High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery

High-entropy nanoparticles have become a rapidly growing area of research in recent years. Because of their multielemental compositions and unique high-entropy mixing states (i.e., solid-solution) that can lead to tunable activity and enhanced stability, these nanoparticles have received notable att...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 376; no. 6589; p. eabn3103
Main Authors Yao, Yonggang, Dong, Qi, Brozena, Alexandra, Luo, Jian, Miao, Jianwei, Chi, Miaofang, Wang, Chao, Kevrekidis, Ioannis G., Ren, Zhiyong Jason, Greeley, Jeffrey, Wang, Guofeng, Anapolsky, Abraham, Hu, Liangbing
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 08.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High-entropy nanoparticles have become a rapidly growing area of research in recent years. Because of their multielemental compositions and unique high-entropy mixing states (i.e., solid-solution) that can lead to tunable activity and enhanced stability, these nanoparticles have received notable attention for catalyst design and exploration. However, this strong potential is also accompanied by grand challenges originating from their vast compositional space and complex atomic structure, which hinder comprehensive exploration and fundamental understanding. Through a multidisciplinary view of synthesis, characterization, catalytic applications, high-throughput screening, and data-driven materials discovery, this review is dedicated to discussing the important progress of high-entropy nanoparticles and unveiling the critical needs for their future development for catalysis, energy, and sustainability applications. Multielement nanoparticles are attractive for a variety of applications in catalysis, energy, and other fields. A more diverse range and larger number of elements can be mixed together because of high-entropy mixing states accessed by a number of recently developed techniques. Yao et al . review these techniques along with characterization methods, high-throughput screening, and data-driven discovery for targeted applications. The wide range of different elements that can be mixed together presents a large number of opportunities and challenges. —BG A review highlights improvements in synthesizing and stabilizing multielement nanoparticles.
AbstractList High-entropy nanoparticles have become a rapidly growing area of research in recent years. Because of their multielemental compositions and unique high-entropy mixing states (i.e., solid-solution) that can lead to tunable activity and enhanced stability, these nanoparticles have received notable attention for catalyst design and exploration. However, this strong potential is also accompanied by grand challenges originating from their vast compositional space and complex atomic structure, which hinder comprehensive exploration and fundamental understanding. Through a multidisciplinary view of synthesis, characterization, catalytic applications, high-throughput screening, and data-driven materials discovery, this review is dedicated to discussing the important progress of high-entropy nanoparticles and unveiling the critical needs for their future development for catalysis, energy, and sustainability applications.
High-entropy nanoparticles have become a rapidly growing area of research in recent years. Because of their multielemental compositions and unique high-entropy mixing states (i.e., solid-solution) that can lead to tunable activity and enhanced stability, these nanoparticles have received notable attention for catalyst design and exploration. However, this strong potential is also accompanied by grand challenges originating from their vast compositional space and complex atomic structure, which hinder comprehensive exploration and fundamental understanding. Through a multidisciplinary view of synthesis, characterization, catalytic applications, high-throughput screening, and data-driven materials discovery, this review is dedicated to discussing the important progress of high-entropy nanoparticles and unveiling the critical needs for their future development for catalysis, energy, and sustainability applications.High-entropy nanoparticles have become a rapidly growing area of research in recent years. Because of their multielemental compositions and unique high-entropy mixing states (i.e., solid-solution) that can lead to tunable activity and enhanced stability, these nanoparticles have received notable attention for catalyst design and exploration. However, this strong potential is also accompanied by grand challenges originating from their vast compositional space and complex atomic structure, which hinder comprehensive exploration and fundamental understanding. Through a multidisciplinary view of synthesis, characterization, catalytic applications, high-throughput screening, and data-driven materials discovery, this review is dedicated to discussing the important progress of high-entropy nanoparticles and unveiling the critical needs for their future development for catalysis, energy, and sustainability applications.
High-entropy nanoparticles have become a rapidly growing area of research in recent years. Because of their multielemental compositions and unique high-entropy mixing states (i.e., solid-solution) that can lead to tunable activity and enhanced stability, these nanoparticles have received notable attention for catalyst design and exploration. However, this strong potential is also accompanied by grand challenges originating from their vast compositional space and complex atomic structure, which hinder comprehensive exploration and fundamental understanding. Through a multidisciplinary view of synthesis, characterization, catalytic applications, high-throughput screening, and data-driven materials discovery, this review is dedicated to discussing the important progress of high-entropy nanoparticles and unveiling the critical needs for their future development for catalysis, energy, and sustainability applications. Multielement nanoparticles are attractive for a variety of applications in catalysis, energy, and other fields. A more diverse range and larger number of elements can be mixed together because of high-entropy mixing states accessed by a number of recently developed techniques. Yao et al . review these techniques along with characterization methods, high-throughput screening, and data-driven discovery for targeted applications. The wide range of different elements that can be mixed together presents a large number of opportunities and challenges. —BG A review highlights improvements in synthesizing and stabilizing multielement nanoparticles.
BACKGROUNDHigh-entropy nanoparticles contain more than four elements uniformly mixed into a solid-solution structure, offering opportunities for materials discovery, property optimization, and advanced applications. For example, the compositional flexibility of high-entropy nanoparticles enables fine-tuning of the catalytic activity and selectivity, and high-entropy mixing offers structural stability under harsh operating conditions. In addition, the multielemental synergy in high-entropy nanoparticles provides a diverse range of adsorption sites, which is ideal for multistep tandem reactions or reactions that require multifunctional catalysts. However, the wide range of possible compositions and complex atomic arrangements also create grand challenges in synthesizing, characterizing, understanding, and applying high-entropy nanoparticles. For example, controllable synthesis is challenging given the different physicochemical properties within the multielemental compositions combined with the small size and large surface area. Moreover, random multielemental mixing can make it difficult to precisely characterize the individual nanoparticles and their statistical variations. Without rational understanding and guidance, efficient compositional design and performance optimization within the huge multielemental space is nearly impossible.ADVANCESThe comprehensive study of high-entropy nanoparticles has become feasible because of the rapid development of synthetic approaches, high-resolution characterization, high-throughput experimentation, and data-driven discovery. A diverse range of compositions and material libraries have been developed, many by using nonequilibrium “shock”–based methods designed to induce single-phase mixing even for traditionally immiscible elemental combinations. The nanomaterial types have also rapidly evolved from crystalline metallic alloys to metallic glasses, oxides, sulfides, phosphates, and others. Advanced characterization tools have been used to uncover the structural complexities of high-entropy nanoparticles. For example, atomic electron tomography has been used for single-atom-level resolution of the three-dimensional positions of the elements and their chemical environments. Finally, high-entropy nanoparticles have already shown promise in a wide range of catalysis and energy technologies because of their atomic structure and tunable electronic states. The development of high-throughput computational and experimental methods can accelerate the material exploration rate and enable machine-learning tools that are ideal for performance prediction and guided optimization. Materials discovery platforms, such as high-throughput exploration and data mining, may disruptively supplant conventional trial-and-error approaches for developing next-generation catalysts based on high-entropy nanoparticles.OUTLOOKHigh-entropy nanoparticles provide an enticing material platform for different applications. Being at an initial stage, enormous opportunities and grand challenges exist for these intrinsically complex materials. For the next stage of research and applications, we need (i) the controlled synthesis of high-entropy nanoparticles with targeted surface compositions and atomic arrangements; (ii) fundamental studies of surfaces, ordering, defects, and the dynamic evolution of high-entropy nanoparticles under catalytic conditions through precise structural characterization; (iii) identification and understanding of the active sites and performance origin (especially the enhanced stability) of high-entropy nanoparticles; and (iv) high-throughput computational and experimental techniques for rapid screening and data mining toward accelerated exploration of high-entropy nanoparticles in a multielemental space. We expect that discoveries about the synthesis-structure-property relationships of high-entropy nanoparticles and their guided discovery will greatly benefit a range of applications for catalysis, energy, and sustainability.Diversifying nanoparticlesMultielement nanoparticles are attractive for a variety of applications in catalysis, energy, and other fields. A more diverse range and larger number of elements can be mixed together because of high-entropy mixing states accessed by a number of recently developed techniques. Yao et al. review these techniques along with characterization methods, high-throughput screening, and data-driven discovery for targeted applications. The wide range of different elements that can be mixed together presents a large number of opportunities and challenges. —BG
Author Kevrekidis, Ioannis G.
Hu, Liangbing
Miao, Jianwei
Dong, Qi
Anapolsky, Abraham
Luo, Jian
Ren, Zhiyong Jason
Wang, Chao
Brozena, Alexandra
Greeley, Jeffrey
Wang, Guofeng
Yao, Yonggang
Chi, Miaofang
Author_xml – sequence: 1
  givenname: Yonggang
  orcidid: 0000-0002-9191-2982
  surname: Yao
  fullname: Yao, Yonggang
  organization: Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
– sequence: 2
  givenname: Qi
  orcidid: 0000-0002-7553-4213
  surname: Dong
  fullname: Dong, Qi
  organization: Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
– sequence: 3
  givenname: Alexandra
  orcidid: 0000-0002-5045-2123
  surname: Brozena
  fullname: Brozena, Alexandra
  organization: Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
– sequence: 4
  givenname: Jian
  orcidid: 0000-0002-5424-0216
  surname: Luo
  fullname: Luo, Jian
  organization: Department of NanoEngineering, Program of Materials Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
– sequence: 5
  givenname: Jianwei
  orcidid: 0000-0003-4033-3945
  surname: Miao
  fullname: Miao, Jianwei
  organization: Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
– sequence: 6
  givenname: Miaofang
  orcidid: 0000-0003-0764-1567
  surname: Chi
  fullname: Chi, Miaofang
  organization: Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37932, USA
– sequence: 7
  givenname: Chao
  orcidid: 0000-0001-7398-2090
  surname: Wang
  fullname: Wang, Chao
  organization: Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
– sequence: 8
  givenname: Ioannis G.
  orcidid: 0000-0003-2220-3522
  surname: Kevrekidis
  fullname: Kevrekidis, Ioannis G.
  organization: Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
– sequence: 9
  givenname: Zhiyong Jason
  orcidid: 0000-0001-7606-0331
  surname: Ren
  fullname: Ren, Zhiyong Jason
  organization: Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA
– sequence: 10
  givenname: Jeffrey
  orcidid: 0000-0001-8469-1715
  surname: Greeley
  fullname: Greeley, Jeffrey
  organization: School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
– sequence: 11
  givenname: Guofeng
  orcidid: 0000-0001-8249-4101
  surname: Wang
  fullname: Wang, Guofeng
  organization: Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA
– sequence: 12
  givenname: Abraham
  surname: Anapolsky
  fullname: Anapolsky, Abraham
  organization: Toyota Research Institute, Los Altos, CA 94022, USA
– sequence: 13
  givenname: Liangbing
  orcidid: 0000-0002-9456-9315
  surname: Hu
  fullname: Hu, Liangbing
  organization: Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA., Center for Materials Innovation, University of Maryland, College Park, MD 20742, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35389801$$D View this record in MEDLINE/PubMed
BookMark eNp10T1P3TAUBmCrApUL7dytisTSxeCP2EnYEOKjElIH2jk9tk96jXKdYDtI-fd14bYDUicPft6jo_Mek4MwBSTkE2dnnAt9nqzHYPEMTJCcyXdkw1mnaCeYPCAbxqSmLWvUETlO6ZGx8tfJ9-RIKtl2LeMb8vPO_9pSDDlO81oFCNMMMXs7YrqoHtaQt5h8oinHxeYlIp0LxJjXKuII2U8hbf2cKgiucpCBuuifMVTOJzs9Y1w_kMMBxoQf9-8J-XFz_f3qjt5_u_16dXlPrRQ8U-PsoJg0WkBj6roTUjvAWmnTDbUwILlgolHKdRaUdAZM2zRo9KAVuHpo5Qn58jq3LPi0YMr9rqyA4wgBpyX1Qtdt2ymm60JP39DHaYmhbPeiRCNbqYv6vFeL2aHr5-h3ENf-7-0KOH8FNk4pRRz-Ec76P-30-3b6fTslod4krM8vR8wR_Pjf3G9hFZko
CitedBy_id crossref_primary_10_1002_smll_202311631
crossref_primary_10_1007_s12598_024_02912_5
crossref_primary_10_1016_j_jallcom_2022_167437
crossref_primary_10_1021_acs_nanolett_4c05460
crossref_primary_10_1002_anie_202419735
crossref_primary_10_1016_j_ceramint_2024_01_443
crossref_primary_10_1007_s12274_023_5419_2
crossref_primary_10_1021_acsnano_4c14294
crossref_primary_10_1021_acs_analchem_4c05167
crossref_primary_10_1002_adfm_202418096
crossref_primary_10_1002_adma_202404172
crossref_primary_10_1016_j_apcatb_2023_123358
crossref_primary_10_1039_D4NR01510J
crossref_primary_10_1021_acsnano_3c05810
crossref_primary_10_1007_s12274_022_4713_8
crossref_primary_10_1016_j_nanoen_2025_110902
crossref_primary_10_1016_j_apcatb_2024_124841
crossref_primary_10_1021_acsomega_4c07777
crossref_primary_10_1002_advs_202408614
crossref_primary_10_1016_j_coche_2024_101020
crossref_primary_10_1016_j_pmatsci_2024_101250
crossref_primary_10_1038_s41467_023_38254_6
crossref_primary_10_1038_s43588_024_00661_0
crossref_primary_10_1007_s11814_024_00160_y
crossref_primary_10_1021_acsnano_4c07528
crossref_primary_10_1016_S1872_2067_23_64428_6
crossref_primary_10_1039_D3NH00178D
crossref_primary_10_1016_j_apcatb_2023_123361
crossref_primary_10_1039_D4TA05756B
crossref_primary_10_1016_j_mtcomm_2024_109052
crossref_primary_10_1002_smll_202309773
crossref_primary_10_1016_j_seppur_2025_132233
crossref_primary_10_1007_s11814_024_00249_4
crossref_primary_10_1021_acscatal_2c03480
crossref_primary_10_1021_jacs_4c06413
crossref_primary_10_1039_D4TA07296K
crossref_primary_10_1016_j_mattod_2024_08_021
crossref_primary_10_1007_s41918_024_00217_w
crossref_primary_10_1021_acs_energyfuels_4c03386
crossref_primary_10_1021_acsnano_3c02762
crossref_primary_10_1021_acsami_2c11038
crossref_primary_10_1016_j_jallcom_2023_172056
crossref_primary_10_1016_j_esci_2022_09_002
crossref_primary_10_3390_catal14010057
crossref_primary_10_1016_j_nanoen_2023_109153
crossref_primary_10_1002_advs_202406216
crossref_primary_10_1002_adfm_202424887
crossref_primary_10_1039_D4NR05256K
crossref_primary_10_1038_s41467_024_52520_1
crossref_primary_10_1002_ange_202208667
crossref_primary_10_1016_j_jmgm_2024_108776
crossref_primary_10_1021_acsaem_4c01875
crossref_primary_10_1039_D3QM00661A
crossref_primary_10_1002_adfm_202412551
crossref_primary_10_1002_adma_202400920
crossref_primary_10_1016_j_joule_2023_02_011
crossref_primary_10_1021_accountsmr_3c00080
crossref_primary_10_1021_acssuschemeng_3c04499
crossref_primary_10_1002_smtd_202301219
crossref_primary_10_1021_acsami_3c15235
crossref_primary_10_1016_j_cej_2024_153829
crossref_primary_10_1021_jacs_3c08177
crossref_primary_10_1021_acs_inorgchem_3c02930
crossref_primary_10_1039_D4EE01329H
crossref_primary_10_1016_j_jmst_2023_03_031
crossref_primary_10_1039_D2TA08126A
crossref_primary_10_1002_smll_202500279
crossref_primary_10_1002_anie_202415216
crossref_primary_10_1021_acs_jpclett_3c02409
crossref_primary_10_1021_acsnano_4c04176
crossref_primary_10_1002_adma_202314054
crossref_primary_10_1007_s41918_024_00216_x
crossref_primary_10_1039_D3SC06784J
crossref_primary_10_1002_adfm_202207536
crossref_primary_10_1016_j_jallcom_2024_174332
crossref_primary_10_1063_5_0236288
crossref_primary_10_1002_adma_202302067
crossref_primary_10_1016_j_nanoen_2023_108362
crossref_primary_10_1002_adma_202310918
crossref_primary_10_1002_smll_202307284
crossref_primary_10_1063_5_0249228
crossref_primary_10_1002_adfm_202420268
crossref_primary_10_1016_j_ijrmhm_2022_105993
crossref_primary_10_1002_adhm_202402005
crossref_primary_10_1002_smll_202401360
crossref_primary_10_1038_d41586_023_01793_5
crossref_primary_10_1039_D3TA07107C
crossref_primary_10_1126_sciadv_adl3693
crossref_primary_10_1016_j_jeurceramsoc_2023_09_038
crossref_primary_10_1002_adma_202414067
crossref_primary_10_1007_s11356_022_23918_5
crossref_primary_10_1002_cphc_202400853
crossref_primary_10_1002_smll_202309574
crossref_primary_10_1039_D2EE03185J
crossref_primary_10_1038_s44160_024_00561_1
crossref_primary_10_1002_adma_202309956
crossref_primary_10_1039_D3CE00877K
crossref_primary_10_1002_aenm_202201466
crossref_primary_10_1002_smll_202401131
crossref_primary_10_1039_D4NH00012A
crossref_primary_10_1021_acsnano_2c08411
crossref_primary_10_1016_j_jmat_2023_11_017
crossref_primary_10_1021_jacs_3c14510
crossref_primary_10_1002_ange_202415216
crossref_primary_10_1093_bulcsj_uoae050
crossref_primary_10_1002_adfm_202400773
crossref_primary_10_1039_D3CY00087G
crossref_primary_10_1002_advs_202409404
crossref_primary_10_1039_D4SC05326E
crossref_primary_10_1002_adfm_202403922
crossref_primary_10_1016_j_apcatb_2024_123845
crossref_primary_10_1016_j_jcis_2024_07_049
crossref_primary_10_1016_j_jechem_2024_03_037
crossref_primary_10_1021_acscatal_3c00786
crossref_primary_10_1016_j_apcatb_2023_123542
crossref_primary_10_1002_adfm_202403435
crossref_primary_10_1002_adma_202402391
crossref_primary_10_1016_j_ensm_2023_103053
crossref_primary_10_1038_s41467_023_40737_5
crossref_primary_10_1016_j_ijimpeng_2024_105136
crossref_primary_10_1016_j_nanoen_2024_109482
crossref_primary_10_1002_smll_202406848
crossref_primary_10_1002_adma_202418856
crossref_primary_10_1039_D4TA02556C
crossref_primary_10_1002_inf2_12617
crossref_primary_10_1093_nsr_nwac190
crossref_primary_10_1021_acs_nanolett_4c03208
crossref_primary_10_1039_D2NR02478K
crossref_primary_10_1039_D3CS00557G
crossref_primary_10_1002_adom_202301245
crossref_primary_10_1007_s42247_025_01011_0
crossref_primary_10_1038_s41565_024_01635_z
crossref_primary_10_1021_acs_nanolett_3c04316
crossref_primary_10_31857_S0235010624020014
crossref_primary_10_1016_j_matt_2024_05_009
crossref_primary_10_1021_jacs_3c07351
crossref_primary_10_1002_adma_202211099
crossref_primary_10_1021_acsmaterialsau_4c00080
crossref_primary_10_1038_s41524_024_01386_4
crossref_primary_10_1016_j_apcatb_2025_125140
crossref_primary_10_1002_smll_202311101
crossref_primary_10_1002_eom2_12261
crossref_primary_10_1016_j_nanoms_2024_09_002
crossref_primary_10_1021_acs_cgd_3c00712
crossref_primary_10_1002_smsc_202200109
crossref_primary_10_1021_acsnano_4c09312
crossref_primary_10_1038_s41467_023_39157_2
crossref_primary_10_1016_j_jallcom_2024_174922
crossref_primary_10_1039_D4SE01572J
crossref_primary_10_1038_s43246_023_00335_w
crossref_primary_10_1016_j_materresbull_2024_113066
crossref_primary_10_1002_adfm_202314820
crossref_primary_10_1021_acs_energyfuels_4c05070
crossref_primary_10_1039_D4GC02329C
crossref_primary_10_1016_j_jcis_2024_11_147
crossref_primary_10_1002_advs_202401034
crossref_primary_10_1016_j_cej_2023_143225
crossref_primary_10_1039_D3CC05611B
crossref_primary_10_1063_5_0187760
crossref_primary_10_1038_s41467_024_55615_x
crossref_primary_10_1039_D3MH00360D
crossref_primary_10_1016_j_ccr_2025_216496
crossref_primary_10_1021_acsnano_3c09559
crossref_primary_10_1016_j_mattod_2023_12_006
crossref_primary_10_1002_smll_202409900
crossref_primary_10_1038_s41467_024_50721_2
crossref_primary_10_1002_adma_202401288
crossref_primary_10_1002_adfm_202204643
crossref_primary_10_1016_j_cej_2024_155736
crossref_primary_10_1016_j_mtchem_2024_102406
crossref_primary_10_1103_PhysRevMaterials_7_033606
crossref_primary_10_1016_j_cej_2022_141242
crossref_primary_10_1016_j_ensm_2024_103781
crossref_primary_10_1002_adfm_202401027
crossref_primary_10_1016_j_apsusc_2023_157479
crossref_primary_10_1016_j_jechem_2023_09_016
crossref_primary_10_1002_ange_202419735
crossref_primary_10_1002_smsc_202300071
crossref_primary_10_1126_science_adp2444
crossref_primary_10_1039_D4QI02881C
crossref_primary_10_1021_acs_chemmater_4c02151
crossref_primary_10_1016_j_jmrt_2024_08_084
crossref_primary_10_1016_j_cej_2024_151370
crossref_primary_10_1002_anie_202503493
crossref_primary_10_1016_j_partic_2024_04_010
crossref_primary_10_1021_acscatal_4c02191
crossref_primary_10_1039_D4SC01226G
crossref_primary_10_1002_adfm_202310683
crossref_primary_10_1021_acsnano_3c06393
crossref_primary_10_1002_advs_202302830
crossref_primary_10_1016_j_jallcom_2024_178068
crossref_primary_10_1016_j_jmst_2023_05_040
crossref_primary_10_1002_sus2_265
crossref_primary_10_1002_aenm_202304529
crossref_primary_10_1016_j_jechem_2023_07_019
crossref_primary_10_1016_j_ceramint_2023_12_215
crossref_primary_10_1002_sus2_261
crossref_primary_10_1016_j_apenergy_2024_124120
crossref_primary_10_1002_adfm_202415970
crossref_primary_10_1073_pnas_2313239121
crossref_primary_10_1021_acsami_4c05876
crossref_primary_10_1016_j_powtec_2022_117491
crossref_primary_10_1002_anie_202217976
crossref_primary_10_1016_j_apcatb_2024_124191
crossref_primary_10_1126_sciadv_adf9931
crossref_primary_10_1016_j_ceramint_2022_12_067
crossref_primary_10_1016_j_jmst_2023_11_040
crossref_primary_10_1038_s41524_024_01256_z
crossref_primary_10_1007_s11581_023_05274_7
crossref_primary_10_1021_acsenergylett_4c01129
crossref_primary_10_1016_j_isci_2024_109616
crossref_primary_10_1016_j_jallcom_2022_165585
crossref_primary_10_1016_j_partic_2024_06_014
crossref_primary_10_1021_jacs_4c01711
crossref_primary_10_1002_ange_202407589
crossref_primary_10_1016_j_cej_2024_153762
crossref_primary_10_1039_D3CC04225A
crossref_primary_10_1093_nsr_nwae033
crossref_primary_10_1002_adma_202312942
crossref_primary_10_1021_jacs_4c12838
crossref_primary_10_1016_j_ijhydene_2024_07_229
crossref_primary_10_3390_nano14060554
crossref_primary_10_1002_sus2_168
crossref_primary_10_1002_adfm_202504275
crossref_primary_10_1039_D4EE03708A
crossref_primary_10_1016_j_apsadv_2023_100523
crossref_primary_10_1016_j_isci_2023_107029
crossref_primary_10_1039_D2CP02437C
crossref_primary_10_1007_s12274_024_6621_6
crossref_primary_10_1021_acscatal_3c05160
crossref_primary_10_1038_s41570_024_00602_5
crossref_primary_10_1002_aenm_202401838
crossref_primary_10_1002_anie_202400496
crossref_primary_10_1021_jacs_4c10681
crossref_primary_10_1016_j_apcatb_2025_125115
crossref_primary_10_1073_pnas_2215131120
crossref_primary_10_1002_slct_202406176
crossref_primary_10_1016_j_ccr_2022_214980
crossref_primary_10_1016_j_enganabound_2024_106063
crossref_primary_10_1002_anie_202411123
crossref_primary_10_3390_catal14090569
crossref_primary_10_1016_j_cej_2025_159463
crossref_primary_10_1016_j_nanoen_2024_110121
crossref_primary_10_1016_j_fuel_2025_135090
crossref_primary_10_1002_solr_202300484
crossref_primary_10_1016_j_jcis_2024_04_015
crossref_primary_10_1002_adma_202401018
crossref_primary_10_1021_acs_jpcc_3c05016
crossref_primary_10_1021_acsmaterialslett_4c00248
crossref_primary_10_1002_adfm_202311611
crossref_primary_10_1021_acsnano_4c18277
crossref_primary_10_1016_j_pnsc_2024_11_002
crossref_primary_10_1007_s40843_022_2436_6
crossref_primary_10_1002_adfm_202414537
crossref_primary_10_1002_tcr_202200175
crossref_primary_10_1021_acsomega_4c01401
crossref_primary_10_2147_IJN_S402954
crossref_primary_10_1002_ange_202419369
crossref_primary_10_1039_D4EE04116J
crossref_primary_10_1016_j_cej_2025_161070
crossref_primary_10_1002_adma_202413202
crossref_primary_10_1016_j_pnsc_2024_04_014
crossref_primary_10_1016_j_coelec_2023_101404
crossref_primary_10_1016_j_ccr_2023_215541
crossref_primary_10_1016_j_cej_2024_154022
crossref_primary_10_1002_smll_202406685
crossref_primary_10_1021_acs_nanolett_2c01596
crossref_primary_10_1002_smll_202407788
crossref_primary_10_1039_D4SC06552B
crossref_primary_10_1016_j_cej_2023_144291
crossref_primary_10_1039_D4CS00034J
crossref_primary_10_1002_adma_202413560
crossref_primary_10_1016_j_matt_2024_07_019
crossref_primary_10_1016_j_jallcom_2024_178337
crossref_primary_10_1002_adma_202305099
crossref_primary_10_1016_j_cej_2024_149913
crossref_primary_10_1002_aenm_202303923
crossref_primary_10_1002_sus2_215
crossref_primary_10_1016_j_isci_2023_107775
crossref_primary_10_1039_D4EE04442H
crossref_primary_10_1115_1_4067277
crossref_primary_10_1002_advs_202409023
crossref_primary_10_1002_adma_202406807
crossref_primary_10_1016_j_jallcom_2023_172401
crossref_primary_10_1016_j_nxmate_2023_100005
crossref_primary_10_1002_ange_202413826
crossref_primary_10_1016_j_trechm_2022_07_004
crossref_primary_10_1016_j_ensm_2024_103954
crossref_primary_10_1016_j_jnoncrysol_2024_122983
crossref_primary_10_1002_adma_202308257
crossref_primary_10_1021_acs_jpcc_2c05087
crossref_primary_10_1039_D3CC02214E
crossref_primary_10_1002_adma_202410060
crossref_primary_10_1016_j_nanoen_2023_108840
crossref_primary_10_1007_s40843_023_2709_5
crossref_primary_10_1002_adma_202412337
crossref_primary_10_1016_j_jallcom_2024_177262
crossref_primary_10_1063_5_0200341
crossref_primary_10_1039_D2CS00322H
crossref_primary_10_1021_acsnano_4c09249
crossref_primary_10_1021_acsnano_4c01997
crossref_primary_10_1002_ange_202407116
crossref_primary_10_1016_j_joule_2024_06_004
crossref_primary_10_1002_smll_202411704
crossref_primary_10_1126_science_adq0102
crossref_primary_10_1039_D3NR01073B
crossref_primary_10_1016_j_jechem_2024_07_049
crossref_primary_10_1039_D4MH01168F
crossref_primary_10_1360_SSC_2024_0191
crossref_primary_10_1016_j_enchem_2023_100108
crossref_primary_10_1021_acscatal_2c02946
crossref_primary_10_1016_j_mattod_2024_03_002
crossref_primary_10_1016_j_jece_2025_115359
crossref_primary_10_1038_s41566_024_01468_1
crossref_primary_10_1002_adma_202302979
crossref_primary_10_1002_anie_202414719
crossref_primary_10_1039_D3CP04829B
crossref_primary_10_1002_adma_202415739
crossref_primary_10_1002_EXP_20230036
crossref_primary_10_1002_adma_202312524
crossref_primary_10_1016_j_jallcom_2023_171535
crossref_primary_10_26599_JAC_2024_9221013
crossref_primary_10_1016_j_optmat_2024_115668
crossref_primary_10_1080_21663831_2023_2215826
crossref_primary_10_1039_D4GC02517B
crossref_primary_10_1002_adma_202411464
crossref_primary_10_1021_acsnano_4c12350
crossref_primary_10_1016_j_apsusc_2023_157282
crossref_primary_10_1002_adma_202301538
crossref_primary_10_1039_D3CP01869E
crossref_primary_10_1360_SSC_2023_0122
crossref_primary_10_1016_j_ensm_2024_103890
crossref_primary_10_1021_acsnano_4c01456
crossref_primary_10_1016_j_joule_2024_06_023
crossref_primary_10_1002_mgea_7
crossref_primary_10_1111_jace_19252
crossref_primary_10_1021_acs_chemmater_4c03153
crossref_primary_10_1021_jacs_4c16807
crossref_primary_10_1039_D2FD00118G
crossref_primary_10_1021_acsnano_3c07110
crossref_primary_10_1039_D4EE05500D
crossref_primary_10_1002_adma_202409278
crossref_primary_10_1039_D3EE02392C
crossref_primary_10_1021_acs_chemmater_3c01698
crossref_primary_10_1002_celc_202400659
crossref_primary_10_1002_cssc_202401517
crossref_primary_10_1002_smll_202500962
crossref_primary_10_1007_s12274_023_6037_8
crossref_primary_10_1002_anie_202423765
crossref_primary_10_1002_aic_18748
crossref_primary_10_1002_ange_202414719
crossref_primary_10_1016_j_ensm_2024_103750
crossref_primary_10_1002_ange_202423765
crossref_primary_10_1038_s41467_025_56189_y
crossref_primary_10_1021_acs_nanolett_4c04758
crossref_primary_10_1016_j_mtcomm_2024_108719
crossref_primary_10_1039_D3SC03897A
crossref_primary_10_1002_aesr_202300297
crossref_primary_10_1002_chem_202402859
crossref_primary_10_1016_j_jallcom_2023_170479
crossref_primary_10_1002_anie_202419369
crossref_primary_10_1038_s41467_024_54589_0
crossref_primary_10_1016_j_cclet_2025_111066
crossref_primary_10_1021_acsestengg_4c00087
crossref_primary_10_1038_s41467_024_45874_z
crossref_primary_10_1016_j_ijhydene_2024_02_192
crossref_primary_10_1016_j_cej_2023_146884
crossref_primary_10_1021_jacs_3c11943
crossref_primary_10_1038_s41467_023_40246_5
crossref_primary_10_1002_smll_202302130
crossref_primary_10_1002_anie_202413826
crossref_primary_10_1016_j_matt_2024_06_042
crossref_primary_10_1038_s41467_024_50009_5
crossref_primary_10_1007_s12274_022_5259_5
crossref_primary_10_1038_s41578_024_00720_y
crossref_primary_10_1038_s41467_023_44145_7
crossref_primary_10_1021_acs_nanolett_3c01831
crossref_primary_10_1016_j_ensm_2024_103734
crossref_primary_10_1021_acs_chemrev_3c00382
crossref_primary_10_1038_s41467_024_51112_3
crossref_primary_10_1002_cey2_228
crossref_primary_10_1002_adma_202411426
crossref_primary_10_1016_j_jma_2025_01_015
crossref_primary_10_1039_D3NJ01680C
crossref_primary_10_1016_j_matt_2025_102009
crossref_primary_10_1002_anie_202208667
crossref_primary_10_1021_acs_nanolett_4c00730
crossref_primary_10_1021_jacs_3c07915
crossref_primary_10_1021_acsnano_4c03435
crossref_primary_10_3390_met13020205
crossref_primary_10_1002_anie_202407589
crossref_primary_10_1016_j_pmatsci_2024_101300
crossref_primary_10_1039_D4NR05019C
crossref_primary_10_1007_s11708_023_0892_6
crossref_primary_10_1002_celc_202300606
crossref_primary_10_1002_adfm_202315248
crossref_primary_10_1002_aenm_202300239
crossref_primary_10_1021_acsmaterialslett_4c01849
crossref_primary_10_1002_adma_202202943
crossref_primary_10_1002_aenm_202405534
crossref_primary_10_1002_advs_202404095
crossref_primary_10_1021_acsnano_3c07703
crossref_primary_10_1021_acsmaterialslett_4c01952
crossref_primary_10_1002_ange_202411123
crossref_primary_10_1021_acssuschemeng_3c01602
crossref_primary_10_1126_sciadv_adn2877
crossref_primary_10_1002_adma_202408114
crossref_primary_10_1002_adma_202304867
crossref_primary_10_1002_smll_202203340
crossref_primary_10_1038_s41467_024_52225_5
crossref_primary_10_1007_s40242_025_5010_3
crossref_primary_10_1016_j_jiec_2024_11_050
crossref_primary_10_1039_D4CC00170B
crossref_primary_10_1021_jacs_3c12048
crossref_primary_10_1088_2752_5724_ad8463
crossref_primary_10_1039_D2TA02597C
crossref_primary_10_1039_D3YA00305A
crossref_primary_10_1039_D4TA01747A
crossref_primary_10_1002_smll_202309819
crossref_primary_10_1021_acs_jpcc_3c00571
crossref_primary_10_1002_ange_202503493
crossref_primary_10_1016_j_cclet_2024_110532
crossref_primary_10_1016_j_ceramint_2023_11_189
crossref_primary_10_1002_smll_202309937
crossref_primary_10_1016_j_joule_2023_06_003
crossref_primary_10_1021_acsnano_2c05465
crossref_primary_10_1016_j_smaim_2024_09_001
crossref_primary_10_1016_j_est_2023_107419
crossref_primary_10_1021_acs_accounts_2c00646
crossref_primary_10_1002_adma_202206276
crossref_primary_10_1039_D3IM00046J
crossref_primary_10_1002_smll_202400892
crossref_primary_10_1002_adma_202209545
crossref_primary_10_1038_s41524_024_01358_8
crossref_primary_10_1002_anie_202407116
crossref_primary_10_1016_j_jallcom_2024_175356
crossref_primary_10_1016_j_scib_2022_08_022
crossref_primary_10_1007_s12598_023_02553_0
crossref_primary_10_1002_adma_202412954
crossref_primary_10_1016_j_jmst_2022_08_012
crossref_primary_10_1039_D4EE01139B
crossref_primary_10_1002_advs_202401975
crossref_primary_10_1038_d41586_023_03656_5
crossref_primary_10_20517_energymater_2024_130
crossref_primary_10_1016_j_matchar_2024_114058
crossref_primary_10_1021_acs_jpclett_2c01180
crossref_primary_10_1021_acsnano_3c07506
crossref_primary_10_1039_D3QI00316G
crossref_primary_10_1016_j_apsusc_2024_161306
crossref_primary_10_1021_acs_chemmater_2c02842
crossref_primary_10_1016_j_cej_2022_138659
crossref_primary_10_1002_smtd_202201138
crossref_primary_10_1002_adfm_202416389
crossref_primary_10_1038_s44160_024_00690_7
crossref_primary_10_1021_acsnano_4c08929
crossref_primary_10_1016_j_jeurceramsoc_2022_09_023
crossref_primary_10_1039_D3EY00201B
crossref_primary_10_1016_j_nanoen_2023_108992
crossref_primary_10_1038_s41467_024_54393_w
crossref_primary_10_1039_D4TA01418A
crossref_primary_10_1016_j_jallcom_2024_175144
crossref_primary_10_2320_matertrans_MT_MH2022003
crossref_primary_10_1039_D3SE01535A
crossref_primary_10_1002_adma_202209242
crossref_primary_10_1002_nano_202200081
crossref_primary_10_1038_s41586_023_06785_z
crossref_primary_10_1039_D3MH01302B
crossref_primary_10_1021_acs_jpcc_3c00456
crossref_primary_10_1038_s44160_025_00758_y
crossref_primary_10_1039_D3NR02273K
crossref_primary_10_1016_j_seppur_2025_132609
crossref_primary_10_1021_acsnano_3c02290
crossref_primary_10_1021_jacs_4c16638
crossref_primary_10_1063_5_0138877
crossref_primary_10_1021_acs_jpcc_4c01308
crossref_primary_10_1016_j_jallcom_2023_172928
crossref_primary_10_1360_SST_2023_0057
crossref_primary_10_1039_D4MH01180E
crossref_primary_10_1016_j_apcatb_2024_124788
crossref_primary_10_1002_adfm_202307923
crossref_primary_10_1016_j_joule_2024_07_019
crossref_primary_10_1016_j_actamat_2023_119459
crossref_primary_10_1039_D2TA09278F
crossref_primary_10_1016_j_foodchem_2024_142468
crossref_primary_10_1021_acssuschemeng_4c04178
crossref_primary_10_1021_jacs_4c17756
crossref_primary_10_1021_acsphyschemau_2c00064
crossref_primary_10_1039_D3VA00175J
crossref_primary_10_1002_adma_202302499
crossref_primary_10_1021_acscatal_2c03675
crossref_primary_10_1039_D3TA08101J
crossref_primary_10_1002_ange_202400496
crossref_primary_10_1039_D3TA06817J
crossref_primary_10_1002_adma_202405170
crossref_primary_10_1002_ange_202217976
crossref_primary_10_1038_s44160_023_00289_4
crossref_primary_10_1016_j_cej_2024_155005
crossref_primary_10_1002_advs_202307649
crossref_primary_10_1016_j_apcatb_2023_123382
crossref_primary_10_1016_j_apsusc_2022_155624
crossref_primary_10_1021_acs_nanolett_3c02882
crossref_primary_10_1039_D3CS00087G
crossref_primary_10_1016_j_susmat_2025_e01316
crossref_primary_10_1016_j_apcatb_2024_124775
crossref_primary_10_1021_acsnano_4c16417
Cites_doi 10.1038/s41467-020-17738-9
10.1016/j.matt.2020.07.027
10.1002/anie.202014374
10.1103/PhysRevMaterials.2.045801
10.1038/s41586-019-1317-x
10.1007/BFb0035358
10.1039/C9RA03254A
10.1126/sciadv.abg1600
10.1126/science.abj9980
10.1021/acsami.9b07198
10.1016/j.checat.2021.06.001
10.1038/s41586-020-1994-5
10.1039/C8NR10137J
10.1038/nmat1219
10.1002/chem.201903928
10.1002/aenm.201800466
10.1038/s41524-019-0265-1
10.1002/adma.202100347
10.1002/anie.201914666
10.1038/s41524-019-0153-8
10.1016/j.mattod.2019.11.004
10.1002/aenm.202103312
10.1002/adem.200300567
10.1126/science.aaf8402
10.1038/natrevmats.2015.4
10.1007/s12274-021-3912-z
10.1021/acscatal.9b04343
10.1126/sciadv.abm4322
10.1038/ncomms9485
10.1021/jacs.0c04807
10.1038/s41578-020-0216-y
10.1038/s41467-020-19277-9
10.1038/s41565-019-0518-7
10.1093/nsr/nwv023
10.1039/C6TA08088J
10.1002/adma.202101473
10.1143/JJAP.47.5755
10.1002/anie.201712202
10.1021/jacs.0c11384
10.1021/acs.langmuir.9b03392
10.1002/elsa.202100105
10.1039/D1EE00505G
10.1007/s12274-021-3794-0
10.1021/jacs.1c01580
10.1002/adma.201702884
10.1039/C9TA00505F
10.1039/D0NH00656D
10.1126/science.aan5412
10.1002/aenm.201802269
10.1038/s41467-020-15934-1
10.1126/sciadv.aaz6844
10.1039/C8SC03077D
10.1016/j.joule.2018.12.015
10.1038/nchem.367
10.1016/j.jallcom.2018.07.048
10.1103/PhysRevX.5.011041
10.1038/s41467-019-10303-z
10.1002/anie.202109212
10.1073/pnas.1815358116
10.1021/acscatal.9b04302
10.1038/ncomms11241
10.1038/s41586-019-1617-1
10.1021/acs.chemrev.7b00488
10.1038/s41467-019-11848-9
10.1038/s41467-021-24228-z
10.1038/s41929-019-0376-6
10.1038/nature21042
10.1016/j.xcrp.2021.100641
10.1016/j.commatsci.2012.02.002
10.1021/acsenergylett.9b00531
10.1002/smll.202104761
10.1039/D0SC02351E
10.1073/pnas.1903721117
10.1021/acscatal.0c03313
10.1021/acsnano.1c02775
10.1002/adfm.202010561
10.1016/j.matt.2020.07.029
10.1126/science.abe1292
10.1016/j.checat.2021.04.001
10.1038/s41598-017-03644-6
10.1021/acsnano.0c05250
10.1146/annurev-chembioeng-080615-034413
10.1002/anie.202108116
10.1016/j.matt.2019.11.006
10.1016/j.scriptamat.2020.05.049
10.1007/s12274-021-3637-z
10.1126/science.aaf2157
10.1038/s41586-021-03354-0
10.1016/j.matt.2021.04.014
10.1126/sciadv.aaz0510
10.1039/D0TA09578H
10.1038/s41929-020-00554-1
10.1038/ncomms7529
10.1038/ncomms12332
10.1021/nl302992q
10.1016/j.scriptamat.2019.02.015
10.1021/jacs.9b12377
10.1002/aenm.202001119
10.1038/s41578-019-0121-4
10.1002/adfm.202006939
10.1038/nchem.121
10.1021/acsnano.0c03993
10.1021/acsnano.1c05113
10.1038/s41524-019-0205-0
10.1016/j.matlet.2015.08.032
10.1038/nmat4115
10.1126/science.aav4302
10.1002/adma.202106436
10.1038/s41467-020-20084-5
10.1021/acsnano.0c06528
10.1016/j.actamat.2016.08.081
10.1039/C7MH00486A
10.1017/S1431927619001351
10.1021/acsmaterialslett.0c00484
10.1002/adma.202002853
ContentType Journal Article
Copyright Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.abn3103
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
ExternalDocumentID 35389801
10_1126_science_abn3103
Genre Research Support, U.S. Gov't, Non-P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
0B8
AEUPB
ESX
GX1
IGG
NPM
OK1
PKN
UIG
VQA
YCJ
YIF
YIN
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c321t-bdcf503b62a7b449236dae456b9f42ba31202755d9ca53dbab877eb6f65ad4f83
ISSN 0036-8075
1095-9203
IngestDate Mon Jul 21 11:11:13 EDT 2025
Fri Jul 25 09:11:14 EDT 2025
Wed Feb 19 02:26:29 EST 2025
Tue Jul 01 02:24:10 EDT 2025
Thu Apr 24 23:04:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6589
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c321t-bdcf503b62a7b449236dae456b9f42ba31202755d9ca53dbab877eb6f65ad4f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-8249-4101
0000-0002-9191-2982
0000-0002-7553-4213
0000-0003-4033-3945
0000-0002-9456-9315
0000-0001-8469-1715
0000-0002-5424-0216
0000-0001-7398-2090
0000-0001-7606-0331
0000-0002-5045-2123
0000-0003-2220-3522
0000-0003-0764-1567
PMID 35389801
PQID 2648273836
PQPubID 1256
ParticipantIDs proquest_miscellaneous_2648895064
proquest_journals_2648273836
pubmed_primary_35389801
crossref_primary_10_1126_science_abn3103
crossref_citationtrail_10_1126_science_abn3103
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-08
20220408
PublicationDateYYYYMMDD 2022-04-08
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-08
  day: 08
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2022
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_1_118_2
e_1_3_1_81_2
e_1_3_1_114_2
e_1_3_1_110_2
e_1_3_1_43_2
e_1_3_1_66_2
e_1_3_1_89_2
e_1_3_1_24_2
e_1_3_1_62_2
e_1_3_1_85_2
e_1_3_1_20_2
e_1_3_1_6_2
e_1_3_1_47_2
e_1_3_1_2_2
e_1_3_1_28_2
e_1_3_1_106_2
e_1_3_1_70_2
e_1_3_1_93_2
e_1_3_1_102_2
e_1_3_1_121_2
e_1_3_1_32_2
e_1_3_1_55_2
e_1_3_1_78_2
e_1_3_1_13_2
e_1_3_1_51_2
e_1_3_1_74_2
e_1_3_1_97_2
e_1_3_1_17_2
e_1_3_1_36_2
e_1_3_1_59_2
e_1_3_1_119_2
e_1_3_1_115_2
e_1_3_1_80_2
e_1_3_1_111_2
e_1_3_1_65_2
e_1_3_1_46_2
e_1_3_1_88_2
e_1_3_1_7_2
e_1_3_1_61_2
e_1_3_1_42_2
e_1_3_1_84_2
e_1_3_1_3_2
e_1_3_1_69_2
e_1_3_1_27_2
e_1_3_1_107_2
e_1_3_1_103_2
e_1_3_1_92_2
e_1_3_1_122_2
e_1_3_1_54_2
e_1_3_1_35_2
e_1_3_1_77_2
e_1_3_1_12_2
e_1_3_1_50_2
e_1_3_1_96_2
e_1_3_1_31_2
e_1_3_1_73_2
e_1_3_1_16_2
e_1_3_1_58_2
e_1_3_1_39_2
e_1_3_1_116_2
e_1_3_1_60_2
e_1_3_1_112_2
e_1_3_1_22_2
e_1_3_1_45_2
e_1_3_1_68_2
e_1_3_1_87_2
e_1_3_1_8_2
e_1_3_1_41_2
e_1_3_1_64_2
e_1_3_1_83_2
e_1_3_1_4_2
e_1_3_1_26_2
e_1_3_1_49_2
e_1_3_1_91_2
e_1_3_1_104_2
e_1_3_1_100_2
e_1_3_1_34_2
e_1_3_1_57_2
e_1_3_1_76_2
e_1_3_1_99_2
e_1_3_1_11_2
e_1_3_1_30_2
e_1_3_1_53_2
e_1_3_1_72_2
e_1_3_1_95_2
e_1_3_1_15_2
e_1_3_1_19_2
e_1_3_1_38_2
e_1_3_1_117_2
e_1_3_1_82_2
e_1_3_1_113_2
e_1_3_1_21_2
e_1_3_1_44_2
e_1_3_1_67_2
e_1_3_1_40_2
e_1_3_1_86_2
e_1_3_1_9_2
e_1_3_1_63_2
e_1_3_1_29_2
e_1_3_1_5_2
Deshpande S. (e_1_3_1_108_2) 2020; 6
e_1_3_1_25_2
e_1_3_1_48_2
e_1_3_1_109_2
e_1_3_1_71_2
e_1_3_1_105_2
e_1_3_1_90_2
e_1_3_1_101_2
e_1_3_1_120_2
Cui M. (e_1_3_1_23_2) 2020; 2002887
e_1_3_1_33_2
e_1_3_1_79_2
e_1_3_1_56_2
e_1_3_1_98_2
e_1_3_1_75_2
e_1_3_1_10_2
e_1_3_1_52_2
e_1_3_1_94_2
e_1_3_1_14_2
e_1_3_1_37_2
e_1_3_1_18_2
References_xml – ident: e_1_3_1_71_2
  doi: 10.1038/s41467-020-17738-9
– ident: e_1_3_1_114_2
– ident: e_1_3_1_14_2
  doi: 10.1016/j.matt.2020.07.027
– ident: e_1_3_1_64_2
  doi: 10.1002/anie.202014374
– ident: e_1_3_1_99_2
  doi: 10.1103/PhysRevMaterials.2.045801
– ident: e_1_3_1_82_2
  doi: 10.1038/s41586-019-1317-x
– ident: e_1_3_1_55_2
  doi: 10.1007/BFb0035358
– ident: e_1_3_1_66_2
  doi: 10.1039/C9RA03254A
– ident: e_1_3_1_31_2
  doi: 10.1126/sciadv.abg1600
– ident: e_1_3_1_19_2
  doi: 10.1126/science.abj9980
– ident: e_1_3_1_57_2
  doi: 10.1021/acsami.9b07198
– ident: e_1_3_1_117_2
  doi: 10.1016/j.checat.2021.06.001
– ident: e_1_3_1_104_2
  doi: 10.1038/s41586-020-1994-5
– ident: e_1_3_1_70_2
  doi: 10.1039/C8NR10137J
– ident: e_1_3_1_83_2
  doi: 10.1038/nmat1219
– ident: e_1_3_1_53_2
– ident: e_1_3_1_34_2
  doi: 10.1002/chem.201903928
– ident: e_1_3_1_56_2
  doi: 10.1002/aenm.201800466
– ident: e_1_3_1_115_2
  doi: 10.1038/s41524-019-0265-1
– ident: e_1_3_1_92_2
  doi: 10.1002/adma.202100347
– ident: e_1_3_1_63_2
  doi: 10.1002/anie.201914666
– ident: e_1_3_1_118_2
  doi: 10.1038/s41524-019-0153-8
– ident: e_1_3_1_69_2
  doi: 10.1016/j.mattod.2019.11.004
– ident: e_1_3_1_112_2
  doi: 10.1002/aenm.202103312
– ident: e_1_3_1_2_2
  doi: 10.1002/adem.200300567
– ident: e_1_3_1_8_2
  doi: 10.1126/science.aaf8402
– ident: e_1_3_1_100_2
  doi: 10.1038/natrevmats.2015.4
– ident: e_1_3_1_48_2
  doi: 10.1007/s12274-021-3912-z
– ident: e_1_3_1_72_2
  doi: 10.1021/acscatal.9b04343
– ident: e_1_3_1_18_2
  doi: 10.1126/sciadv.abm4322
– ident: e_1_3_1_3_2
  doi: 10.1038/ncomms9485
– ident: e_1_3_1_44_2
  doi: 10.1021/jacs.0c04807
– ident: e_1_3_1_103_2
  doi: 10.1038/s41578-020-0216-y
– ident: e_1_3_1_12_2
  doi: 10.1038/s41467-020-19277-9
– ident: e_1_3_1_58_2
  doi: 10.1038/s41565-019-0518-7
– ident: e_1_3_1_86_2
  doi: 10.1093/nsr/nwv023
– ident: e_1_3_1_111_2
  doi: 10.1039/C6TA08088J
– ident: e_1_3_1_24_2
  doi: 10.1002/adma.202101473
– ident: e_1_3_1_7_2
  doi: 10.1143/JJAP.47.5755
– ident: e_1_3_1_59_2
  doi: 10.1002/anie.201712202
– ident: e_1_3_1_22_2
  doi: 10.1021/jacs.0c11384
– ident: e_1_3_1_61_2
  doi: 10.1021/acs.langmuir.9b03392
– ident: e_1_3_1_89_2
  doi: 10.1002/elsa.202100105
– ident: e_1_3_1_33_2
  doi: 10.1039/D1EE00505G
– ident: e_1_3_1_42_2
  doi: 10.1007/s12274-021-3794-0
– ident: e_1_3_1_27_2
  doi: 10.1021/jacs.1c01580
– ident: e_1_3_1_119_2
  doi: 10.1002/adma.201702884
– ident: e_1_3_1_38_2
  doi: 10.1039/C9TA00505F
– ident: e_1_3_1_60_2
  doi: 10.1039/D0NH00656D
– ident: e_1_3_1_9_2
  doi: 10.1126/science.aan5412
– ident: e_1_3_1_10_2
  doi: 10.1002/aenm.201802269
– ident: e_1_3_1_13_2
  doi: 10.1038/s41467-020-15934-1
– ident: e_1_3_1_40_2
  doi: 10.1126/sciadv.aaz6844
– ident: e_1_3_1_116_2
  doi: 10.1039/C8SC03077D
– ident: e_1_3_1_28_2
  doi: 10.1016/j.joule.2018.12.015
– ident: e_1_3_1_85_2
  doi: 10.1038/nchem.367
– ident: e_1_3_1_97_2
  doi: 10.1016/j.jallcom.2018.07.048
– ident: e_1_3_1_47_2
  doi: 10.1103/PhysRevX.5.011041
– ident: e_1_3_1_16_2
  doi: 10.1038/s41467-019-10303-z
– ident: e_1_3_1_41_2
  doi: 10.1002/anie.202109212
– ident: e_1_3_1_109_2
  doi: 10.1073/pnas.1815358116
– ident: e_1_3_1_107_2
  doi: 10.1021/acscatal.9b04302
– ident: e_1_3_1_120_2
  doi: 10.1038/ncomms11241
– ident: e_1_3_1_78_2
  doi: 10.1038/s41586-019-1617-1
– ident: e_1_3_1_91_2
  doi: 10.1021/acs.chemrev.7b00488
– ident: e_1_3_1_37_2
  doi: 10.1038/s41467-019-11848-9
– ident: e_1_3_1_62_2
  doi: 10.1038/s41467-021-24228-z
– ident: e_1_3_1_84_2
  doi: 10.1038/s41929-019-0376-6
– ident: e_1_3_1_81_2
  doi: 10.1038/nature21042
– ident: e_1_3_1_75_2
  doi: 10.1016/j.xcrp.2021.100641
– ident: e_1_3_1_105_2
  doi: 10.1016/j.commatsci.2012.02.002
– ident: e_1_3_1_29_2
  doi: 10.1021/acsenergylett.9b00531
– ident: e_1_3_1_26_2
  doi: 10.1002/smll.202104761
– ident: e_1_3_1_76_2
  doi: 10.1039/D0SC02351E
– ident: e_1_3_1_73_2
  doi: 10.1073/pnas.1903721117
– ident: e_1_3_1_43_2
  doi: 10.1021/acscatal.0c03313
– ident: e_1_3_1_122_2
– ident: e_1_3_1_25_2
  doi: 10.1021/acsnano.1c02775
– ident: e_1_3_1_88_2
  doi: 10.1002/adfm.202010561
– ident: e_1_3_1_102_2
  doi: 10.1016/j.matt.2020.07.029
– ident: e_1_3_1_36_2
  doi: 10.1126/science.abe1292
– ident: e_1_3_1_94_2
  doi: 10.1016/j.checat.2021.04.001
– ident: e_1_3_1_5_2
  doi: 10.1038/s41598-017-03644-6
– ident: e_1_3_1_98_2
  doi: 10.1021/acsnano.0c05250
– ident: e_1_3_1_90_2
  doi: 10.1146/annurev-chembioeng-080615-034413
– ident: e_1_3_1_121_2
  doi: 10.1002/anie.202108116
– ident: e_1_3_1_68_2
  doi: 10.1016/j.matt.2019.11.006
– ident: e_1_3_1_54_2
  doi: 10.1016/j.scriptamat.2020.05.049
– ident: e_1_3_1_113_2
  doi: 10.1007/s12274-021-3637-z
– ident: e_1_3_1_80_2
  doi: 10.1126/science.aaf2157
– ident: e_1_3_1_17_2
  doi: 10.1038/s41586-021-03354-0
– ident: e_1_3_1_15_2
  doi: 10.1016/j.matt.2021.04.014
– ident: e_1_3_1_74_2
  doi: 10.1126/sciadv.aaz0510
– ident: e_1_3_1_30_2
  doi: 10.1039/D0TA09578H
– ident: e_1_3_1_21_2
  doi: 10.1038/s41929-020-00554-1
– ident: e_1_3_1_106_2
  doi: 10.1038/ncomms7529
– volume: 2002887
  start-page: 1
  year: 2020
  ident: e_1_3_1_23_2
  article-title: High-entropy metal sulfide nanoparticles promise high-performance oxygen evolution reaction
  publication-title: Adv. Energy Mater.
– ident: e_1_3_1_51_2
  doi: 10.1038/ncomms12332
– ident: e_1_3_1_110_2
  doi: 10.1021/nl302992q
– ident: e_1_3_1_93_2
  doi: 10.1016/j.scriptamat.2019.02.015
– ident: e_1_3_1_20_2
  doi: 10.1021/jacs.9b12377
– volume: 6
  start-page: 1
  year: 2020
  ident: e_1_3_1_108_2
  article-title: Graph theory approach to determine configurations of multidentate and high coverage adsorbates for heterogeneous catalysis. npj Comput
  publication-title: Mater.
– ident: e_1_3_1_45_2
  doi: 10.1002/aenm.202001119
– ident: e_1_3_1_4_2
  doi: 10.1038/s41578-019-0121-4
– ident: e_1_3_1_39_2
  doi: 10.1002/adfm.202006939
– ident: e_1_3_1_101_2
  doi: 10.1038/nchem.121
– ident: e_1_3_1_35_2
  doi: 10.1021/acsnano.0c03993
– ident: e_1_3_1_67_2
  doi: 10.1021/acsnano.1c05113
– ident: e_1_3_1_65_2
  doi: 10.1038/s41524-019-0205-0
– ident: e_1_3_1_6_2
  doi: 10.1016/j.matlet.2015.08.032
– ident: e_1_3_1_50_2
  doi: 10.1038/nmat4115
– ident: e_1_3_1_49_2
  doi: 10.1126/science.aav4302
– ident: e_1_3_1_95_2
  doi: 10.1002/adma.202106436
– ident: e_1_3_1_77_2
  doi: 10.1038/s41467-020-20084-5
– ident: e_1_3_1_87_2
  doi: 10.1021/acsnano.0c06528
– ident: e_1_3_1_46_2
  doi: 10.1016/j.actamat.2016.08.081
– ident: e_1_3_1_52_2
– ident: e_1_3_1_96_2
  doi: 10.1039/C7MH00486A
– ident: e_1_3_1_79_2
  doi: 10.1017/S1431927619001351
– ident: e_1_3_1_32_2
  doi: 10.1021/acsmaterialslett.0c00484
– ident: e_1_3_1_11_2
  doi: 10.1002/adma.202002853
SSID ssj0009593
Score 2.7346225
SecondaryResourceType review_article
Snippet High-entropy nanoparticles have become a rapidly growing area of research in recent years. Because of their multielemental compositions and unique high-entropy...
BACKGROUNDHigh-entropy nanoparticles contain more than four elements uniformly mixed into a solid-solution structure, offering opportunities for materials...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage eabn3103
SubjectTerms Amorphous materials
Atomic structure
Cascade chemical reactions
Catalysis
Catalysts
Catalytic activity
Composition
Computer applications
Crystal defects
Data mining
Design optimization
Electron states
Energy
Energy technology
Entropy
Evolution
Experimental methods
Experimentation
Exploration
High-throughput screening
Literary Devices
Machine learning
Nanomaterials
Nanoparticles
Opportunities
Optimization
Phosphates
Physicochemical properties
Scientific Concepts
Selectivity
Solid solutions
Structural analysis
Structural stability
Synthesis
Title High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery
URI https://www.ncbi.nlm.nih.gov/pubmed/35389801
https://www.proquest.com/docview/2648273836
https://www.proquest.com/docview/2648895064
Volume 376
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FVkhcEC2vQEFG4lCENnK8tmNzSylRgFKBmkrtyezLJRLaRE5ySP8Yf4-Z7NrZSE1FuVjRxi_tjGe_mf1mhpC33RIWgZRxqlSpaAyOMuUaC14KzbHBiFAR5jt_O02H5_GXi-Si1frjsZYWc9GR1zfmlfyPVGEM5IpZsneQbHNTGIDfIF84goTh-E8yRpIGxfDsZLp8b7gBB9jjuZ0tDaC72XhGbZHYRaXpFGPvFQDvqibB_RpPbZlm5IpSVaH1w20bidzOjT3f2gwAJm32eTzpNoTFvqUV1CwDd5kXcrjkq_js5cRcXXG3ciKWduzgH2MvRnCtbdKaS8SpmlXkZGH3jGr1dpELcHqR8JI1ujZap87c5XV9a-6KKdu1zBrwEHtPRiHzLTyzLWacKgPmym9ePLx2l7rDhcEebOt1suYGDPtnxffjQXHy-fTrPbIbgX8CBna3f3R8NNha79lVlfLyteoHbAKiLV7OCu2MHpGHzk0J-lad9khLm31y3zYuXe6TPTdLs-DQ1S1_95j89NUx2FDHD8FtyhhsKGMAYg48ZQwaZXxCzgefRh-H1DXwoJJF3TkVSpZJyEQa8Z6IsRRgqrgGyC7yMo4EZ10MvSWJyiVPmBJcZD3s0VOmCVdxmbGnZMdMjH5OgpSHWdmLZShKHsuE5aoUAP51zqXMYLhNOvUsFtJVt8cmK7-LlZcbpYWb9sJNe5scNhdMbWGX7ace1GIp3Nc_K5AZimltLG2TN83fYJtxw40bPVnYc7IcS0K2yTMrzuZZDJBGDvDwxe03f0kerD-dA7IDItKvAAbPxWuncn8B1Ky-1A
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-entropy+nanoparticles%3A+Synthesis-structure-property+relationships+and+data-driven+discovery&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Yao%2C+Yonggang&rft.au=Dong%2C+Qi&rft.au=Brozena%2C+Alexandra&rft.au=Luo%2C+Jian&rft.date=2022-04-08&rft.pub=The+American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=376&rft.issue=6589&rft_id=info:doi/10.1126%2Fscience.abn3103&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon