54204 – reference: ParvaziniaMNassehiVWakemanRJGhoreishyMHRFinite element modelling of flow through a porous medium between two parallel plates using the Brinkman equationTransp Porous Media200663719010.1007/s11242-005-2721-2 – reference: LookerJRCarnieSLThe hydrodynamics of an oscillating porous spherePhys Fluids20041662722004PhFl...16...62L10.1063/1.16300511186.76334 – reference: FaltasMSSaadEISlow motion of a porous eccentric spherical particle-in-cell modelsTransp Porous Media201295133150299081410.1007/s11242-012-0036-7 – reference: AbadeGCCichockiBJeżewskaMLENägeleGWajnrybEShort-time dynamics of permeable particles in concentrated suspensionsJ Chem Phys20101320145032010JChPh.132a4503A10.1063/1.3274663 – reference: HsuCTChengPThe Brinkman model for natural convection about a semi-infinite vertical flat plate in a porous mediumInt J Heat Mass Transf19852868369710.1016/0017-9310(85)90190-50576.76079 – reference: SrinivasacharyaDPrasadMKCreeping motion of a porous approximate sphere with an impermeable core in a spherical containerEur J Mech B Fluids201236104114297517510.1016/j.euromechflu.2012.04.0011291.76317 – reference: NabovatiALlewellinEWSousaACMA general model for the permeability of fibrous porous media based on fluid flow simulations using the lattice Boltzmann methodCompos A20094086086910.1016/j.compositesa.2009.04.009 – reference: MichalopoulouACBurganosVNPayatakesACHydrodynamic interactions of two permeable particles moving slowly along their centerlineChem Eng Sci1993482889290010.1016/0009-2509(93)80035-O – volume: 80 start-page: 63 year: 2013 ident: 239_CR15 publication-title: J Eng Math doi: 10.1007/s10665-012-9580-y – volume: 79 start-page: 215 year: 2009 ident: 239_CR17 publication-title: Transp Porous Media doi: 10.1007/s11242-008-9308-7 – start-page: 3 volume-title: Progress in computational physics year: 2013 ident: 239_CR31 – volume: 26 start-page: 2864 year: 1983 ident: 239_CR22 publication-title: Phys Fluids doi: 10.1063/1.864050 – volume-title: Low Reynolds number hydrodynamics year: 1983 ident: 239_CR3 doi: 10.1007/978-94-009-8352-6 – volume: 148–150 start-page: 291 year: 1996 ident: 239_CR19 publication-title: Chem Eng Commun doi: 10.1080/00986449608936521 – volume-title: Investigations on the theory of the Brownian movement year: 1956 ident: 239_CR24 – volume: 93 start-page: 784 year: 2015 ident: 239_CR40 publication-title: Can J Phys doi: 10.1139/cjp-2014-0549 – volume: 38 start-page: 1213 year: 1992 ident: 239_CR11 publication-title: AIChE J doi: 10.1002/aic.690380809 – volume: 16 start-page: 62 year: 2004 ident: 239_CR13 publication-title: Phys Fluids doi: 10.1063/1.1630051 – volume: 68 start-page: 2088 year: 1978 ident: 239_CR26 publication-title: J Chem Phys doi: 10.1063/1.436033 – volume: 52 start-page: 475 year: 1974 ident: 239_CR32 publication-title: Can J Chem Eng doi: 10.1002/cjce.5450520407 – volume: 95 start-page: 133 year: 2012 ident: 239_CR41 publication-title: Transp Porous Media doi: 10.1007/s11242-012-0036-7 – volume: 7 start-page: 162 year: 1991 ident: 239_CR18 publication-title: Langmuir doi: 10.1021/la00049a029 – volume: 102 start-page: 91 year: 2014 ident: 239_CR39 publication-title: Transp Porous Media doi: 10.1007/s11242-013-0263-6 – volume: 9 start-page: 8 year: 1851 ident: 239_CR2 publication-title: Trans Camb Phil Soc – volume: 88 start-page: 689 year: 2010 ident: 239_CR21 publication-title: Can J Phys doi: 10.1139/P10-040 – volume: 36 start-page: 104 year: 2012 ident: 239_CR37 publication-title: Eur J Mech B Fluids doi: 10.1016/j.euromechflu.2012.04.001 – volume: 1 start-page: 21 year: 1989 ident: 239_CR44 publication-title: Phys Fluids A doi: 10.1063/1.857544 – volume: 140 start-page: 164902 year: 2014 ident: 239_CR20 publication-title: J Chem Phys doi: 10.1063/1.4871498 – volume: 28 start-page: 683 year: 1985 ident: 239_CR28 publication-title: Int J Heat Mass Transf doi: 10.1016/0017-9310(85)90190-5 – volume: 48 start-page: 2889 year: 1993 ident: 239_CR12 publication-title: Chem Eng Sci doi: 10.1016/0009-2509(93)80035-O – volume: 63 start-page: 905 year: 2012 ident: 239_CR45 publication-title: Z Angew Math Phys doi: 10.1007/s00033-012-0211-2 – volume-title: Handbook of porous media year: 2005 ident: 239_CR5 doi: 10.1201/9780415876384 – volume: 78 start-page: 439 year: 2009 ident: 239_CR34 publication-title: Transp Porous Media – volume: 38 start-page: 1118 year: 2009 ident: 239_CR36 publication-title: Comput Fluids doi: 10.1016/j.compfluid.2008.11.006 – volume: 132 start-page: 014503 year: 2010 ident: 239_CR47 publication-title: J Chem Phys doi: 10.1063/1.3274663 – volume: 16 start-page: 573 year: 1948 ident: 239_CR9 publication-title: J Chem Phys doi: 10.1063/1.1746948 – ident: 239_CR35 – volume: 99 start-page: 739 year: 1980 ident: 239_CR43 publication-title: J Fluid Mech doi: 10.1017/S0022112080000870 – ident: 239_CR16 – volume-title: Microhydrodynamics: principles and selected applications year: 2005 ident: 239_CR4 – volume: A1 start-page: 27 year: 1947 ident: 239_CR7 publication-title: Appl Sci Res – volume: A1 start-page: 81 year: 1947 ident: 239_CR8 publication-title: Appl Sci Res – volume: 51 start-page: 273 year: 1972 ident: 239_CR25 publication-title: J Fluid Mech doi: 10.1017/S002211207200120X – volume: 38 start-page: 2635 year: 1995 ident: 239_CR33 publication-title: Int J Heat Mass Transf doi: 10.1016/0017-9310(94)00346-W – volume: 28 start-page: 653 year: 2012 ident: 239_CR38 publication-title: Acta Mech Sin doi: 10.1007/s10409-012-0057-z – volume: 61 start-page: 6727 year: 2006 ident: 239_CR27 publication-title: Chem Eng Sci doi: 10.1016/j.ces.2006.07.016 – volume: 48 start-page: 1747 year: 2013 ident: 239_CR30 publication-title: Meccanica doi: 10.1007/s11012-013-9706-y – volume: 63 start-page: 71 year: 2006 ident: 239_CR29 publication-title: Transp Porous Media doi: 10.1007/s11242-005-2721-2 – volume: 136 start-page: 054703 year: 2012 ident: 239_CR46 publication-title: J Chem Phys doi: 10.1063/1.3681368 – volume: 50 start-page: 705 year: 1971 ident: 239_CR42 publication-title: J Fluid Mech doi: 10.1017/S0022112071002854 – volume: 64 start-page: 41 year: 2012 ident: 239_CR14 publication-title: Arch Mech – volume-title: Porous media: theory, experiments and numerical applications year: 2002 ident: 239_CR1 doi: 10.1007/978-3-662-04999-0 – volume: 30 start-page: 197 year: 1967 ident: 239_CR10 publication-title: J Fluid Mech doi: 10.1017/S0022112067001375 – volume: 40 start-page: 860 year: 2009 ident: 239_CR6 publication-title: Compos A doi: 10.1016/j.compositesa.2009.04.009 – volume: 23 start-page: 25 year: 1979 ident: 239_CR23 publication-title: J Rheol doi: 10.1122/1.549514 |
SSID | ssj0010005 |
Score | 2.1633294 |
Snippet | The flow problem of an incompressible axisymmetrical quasisteady translation and steady rotation of a porous sphere in an eccentric spherical container is... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 799 |
SubjectTerms | Automotive Engineering Civil Engineering Classical Mechanics Computational fluid dynamics Containers Envelopes Fluid flow Mathematical analysis Mathematical models Mechanical Engineering Physics Physics and Astronomy Stokes law (fluid mechanics) Stresses |
Title | Axisymmetric motion of a porous sphere through a spherical envelope subject to a stress jump condition |
URI | https://link.springer.com/article/10.1007/s11012-015-0239-4 https://www.proquest.com/docview/1880029217 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60RfDioyrWR1nBkxLIY3ebHFNpLQo9WainsJtsQLGpmBb03zuzTVoUFbwksNnsYWYf3-zMfANw2bVZB1I5URhkDg956KgAgZwfCJVnXhp1tQ2QHcnhmN9NxKTK4y7raPfaJWl36nWyG1FRoelLGcXkvtyEpiDTHSfx2I9XrgNCIXWdVsmFqF2ZPw3x9TBaI8xvTlF71gz2YKcCiSxeanUfNkzRgt0KMLJqOZYt2LLxm2l5AHn8_lR-TKdUHytly9I8bJYzxRBfo3HPSqIPMKwqy4PttoE0xExh44YMKxeabmXYfEbfbRIJe0Z1M7SZMxvadQjjQf_hZuhUJRScNPC9OT4F3VlEIsq40q7wU2m0yIwyPA-l0p7IlCdlyHUgDTlkeKrckOdBnlluuuAIGsWsMMfA_AyhjE8pWtrlqHeluxq3B4WKJhIy1Qa3lmWSVvziVObiJVkzI5P4ExR_QuJPeBuuVr-8Lsk1_up8USsowSVAfg1VGJRgQpRyrh-hcdWG61pzSbUWy99HPPlX71PYRrAkl1E7Z9CYvy3MOQKSue5AMx70eiN63z7e9zt2Qn4CQT3Y8Q |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90Ivrix1ScnxF8Ugpdm2Tt4xDH1LmnDfYWkjYFxXViN9D_3rus3VBU8KUPaZqHu17yu9zd7wAuW67qQGovjsLU4xGPPB0ikAtCobO0mcQt4xJk-7I75PcjMSrruIsq270KSbqdelnsRlRU6PpSRTGFL1dhDbFARHlcw6C9CB0QCqn6tEouRBXK_GmJr4fREmF-C4q6s6azA1slSGTtuVZ3YcXmddguASMrzbGow7rL30yKPcja70_Fx3hM_bESNm_NwyYZ0wzxNTr3rCD6AMvKtjw47gZIQ8zmLm_IsmJm6FaGTSf03hWRsGdUN0OfOXWpXfsw7NwObrpe2ULBS8KgOcWnoDuLWMQp18YXQSKtEanVlmeR1KYpUt2UMuImlJYCMjzRfsSzMEsdN114ALV8kttDYEGKUCagEi3jc9S7Ni2D24NGRRMJmW6AX8lSJSW_OLW5eFFLZmQSv0LxKxK_4g24WnzyOifX-GvyRaUghSZAcQ2dW5SgIko5P4jRuWrAdaU5Vdpi8fuKR_-afQ4b3cFjT_Xu-g_HsInASc4zeE6gNn2b2VMEJ1Nz5n7GTwia2NQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7alJZc0mbbkE36UKCnFrN-SFr7uCRZ0gdLDlnYm5AsGVqy3iX2QvLvMyPLu7S0hV58kGUdZvT45G_mG4CPY591IHVU5JmNeM7zSGcI5NJM6MomZTE2PkB2Jq_m_OtCLEKd06aPdu8pyS6ngVSa6na0ttVol_hGslR4DabsYqIyn8Iz3I0TmtbzdLKlEQiR9DVbJReipzX_NMSvB9MObf5GkPpzZ_oKDgJgZJPOw4fwxNUDeBnAIwtLsxnAcx_LWTavoZrc_2gelkuqlVWyrkwPW1VMM8TaeNFnDUkJOBZK9GC7byBvMVf7GCLHmo2hPzSsXdF7n1DCfqLrGRrK-jCvNzCfXt6cX0WhnEJUZmnS4lPQ_4tCFJZrE4u0lM4I67TjVS61SYTViZQ5N5l0RM7wUsc5r7LKep267Aj26lXtjoGlFmFNSulaJuY4B7QZG9wqNDqdBMn0EOLelqoMWuNU8uJW7VSSyfwKza_I_IoP4dP2k3UntPGvzme9gxQuB-I4dO3Qgork5eK0wIvWED73nlNhXTZ_H_Hkv3p_gBfXF1P1_cvs2ynsI4aSXTDPW9hr7zbuHeKU1rz3c_ERt6TdEA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Axisymmetric+motion+of+a+porous+sphere+through+a+spherical+envelope+subject+to+a+stress+jump+condition&rft.jtitle=Meccanica+%28Milan%29&rft.au=Saad%2C+E.+I.&rft.date=2016-04-01&rft.issn=0025-6455&rft.eissn=1572-9648&rft.volume=51&rft.issue=4&rft.spage=799&rft.epage=817&rft_id=info:doi/10.1007%2Fs11012-015-0239-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11012_015_0239_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-6455&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-6455&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-6455&client=summon |