Acceleration-feedback-based finite-time platoon control for interconnected vehicular system

The platoon control problem of interconnected vehicular systems is investigated in this paper studies. A finite-time adaptive sliding mode control (SMC) method based on acceleration feedback is developed to achieve platooning of interconnected vehicular systems subject to external disturbances and s...

Full description

Saved in:
Bibliographic Details
Published inComputers & electrical engineering Vol. 101; p. 108054
Main Authors Zheng, Xinquan, Luo, Xiaoyuan, Wang, Jianmei, Yan, Jing, Guan, Xinping
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2022
Subjects
Online AccessGet full text
ISSN0045-7906
DOI10.1016/j.compeleceng.2022.108054

Cover

Loading…
Abstract The platoon control problem of interconnected vehicular systems is investigated in this paper studies. A finite-time adaptive sliding mode control (SMC) method based on acceleration feedback is developed to achieve platooning of interconnected vehicular systems subject to external disturbances and string stability of the closed-loop platoon system is analyzed. The string stability of the closed-loop system is achieved by applying the constant spacing (CS) strategy in the proposed adaptive sliding mode controller under zero initial steady-state error conditions. A novel error definition method is proposed to transform the non-zero initial steady-state error into the zero initial steady-state error so that the proposed algorithm can be independent of the initial steady-state errors and reduce the large transient response caused by non-zero initial steady-state errors. The salient feature of the proposed SMC law is that it does not need to know the disturbance boundary in advance. Finally, simulations and experiments are conducted to demonstrate the advantages and effectiveness of the proposed algorithm. [Display omitted] •The string stability can be guaranteed in any initial state.•Acceleration feedback-based controller shows better transient performance.•The finite-time control method improves the closed-loop system convergence rate.•The proposed platoon control method provides guidance for practical systems.
AbstractList The platoon control problem of interconnected vehicular systems is investigated in this paper studies. A finite-time adaptive sliding mode control (SMC) method based on acceleration feedback is developed to achieve platooning of interconnected vehicular systems subject to external disturbances and string stability of the closed-loop platoon system is analyzed. The string stability of the closed-loop system is achieved by applying the constant spacing (CS) strategy in the proposed adaptive sliding mode controller under zero initial steady-state error conditions. A novel error definition method is proposed to transform the non-zero initial steady-state error into the zero initial steady-state error so that the proposed algorithm can be independent of the initial steady-state errors and reduce the large transient response caused by non-zero initial steady-state errors. The salient feature of the proposed SMC law is that it does not need to know the disturbance boundary in advance. Finally, simulations and experiments are conducted to demonstrate the advantages and effectiveness of the proposed algorithm. [Display omitted] •The string stability can be guaranteed in any initial state.•Acceleration feedback-based controller shows better transient performance.•The finite-time control method improves the closed-loop system convergence rate.•The proposed platoon control method provides guidance for practical systems.
ArticleNumber 108054
Author Zheng, Xinquan
Guan, Xinping
Wang, Jianmei
Luo, Xiaoyuan
Yan, Jing
Author_xml – sequence: 1
  givenname: Xinquan
  surname: Zheng
  fullname: Zheng, Xinquan
  organization: School of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China
– sequence: 2
  givenname: Xiaoyuan
  surname: Luo
  fullname: Luo, Xiaoyuan
  email: xyluo@ysu.edu.cn
  organization: School of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China
– sequence: 3
  givenname: Jianmei
  surname: Wang
  fullname: Wang, Jianmei
  organization: School of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China
– sequence: 4
  givenname: Jing
  surname: Yan
  fullname: Yan, Jing
  organization: School of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China
– sequence: 5
  givenname: Xinping
  surname: Guan
  fullname: Guan, Xinping
  organization: School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
BookMark eNqNkMtOAzEMRbMoEm3hH4YPmJLHdB4rVFW8pEpsYMUiyjgOpMwkVRIq9e9JKQvEipXtK99r-czIxHmHhFwxumCU1dfbBfhxhwMCurcFp5xnvaXLakKmlFbLsulofU5mMW5pnmvWTsnrCiA7gkrWu9Ig6l7BR9mriLow1tmEZbIjFrtBJe9dAd6l4IfC-FBYlzBkwSGkvL7HdwufgwpFPMSE4wU5M2qIePlT5-Tl7vZ5_VBunu4f16tNCYKzVPbHo61iQpi61x1vmkr3LHeig65lTX5Nq1p0Fe8b1gIsWxSKA3LNDdPaiDnpTrkQfIwBjdwFO6pwkIzKIxm5lb_IyCMZeSKTvTd_vGDTN4wUlB3-lbA-JWB-cW8xyAgWHaC2IXOR2tt_pHwBznWPDA
CitedBy_id crossref_primary_10_1016_j_ins_2024_121342
crossref_primary_10_1016_j_jfranklin_2023_09_042
crossref_primary_10_1016_j_compeleceng_2025_110066
crossref_primary_10_1002_acs_3796
crossref_primary_10_1007_s12239_025_00221_z
crossref_primary_10_3934_math_2024091
crossref_primary_10_1109_TFUZZ_2023_3271904
Cites_doi 10.1109/TITS.2014.2308535
10.1109/9.486636
10.1109/TAC.2008.925812
10.1109/TAC.2011.2159651
10.1109/CDC.2011.6160637
10.1109/TAC.2004.834433
10.1016/j.eswa.2009.06.055
10.3390/en13010282
10.1016/j.automatica.2016.01.047
10.1109/TITS.2015.2402153
10.1080/00423119408969077
10.1016/j.jfranklin.2013.02.015
10.1109/TVT.2012.2203362
10.1109/TITS.2014.2349498
10.1109/TIE.2018.2864708
10.1049/iet-cta.2010.0765
10.1109/TITS.2016.2519941
10.1109/TVT.2013.2253500
10.1109/TVT.2016.2556938
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compeleceng.2022.108054
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_compeleceng_2022_108054
S0045790622003135
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TAE
TN5
UHS
VOH
WH7
WUQ
XPP
ZMT
~G-
~S-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c321t-beedb8a133f6bd92774db1bd939c9817016da63942b718cc58e3a2ce2d2f1ddf3
IEDL.DBID AIKHN
ISSN 0045-7906
IngestDate Tue Jul 01 01:45:54 EDT 2025
Thu Apr 24 23:01:26 EDT 2025
Sun Apr 06 06:54:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Finite-time control
Interconnected vehicular system
Constant spacing strategy
String stability
Sliding mode control
Acceleration feedback
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-beedb8a133f6bd92774db1bd939c9817016da63942b718cc58e3a2ce2d2f1ddf3
ParticipantIDs crossref_primary_10_1016_j_compeleceng_2022_108054
crossref_citationtrail_10_1016_j_compeleceng_2022_108054
elsevier_sciencedirect_doi_10_1016_j_compeleceng_2022_108054
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2022
2022-07-00
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationTitle Computers & electrical engineering
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Dunbar, Caveney (b9) 2012; 56
Peng (b18) 2010; 37
Nguyen, Duong, Duong, Le (b22) 2020; 13
Ghasemi, Kazemi, Azadi (b7) 2013; 62
Kwon, Chwa (b11) 2014; 15
Bencatel R, Faied M, Sousa J, Girard AR. Formation control with collision avoidance. In: IEEE conf. decision control eur. control conf.. Orlando, FL, USA; 2011, p. 591–6.
Guo, Wang, Liao, Teo (b20) 2017; 66
Zheng, Li, Wang, Cao, Li (b10) 2016; 17
Rogge, Aeyels (b17) 2008; 53
Swaroop, Hedrick, Chien, Ioannou (b21) 1994; 23
Yue, Guo, Wang, Wang (b4) 2015; 88
Fax, Murray (b14) 2004; 49
Swaroop, Hedrick (b15) 2015; 7
Du, Yu, Chen, Li (b23) 2016; 68
Jin, Yang (b3) 2013; 350
Guo, Wang, Liao, Teo (b13) 2016; 17
Swaroop, Hedrick (b2) 1996; 41
Guo, Yue (b6) 2012; 61
di Bernardo, Falcone, Salvi, Santini (b8) 2016; 24
Morbidi, Colaneri, Stanger (b16) 2013
Li, Tang, peeta, Wang (b12) 2019; 66
Ploeg, Semsar-Kazerooni, Lijster, van de Wouw, Nijmeijer (b1) 2015; 16
Guo, Yue (b19) 2011; 5
Ploeg (10.1016/j.compeleceng.2022.108054_b1) 2015; 16
Swaroop (10.1016/j.compeleceng.2022.108054_b2) 1996; 41
Rogge (10.1016/j.compeleceng.2022.108054_b17) 2008; 53
Guo (10.1016/j.compeleceng.2022.108054_b20) 2017; 66
Guo (10.1016/j.compeleceng.2022.108054_b13) 2016; 17
Yue (10.1016/j.compeleceng.2022.108054_b4) 2015; 88
Du (10.1016/j.compeleceng.2022.108054_b23) 2016; 68
di Bernardo (10.1016/j.compeleceng.2022.108054_b8) 2016; 24
Swaroop (10.1016/j.compeleceng.2022.108054_b15) 2015; 7
Morbidi (10.1016/j.compeleceng.2022.108054_b16) 2013
Nguyen (10.1016/j.compeleceng.2022.108054_b22) 2020; 13
Swaroop (10.1016/j.compeleceng.2022.108054_b21) 1994; 23
Jin (10.1016/j.compeleceng.2022.108054_b3) 2013; 350
10.1016/j.compeleceng.2022.108054_b5
Zheng (10.1016/j.compeleceng.2022.108054_b10) 2016; 17
Kwon (10.1016/j.compeleceng.2022.108054_b11) 2014; 15
Guo (10.1016/j.compeleceng.2022.108054_b19) 2011; 5
Li (10.1016/j.compeleceng.2022.108054_b12) 2019; 66
Peng (10.1016/j.compeleceng.2022.108054_b18) 2010; 37
Dunbar (10.1016/j.compeleceng.2022.108054_b9) 2012; 56
Guo (10.1016/j.compeleceng.2022.108054_b6) 2012; 61
Fax (10.1016/j.compeleceng.2022.108054_b14) 2004; 49
Ghasemi (10.1016/j.compeleceng.2022.108054_b7) 2013; 62
References_xml – volume: 17
  start-page: 14
  year: 2016
  end-page: 26
  ident: b10
  article-title: Stability and scalability of homogeneous vehicular platoon: Study on the influence of information flow topologies
  publication-title: IEEE Trans Intell Transp Syst
– volume: 41
  start-page: 349
  year: 1996
  end-page: 357
  ident: b2
  article-title: String stability of interconnected systems
  publication-title: IEEE Trans Automat Control
– volume: 56
  start-page: 620
  year: 2012
  end-page: 633
  ident: b9
  article-title: Distributed receding horizon control of vehicle platoons: Stability and string stability
  publication-title: IEEE Trans Automat Control
– volume: 66
  start-page: 981
  year: 2017
  end-page: 991
  ident: b20
  article-title: Distributed adaptive sliding mode control strategy for vehicle-following systems with nonlinear acceleration uncertainties
  publication-title: IEEE Trans Veh Technol
– volume: 16
  start-page: 488
  year: 2015
  end-page: 497
  ident: b1
  article-title: Graceful degradation of cooperative adaptive cruise control
  publication-title: IEEE Trans Intell Transp Syst
– volume: 61
  start-page: 2901
  year: 2012
  end-page: 2912
  ident: b6
  article-title: Autonomous platoon control allowing range-limited sensors
  publication-title: IEEE Trans Veh Technol
– volume: 24
  start-page: 413
  year: 2016
  end-page: 427
  ident: b8
  article-title: Design, analysis and experimental validation of a distributed protocol for platooning in the presence of time-varying heterogeneous delays
  publication-title: IEEE Trans Control Syst Technol
– volume: 66
  start-page: 4618
  year: 2019
  end-page: 4628
  ident: b12
  article-title: Integral-sliding-mode braking control for a connected vehicle platoon: Theory and application
  publication-title: IEEE Trans Ind Electron
– volume: 13
  start-page: 282
  year: 2020
  ident: b22
  article-title: Chattering-free single-phase robustness sliding mode controller for mismatched uncertain interconnected systems with unknown time-varying delays
  publication-title: Energies
– volume: 37
  start-page: 2016
  year: 2010
  end-page: 2027
  ident: b18
  article-title: Adaptive intelligent backstepping longitudinal control of vehicleplatoons using output recurrent cerebellar model articulation controller
  publication-title: Expert Syst Appl
– volume: 15
  start-page: 2040
  year: 2014
  end-page: 2048
  ident: b11
  article-title: Adaptive bidirectional platoon control usinga coupled sliding mode control method
  publication-title: IEEE Trans Intell Transp Syst
– start-page: 3494
  year: 2013
  end-page: 3499
  ident: b16
  article-title: Decentralized optimal control of a car platoon with guaranteed string stability
  publication-title: European control conference
– volume: 5
  start-page: 1766
  year: 2011
  end-page: 1781
  ident: b19
  article-title: Hierarchical platoon control with heterogeneous information feedback
  publication-title: IET Control Theory Appl
– volume: 53
  start-page: 1370
  year: 2008
  end-page: 1377
  ident: b17
  article-title: Vehicle platoons through ring coupling
  publication-title: IEEE Trans Automat Control
– volume: 88
  start-page: 1037
  year: 2015
  end-page: 1050
  ident: b4
  article-title: Nonlinear platoon control of arduino cars with range-limited sensors
  publication-title: Internat J Control
– volume: 7
  start-page: 58
  year: 2015
  end-page: 68
  ident: b15
  article-title: Constant spacing strategies for platooning in automated highway systems
  publication-title: IEEE Intell Transp Syst
– volume: 49
  start-page: 1465
  year: 2004
  end-page: 1476
  ident: b14
  article-title: Information flow and cooperative control of vehicle formations
  publication-title: IEEE Trans Autom Control
– volume: 62
  start-page: 4299
  year: 2013
  end-page: 4308
  ident: b7
  article-title: Stable decentralized control of a platoon of vehicles with heterogeneous information feedback
  publication-title: IEEE Trans Veh Technol
– volume: 17
  start-page: 2419
  year: 2016
  end-page: 2429
  ident: b13
  article-title: Distributed adaptive integrated sliding mode controller synthesis for string stability of vehicle platoons
  publication-title: IEEE Trans Intell Transp Syst
– volume: 68
  start-page: 87
  year: 2016
  end-page: 91
  ident: b23
  article-title: Chattering-free discrete-time sliding mode control
  publication-title: Automatica
– volume: 350
  start-page: 1206
  year: 2013
  end-page: 1220
  ident: b3
  article-title: Adaptive sliding mode fault-tolerant control for nonlinearly chaotic systems against network faults and time-delays
  publication-title: J Franklin Inst
– volume: 23
  start-page: 597
  year: 1994
  end-page: 625
  ident: b21
  article-title: A comparison of spacing and headway control laws for automatically controlled vehicles
  publication-title: Veh Syst Dyn
– reference: Bencatel R, Faied M, Sousa J, Girard AR. Formation control with collision avoidance. In: IEEE conf. decision control eur. control conf.. Orlando, FL, USA; 2011, p. 591–6.
– volume: 15
  start-page: 2040
  issue: 5
  year: 2014
  ident: 10.1016/j.compeleceng.2022.108054_b11
  article-title: Adaptive bidirectional platoon control usinga coupled sliding mode control method
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2014.2308535
– volume: 41
  start-page: 349
  issue: 3
  year: 1996
  ident: 10.1016/j.compeleceng.2022.108054_b2
  article-title: String stability of interconnected systems
  publication-title: IEEE Trans Automat Control
  doi: 10.1109/9.486636
– volume: 53
  start-page: 1370
  issue: 6
  year: 2008
  ident: 10.1016/j.compeleceng.2022.108054_b17
  article-title: Vehicle platoons through ring coupling
  publication-title: IEEE Trans Automat Control
  doi: 10.1109/TAC.2008.925812
– volume: 56
  start-page: 620
  issue: 3
  year: 2012
  ident: 10.1016/j.compeleceng.2022.108054_b9
  article-title: Distributed receding horizon control of vehicle platoons: Stability and string stability
  publication-title: IEEE Trans Automat Control
  doi: 10.1109/TAC.2011.2159651
– volume: 24
  start-page: 413
  issue: 2
  year: 2016
  ident: 10.1016/j.compeleceng.2022.108054_b8
  article-title: Design, analysis and experimental validation of a distributed protocol for platooning in the presence of time-varying heterogeneous delays
  publication-title: IEEE Trans Control Syst Technol
– start-page: 3494
  year: 2013
  ident: 10.1016/j.compeleceng.2022.108054_b16
  article-title: Decentralized optimal control of a car platoon with guaranteed string stability
– ident: 10.1016/j.compeleceng.2022.108054_b5
  doi: 10.1109/CDC.2011.6160637
– volume: 88
  start-page: 1037
  issue: 5
  year: 2015
  ident: 10.1016/j.compeleceng.2022.108054_b4
  article-title: Nonlinear platoon control of arduino cars with range-limited sensors
  publication-title: Internat J Control
– volume: 49
  start-page: 1465
  issue: 9
  year: 2004
  ident: 10.1016/j.compeleceng.2022.108054_b14
  article-title: Information flow and cooperative control of vehicle formations
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2004.834433
– volume: 37
  start-page: 2016
  issue: 3
  year: 2010
  ident: 10.1016/j.compeleceng.2022.108054_b18
  article-title: Adaptive intelligent backstepping longitudinal control of vehicleplatoons using output recurrent cerebellar model articulation controller
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.06.055
– volume: 13
  start-page: 282
  issue: 1
  year: 2020
  ident: 10.1016/j.compeleceng.2022.108054_b22
  article-title: Chattering-free single-phase robustness sliding mode controller for mismatched uncertain interconnected systems with unknown time-varying delays
  publication-title: Energies
  doi: 10.3390/en13010282
– volume: 68
  start-page: 87
  year: 2016
  ident: 10.1016/j.compeleceng.2022.108054_b23
  article-title: Chattering-free discrete-time sliding mode control
  publication-title: Automatica
  doi: 10.1016/j.automatica.2016.01.047
– volume: 17
  start-page: 14
  issue: 1
  year: 2016
  ident: 10.1016/j.compeleceng.2022.108054_b10
  article-title: Stability and scalability of homogeneous vehicular platoon: Study on the influence of information flow topologies
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2015.2402153
– volume: 23
  start-page: 597
  issue: 1
  year: 1994
  ident: 10.1016/j.compeleceng.2022.108054_b21
  article-title: A comparison of spacing and headway control laws for automatically controlled vehicles
  publication-title: Veh Syst Dyn
  doi: 10.1080/00423119408969077
– volume: 350
  start-page: 1206
  issue: 5
  year: 2013
  ident: 10.1016/j.compeleceng.2022.108054_b3
  article-title: Adaptive sliding mode fault-tolerant control for nonlinearly chaotic systems against network faults and time-delays
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2013.02.015
– volume: 61
  start-page: 2901
  issue: 7
  year: 2012
  ident: 10.1016/j.compeleceng.2022.108054_b6
  article-title: Autonomous platoon control allowing range-limited sensors
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2012.2203362
– volume: 16
  start-page: 488
  issue: 1
  year: 2015
  ident: 10.1016/j.compeleceng.2022.108054_b1
  article-title: Graceful degradation of cooperative adaptive cruise control
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2014.2349498
– volume: 66
  start-page: 4618
  issue: 6
  year: 2019
  ident: 10.1016/j.compeleceng.2022.108054_b12
  article-title: Integral-sliding-mode braking control for a connected vehicle platoon: Theory and application
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2018.2864708
– volume: 5
  start-page: 1766
  issue: 15
  year: 2011
  ident: 10.1016/j.compeleceng.2022.108054_b19
  article-title: Hierarchical platoon control with heterogeneous information feedback
  publication-title: IET Control Theory Appl
  doi: 10.1049/iet-cta.2010.0765
– volume: 7
  start-page: 58
  issue: 1
  year: 2015
  ident: 10.1016/j.compeleceng.2022.108054_b15
  article-title: Constant spacing strategies for platooning in automated highway systems
  publication-title: IEEE Intell Transp Syst
– volume: 17
  start-page: 2419
  issue: 9
  year: 2016
  ident: 10.1016/j.compeleceng.2022.108054_b13
  article-title: Distributed adaptive integrated sliding mode controller synthesis for string stability of vehicle platoons
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2016.2519941
– volume: 62
  start-page: 4299
  issue: 9
  year: 2013
  ident: 10.1016/j.compeleceng.2022.108054_b7
  article-title: Stable decentralized control of a platoon of vehicles with heterogeneous information feedback
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2013.2253500
– volume: 66
  start-page: 981
  issue: 2
  year: 2017
  ident: 10.1016/j.compeleceng.2022.108054_b20
  article-title: Distributed adaptive sliding mode control strategy for vehicle-following systems with nonlinear acceleration uncertainties
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2016.2556938
SSID ssj0004618
Score 2.3229418
Snippet The platoon control problem of interconnected vehicular systems is investigated in this paper studies. A finite-time adaptive sliding mode control (SMC) method...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108054
SubjectTerms Acceleration feedback
Constant spacing strategy
Finite-time control
Interconnected vehicular system
Sliding mode control
String stability
Title Acceleration-feedback-based finite-time platoon control for interconnected vehicular system
URI https://dx.doi.org/10.1016/j.compeleceng.2022.108054
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB1qC6IH8RPrR1nBa2yz2WwT8FKKpSr2ZKHgISS7G42WtJTq0d_uTLLVCIKCtyQwmzC7zLwJb94AnCvtBdJLlRMq-lsVGx_joB84HaNdGWDKiA11I9-N5HAsbib-pAb9VS8M0Spt7C9jehGt7ZO29WZ7nmXU4yv8Lsns8kKA0F-DBvdC6deh0bu-HY4q7ZFuGZAFqTN25DqcfdG8iLlNE2dM_ojVIucF6c4XP6epSuoZbMOWxYysV37WDtRMvgubFSXBPXjoKYXrl9vppJiSkli9OJSjNEszApYOjZFn8ylW2bOcWYo6Q8zKSDJioYjxohB_sjfzlBXsVFbKPO_DeHB13x86dm6CozzuLp2EXhLEWH2mMtEhR4SnExevvFCFJMjnSh0jMhE8wcyklB8YL-bKcM1TV-vUO4B6PsvNIbBuKLWreJeAluCxRDApA2EQkyVYuImwCcHKTZGyouI022Iardhjz1HFwxF5OCo93AT-aTovlTX-YnS52ovo2zGJMAP8bn70P_Nj2KC7kq17AvXl4tWcIiZZJi1Yu3h3W_bkfQDIF-NQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qBR8H8Yn1uYLX2Gaz2SbgpRRL1banFgoeQrK70WhJS6ke_e3OJKlGEBS8hYTZhNll5pvwzTcAl0o7nnRiZfmK_laFxsU46HpWw2hbepgyQkPdyP2B7I7E3dgdV6C97IUhWmUR-_OYnkXr4k698GZ9liTU4yvcJsns8kyA0F2BVeE6TeL1Xb3bpeZIOw_HgrQZG3INLr5IXsTbpnkzJn3EWpHzjHLnip-TVCnxdLZhq0CMrJV_1A5UTLoLmyUdwT14aCmF6-ebacWYkKJQvViUoTSLE4KVFg2RZ7MJ1tjTlBUEdYaIlZFgxFwR30Uh-mRv5inJuKksF3neh1HnZtjuWsXUBEs53F5YEb3EC7H2jGWkfY74Tkc2Xjm-8kmOz5Y6RFwieIR5SSnXM07IleGax7bWsXMA1XSamkNgTV9qW_EmwSzBQ4lQUnrCICKLsGwTfg28pZsCVUiK02SLSbDkjj0HJQ8H5OEg93AN-KfpLNfV-IvR9XIvgm-HJMD4_7v50f_Mz2G9O-z3gt7t4P4YNuhJzts9gepi_mpOEZ0sorPs9H0AtpjkGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acceleration-feedback-based+finite-time+platoon+control+for+interconnected+vehicular+system&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Zheng%2C+Xinquan&rft.au=Luo%2C+Xiaoyuan&rft.au=Wang%2C+Jianmei&rft.au=Yan%2C+Jing&rft.date=2022-07-01&rft.issn=0045-7906&rft.volume=101&rft.spage=108054&rft_id=info:doi/10.1016%2Fj.compeleceng.2022.108054&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compeleceng_2022_108054
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon