Neuromorphic computing with hybrid CNN–Stochastic Reservoir for time series WiFi based human activity recognition

Wi-Fi Channel State Information (CSI) based human activity recognition (HAR) which using channel disturbances caused by signal reflection is a novel way of environment sensing and motion recognition. The collected channels characteristics are heavily influenced by the environment, human activity pat...

Full description

Saved in:
Bibliographic Details
Published inComputers & electrical engineering Vol. 111; p. 108917
Main Authors Saw, Chia Yee, Wong, Yan Chiew
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Wi-Fi Channel State Information (CSI) based human activity recognition (HAR) which using channel disturbances caused by signal reflection is a novel way of environment sensing and motion recognition. The collected channels characteristics are heavily influenced by the environment, human activity patterns and subject’s weight and height. These signal variations reflected from body components are mainly affected by static multipath effects comprises random noise and behave differently in individuals, and thus an active field of research. To reach further for achieving automated real-time classification, lower computational cost and easy adaptability to hardware are necessary. In this work, a CSI-based HAR with hybrid framework, Convolutional Neural Network (CNN)-Stochastic Reservoir (SR) (CNN-SR) has been proposed, enabling a subject adaptable and more efficient hardware implementation with minimal computational complexity. A subcarrier correlation matrix is first computed and portrayed in image without preprocessing based on the reflection of the raw CSI signal induced by human activities at regular intervals, allowing visual observation of whole pattern changes. The time-based features are subsequently extracted through CNN and these feature arrays are then feed into SR which based on stochastic spiking neural network (SSNN) in simple cycle reservoir architecture for template matching. SR offers attractive power savings over typical von Neumann systems, by doing stochastic computations. The proposed method has also been demonstrated that is capable for HAR based on partially captured signals. The signal pattern of each segment can be observed in a single sight and then employed for person-to-person template recognition. This enables HAR with minimal computational complexity and solving the inter-person variability concerns. The results demonstrate that the proposed CNN-SR achieves impressive performance in recognizing human activities and surpasses existing models with an average accuracy of 93.49%. [Display omitted] •The proposed method using convolution neural network (CNN) to extract human activity features from complex CSI data without preprocessing, allowing visual observation of whole pattern changes.•Template matching implemented for activity recognition, allowing minimal computational complexity and enabling time series HAR which based on partially captured signals.•The proposed system robust in recognizing incomplete HAR signals and achieves impressive performance in recognizing human activities with an overall accuracy of 94.81%.
AbstractList Wi-Fi Channel State Information (CSI) based human activity recognition (HAR) which using channel disturbances caused by signal reflection is a novel way of environment sensing and motion recognition. The collected channels characteristics are heavily influenced by the environment, human activity patterns and subject’s weight and height. These signal variations reflected from body components are mainly affected by static multipath effects comprises random noise and behave differently in individuals, and thus an active field of research. To reach further for achieving automated real-time classification, lower computational cost and easy adaptability to hardware are necessary. In this work, a CSI-based HAR with hybrid framework, Convolutional Neural Network (CNN)-Stochastic Reservoir (SR) (CNN-SR) has been proposed, enabling a subject adaptable and more efficient hardware implementation with minimal computational complexity. A subcarrier correlation matrix is first computed and portrayed in image without preprocessing based on the reflection of the raw CSI signal induced by human activities at regular intervals, allowing visual observation of whole pattern changes. The time-based features are subsequently extracted through CNN and these feature arrays are then feed into SR which based on stochastic spiking neural network (SSNN) in simple cycle reservoir architecture for template matching. SR offers attractive power savings over typical von Neumann systems, by doing stochastic computations. The proposed method has also been demonstrated that is capable for HAR based on partially captured signals. The signal pattern of each segment can be observed in a single sight and then employed for person-to-person template recognition. This enables HAR with minimal computational complexity and solving the inter-person variability concerns. The results demonstrate that the proposed CNN-SR achieves impressive performance in recognizing human activities and surpasses existing models with an average accuracy of 93.49%. [Display omitted] •The proposed method using convolution neural network (CNN) to extract human activity features from complex CSI data without preprocessing, allowing visual observation of whole pattern changes.•Template matching implemented for activity recognition, allowing minimal computational complexity and enabling time series HAR which based on partially captured signals.•The proposed system robust in recognizing incomplete HAR signals and achieves impressive performance in recognizing human activities with an overall accuracy of 94.81%.
ArticleNumber 108917
Author Saw, Chia Yee
Wong, Yan Chiew
Author_xml – sequence: 1
  givenname: Chia Yee
  surname: Saw
  fullname: Saw, Chia Yee
– sequence: 2
  givenname: Yan Chiew
  orcidid: 0000-0003-2483-9962
  surname: Wong
  fullname: Wong, Yan Chiew
  email: ycwong@utem.edu.my
BookMark eNqNkEtOwzAQhr0oEm3hDuYAKXbeWSEUUUCqisRDLC3HmTRTNXZlu0XdcQduyElIVBaIVVejGc33a-abkJE2Ggi54mzGGU-v1zNlui1sQIFezUIWRv08L3g2ImPG4iTICpaek4lza9b3Kc_HxC1hZ01n7LZFRQd-51Gv6Af6lraHymJNy-Xy-_PrxRvVSuf7tWdwYPcGLW2MpR47oP0AwdF3nCOtpIOatrtOaiqVxz36A7WgzEqjR6MvyFkjNw4uf-uUvM3vXsuHYPF0_1jeLgIVhdwHFaioahpVyCzmDeNxFoep5BAnIa-VTFgR1RE0ICHNlErzMKkZizJIsipnUQ9PSXHMVdY4Z6ERW4udtAfBmRiMibX4Y0wMxsTRWM_e_GMVejlc763EzUkJ5TEB-hf3CFY4haAV1Ni78KI2eELKD1D7mHE
CitedBy_id crossref_primary_10_1109_TIFS_2025_3539519
crossref_primary_10_1016_j_compeleceng_2024_109806
crossref_primary_10_1016_j_pmcj_2024_101963
crossref_primary_10_1016_j_compeleceng_2023_109021
crossref_primary_10_3390_app15052845
crossref_primary_10_3390_electronics13020264
Cites_doi 10.1109/ACCESS.2020.3012021
10.1109/ACCESS.2019.2926381
10.1145/2789168.2790093
10.1109/TVT.2020.2989322
10.1145/2897824.2925953
10.1109/TVT.2018.2878754
10.1080/10095020.2019.1612600
10.3390/app12020930
10.3390/s21217225
10.1109/MCOM.2017.1700082
10.1155/2021/6654752
10.1155/2018/6163475
10.3390/app11198860
10.1109/TNNLS.2018.2876865
10.1109/ACCESS.2020.3034849
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compeleceng.2023.108917
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_compeleceng_2023_108917
S0045790623003415
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TAE
TN5
UHS
VOH
WH7
WUQ
XPP
ZMT
~G-
~S-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c321t-bec3bffc9a741f0147426a1e4521dca5093d3efeae67cc6825d0037e57b803ec3
IEDL.DBID .~1
ISSN 0045-7906
IngestDate Thu Apr 24 22:51:24 EDT 2025
Tue Jul 01 01:45:56 EDT 2025
Sun Apr 06 06:53:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Human activity recognition
Template matching
Channel State Information
Neuromorphic Computing
Convolution neural network
Stochastic Reservoir
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-bec3bffc9a741f0147426a1e4521dca5093d3efeae67cc6825d0037e57b803ec3
ORCID 0000-0003-2483-9962
ParticipantIDs crossref_primary_10_1016_j_compeleceng_2023_108917
crossref_citationtrail_10_1016_j_compeleceng_2023_108917
elsevier_sciencedirect_doi_10_1016_j_compeleceng_2023_108917
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2023
2023-10-00
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October 2023
PublicationDecade 2020
PublicationTitle Computers & electrical engineering
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Wang, Wang, Javaheri, Moghadamnejad, Abedi (b8) 2023; 38
Lei, Liang, Guan, Wang, Zheng (b12) 2019; 7
Wu, Chu, Yang, Xiang, Zheng, Huang (b3) 2018; 68
Chowdhury (b20) 2018
Yang, Liu, Liu, Wu, Li, Yang (b5) 2021; 2021
De Vita, Pau, Di Benedetto, Rubino, Pétrot, Licciardo (b13) 2020
Alazrai, Hababeh, Baha’A, Ali, Daoud (b10) 2020; 8
Yousefi, Narui, Dayal, Ermon, Valaee (b16) 2017; 55
Moshiri, Shahbazian, Nabati, Ghorashi (b11) 2021; 21
Saw, Wong (b14) 2022; 8
Schäfer, Barrsiwal, Kokhkharova, Adil, Liebehenschel (b4) 2021; 11
Lien, Gillian, Karagozler, Amihood, Schwesig, Olson (b1) 2016; 35
Ma, Xu, Javaheri, Moghadamnejad, Abedi (b15) 2023; 38
Alsaify, Almazari, Alazrai, Alouneh, Daoud (b21) 2022; 12
Al-qaness (b6) 2019; 22
Yang, Cao, Zhou, Xie (b9) 2020; 8
Huang, Liu, Chen, Jin, Liu, Zhang (b19) 2020; 69
Zhao, Zheng, Xu, Wu (b7) 2019; 30
Guo, Wang, Liu, Zhou, Lu (b18) 2018; 2018
Wang W, Liu AX, Shahzad M, Ling K, Lu S. Understanding and modeling of wifi signal based human activity recognition. In: Proceedings of the 21st annual international conference on mobile computing and networking. 2015, p. 65–76.
Feng, Arshad, Liu (b17) 2017
Shang, Luo, Zhao, Xue, Sun, Bao (b22) 2021; 1883
Moshiri (10.1016/j.compeleceng.2023.108917_b11) 2021; 21
Saw (10.1016/j.compeleceng.2023.108917_b14) 2022; 8
Huang (10.1016/j.compeleceng.2023.108917_b19) 2020; 69
Guo (10.1016/j.compeleceng.2023.108917_b18) 2018; 2018
Wang (10.1016/j.compeleceng.2023.108917_b8) 2023; 38
Shang (10.1016/j.compeleceng.2023.108917_b22) 2021; 1883
De Vita (10.1016/j.compeleceng.2023.108917_b13) 2020
Yang (10.1016/j.compeleceng.2023.108917_b5) 2021; 2021
Zhao (10.1016/j.compeleceng.2023.108917_b7) 2019; 30
Schäfer (10.1016/j.compeleceng.2023.108917_b4) 2021; 11
Ma (10.1016/j.compeleceng.2023.108917_b15) 2023; 38
Yousefi (10.1016/j.compeleceng.2023.108917_b16) 2017; 55
Al-qaness (10.1016/j.compeleceng.2023.108917_b6) 2019; 22
Alsaify (10.1016/j.compeleceng.2023.108917_b21) 2022; 12
10.1016/j.compeleceng.2023.108917_b2
Wu (10.1016/j.compeleceng.2023.108917_b3) 2018; 68
Alazrai (10.1016/j.compeleceng.2023.108917_b10) 2020; 8
Lei (10.1016/j.compeleceng.2023.108917_b12) 2019; 7
Lien (10.1016/j.compeleceng.2023.108917_b1) 2016; 35
Yang (10.1016/j.compeleceng.2023.108917_b9) 2020; 8
Feng (10.1016/j.compeleceng.2023.108917_b17) 2017
Chowdhury (10.1016/j.compeleceng.2023.108917_b20) 2018
References_xml – volume: 8
  start-page: 197695
  year: 2020
  end-page: 197710
  ident: b10
  article-title: An end-to-end deep learning framework for recognizing human-to-human interactions using Wi-Fi signals
  publication-title: IEEE Access
– volume: 21
  start-page: 7225
  year: 2021
  ident: b11
  article-title: A CSI-based human activity recognition using deep learning
  publication-title: Sensors
– year: 2018
  ident: b20
  article-title: Using Wi-Fi channel state information (CSI) for human activity recognition and fall detection
– volume: 1883
  year: 2021
  ident: b22
  article-title: LSTM-CNN network for human activity recognition using WiFi CSI data
  publication-title: J Phys: Conf Series
– volume: 38
  year: 2023
  ident: b8
  article-title: Machine learning optimization model for reducing the electricity loads in residential energy forecasting
  publication-title: Sustain Comput: Inform Syst
– volume: 8
  year: 2022
  ident: b14
  article-title: Neuromorphic computing based on stochastic spiking reservoir for heartbeat classification
  publication-title: Jordanian J Comput Inf Technol (JJCIT)
– volume: 55
  start-page: 98
  year: 2017
  end-page: 104
  ident: b16
  article-title: A survey on behavior recognition using WiFi channel state information
  publication-title: IEEE Commun Mag
– volume: 2021
  year: 2021
  ident: b5
  article-title: A framework for human activity recognition based on WiFi CSI signal enhancement
  publication-title: Int J Antennas Propag
– volume: 38
  year: 2023
  ident: b15
  article-title: Reducing the consumption of household systems using hybrid deep learning techniques
  publication-title: Sustain Comput: Inform Syst
– volume: 69
  start-page: 6739
  year: 2020
  end-page: 6754
  ident: b19
  article-title: Towards anti-interference human activity recognition based on WiFi subcarrier correlation selection
  publication-title: IEEE Trans Veh Technol
– volume: 2018
  year: 2018
  ident: b18
  article-title: Huac: Human activity recognition using crowdsourced WiFi signals and skeleton data
  publication-title: Wirel Commun Mob Comput
– reference: Wang W, Liu AX, Shahzad M, Ling K, Lu S. Understanding and modeling of wifi signal based human activity recognition. In: Proceedings of the 21st annual international conference on mobile computing and networking. 2015, p. 65–76.
– volume: 7
  start-page: 88917
  year: 2019
  end-page: 88926
  ident: b12
  article-title: Acceleration of FPGA based convolutional neural network for human activity classification using millimeter-wave radar
  publication-title: IEEE Access
– volume: 11
  start-page: 8860
  year: 2021
  ident: b4
  article-title: Human activity recognition using CSI information with nexmon
  publication-title: Appl Sci
– volume: 22
  start-page: 128
  year: 2019
  end-page: 137
  ident: b6
  article-title: Device-free human micro-activity recognition method using WiFi signals
  publication-title: Geo-spatial Inf Sci
– start-page: 309
  year: 2020
  end-page: 315
  ident: b13
  article-title: Low power tiny binary neural network with improved accuracy in human recognition systems
  publication-title: 2020 23rd euromicro conference on digital system design (DSD)
– volume: 35
  start-page: 1
  year: 2016
  end-page: 19
  ident: b1
  article-title: Soli: Ubiquitous gesture sensing with millimeter wave radar
  publication-title: ACM Trans Graph
– volume: 8
  start-page: 137758
  year: 2020
  end-page: 137769
  ident: b9
  article-title: Temporal-frequency attention-based human activity recognition using commercial WiFi devices
  publication-title: IEEE Access
– volume: 12
  start-page: 930
  year: 2022
  ident: b21
  article-title: A CSI-based multi-environment human activity recognition framework
  publication-title: Appl Sci
– volume: 30
  start-page: 3212
  year: 2019
  end-page: 3232
  ident: b7
  article-title: Object detection with deep learning: A review
  publication-title: IEEE Trans Neural Netw Learn Syst
– start-page: 419
  year: 2017
  end-page: 432
  ident: b17
  article-title: MAIS: Multiple activity identification system using channel state information of WiFi signals
  publication-title: International conference on wireless algorithms, systems, and applications
– volume: 68
  start-page: 306
  year: 2018
  end-page: 319
  ident: b3
  article-title: TW-see: Human activity recognition through the wall with commodity Wi-Fi devices
  publication-title: IEEE Trans Veh Technol
– volume: 8
  start-page: 137758
  year: 2020
  ident: 10.1016/j.compeleceng.2023.108917_b9
  article-title: Temporal-frequency attention-based human activity recognition using commercial WiFi devices
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3012021
– volume: 8
  issue: 02
  year: 2022
  ident: 10.1016/j.compeleceng.2023.108917_b14
  article-title: Neuromorphic computing based on stochastic spiking reservoir for heartbeat classification
  publication-title: Jordanian J Comput Inf Technol (JJCIT)
– volume: 7
  start-page: 88917
  year: 2019
  ident: 10.1016/j.compeleceng.2023.108917_b12
  article-title: Acceleration of FPGA based convolutional neural network for human activity classification using millimeter-wave radar
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2926381
– ident: 10.1016/j.compeleceng.2023.108917_b2
  doi: 10.1145/2789168.2790093
– volume: 1883
  issue: 1
  year: 2021
  ident: 10.1016/j.compeleceng.2023.108917_b22
  article-title: LSTM-CNN network for human activity recognition using WiFi CSI data
  publication-title: J Phys: Conf Series
– start-page: 419
  year: 2017
  ident: 10.1016/j.compeleceng.2023.108917_b17
  article-title: MAIS: Multiple activity identification system using channel state information of WiFi signals
– volume: 69
  start-page: 6739
  issue: 6
  year: 2020
  ident: 10.1016/j.compeleceng.2023.108917_b19
  article-title: Towards anti-interference human activity recognition based on WiFi subcarrier correlation selection
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2020.2989322
– volume: 38
  year: 2023
  ident: 10.1016/j.compeleceng.2023.108917_b15
  article-title: Reducing the consumption of household systems using hybrid deep learning techniques
  publication-title: Sustain Comput: Inform Syst
– volume: 35
  start-page: 1
  issue: 4
  year: 2016
  ident: 10.1016/j.compeleceng.2023.108917_b1
  article-title: Soli: Ubiquitous gesture sensing with millimeter wave radar
  publication-title: ACM Trans Graph
  doi: 10.1145/2897824.2925953
– volume: 68
  start-page: 306
  issue: 1
  year: 2018
  ident: 10.1016/j.compeleceng.2023.108917_b3
  article-title: TW-see: Human activity recognition through the wall with commodity Wi-Fi devices
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2018.2878754
– volume: 38
  year: 2023
  ident: 10.1016/j.compeleceng.2023.108917_b8
  article-title: Machine learning optimization model for reducing the electricity loads in residential energy forecasting
  publication-title: Sustain Comput: Inform Syst
– volume: 22
  start-page: 128
  issue: 2
  year: 2019
  ident: 10.1016/j.compeleceng.2023.108917_b6
  article-title: Device-free human micro-activity recognition method using WiFi signals
  publication-title: Geo-spatial Inf Sci
  doi: 10.1080/10095020.2019.1612600
– volume: 12
  start-page: 930
  issue: 2
  year: 2022
  ident: 10.1016/j.compeleceng.2023.108917_b21
  article-title: A CSI-based multi-environment human activity recognition framework
  publication-title: Appl Sci
  doi: 10.3390/app12020930
– volume: 21
  start-page: 7225
  issue: 21
  year: 2021
  ident: 10.1016/j.compeleceng.2023.108917_b11
  article-title: A CSI-based human activity recognition using deep learning
  publication-title: Sensors
  doi: 10.3390/s21217225
– year: 2018
  ident: 10.1016/j.compeleceng.2023.108917_b20
– start-page: 309
  year: 2020
  ident: 10.1016/j.compeleceng.2023.108917_b13
  article-title: Low power tiny binary neural network with improved accuracy in human recognition systems
– volume: 55
  start-page: 98
  issue: 10
  year: 2017
  ident: 10.1016/j.compeleceng.2023.108917_b16
  article-title: A survey on behavior recognition using WiFi channel state information
  publication-title: IEEE Commun Mag
  doi: 10.1109/MCOM.2017.1700082
– volume: 2021
  year: 2021
  ident: 10.1016/j.compeleceng.2023.108917_b5
  article-title: A framework for human activity recognition based on WiFi CSI signal enhancement
  publication-title: Int J Antennas Propag
  doi: 10.1155/2021/6654752
– volume: 2018
  year: 2018
  ident: 10.1016/j.compeleceng.2023.108917_b18
  article-title: Huac: Human activity recognition using crowdsourced WiFi signals and skeleton data
  publication-title: Wirel Commun Mob Comput
  doi: 10.1155/2018/6163475
– volume: 11
  start-page: 8860
  issue: 19
  year: 2021
  ident: 10.1016/j.compeleceng.2023.108917_b4
  article-title: Human activity recognition using CSI information with nexmon
  publication-title: Appl Sci
  doi: 10.3390/app11198860
– volume: 30
  start-page: 3212
  issue: 11
  year: 2019
  ident: 10.1016/j.compeleceng.2023.108917_b7
  article-title: Object detection with deep learning: A review
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2018.2876865
– volume: 8
  start-page: 197695
  year: 2020
  ident: 10.1016/j.compeleceng.2023.108917_b10
  article-title: An end-to-end deep learning framework for recognizing human-to-human interactions using Wi-Fi signals
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3034849
SSID ssj0004618
Score 2.3698828
Snippet Wi-Fi Channel State Information (CSI) based human activity recognition (HAR) which using channel disturbances caused by signal reflection is a novel way of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108917
SubjectTerms Channel State Information
Convolution neural network
Human activity recognition
Neuromorphic Computing
Stochastic Reservoir
Template matching
Title Neuromorphic computing with hybrid CNN–Stochastic Reservoir for time series WiFi based human activity recognition
URI https://dx.doi.org/10.1016/j.compeleceng.2023.108917
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bSsNAEF1KBdEH8Yr1UlbwNW2S3dzAl1IsVSEvWuxbSHYnNqJJaavgi_gP_qFf4k4uNYKg4GMSBsJkmDkbzpxDyKkF0sYFRs21gGk8diPNAwANXAWvpRcrFJyzLXx7OOKXY2vcIP1qFwZplWXvL3p63q3LO90ym91pkuCOL7cclNllKLKSL5pz7mCVd16N2m6kUXRjjtKMur1KTr44XkjbRrsZSO866COOjDsv9y77YUbV5s5gk2yUgJH2infaIg1It8l6TUZwh8xzhY3HTKUsEVTkPg3qAcV_rHTygjtZtO_7H2_v14tMTEKUZqZIuZs9Z8mMKthK0WKeYjXCnN4mg4TidJM0d_CjuPuAFhN0yTbK0l0yGpzf9IdaaaagCWYaC019KxbFsfBChSFidTBSZ2I7NICr-S3RF8FjkkEMIdiOELY6OErUpgHLiVydqeA90kyzFPYJZboXSkvajFkRF2BEkemCoZAECDMOud4ibpW-QJRK42h48RBUlLL7oJb5ADMfFJlvEXMZOi3kNv4SdFZ9o-Bb7QRqLPwefvC_8EOyhlcFwe-INBezJzhWQGURtfNKbJOV3sXV0P8ETQntNQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JSsRAEC1cwOUgrrjbgh6jk3SSSUAPog7jNhcVvcWkU3EimsjMqHgR_8FP8Y_8Equy6AiCgnhNUyFUd9cSXr0HsGJhaPMAo-ZYKDUzcgLNRUQNHSqvQzeiKjhDWzTs-qm5f26d98BrOQvDsMoi9ucxPYvWxZP1wpvrt3HMM76mVWWaXckkK3qJrDzAxwfq29qbezu0yauGUds92a5rhbSApqShdzT6chlEkXJ9yqgRtQnUIdq-jiZls5BVAlwZSozQR7uqlE1tVMhMLWhVA6ciyZje2wv9JoULlk1Ye9K7hjH1PPybzAVZsQdg-RNUxjhx1rfB5HKNhcsZ4udmYmnfJMWuRFcbhZGiQhVbuRPGoAeTcRju4i2cgHZG6XGT0h7FSqhMGIIWBP_UFc1HHgIT243G2_PLcSdVTZ-5oAVj_Fr3adwSVCcL1rQXfPyxLc7iWiw4nYYikwwUPGzBmhbiA96UJpNw-i8unoK-JE1wGoSsuH5ohbaUVmAq1IPAcFCn0gWVEflmZQac0n2eKqjNWWHj2isxbFdel-c99ryXe34GjA_T25zf4zdGG-UeeV8Oq0d56Gfz2b-ZL8Fg_eTo0DvcaxzMwRCv5OjCeejrtO5wgaqkTrCYnUoBF_99Dd4Buvcpog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuromorphic+computing+with+hybrid+CNN%E2%80%93Stochastic+Reservoir+for+time+series+WiFi+based+human+activity+recognition&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Saw%2C+Chia+Yee&rft.au=Wong%2C+Yan+Chiew&rft.date=2023-10-01&rft.pub=Elsevier+Ltd&rft.issn=0045-7906&rft.volume=111&rft_id=info:doi/10.1016%2Fj.compeleceng.2023.108917&rft.externalDocID=S0045790623003415
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon