Acceleration-feedback-based finite-time platoon control for interconnected vehicular system
The platoon control problem of interconnected vehicular systems is investigated in this paper studies. A finite-time adaptive sliding mode control (SMC) method based on acceleration feedback is developed to achieve platooning of interconnected vehicular systems subject to external disturbances and s...
Saved in:
Published in | Computers & electrical engineering Vol. 101; p. 108054 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0045-7906 |
DOI | 10.1016/j.compeleceng.2022.108054 |
Cover
Loading…
Abstract | The platoon control problem of interconnected vehicular systems is investigated in this paper studies. A finite-time adaptive sliding mode control (SMC) method based on acceleration feedback is developed to achieve platooning of interconnected vehicular systems subject to external disturbances and string stability of the closed-loop platoon system is analyzed. The string stability of the closed-loop system is achieved by applying the constant spacing (CS) strategy in the proposed adaptive sliding mode controller under zero initial steady-state error conditions. A novel error definition method is proposed to transform the non-zero initial steady-state error into the zero initial steady-state error so that the proposed algorithm can be independent of the initial steady-state errors and reduce the large transient response caused by non-zero initial steady-state errors. The salient feature of the proposed SMC law is that it does not need to know the disturbance boundary in advance. Finally, simulations and experiments are conducted to demonstrate the advantages and effectiveness of the proposed algorithm.
[Display omitted]
•The string stability can be guaranteed in any initial state.•Acceleration feedback-based controller shows better transient performance.•The finite-time control method improves the closed-loop system convergence rate.•The proposed platoon control method provides guidance for practical systems. |
---|---|
AbstractList | The platoon control problem of interconnected vehicular systems is investigated in this paper studies. A finite-time adaptive sliding mode control (SMC) method based on acceleration feedback is developed to achieve platooning of interconnected vehicular systems subject to external disturbances and string stability of the closed-loop platoon system is analyzed. The string stability of the closed-loop system is achieved by applying the constant spacing (CS) strategy in the proposed adaptive sliding mode controller under zero initial steady-state error conditions. A novel error definition method is proposed to transform the non-zero initial steady-state error into the zero initial steady-state error so that the proposed algorithm can be independent of the initial steady-state errors and reduce the large transient response caused by non-zero initial steady-state errors. The salient feature of the proposed SMC law is that it does not need to know the disturbance boundary in advance. Finally, simulations and experiments are conducted to demonstrate the advantages and effectiveness of the proposed algorithm.
[Display omitted]
•The string stability can be guaranteed in any initial state.•Acceleration feedback-based controller shows better transient performance.•The finite-time control method improves the closed-loop system convergence rate.•The proposed platoon control method provides guidance for practical systems. |
ArticleNumber | 108054 |
Author | Zheng, Xinquan Guan, Xinping Wang, Jianmei Luo, Xiaoyuan Yan, Jing |
Author_xml | – sequence: 1 givenname: Xinquan surname: Zheng fullname: Zheng, Xinquan organization: School of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China – sequence: 2 givenname: Xiaoyuan surname: Luo fullname: Luo, Xiaoyuan email: xyluo@ysu.edu.cn organization: School of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China – sequence: 3 givenname: Jianmei surname: Wang fullname: Wang, Jianmei organization: School of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China – sequence: 4 givenname: Jing surname: Yan fullname: Yan, Jing organization: School of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China – sequence: 5 givenname: Xinping surname: Guan fullname: Guan, Xinping organization: School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China |
BookMark | eNqNkMtOAzEMRbMoEm3hH4YPmJLHdB4rVFW8pEpsYMUiyjgOpMwkVRIq9e9JKQvEipXtK99r-czIxHmHhFwxumCU1dfbBfhxhwMCurcFp5xnvaXLakKmlFbLsulofU5mMW5pnmvWTsnrCiA7gkrWu9Ig6l7BR9mriLow1tmEZbIjFrtBJe9dAd6l4IfC-FBYlzBkwSGkvL7HdwufgwpFPMSE4wU5M2qIePlT5-Tl7vZ5_VBunu4f16tNCYKzVPbHo61iQpi61x1vmkr3LHeig65lTX5Nq1p0Fe8b1gIsWxSKA3LNDdPaiDnpTrkQfIwBjdwFO6pwkIzKIxm5lb_IyCMZeSKTvTd_vGDTN4wUlB3-lbA-JWB-cW8xyAgWHaC2IXOR2tt_pHwBznWPDA |
CitedBy_id | crossref_primary_10_1016_j_ins_2024_121342 crossref_primary_10_1016_j_jfranklin_2023_09_042 crossref_primary_10_1016_j_compeleceng_2025_110066 crossref_primary_10_1002_acs_3796 crossref_primary_10_1007_s12239_025_00221_z crossref_primary_10_3934_math_2024091 crossref_primary_10_1109_TFUZZ_2023_3271904 |
Cites_doi | 10.1109/TITS.2014.2308535 10.1109/9.486636 10.1109/TAC.2008.925812 10.1109/TAC.2011.2159651 10.1109/CDC.2011.6160637 10.1109/TAC.2004.834433 10.1016/j.eswa.2009.06.055 10.3390/en13010282 10.1016/j.automatica.2016.01.047 10.1109/TITS.2015.2402153 10.1080/00423119408969077 10.1016/j.jfranklin.2013.02.015 10.1109/TVT.2012.2203362 10.1109/TITS.2014.2349498 10.1109/TIE.2018.2864708 10.1049/iet-cta.2010.0765 10.1109/TITS.2016.2519941 10.1109/TVT.2013.2253500 10.1109/TVT.2016.2556938 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.compeleceng.2022.108054 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_compeleceng_2022_108054 S0045790622003135 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN ABBOA ABEFU ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SSH SST SSV SSZ T5K TAE TN5 UHS VOH WH7 WUQ XPP ZMT ~G- ~S- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c321t-beedb8a133f6bd92774db1bd939c9817016da63942b718cc58e3a2ce2d2f1ddf3 |
IEDL.DBID | AIKHN |
ISSN | 0045-7906 |
IngestDate | Tue Jul 01 01:45:54 EDT 2025 Thu Apr 24 23:01:26 EDT 2025 Sun Apr 06 06:54:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Finite-time control Interconnected vehicular system Constant spacing strategy String stability Sliding mode control Acceleration feedback |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c321t-beedb8a133f6bd92774db1bd939c9817016da63942b718cc58e3a2ce2d2f1ddf3 |
ParticipantIDs | crossref_primary_10_1016_j_compeleceng_2022_108054 crossref_citationtrail_10_1016_j_compeleceng_2022_108054 elsevier_sciencedirect_doi_10_1016_j_compeleceng_2022_108054 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2022 2022-07-00 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
PublicationDecade | 2020 |
PublicationTitle | Computers & electrical engineering |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Dunbar, Caveney (b9) 2012; 56 Peng (b18) 2010; 37 Nguyen, Duong, Duong, Le (b22) 2020; 13 Ghasemi, Kazemi, Azadi (b7) 2013; 62 Kwon, Chwa (b11) 2014; 15 Bencatel R, Faied M, Sousa J, Girard AR. Formation control with collision avoidance. In: IEEE conf. decision control eur. control conf.. Orlando, FL, USA; 2011, p. 591–6. Guo, Wang, Liao, Teo (b20) 2017; 66 Zheng, Li, Wang, Cao, Li (b10) 2016; 17 Rogge, Aeyels (b17) 2008; 53 Swaroop, Hedrick, Chien, Ioannou (b21) 1994; 23 Yue, Guo, Wang, Wang (b4) 2015; 88 Fax, Murray (b14) 2004; 49 Swaroop, Hedrick (b15) 2015; 7 Du, Yu, Chen, Li (b23) 2016; 68 Jin, Yang (b3) 2013; 350 Guo, Wang, Liao, Teo (b13) 2016; 17 Swaroop, Hedrick (b2) 1996; 41 Guo, Yue (b6) 2012; 61 di Bernardo, Falcone, Salvi, Santini (b8) 2016; 24 Morbidi, Colaneri, Stanger (b16) 2013 Li, Tang, peeta, Wang (b12) 2019; 66 Ploeg, Semsar-Kazerooni, Lijster, van de Wouw, Nijmeijer (b1) 2015; 16 Guo, Yue (b19) 2011; 5 Ploeg (10.1016/j.compeleceng.2022.108054_b1) 2015; 16 Swaroop (10.1016/j.compeleceng.2022.108054_b2) 1996; 41 Rogge (10.1016/j.compeleceng.2022.108054_b17) 2008; 53 Guo (10.1016/j.compeleceng.2022.108054_b20) 2017; 66 Guo (10.1016/j.compeleceng.2022.108054_b13) 2016; 17 Yue (10.1016/j.compeleceng.2022.108054_b4) 2015; 88 Du (10.1016/j.compeleceng.2022.108054_b23) 2016; 68 di Bernardo (10.1016/j.compeleceng.2022.108054_b8) 2016; 24 Swaroop (10.1016/j.compeleceng.2022.108054_b15) 2015; 7 Morbidi (10.1016/j.compeleceng.2022.108054_b16) 2013 Nguyen (10.1016/j.compeleceng.2022.108054_b22) 2020; 13 Swaroop (10.1016/j.compeleceng.2022.108054_b21) 1994; 23 Jin (10.1016/j.compeleceng.2022.108054_b3) 2013; 350 10.1016/j.compeleceng.2022.108054_b5 Zheng (10.1016/j.compeleceng.2022.108054_b10) 2016; 17 Kwon (10.1016/j.compeleceng.2022.108054_b11) 2014; 15 Guo (10.1016/j.compeleceng.2022.108054_b19) 2011; 5 Li (10.1016/j.compeleceng.2022.108054_b12) 2019; 66 Peng (10.1016/j.compeleceng.2022.108054_b18) 2010; 37 Dunbar (10.1016/j.compeleceng.2022.108054_b9) 2012; 56 Guo (10.1016/j.compeleceng.2022.108054_b6) 2012; 61 Fax (10.1016/j.compeleceng.2022.108054_b14) 2004; 49 Ghasemi (10.1016/j.compeleceng.2022.108054_b7) 2013; 62 |
References_xml | – volume: 17 start-page: 14 year: 2016 end-page: 26 ident: b10 article-title: Stability and scalability of homogeneous vehicular platoon: Study on the influence of information flow topologies publication-title: IEEE Trans Intell Transp Syst – volume: 41 start-page: 349 year: 1996 end-page: 357 ident: b2 article-title: String stability of interconnected systems publication-title: IEEE Trans Automat Control – volume: 56 start-page: 620 year: 2012 end-page: 633 ident: b9 article-title: Distributed receding horizon control of vehicle platoons: Stability and string stability publication-title: IEEE Trans Automat Control – volume: 66 start-page: 981 year: 2017 end-page: 991 ident: b20 article-title: Distributed adaptive sliding mode control strategy for vehicle-following systems with nonlinear acceleration uncertainties publication-title: IEEE Trans Veh Technol – volume: 16 start-page: 488 year: 2015 end-page: 497 ident: b1 article-title: Graceful degradation of cooperative adaptive cruise control publication-title: IEEE Trans Intell Transp Syst – volume: 61 start-page: 2901 year: 2012 end-page: 2912 ident: b6 article-title: Autonomous platoon control allowing range-limited sensors publication-title: IEEE Trans Veh Technol – volume: 24 start-page: 413 year: 2016 end-page: 427 ident: b8 article-title: Design, analysis and experimental validation of a distributed protocol for platooning in the presence of time-varying heterogeneous delays publication-title: IEEE Trans Control Syst Technol – volume: 66 start-page: 4618 year: 2019 end-page: 4628 ident: b12 article-title: Integral-sliding-mode braking control for a connected vehicle platoon: Theory and application publication-title: IEEE Trans Ind Electron – volume: 13 start-page: 282 year: 2020 ident: b22 article-title: Chattering-free single-phase robustness sliding mode controller for mismatched uncertain interconnected systems with unknown time-varying delays publication-title: Energies – volume: 37 start-page: 2016 year: 2010 end-page: 2027 ident: b18 article-title: Adaptive intelligent backstepping longitudinal control of vehicleplatoons using output recurrent cerebellar model articulation controller publication-title: Expert Syst Appl – volume: 15 start-page: 2040 year: 2014 end-page: 2048 ident: b11 article-title: Adaptive bidirectional platoon control usinga coupled sliding mode control method publication-title: IEEE Trans Intell Transp Syst – start-page: 3494 year: 2013 end-page: 3499 ident: b16 article-title: Decentralized optimal control of a car platoon with guaranteed string stability publication-title: European control conference – volume: 5 start-page: 1766 year: 2011 end-page: 1781 ident: b19 article-title: Hierarchical platoon control with heterogeneous information feedback publication-title: IET Control Theory Appl – volume: 53 start-page: 1370 year: 2008 end-page: 1377 ident: b17 article-title: Vehicle platoons through ring coupling publication-title: IEEE Trans Automat Control – volume: 88 start-page: 1037 year: 2015 end-page: 1050 ident: b4 article-title: Nonlinear platoon control of arduino cars with range-limited sensors publication-title: Internat J Control – volume: 7 start-page: 58 year: 2015 end-page: 68 ident: b15 article-title: Constant spacing strategies for platooning in automated highway systems publication-title: IEEE Intell Transp Syst – volume: 49 start-page: 1465 year: 2004 end-page: 1476 ident: b14 article-title: Information flow and cooperative control of vehicle formations publication-title: IEEE Trans Autom Control – volume: 62 start-page: 4299 year: 2013 end-page: 4308 ident: b7 article-title: Stable decentralized control of a platoon of vehicles with heterogeneous information feedback publication-title: IEEE Trans Veh Technol – volume: 17 start-page: 2419 year: 2016 end-page: 2429 ident: b13 article-title: Distributed adaptive integrated sliding mode controller synthesis for string stability of vehicle platoons publication-title: IEEE Trans Intell Transp Syst – volume: 68 start-page: 87 year: 2016 end-page: 91 ident: b23 article-title: Chattering-free discrete-time sliding mode control publication-title: Automatica – volume: 350 start-page: 1206 year: 2013 end-page: 1220 ident: b3 article-title: Adaptive sliding mode fault-tolerant control for nonlinearly chaotic systems against network faults and time-delays publication-title: J Franklin Inst – volume: 23 start-page: 597 year: 1994 end-page: 625 ident: b21 article-title: A comparison of spacing and headway control laws for automatically controlled vehicles publication-title: Veh Syst Dyn – reference: Bencatel R, Faied M, Sousa J, Girard AR. Formation control with collision avoidance. In: IEEE conf. decision control eur. control conf.. Orlando, FL, USA; 2011, p. 591–6. – volume: 15 start-page: 2040 issue: 5 year: 2014 ident: 10.1016/j.compeleceng.2022.108054_b11 article-title: Adaptive bidirectional platoon control usinga coupled sliding mode control method publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2014.2308535 – volume: 41 start-page: 349 issue: 3 year: 1996 ident: 10.1016/j.compeleceng.2022.108054_b2 article-title: String stability of interconnected systems publication-title: IEEE Trans Automat Control doi: 10.1109/9.486636 – volume: 53 start-page: 1370 issue: 6 year: 2008 ident: 10.1016/j.compeleceng.2022.108054_b17 article-title: Vehicle platoons through ring coupling publication-title: IEEE Trans Automat Control doi: 10.1109/TAC.2008.925812 – volume: 56 start-page: 620 issue: 3 year: 2012 ident: 10.1016/j.compeleceng.2022.108054_b9 article-title: Distributed receding horizon control of vehicle platoons: Stability and string stability publication-title: IEEE Trans Automat Control doi: 10.1109/TAC.2011.2159651 – volume: 24 start-page: 413 issue: 2 year: 2016 ident: 10.1016/j.compeleceng.2022.108054_b8 article-title: Design, analysis and experimental validation of a distributed protocol for platooning in the presence of time-varying heterogeneous delays publication-title: IEEE Trans Control Syst Technol – start-page: 3494 year: 2013 ident: 10.1016/j.compeleceng.2022.108054_b16 article-title: Decentralized optimal control of a car platoon with guaranteed string stability – ident: 10.1016/j.compeleceng.2022.108054_b5 doi: 10.1109/CDC.2011.6160637 – volume: 88 start-page: 1037 issue: 5 year: 2015 ident: 10.1016/j.compeleceng.2022.108054_b4 article-title: Nonlinear platoon control of arduino cars with range-limited sensors publication-title: Internat J Control – volume: 49 start-page: 1465 issue: 9 year: 2004 ident: 10.1016/j.compeleceng.2022.108054_b14 article-title: Information flow and cooperative control of vehicle formations publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2004.834433 – volume: 37 start-page: 2016 issue: 3 year: 2010 ident: 10.1016/j.compeleceng.2022.108054_b18 article-title: Adaptive intelligent backstepping longitudinal control of vehicleplatoons using output recurrent cerebellar model articulation controller publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.06.055 – volume: 13 start-page: 282 issue: 1 year: 2020 ident: 10.1016/j.compeleceng.2022.108054_b22 article-title: Chattering-free single-phase robustness sliding mode controller for mismatched uncertain interconnected systems with unknown time-varying delays publication-title: Energies doi: 10.3390/en13010282 – volume: 68 start-page: 87 year: 2016 ident: 10.1016/j.compeleceng.2022.108054_b23 article-title: Chattering-free discrete-time sliding mode control publication-title: Automatica doi: 10.1016/j.automatica.2016.01.047 – volume: 17 start-page: 14 issue: 1 year: 2016 ident: 10.1016/j.compeleceng.2022.108054_b10 article-title: Stability and scalability of homogeneous vehicular platoon: Study on the influence of information flow topologies publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2015.2402153 – volume: 23 start-page: 597 issue: 1 year: 1994 ident: 10.1016/j.compeleceng.2022.108054_b21 article-title: A comparison of spacing and headway control laws for automatically controlled vehicles publication-title: Veh Syst Dyn doi: 10.1080/00423119408969077 – volume: 350 start-page: 1206 issue: 5 year: 2013 ident: 10.1016/j.compeleceng.2022.108054_b3 article-title: Adaptive sliding mode fault-tolerant control for nonlinearly chaotic systems against network faults and time-delays publication-title: J Franklin Inst doi: 10.1016/j.jfranklin.2013.02.015 – volume: 61 start-page: 2901 issue: 7 year: 2012 ident: 10.1016/j.compeleceng.2022.108054_b6 article-title: Autonomous platoon control allowing range-limited sensors publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2012.2203362 – volume: 16 start-page: 488 issue: 1 year: 2015 ident: 10.1016/j.compeleceng.2022.108054_b1 article-title: Graceful degradation of cooperative adaptive cruise control publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2014.2349498 – volume: 66 start-page: 4618 issue: 6 year: 2019 ident: 10.1016/j.compeleceng.2022.108054_b12 article-title: Integral-sliding-mode braking control for a connected vehicle platoon: Theory and application publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2018.2864708 – volume: 5 start-page: 1766 issue: 15 year: 2011 ident: 10.1016/j.compeleceng.2022.108054_b19 article-title: Hierarchical platoon control with heterogeneous information feedback publication-title: IET Control Theory Appl doi: 10.1049/iet-cta.2010.0765 – volume: 7 start-page: 58 issue: 1 year: 2015 ident: 10.1016/j.compeleceng.2022.108054_b15 article-title: Constant spacing strategies for platooning in automated highway systems publication-title: IEEE Intell Transp Syst – volume: 17 start-page: 2419 issue: 9 year: 2016 ident: 10.1016/j.compeleceng.2022.108054_b13 article-title: Distributed adaptive integrated sliding mode controller synthesis for string stability of vehicle platoons publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2016.2519941 – volume: 62 start-page: 4299 issue: 9 year: 2013 ident: 10.1016/j.compeleceng.2022.108054_b7 article-title: Stable decentralized control of a platoon of vehicles with heterogeneous information feedback publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2013.2253500 – volume: 66 start-page: 981 issue: 2 year: 2017 ident: 10.1016/j.compeleceng.2022.108054_b20 article-title: Distributed adaptive sliding mode control strategy for vehicle-following systems with nonlinear acceleration uncertainties publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2016.2556938 |
SSID | ssj0004618 |
Score | 2.3229418 |
Snippet | The platoon control problem of interconnected vehicular systems is investigated in this paper studies. A finite-time adaptive sliding mode control (SMC) method... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 108054 |
SubjectTerms | Acceleration feedback Constant spacing strategy Finite-time control Interconnected vehicular system Sliding mode control String stability |
Title | Acceleration-feedback-based finite-time platoon control for interconnected vehicular system |
URI | https://dx.doi.org/10.1016/j.compeleceng.2022.108054 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB1qC6IH8RPrR1nBa2yz2WwT8FKKpSr2ZKHgISS7G42WtJTq0d_uTLLVCIKCtyQwmzC7zLwJb94AnCvtBdJLlRMq-lsVGx_joB84HaNdGWDKiA11I9-N5HAsbib-pAb9VS8M0Spt7C9jehGt7ZO29WZ7nmXU4yv8Lsns8kKA0F-DBvdC6deh0bu-HY4q7ZFuGZAFqTN25DqcfdG8iLlNE2dM_ojVIucF6c4XP6epSuoZbMOWxYysV37WDtRMvgubFSXBPXjoKYXrl9vppJiSkli9OJSjNEszApYOjZFn8ylW2bOcWYo6Q8zKSDJioYjxohB_sjfzlBXsVFbKPO_DeHB13x86dm6CozzuLp2EXhLEWH2mMtEhR4SnExevvFCFJMjnSh0jMhE8wcyklB8YL-bKcM1TV-vUO4B6PsvNIbBuKLWreJeAluCxRDApA2EQkyVYuImwCcHKTZGyouI022Iardhjz1HFwxF5OCo93AT-aTovlTX-YnS52ovo2zGJMAP8bn70P_Nj2KC7kq17AvXl4tWcIiZZJi1Yu3h3W_bkfQDIF-NQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qBR8H8Yn1uYLX2Gaz2SbgpRRL1banFgoeQrK70WhJS6ke_e3OJKlGEBS8hYTZhNll5pvwzTcAl0o7nnRiZfmK_laFxsU46HpWw2hbepgyQkPdyP2B7I7E3dgdV6C97IUhWmUR-_OYnkXr4k698GZ9liTU4yvcJsns8kyA0F2BVeE6TeL1Xb3bpeZIOw_HgrQZG3INLr5IXsTbpnkzJn3EWpHzjHLnip-TVCnxdLZhq0CMrJV_1A5UTLoLmyUdwT14aCmF6-ebacWYkKJQvViUoTSLE4KVFg2RZ7MJ1tjTlBUEdYaIlZFgxFwR30Uh-mRv5inJuKksF3neh1HnZtjuWsXUBEs53F5YEb3EC7H2jGWkfY74Tkc2Xjm-8kmOz5Y6RFwieIR5SSnXM07IleGax7bWsXMA1XSamkNgTV9qW_EmwSzBQ4lQUnrCICKLsGwTfg28pZsCVUiK02SLSbDkjj0HJQ8H5OEg93AN-KfpLNfV-IvR9XIvgm-HJMD4_7v50f_Mz2G9O-z3gt7t4P4YNuhJzts9gepi_mpOEZ0sorPs9H0AtpjkGw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acceleration-feedback-based+finite-time+platoon+control+for+interconnected+vehicular+system&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Zheng%2C+Xinquan&rft.au=Luo%2C+Xiaoyuan&rft.au=Wang%2C+Jianmei&rft.au=Yan%2C+Jing&rft.date=2022-07-01&rft.issn=0045-7906&rft.volume=101&rft.spage=108054&rft_id=info:doi/10.1016%2Fj.compeleceng.2022.108054&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compeleceng_2022_108054 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon |