Neuromorphic computing with hybrid CNN–Stochastic Reservoir for time series WiFi based human activity recognition
Wi-Fi Channel State Information (CSI) based human activity recognition (HAR) which using channel disturbances caused by signal reflection is a novel way of environment sensing and motion recognition. The collected channels characteristics are heavily influenced by the environment, human activity pat...
Saved in:
Published in | Computers & electrical engineering Vol. 111; p. 108917 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wi-Fi Channel State Information (CSI) based human activity recognition (HAR) which using channel disturbances caused by signal reflection is a novel way of environment sensing and motion recognition. The collected channels characteristics are heavily influenced by the environment, human activity patterns and subject’s weight and height. These signal variations reflected from body components are mainly affected by static multipath effects comprises random noise and behave differently in individuals, and thus an active field of research. To reach further for achieving automated real-time classification, lower computational cost and easy adaptability to hardware are necessary. In this work, a CSI-based HAR with hybrid framework, Convolutional Neural Network (CNN)-Stochastic Reservoir (SR) (CNN-SR) has been proposed, enabling a subject adaptable and more efficient hardware implementation with minimal computational complexity. A subcarrier correlation matrix is first computed and portrayed in image without preprocessing based on the reflection of the raw CSI signal induced by human activities at regular intervals, allowing visual observation of whole pattern changes. The time-based features are subsequently extracted through CNN and these feature arrays are then feed into SR which based on stochastic spiking neural network (SSNN) in simple cycle reservoir architecture for template matching. SR offers attractive power savings over typical von Neumann systems, by doing stochastic computations. The proposed method has also been demonstrated that is capable for HAR based on partially captured signals. The signal pattern of each segment can be observed in a single sight and then employed for person-to-person template recognition. This enables HAR with minimal computational complexity and solving the inter-person variability concerns. The results demonstrate that the proposed CNN-SR achieves impressive performance in recognizing human activities and surpasses existing models with an average accuracy of 93.49%.
[Display omitted]
•The proposed method using convolution neural network (CNN) to extract human activity features from complex CSI data without preprocessing, allowing visual observation of whole pattern changes.•Template matching implemented for activity recognition, allowing minimal computational complexity and enabling time series HAR which based on partially captured signals.•The proposed system robust in recognizing incomplete HAR signals and achieves impressive performance in recognizing human activities with an overall accuracy of 94.81%. |
---|---|
AbstractList | Wi-Fi Channel State Information (CSI) based human activity recognition (HAR) which using channel disturbances caused by signal reflection is a novel way of environment sensing and motion recognition. The collected channels characteristics are heavily influenced by the environment, human activity patterns and subject’s weight and height. These signal variations reflected from body components are mainly affected by static multipath effects comprises random noise and behave differently in individuals, and thus an active field of research. To reach further for achieving automated real-time classification, lower computational cost and easy adaptability to hardware are necessary. In this work, a CSI-based HAR with hybrid framework, Convolutional Neural Network (CNN)-Stochastic Reservoir (SR) (CNN-SR) has been proposed, enabling a subject adaptable and more efficient hardware implementation with minimal computational complexity. A subcarrier correlation matrix is first computed and portrayed in image without preprocessing based on the reflection of the raw CSI signal induced by human activities at regular intervals, allowing visual observation of whole pattern changes. The time-based features are subsequently extracted through CNN and these feature arrays are then feed into SR which based on stochastic spiking neural network (SSNN) in simple cycle reservoir architecture for template matching. SR offers attractive power savings over typical von Neumann systems, by doing stochastic computations. The proposed method has also been demonstrated that is capable for HAR based on partially captured signals. The signal pattern of each segment can be observed in a single sight and then employed for person-to-person template recognition. This enables HAR with minimal computational complexity and solving the inter-person variability concerns. The results demonstrate that the proposed CNN-SR achieves impressive performance in recognizing human activities and surpasses existing models with an average accuracy of 93.49%.
[Display omitted]
•The proposed method using convolution neural network (CNN) to extract human activity features from complex CSI data without preprocessing, allowing visual observation of whole pattern changes.•Template matching implemented for activity recognition, allowing minimal computational complexity and enabling time series HAR which based on partially captured signals.•The proposed system robust in recognizing incomplete HAR signals and achieves impressive performance in recognizing human activities with an overall accuracy of 94.81%. |
ArticleNumber | 108917 |
Author | Saw, Chia Yee Wong, Yan Chiew |
Author_xml | – sequence: 1 givenname: Chia Yee surname: Saw fullname: Saw, Chia Yee – sequence: 2 givenname: Yan Chiew orcidid: 0000-0003-2483-9962 surname: Wong fullname: Wong, Yan Chiew email: ycwong@utem.edu.my |
BookMark | eNqNkEtOwzAQhr0oEm3hDuYAKXbeWSEUUUCqisRDLC3HmTRTNXZlu0XdcQduyElIVBaIVVejGc33a-abkJE2Ggi54mzGGU-v1zNlui1sQIFezUIWRv08L3g2ImPG4iTICpaek4lza9b3Kc_HxC1hZ01n7LZFRQd-51Gv6Af6lraHymJNy-Xy-_PrxRvVSuf7tWdwYPcGLW2MpR47oP0AwdF3nCOtpIOatrtOaiqVxz36A7WgzEqjR6MvyFkjNw4uf-uUvM3vXsuHYPF0_1jeLgIVhdwHFaioahpVyCzmDeNxFoep5BAnIa-VTFgR1RE0ICHNlErzMKkZizJIsipnUQ9PSXHMVdY4Z6ERW4udtAfBmRiMibX4Y0wMxsTRWM_e_GMVejlc763EzUkJ5TEB-hf3CFY4haAV1Ni78KI2eELKD1D7mHE |
CitedBy_id | crossref_primary_10_1109_TIFS_2025_3539519 crossref_primary_10_1016_j_compeleceng_2024_109806 crossref_primary_10_1016_j_pmcj_2024_101963 crossref_primary_10_1016_j_compeleceng_2023_109021 crossref_primary_10_3390_app15052845 crossref_primary_10_3390_electronics13020264 |
Cites_doi | 10.1109/ACCESS.2020.3012021 10.1109/ACCESS.2019.2926381 10.1145/2789168.2790093 10.1109/TVT.2020.2989322 10.1145/2897824.2925953 10.1109/TVT.2018.2878754 10.1080/10095020.2019.1612600 10.3390/app12020930 10.3390/s21217225 10.1109/MCOM.2017.1700082 10.1155/2021/6654752 10.1155/2018/6163475 10.3390/app11198860 10.1109/TNNLS.2018.2876865 10.1109/ACCESS.2020.3034849 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.compeleceng.2023.108917 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_compeleceng_2023_108917 S0045790623003415 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN ABBOA ABEFU ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SSH SST SSV SSZ T5K TAE TN5 UHS VOH WH7 WUQ XPP ZMT ~G- ~S- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c321t-bec3bffc9a741f0147426a1e4521dca5093d3efeae67cc6825d0037e57b803ec3 |
IEDL.DBID | .~1 |
ISSN | 0045-7906 |
IngestDate | Thu Apr 24 22:51:24 EDT 2025 Tue Jul 01 01:45:56 EDT 2025 Sun Apr 06 06:53:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Human activity recognition Template matching Channel State Information Neuromorphic Computing Convolution neural network Stochastic Reservoir |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c321t-bec3bffc9a741f0147426a1e4521dca5093d3efeae67cc6825d0037e57b803ec3 |
ORCID | 0000-0003-2483-9962 |
ParticipantIDs | crossref_primary_10_1016_j_compeleceng_2023_108917 crossref_citationtrail_10_1016_j_compeleceng_2023_108917 elsevier_sciencedirect_doi_10_1016_j_compeleceng_2023_108917 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2023 2023-10-00 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: October 2023 |
PublicationDecade | 2020 |
PublicationTitle | Computers & electrical engineering |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wang, Wang, Wang, Javaheri, Moghadamnejad, Abedi (b8) 2023; 38 Lei, Liang, Guan, Wang, Zheng (b12) 2019; 7 Wu, Chu, Yang, Xiang, Zheng, Huang (b3) 2018; 68 Chowdhury (b20) 2018 Yang, Liu, Liu, Wu, Li, Yang (b5) 2021; 2021 De Vita, Pau, Di Benedetto, Rubino, Pétrot, Licciardo (b13) 2020 Alazrai, Hababeh, Baha’A, Ali, Daoud (b10) 2020; 8 Yousefi, Narui, Dayal, Ermon, Valaee (b16) 2017; 55 Moshiri, Shahbazian, Nabati, Ghorashi (b11) 2021; 21 Saw, Wong (b14) 2022; 8 Schäfer, Barrsiwal, Kokhkharova, Adil, Liebehenschel (b4) 2021; 11 Lien, Gillian, Karagozler, Amihood, Schwesig, Olson (b1) 2016; 35 Ma, Xu, Javaheri, Moghadamnejad, Abedi (b15) 2023; 38 Alsaify, Almazari, Alazrai, Alouneh, Daoud (b21) 2022; 12 Al-qaness (b6) 2019; 22 Yang, Cao, Zhou, Xie (b9) 2020; 8 Huang, Liu, Chen, Jin, Liu, Zhang (b19) 2020; 69 Zhao, Zheng, Xu, Wu (b7) 2019; 30 Guo, Wang, Liu, Zhou, Lu (b18) 2018; 2018 Wang W, Liu AX, Shahzad M, Ling K, Lu S. Understanding and modeling of wifi signal based human activity recognition. In: Proceedings of the 21st annual international conference on mobile computing and networking. 2015, p. 65–76. Feng, Arshad, Liu (b17) 2017 Shang, Luo, Zhao, Xue, Sun, Bao (b22) 2021; 1883 Moshiri (10.1016/j.compeleceng.2023.108917_b11) 2021; 21 Saw (10.1016/j.compeleceng.2023.108917_b14) 2022; 8 Huang (10.1016/j.compeleceng.2023.108917_b19) 2020; 69 Guo (10.1016/j.compeleceng.2023.108917_b18) 2018; 2018 Wang (10.1016/j.compeleceng.2023.108917_b8) 2023; 38 Shang (10.1016/j.compeleceng.2023.108917_b22) 2021; 1883 De Vita (10.1016/j.compeleceng.2023.108917_b13) 2020 Yang (10.1016/j.compeleceng.2023.108917_b5) 2021; 2021 Zhao (10.1016/j.compeleceng.2023.108917_b7) 2019; 30 Schäfer (10.1016/j.compeleceng.2023.108917_b4) 2021; 11 Ma (10.1016/j.compeleceng.2023.108917_b15) 2023; 38 Yousefi (10.1016/j.compeleceng.2023.108917_b16) 2017; 55 Al-qaness (10.1016/j.compeleceng.2023.108917_b6) 2019; 22 Alsaify (10.1016/j.compeleceng.2023.108917_b21) 2022; 12 10.1016/j.compeleceng.2023.108917_b2 Wu (10.1016/j.compeleceng.2023.108917_b3) 2018; 68 Alazrai (10.1016/j.compeleceng.2023.108917_b10) 2020; 8 Lei (10.1016/j.compeleceng.2023.108917_b12) 2019; 7 Lien (10.1016/j.compeleceng.2023.108917_b1) 2016; 35 Yang (10.1016/j.compeleceng.2023.108917_b9) 2020; 8 Feng (10.1016/j.compeleceng.2023.108917_b17) 2017 Chowdhury (10.1016/j.compeleceng.2023.108917_b20) 2018 |
References_xml | – volume: 8 start-page: 197695 year: 2020 end-page: 197710 ident: b10 article-title: An end-to-end deep learning framework for recognizing human-to-human interactions using Wi-Fi signals publication-title: IEEE Access – volume: 21 start-page: 7225 year: 2021 ident: b11 article-title: A CSI-based human activity recognition using deep learning publication-title: Sensors – year: 2018 ident: b20 article-title: Using Wi-Fi channel state information (CSI) for human activity recognition and fall detection – volume: 1883 year: 2021 ident: b22 article-title: LSTM-CNN network for human activity recognition using WiFi CSI data publication-title: J Phys: Conf Series – volume: 38 year: 2023 ident: b8 article-title: Machine learning optimization model for reducing the electricity loads in residential energy forecasting publication-title: Sustain Comput: Inform Syst – volume: 8 year: 2022 ident: b14 article-title: Neuromorphic computing based on stochastic spiking reservoir for heartbeat classification publication-title: Jordanian J Comput Inf Technol (JJCIT) – volume: 55 start-page: 98 year: 2017 end-page: 104 ident: b16 article-title: A survey on behavior recognition using WiFi channel state information publication-title: IEEE Commun Mag – volume: 2021 year: 2021 ident: b5 article-title: A framework for human activity recognition based on WiFi CSI signal enhancement publication-title: Int J Antennas Propag – volume: 38 year: 2023 ident: b15 article-title: Reducing the consumption of household systems using hybrid deep learning techniques publication-title: Sustain Comput: Inform Syst – volume: 69 start-page: 6739 year: 2020 end-page: 6754 ident: b19 article-title: Towards anti-interference human activity recognition based on WiFi subcarrier correlation selection publication-title: IEEE Trans Veh Technol – volume: 2018 year: 2018 ident: b18 article-title: Huac: Human activity recognition using crowdsourced WiFi signals and skeleton data publication-title: Wirel Commun Mob Comput – reference: Wang W, Liu AX, Shahzad M, Ling K, Lu S. Understanding and modeling of wifi signal based human activity recognition. In: Proceedings of the 21st annual international conference on mobile computing and networking. 2015, p. 65–76. – volume: 7 start-page: 88917 year: 2019 end-page: 88926 ident: b12 article-title: Acceleration of FPGA based convolutional neural network for human activity classification using millimeter-wave radar publication-title: IEEE Access – volume: 11 start-page: 8860 year: 2021 ident: b4 article-title: Human activity recognition using CSI information with nexmon publication-title: Appl Sci – volume: 22 start-page: 128 year: 2019 end-page: 137 ident: b6 article-title: Device-free human micro-activity recognition method using WiFi signals publication-title: Geo-spatial Inf Sci – start-page: 309 year: 2020 end-page: 315 ident: b13 article-title: Low power tiny binary neural network with improved accuracy in human recognition systems publication-title: 2020 23rd euromicro conference on digital system design (DSD) – volume: 35 start-page: 1 year: 2016 end-page: 19 ident: b1 article-title: Soli: Ubiquitous gesture sensing with millimeter wave radar publication-title: ACM Trans Graph – volume: 8 start-page: 137758 year: 2020 end-page: 137769 ident: b9 article-title: Temporal-frequency attention-based human activity recognition using commercial WiFi devices publication-title: IEEE Access – volume: 12 start-page: 930 year: 2022 ident: b21 article-title: A CSI-based multi-environment human activity recognition framework publication-title: Appl Sci – volume: 30 start-page: 3212 year: 2019 end-page: 3232 ident: b7 article-title: Object detection with deep learning: A review publication-title: IEEE Trans Neural Netw Learn Syst – start-page: 419 year: 2017 end-page: 432 ident: b17 article-title: MAIS: Multiple activity identification system using channel state information of WiFi signals publication-title: International conference on wireless algorithms, systems, and applications – volume: 68 start-page: 306 year: 2018 end-page: 319 ident: b3 article-title: TW-see: Human activity recognition through the wall with commodity Wi-Fi devices publication-title: IEEE Trans Veh Technol – volume: 8 start-page: 137758 year: 2020 ident: 10.1016/j.compeleceng.2023.108917_b9 article-title: Temporal-frequency attention-based human activity recognition using commercial WiFi devices publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3012021 – volume: 8 issue: 02 year: 2022 ident: 10.1016/j.compeleceng.2023.108917_b14 article-title: Neuromorphic computing based on stochastic spiking reservoir for heartbeat classification publication-title: Jordanian J Comput Inf Technol (JJCIT) – volume: 7 start-page: 88917 year: 2019 ident: 10.1016/j.compeleceng.2023.108917_b12 article-title: Acceleration of FPGA based convolutional neural network for human activity classification using millimeter-wave radar publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2926381 – ident: 10.1016/j.compeleceng.2023.108917_b2 doi: 10.1145/2789168.2790093 – volume: 1883 issue: 1 year: 2021 ident: 10.1016/j.compeleceng.2023.108917_b22 article-title: LSTM-CNN network for human activity recognition using WiFi CSI data publication-title: J Phys: Conf Series – start-page: 419 year: 2017 ident: 10.1016/j.compeleceng.2023.108917_b17 article-title: MAIS: Multiple activity identification system using channel state information of WiFi signals – volume: 69 start-page: 6739 issue: 6 year: 2020 ident: 10.1016/j.compeleceng.2023.108917_b19 article-title: Towards anti-interference human activity recognition based on WiFi subcarrier correlation selection publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2020.2989322 – volume: 38 year: 2023 ident: 10.1016/j.compeleceng.2023.108917_b15 article-title: Reducing the consumption of household systems using hybrid deep learning techniques publication-title: Sustain Comput: Inform Syst – volume: 35 start-page: 1 issue: 4 year: 2016 ident: 10.1016/j.compeleceng.2023.108917_b1 article-title: Soli: Ubiquitous gesture sensing with millimeter wave radar publication-title: ACM Trans Graph doi: 10.1145/2897824.2925953 – volume: 68 start-page: 306 issue: 1 year: 2018 ident: 10.1016/j.compeleceng.2023.108917_b3 article-title: TW-see: Human activity recognition through the wall with commodity Wi-Fi devices publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2018.2878754 – volume: 38 year: 2023 ident: 10.1016/j.compeleceng.2023.108917_b8 article-title: Machine learning optimization model for reducing the electricity loads in residential energy forecasting publication-title: Sustain Comput: Inform Syst – volume: 22 start-page: 128 issue: 2 year: 2019 ident: 10.1016/j.compeleceng.2023.108917_b6 article-title: Device-free human micro-activity recognition method using WiFi signals publication-title: Geo-spatial Inf Sci doi: 10.1080/10095020.2019.1612600 – volume: 12 start-page: 930 issue: 2 year: 2022 ident: 10.1016/j.compeleceng.2023.108917_b21 article-title: A CSI-based multi-environment human activity recognition framework publication-title: Appl Sci doi: 10.3390/app12020930 – volume: 21 start-page: 7225 issue: 21 year: 2021 ident: 10.1016/j.compeleceng.2023.108917_b11 article-title: A CSI-based human activity recognition using deep learning publication-title: Sensors doi: 10.3390/s21217225 – year: 2018 ident: 10.1016/j.compeleceng.2023.108917_b20 – start-page: 309 year: 2020 ident: 10.1016/j.compeleceng.2023.108917_b13 article-title: Low power tiny binary neural network with improved accuracy in human recognition systems – volume: 55 start-page: 98 issue: 10 year: 2017 ident: 10.1016/j.compeleceng.2023.108917_b16 article-title: A survey on behavior recognition using WiFi channel state information publication-title: IEEE Commun Mag doi: 10.1109/MCOM.2017.1700082 – volume: 2021 year: 2021 ident: 10.1016/j.compeleceng.2023.108917_b5 article-title: A framework for human activity recognition based on WiFi CSI signal enhancement publication-title: Int J Antennas Propag doi: 10.1155/2021/6654752 – volume: 2018 year: 2018 ident: 10.1016/j.compeleceng.2023.108917_b18 article-title: Huac: Human activity recognition using crowdsourced WiFi signals and skeleton data publication-title: Wirel Commun Mob Comput doi: 10.1155/2018/6163475 – volume: 11 start-page: 8860 issue: 19 year: 2021 ident: 10.1016/j.compeleceng.2023.108917_b4 article-title: Human activity recognition using CSI information with nexmon publication-title: Appl Sci doi: 10.3390/app11198860 – volume: 30 start-page: 3212 issue: 11 year: 2019 ident: 10.1016/j.compeleceng.2023.108917_b7 article-title: Object detection with deep learning: A review publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2018.2876865 – volume: 8 start-page: 197695 year: 2020 ident: 10.1016/j.compeleceng.2023.108917_b10 article-title: An end-to-end deep learning framework for recognizing human-to-human interactions using Wi-Fi signals publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3034849 |
SSID | ssj0004618 |
Score | 2.3698828 |
Snippet | Wi-Fi Channel State Information (CSI) based human activity recognition (HAR) which using channel disturbances caused by signal reflection is a novel way of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 108917 |
SubjectTerms | Channel State Information Convolution neural network Human activity recognition Neuromorphic Computing Stochastic Reservoir Template matching |
Title | Neuromorphic computing with hybrid CNN–Stochastic Reservoir for time series WiFi based human activity recognition |
URI | https://dx.doi.org/10.1016/j.compeleceng.2023.108917 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bSsNAEF1KBdEH8Yr1UlbwNW2S3dzAl1IsVSEvWuxbSHYnNqJJaavgi_gP_qFf4k4uNYKg4GMSBsJkmDkbzpxDyKkF0sYFRs21gGk8diPNAwANXAWvpRcrFJyzLXx7OOKXY2vcIP1qFwZplWXvL3p63q3LO90ym91pkuCOL7cclNllKLKSL5pz7mCVd16N2m6kUXRjjtKMur1KTr44XkjbRrsZSO866COOjDsv9y77YUbV5s5gk2yUgJH2infaIg1It8l6TUZwh8xzhY3HTKUsEVTkPg3qAcV_rHTygjtZtO_7H2_v14tMTEKUZqZIuZs9Z8mMKthK0WKeYjXCnN4mg4TidJM0d_CjuPuAFhN0yTbK0l0yGpzf9IdaaaagCWYaC019KxbFsfBChSFidTBSZ2I7NICr-S3RF8FjkkEMIdiOELY6OErUpgHLiVydqeA90kyzFPYJZboXSkvajFkRF2BEkemCoZAECDMOud4ibpW-QJRK42h48RBUlLL7oJb5ADMfFJlvEXMZOi3kNv4SdFZ9o-Bb7QRqLPwefvC_8EOyhlcFwe-INBezJzhWQGURtfNKbJOV3sXV0P8ETQntNQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JSsRAEC1cwOUgrrjbgh6jk3SSSUAPog7jNhcVvcWkU3EimsjMqHgR_8FP8Y_8Equy6AiCgnhNUyFUd9cSXr0HsGJhaPMAo-ZYKDUzcgLNRUQNHSqvQzeiKjhDWzTs-qm5f26d98BrOQvDsMoi9ucxPYvWxZP1wpvrt3HMM76mVWWaXckkK3qJrDzAxwfq29qbezu0yauGUds92a5rhbSApqShdzT6chlEkXJ9yqgRtQnUIdq-jiZls5BVAlwZSozQR7uqlE1tVMhMLWhVA6ciyZje2wv9JoULlk1Ye9K7hjH1PPybzAVZsQdg-RNUxjhx1rfB5HKNhcsZ4udmYmnfJMWuRFcbhZGiQhVbuRPGoAeTcRju4i2cgHZG6XGT0h7FSqhMGIIWBP_UFc1HHgIT243G2_PLcSdVTZ-5oAVj_Fr3adwSVCcL1rQXfPyxLc7iWiw4nYYikwwUPGzBmhbiA96UJpNw-i8unoK-JE1wGoSsuH5ohbaUVmAq1IPAcFCn0gWVEflmZQac0n2eKqjNWWHj2isxbFdel-c99ryXe34GjA_T25zf4zdGG-UeeV8Oq0d56Gfz2b-ZL8Fg_eTo0DvcaxzMwRCv5OjCeejrtO5wgaqkTrCYnUoBF_99Dd4Buvcpog |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuromorphic+computing+with+hybrid+CNN%E2%80%93Stochastic+Reservoir+for+time+series+WiFi+based+human+activity+recognition&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Saw%2C+Chia+Yee&rft.au=Wong%2C+Yan+Chiew&rft.date=2023-10-01&rft.pub=Elsevier+Ltd&rft.issn=0045-7906&rft.volume=111&rft_id=info:doi/10.1016%2Fj.compeleceng.2023.108917&rft.externalDocID=S0045790623003415 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon |