High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery
High-entropy nanoparticles have become a rapidly growing area of research in recent years. Because of their multielemental compositions and unique high-entropy mixing states (i.e., solid-solution) that can lead to tunable activity and enhanced stability, these nanoparticles have received notable att...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 376; no. 6589; p. eabn3103 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
08.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High-entropy nanoparticles have become a rapidly growing area of research in recent years. Because of their multielemental compositions and unique high-entropy mixing states (i.e., solid-solution) that can lead to tunable activity and enhanced stability, these nanoparticles have received notable attention for catalyst design and exploration. However, this strong potential is also accompanied by grand challenges originating from their vast compositional space and complex atomic structure, which hinder comprehensive exploration and fundamental understanding. Through a multidisciplinary view of synthesis, characterization, catalytic applications, high-throughput screening, and data-driven materials discovery, this review is dedicated to discussing the important progress of high-entropy nanoparticles and unveiling the critical needs for their future development for catalysis, energy, and sustainability applications.
Multielement nanoparticles are attractive for a variety of applications in catalysis, energy, and other fields. A more diverse range and larger number of elements can be mixed together because of high-entropy mixing states accessed by a number of recently developed techniques. Yao
et al
. review these techniques along with characterization methods, high-throughput screening, and data-driven discovery for targeted applications. The wide range of different elements that can be mixed together presents a large number of opportunities and challenges. —BG
A review highlights improvements in synthesizing and stabilizing multielement nanoparticles. |
---|---|
AbstractList | High-entropy nanoparticles have become a rapidly growing area of research in recent years. Because of their multielemental compositions and unique high-entropy mixing states (i.e., solid-solution) that can lead to tunable activity and enhanced stability, these nanoparticles have received notable attention for catalyst design and exploration. However, this strong potential is also accompanied by grand challenges originating from their vast compositional space and complex atomic structure, which hinder comprehensive exploration and fundamental understanding. Through a multidisciplinary view of synthesis, characterization, catalytic applications, high-throughput screening, and data-driven materials discovery, this review is dedicated to discussing the important progress of high-entropy nanoparticles and unveiling the critical needs for their future development for catalysis, energy, and sustainability applications. High-entropy nanoparticles have become a rapidly growing area of research in recent years. Because of their multielemental compositions and unique high-entropy mixing states (i.e., solid-solution) that can lead to tunable activity and enhanced stability, these nanoparticles have received notable attention for catalyst design and exploration. However, this strong potential is also accompanied by grand challenges originating from their vast compositional space and complex atomic structure, which hinder comprehensive exploration and fundamental understanding. Through a multidisciplinary view of synthesis, characterization, catalytic applications, high-throughput screening, and data-driven materials discovery, this review is dedicated to discussing the important progress of high-entropy nanoparticles and unveiling the critical needs for their future development for catalysis, energy, and sustainability applications.High-entropy nanoparticles have become a rapidly growing area of research in recent years. Because of their multielemental compositions and unique high-entropy mixing states (i.e., solid-solution) that can lead to tunable activity and enhanced stability, these nanoparticles have received notable attention for catalyst design and exploration. However, this strong potential is also accompanied by grand challenges originating from their vast compositional space and complex atomic structure, which hinder comprehensive exploration and fundamental understanding. Through a multidisciplinary view of synthesis, characterization, catalytic applications, high-throughput screening, and data-driven materials discovery, this review is dedicated to discussing the important progress of high-entropy nanoparticles and unveiling the critical needs for their future development for catalysis, energy, and sustainability applications. High-entropy nanoparticles have become a rapidly growing area of research in recent years. Because of their multielemental compositions and unique high-entropy mixing states (i.e., solid-solution) that can lead to tunable activity and enhanced stability, these nanoparticles have received notable attention for catalyst design and exploration. However, this strong potential is also accompanied by grand challenges originating from their vast compositional space and complex atomic structure, which hinder comprehensive exploration and fundamental understanding. Through a multidisciplinary view of synthesis, characterization, catalytic applications, high-throughput screening, and data-driven materials discovery, this review is dedicated to discussing the important progress of high-entropy nanoparticles and unveiling the critical needs for their future development for catalysis, energy, and sustainability applications. Multielement nanoparticles are attractive for a variety of applications in catalysis, energy, and other fields. A more diverse range and larger number of elements can be mixed together because of high-entropy mixing states accessed by a number of recently developed techniques. Yao et al . review these techniques along with characterization methods, high-throughput screening, and data-driven discovery for targeted applications. The wide range of different elements that can be mixed together presents a large number of opportunities and challenges. —BG A review highlights improvements in synthesizing and stabilizing multielement nanoparticles. BACKGROUNDHigh-entropy nanoparticles contain more than four elements uniformly mixed into a solid-solution structure, offering opportunities for materials discovery, property optimization, and advanced applications. For example, the compositional flexibility of high-entropy nanoparticles enables fine-tuning of the catalytic activity and selectivity, and high-entropy mixing offers structural stability under harsh operating conditions. In addition, the multielemental synergy in high-entropy nanoparticles provides a diverse range of adsorption sites, which is ideal for multistep tandem reactions or reactions that require multifunctional catalysts. However, the wide range of possible compositions and complex atomic arrangements also create grand challenges in synthesizing, characterizing, understanding, and applying high-entropy nanoparticles. For example, controllable synthesis is challenging given the different physicochemical properties within the multielemental compositions combined with the small size and large surface area. Moreover, random multielemental mixing can make it difficult to precisely characterize the individual nanoparticles and their statistical variations. Without rational understanding and guidance, efficient compositional design and performance optimization within the huge multielemental space is nearly impossible.ADVANCESThe comprehensive study of high-entropy nanoparticles has become feasible because of the rapid development of synthetic approaches, high-resolution characterization, high-throughput experimentation, and data-driven discovery. A diverse range of compositions and material libraries have been developed, many by using nonequilibrium “shock”–based methods designed to induce single-phase mixing even for traditionally immiscible elemental combinations. The nanomaterial types have also rapidly evolved from crystalline metallic alloys to metallic glasses, oxides, sulfides, phosphates, and others. Advanced characterization tools have been used to uncover the structural complexities of high-entropy nanoparticles. For example, atomic electron tomography has been used for single-atom-level resolution of the three-dimensional positions of the elements and their chemical environments. Finally, high-entropy nanoparticles have already shown promise in a wide range of catalysis and energy technologies because of their atomic structure and tunable electronic states. The development of high-throughput computational and experimental methods can accelerate the material exploration rate and enable machine-learning tools that are ideal for performance prediction and guided optimization. Materials discovery platforms, such as high-throughput exploration and data mining, may disruptively supplant conventional trial-and-error approaches for developing next-generation catalysts based on high-entropy nanoparticles.OUTLOOKHigh-entropy nanoparticles provide an enticing material platform for different applications. Being at an initial stage, enormous opportunities and grand challenges exist for these intrinsically complex materials. For the next stage of research and applications, we need (i) the controlled synthesis of high-entropy nanoparticles with targeted surface compositions and atomic arrangements; (ii) fundamental studies of surfaces, ordering, defects, and the dynamic evolution of high-entropy nanoparticles under catalytic conditions through precise structural characterization; (iii) identification and understanding of the active sites and performance origin (especially the enhanced stability) of high-entropy nanoparticles; and (iv) high-throughput computational and experimental techniques for rapid screening and data mining toward accelerated exploration of high-entropy nanoparticles in a multielemental space. We expect that discoveries about the synthesis-structure-property relationships of high-entropy nanoparticles and their guided discovery will greatly benefit a range of applications for catalysis, energy, and sustainability.Diversifying nanoparticlesMultielement nanoparticles are attractive for a variety of applications in catalysis, energy, and other fields. A more diverse range and larger number of elements can be mixed together because of high-entropy mixing states accessed by a number of recently developed techniques. Yao et al. review these techniques along with characterization methods, high-throughput screening, and data-driven discovery for targeted applications. The wide range of different elements that can be mixed together presents a large number of opportunities and challenges. —BG |
Author | Kevrekidis, Ioannis G. Hu, Liangbing Miao, Jianwei Dong, Qi Anapolsky, Abraham Luo, Jian Ren, Zhiyong Jason Wang, Chao Brozena, Alexandra Greeley, Jeffrey Wang, Guofeng Yao, Yonggang Chi, Miaofang |
Author_xml | – sequence: 1 givenname: Yonggang orcidid: 0000-0002-9191-2982 surname: Yao fullname: Yao, Yonggang organization: Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA – sequence: 2 givenname: Qi orcidid: 0000-0002-7553-4213 surname: Dong fullname: Dong, Qi organization: Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA – sequence: 3 givenname: Alexandra orcidid: 0000-0002-5045-2123 surname: Brozena fullname: Brozena, Alexandra organization: Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA – sequence: 4 givenname: Jian orcidid: 0000-0002-5424-0216 surname: Luo fullname: Luo, Jian organization: Department of NanoEngineering, Program of Materials Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA – sequence: 5 givenname: Jianwei orcidid: 0000-0003-4033-3945 surname: Miao fullname: Miao, Jianwei organization: Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA – sequence: 6 givenname: Miaofang orcidid: 0000-0003-0764-1567 surname: Chi fullname: Chi, Miaofang organization: Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37932, USA – sequence: 7 givenname: Chao orcidid: 0000-0001-7398-2090 surname: Wang fullname: Wang, Chao organization: Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA – sequence: 8 givenname: Ioannis G. orcidid: 0000-0003-2220-3522 surname: Kevrekidis fullname: Kevrekidis, Ioannis G. organization: Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA – sequence: 9 givenname: Zhiyong Jason orcidid: 0000-0001-7606-0331 surname: Ren fullname: Ren, Zhiyong Jason organization: Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA – sequence: 10 givenname: Jeffrey orcidid: 0000-0001-8469-1715 surname: Greeley fullname: Greeley, Jeffrey organization: School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA – sequence: 11 givenname: Guofeng orcidid: 0000-0001-8249-4101 surname: Wang fullname: Wang, Guofeng organization: Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA – sequence: 12 givenname: Abraham surname: Anapolsky fullname: Anapolsky, Abraham organization: Toyota Research Institute, Los Altos, CA 94022, USA – sequence: 13 givenname: Liangbing orcidid: 0000-0002-9456-9315 surname: Hu fullname: Hu, Liangbing organization: Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA., Center for Materials Innovation, University of Maryland, College Park, MD 20742, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35389801$$D View this record in MEDLINE/PubMed |
BookMark | eNp10T1P3TAUBmCrApUL7dytisTSxeCP2EnYEOKjElIH2jk9tk96jXKdYDtI-fd14bYDUicPft6jo_Mek4MwBSTkE2dnnAt9nqzHYPEMTJCcyXdkw1mnaCeYPCAbxqSmLWvUETlO6ZGx8tfJ9-RIKtl2LeMb8vPO_9pSDDlO81oFCNMMMXs7YrqoHtaQt5h8oinHxeYlIp0LxJjXKuII2U8hbf2cKgiucpCBuuifMVTOJzs9Y1w_kMMBxoQf9-8J-XFz_f3qjt5_u_16dXlPrRQ8U-PsoJg0WkBj6roTUjvAWmnTDbUwILlgolHKdRaUdAZM2zRo9KAVuHpo5Qn58jq3LPi0YMr9rqyA4wgBpyX1Qtdt2ymm60JP39DHaYmhbPeiRCNbqYv6vFeL2aHr5-h3ENf-7-0KOH8FNk4pRRz-Ec76P-30-3b6fTslod4krM8vR8wR_Pjf3G9hFZko |
CitedBy_id | crossref_primary_10_1002_smll_202311631 crossref_primary_10_1007_s12598_024_02912_5 crossref_primary_10_1016_j_jallcom_2022_167437 crossref_primary_10_1021_acs_nanolett_4c05460 crossref_primary_10_1002_anie_202419735 crossref_primary_10_1016_j_ceramint_2024_01_443 crossref_primary_10_1007_s12274_023_5419_2 crossref_primary_10_1021_acsnano_4c14294 crossref_primary_10_1021_acs_analchem_4c05167 crossref_primary_10_1002_adfm_202418096 crossref_primary_10_1002_adma_202404172 crossref_primary_10_1016_j_apcatb_2023_123358 crossref_primary_10_1039_D4NR01510J crossref_primary_10_1021_acsnano_3c05810 crossref_primary_10_1007_s12274_022_4713_8 crossref_primary_10_1016_j_nanoen_2025_110902 crossref_primary_10_1016_j_apcatb_2024_124841 crossref_primary_10_1021_acsomega_4c07777 crossref_primary_10_1002_advs_202408614 crossref_primary_10_1016_j_coche_2024_101020 crossref_primary_10_1016_j_pmatsci_2024_101250 crossref_primary_10_1038_s41467_023_38254_6 crossref_primary_10_1038_s43588_024_00661_0 crossref_primary_10_1007_s11814_024_00160_y crossref_primary_10_1021_acsnano_4c07528 crossref_primary_10_1016_S1872_2067_23_64428_6 crossref_primary_10_1039_D3NH00178D crossref_primary_10_1016_j_apcatb_2023_123361 crossref_primary_10_1039_D4TA05756B crossref_primary_10_1016_j_mtcomm_2024_109052 crossref_primary_10_1002_smll_202309773 crossref_primary_10_1016_j_seppur_2025_132233 crossref_primary_10_1007_s11814_024_00249_4 crossref_primary_10_1021_acscatal_2c03480 crossref_primary_10_1021_jacs_4c06413 crossref_primary_10_1039_D4TA07296K crossref_primary_10_1016_j_mattod_2024_08_021 crossref_primary_10_1007_s41918_024_00217_w crossref_primary_10_1021_acs_energyfuels_4c03386 crossref_primary_10_1021_acsnano_3c02762 crossref_primary_10_1021_acsami_2c11038 crossref_primary_10_1016_j_jallcom_2023_172056 crossref_primary_10_1016_j_esci_2022_09_002 crossref_primary_10_3390_catal14010057 crossref_primary_10_1016_j_nanoen_2023_109153 crossref_primary_10_1002_advs_202406216 crossref_primary_10_1002_adfm_202424887 crossref_primary_10_1039_D4NR05256K crossref_primary_10_1038_s41467_024_52520_1 crossref_primary_10_1002_ange_202208667 crossref_primary_10_1016_j_jmgm_2024_108776 crossref_primary_10_1021_acsaem_4c01875 crossref_primary_10_1039_D3QM00661A crossref_primary_10_1002_adfm_202412551 crossref_primary_10_1002_adma_202400920 crossref_primary_10_1016_j_joule_2023_02_011 crossref_primary_10_1021_accountsmr_3c00080 crossref_primary_10_1021_acssuschemeng_3c04499 crossref_primary_10_1002_smtd_202301219 crossref_primary_10_1021_acsami_3c15235 crossref_primary_10_1016_j_cej_2024_153829 crossref_primary_10_1021_jacs_3c08177 crossref_primary_10_1021_acs_inorgchem_3c02930 crossref_primary_10_1039_D4EE01329H crossref_primary_10_1016_j_jmst_2023_03_031 crossref_primary_10_1039_D2TA08126A crossref_primary_10_1002_smll_202500279 crossref_primary_10_1002_anie_202415216 crossref_primary_10_1021_acs_jpclett_3c02409 crossref_primary_10_1021_acsnano_4c04176 crossref_primary_10_1002_adma_202314054 crossref_primary_10_1007_s41918_024_00216_x crossref_primary_10_1039_D3SC06784J crossref_primary_10_1002_adfm_202207536 crossref_primary_10_1016_j_jallcom_2024_174332 crossref_primary_10_1063_5_0236288 crossref_primary_10_1002_adma_202302067 crossref_primary_10_1016_j_nanoen_2023_108362 crossref_primary_10_1002_adma_202310918 crossref_primary_10_1002_smll_202307284 crossref_primary_10_1063_5_0249228 crossref_primary_10_1002_adfm_202420268 crossref_primary_10_1016_j_ijrmhm_2022_105993 crossref_primary_10_1002_adhm_202402005 crossref_primary_10_1002_smll_202401360 crossref_primary_10_1038_d41586_023_01793_5 crossref_primary_10_1039_D3TA07107C crossref_primary_10_1126_sciadv_adl3693 crossref_primary_10_1016_j_jeurceramsoc_2023_09_038 crossref_primary_10_1002_adma_202414067 crossref_primary_10_1007_s11356_022_23918_5 crossref_primary_10_1002_cphc_202400853 crossref_primary_10_1002_smll_202309574 crossref_primary_10_1039_D2EE03185J crossref_primary_10_1038_s44160_024_00561_1 crossref_primary_10_1002_adma_202309956 crossref_primary_10_1039_D3CE00877K crossref_primary_10_1002_aenm_202201466 crossref_primary_10_1002_smll_202401131 crossref_primary_10_1039_D4NH00012A crossref_primary_10_1021_acsnano_2c08411 crossref_primary_10_1016_j_jmat_2023_11_017 crossref_primary_10_1021_jacs_3c14510 crossref_primary_10_1002_ange_202415216 crossref_primary_10_1093_bulcsj_uoae050 crossref_primary_10_1002_adfm_202400773 crossref_primary_10_1039_D3CY00087G crossref_primary_10_1002_advs_202409404 crossref_primary_10_1039_D4SC05326E crossref_primary_10_1002_adfm_202403922 crossref_primary_10_1016_j_apcatb_2024_123845 crossref_primary_10_1016_j_jcis_2024_07_049 crossref_primary_10_1016_j_jechem_2024_03_037 crossref_primary_10_1021_acscatal_3c00786 crossref_primary_10_1016_j_apcatb_2023_123542 crossref_primary_10_1002_adfm_202403435 crossref_primary_10_1002_adma_202402391 crossref_primary_10_1016_j_ensm_2023_103053 crossref_primary_10_1038_s41467_023_40737_5 crossref_primary_10_1016_j_ijimpeng_2024_105136 crossref_primary_10_1016_j_nanoen_2024_109482 crossref_primary_10_1002_smll_202406848 crossref_primary_10_1002_adma_202418856 crossref_primary_10_1039_D4TA02556C crossref_primary_10_1002_inf2_12617 crossref_primary_10_1093_nsr_nwac190 crossref_primary_10_1021_acs_nanolett_4c03208 crossref_primary_10_1039_D2NR02478K crossref_primary_10_1039_D3CS00557G crossref_primary_10_1002_adom_202301245 crossref_primary_10_1007_s42247_025_01011_0 crossref_primary_10_1038_s41565_024_01635_z crossref_primary_10_1021_acs_nanolett_3c04316 crossref_primary_10_31857_S0235010624020014 crossref_primary_10_1016_j_matt_2024_05_009 crossref_primary_10_1021_jacs_3c07351 crossref_primary_10_1002_adma_202211099 crossref_primary_10_1021_acsmaterialsau_4c00080 crossref_primary_10_1038_s41524_024_01386_4 crossref_primary_10_1016_j_apcatb_2025_125140 crossref_primary_10_1002_smll_202311101 crossref_primary_10_1002_eom2_12261 crossref_primary_10_1016_j_nanoms_2024_09_002 crossref_primary_10_1021_acs_cgd_3c00712 crossref_primary_10_1002_smsc_202200109 crossref_primary_10_1021_acsnano_4c09312 crossref_primary_10_1038_s41467_023_39157_2 crossref_primary_10_1016_j_jallcom_2024_174922 crossref_primary_10_1039_D4SE01572J crossref_primary_10_1038_s43246_023_00335_w crossref_primary_10_1016_j_materresbull_2024_113066 crossref_primary_10_1002_adfm_202314820 crossref_primary_10_1021_acs_energyfuels_4c05070 crossref_primary_10_1039_D4GC02329C crossref_primary_10_1016_j_jcis_2024_11_147 crossref_primary_10_1002_advs_202401034 crossref_primary_10_1016_j_cej_2023_143225 crossref_primary_10_1039_D3CC05611B crossref_primary_10_1063_5_0187760 crossref_primary_10_1038_s41467_024_55615_x crossref_primary_10_1039_D3MH00360D crossref_primary_10_1016_j_ccr_2025_216496 crossref_primary_10_1021_acsnano_3c09559 crossref_primary_10_1016_j_mattod_2023_12_006 crossref_primary_10_1002_smll_202409900 crossref_primary_10_1038_s41467_024_50721_2 crossref_primary_10_1002_adma_202401288 crossref_primary_10_1002_adfm_202204643 crossref_primary_10_1016_j_cej_2024_155736 crossref_primary_10_1016_j_mtchem_2024_102406 crossref_primary_10_1103_PhysRevMaterials_7_033606 crossref_primary_10_1016_j_cej_2022_141242 crossref_primary_10_1016_j_ensm_2024_103781 crossref_primary_10_1002_adfm_202401027 crossref_primary_10_1016_j_apsusc_2023_157479 crossref_primary_10_1016_j_jechem_2023_09_016 crossref_primary_10_1002_ange_202419735 crossref_primary_10_1002_smsc_202300071 crossref_primary_10_1126_science_adp2444 crossref_primary_10_1039_D4QI02881C crossref_primary_10_1021_acs_chemmater_4c02151 crossref_primary_10_1016_j_jmrt_2024_08_084 crossref_primary_10_1016_j_cej_2024_151370 crossref_primary_10_1002_anie_202503493 crossref_primary_10_1016_j_partic_2024_04_010 crossref_primary_10_1021_acscatal_4c02191 crossref_primary_10_1039_D4SC01226G crossref_primary_10_1002_adfm_202310683 crossref_primary_10_1021_acsnano_3c06393 crossref_primary_10_1002_advs_202302830 crossref_primary_10_1016_j_jallcom_2024_178068 crossref_primary_10_1016_j_jmst_2023_05_040 crossref_primary_10_1002_sus2_265 crossref_primary_10_1002_aenm_202304529 crossref_primary_10_1016_j_jechem_2023_07_019 crossref_primary_10_1016_j_ceramint_2023_12_215 crossref_primary_10_1002_sus2_261 crossref_primary_10_1016_j_apenergy_2024_124120 crossref_primary_10_1002_adfm_202415970 crossref_primary_10_1073_pnas_2313239121 crossref_primary_10_1021_acsami_4c05876 crossref_primary_10_1016_j_powtec_2022_117491 crossref_primary_10_1002_anie_202217976 crossref_primary_10_1016_j_apcatb_2024_124191 crossref_primary_10_1126_sciadv_adf9931 crossref_primary_10_1016_j_ceramint_2022_12_067 crossref_primary_10_1016_j_jmst_2023_11_040 crossref_primary_10_1038_s41524_024_01256_z crossref_primary_10_1007_s11581_023_05274_7 crossref_primary_10_1021_acsenergylett_4c01129 crossref_primary_10_1016_j_isci_2024_109616 crossref_primary_10_1016_j_jallcom_2022_165585 crossref_primary_10_1016_j_partic_2024_06_014 crossref_primary_10_1021_jacs_4c01711 crossref_primary_10_1002_ange_202407589 crossref_primary_10_1016_j_cej_2024_153762 crossref_primary_10_1039_D3CC04225A crossref_primary_10_1093_nsr_nwae033 crossref_primary_10_1002_adma_202312942 crossref_primary_10_1021_jacs_4c12838 crossref_primary_10_1016_j_ijhydene_2024_07_229 crossref_primary_10_3390_nano14060554 crossref_primary_10_1002_sus2_168 crossref_primary_10_1002_adfm_202504275 crossref_primary_10_1039_D4EE03708A crossref_primary_10_1016_j_apsadv_2023_100523 crossref_primary_10_1016_j_isci_2023_107029 crossref_primary_10_1039_D2CP02437C crossref_primary_10_1007_s12274_024_6621_6 crossref_primary_10_1021_acscatal_3c05160 crossref_primary_10_1038_s41570_024_00602_5 crossref_primary_10_1002_aenm_202401838 crossref_primary_10_1002_anie_202400496 crossref_primary_10_1021_jacs_4c10681 crossref_primary_10_1016_j_apcatb_2025_125115 crossref_primary_10_1073_pnas_2215131120 crossref_primary_10_1002_slct_202406176 crossref_primary_10_1016_j_ccr_2022_214980 crossref_primary_10_1016_j_enganabound_2024_106063 crossref_primary_10_1002_anie_202411123 crossref_primary_10_3390_catal14090569 crossref_primary_10_1016_j_cej_2025_159463 crossref_primary_10_1016_j_nanoen_2024_110121 crossref_primary_10_1016_j_fuel_2025_135090 crossref_primary_10_1002_solr_202300484 crossref_primary_10_1016_j_jcis_2024_04_015 crossref_primary_10_1002_adma_202401018 crossref_primary_10_1021_acs_jpcc_3c05016 crossref_primary_10_1021_acsmaterialslett_4c00248 crossref_primary_10_1002_adfm_202311611 crossref_primary_10_1021_acsnano_4c18277 crossref_primary_10_1016_j_pnsc_2024_11_002 crossref_primary_10_1007_s40843_022_2436_6 crossref_primary_10_1002_adfm_202414537 crossref_primary_10_1002_tcr_202200175 crossref_primary_10_1021_acsomega_4c01401 crossref_primary_10_2147_IJN_S402954 crossref_primary_10_1002_ange_202419369 crossref_primary_10_1039_D4EE04116J crossref_primary_10_1016_j_cej_2025_161070 crossref_primary_10_1002_adma_202413202 crossref_primary_10_1016_j_pnsc_2024_04_014 crossref_primary_10_1016_j_coelec_2023_101404 crossref_primary_10_1016_j_ccr_2023_215541 crossref_primary_10_1016_j_cej_2024_154022 crossref_primary_10_1002_smll_202406685 crossref_primary_10_1021_acs_nanolett_2c01596 crossref_primary_10_1002_smll_202407788 crossref_primary_10_1039_D4SC06552B crossref_primary_10_1016_j_cej_2023_144291 crossref_primary_10_1039_D4CS00034J crossref_primary_10_1002_adma_202413560 crossref_primary_10_1016_j_matt_2024_07_019 crossref_primary_10_1016_j_jallcom_2024_178337 crossref_primary_10_1002_adma_202305099 crossref_primary_10_1016_j_cej_2024_149913 crossref_primary_10_1002_aenm_202303923 crossref_primary_10_1002_sus2_215 crossref_primary_10_1016_j_isci_2023_107775 crossref_primary_10_1039_D4EE04442H crossref_primary_10_1115_1_4067277 crossref_primary_10_1002_advs_202409023 crossref_primary_10_1002_adma_202406807 crossref_primary_10_1016_j_jallcom_2023_172401 crossref_primary_10_1016_j_nxmate_2023_100005 crossref_primary_10_1002_ange_202413826 crossref_primary_10_1016_j_trechm_2022_07_004 crossref_primary_10_1016_j_ensm_2024_103954 crossref_primary_10_1016_j_jnoncrysol_2024_122983 crossref_primary_10_1002_adma_202308257 crossref_primary_10_1021_acs_jpcc_2c05087 crossref_primary_10_1039_D3CC02214E crossref_primary_10_1002_adma_202410060 crossref_primary_10_1016_j_nanoen_2023_108840 crossref_primary_10_1007_s40843_023_2709_5 crossref_primary_10_1002_adma_202412337 crossref_primary_10_1016_j_jallcom_2024_177262 crossref_primary_10_1063_5_0200341 crossref_primary_10_1039_D2CS00322H crossref_primary_10_1021_acsnano_4c09249 crossref_primary_10_1021_acsnano_4c01997 crossref_primary_10_1002_ange_202407116 crossref_primary_10_1016_j_joule_2024_06_004 crossref_primary_10_1002_smll_202411704 crossref_primary_10_1126_science_adq0102 crossref_primary_10_1039_D3NR01073B crossref_primary_10_1016_j_jechem_2024_07_049 crossref_primary_10_1039_D4MH01168F crossref_primary_10_1360_SSC_2024_0191 crossref_primary_10_1016_j_enchem_2023_100108 crossref_primary_10_1021_acscatal_2c02946 crossref_primary_10_1016_j_mattod_2024_03_002 crossref_primary_10_1016_j_jece_2025_115359 crossref_primary_10_1038_s41566_024_01468_1 crossref_primary_10_1002_adma_202302979 crossref_primary_10_1002_anie_202414719 crossref_primary_10_1039_D3CP04829B crossref_primary_10_1002_adma_202415739 crossref_primary_10_1002_EXP_20230036 crossref_primary_10_1002_adma_202312524 crossref_primary_10_1016_j_jallcom_2023_171535 crossref_primary_10_26599_JAC_2024_9221013 crossref_primary_10_1016_j_optmat_2024_115668 crossref_primary_10_1080_21663831_2023_2215826 crossref_primary_10_1039_D4GC02517B crossref_primary_10_1002_adma_202411464 crossref_primary_10_1021_acsnano_4c12350 crossref_primary_10_1016_j_apsusc_2023_157282 crossref_primary_10_1002_adma_202301538 crossref_primary_10_1039_D3CP01869E crossref_primary_10_1360_SSC_2023_0122 crossref_primary_10_1016_j_ensm_2024_103890 crossref_primary_10_1021_acsnano_4c01456 crossref_primary_10_1016_j_joule_2024_06_023 crossref_primary_10_1002_mgea_7 crossref_primary_10_1111_jace_19252 crossref_primary_10_1021_acs_chemmater_4c03153 crossref_primary_10_1021_jacs_4c16807 crossref_primary_10_1039_D2FD00118G crossref_primary_10_1021_acsnano_3c07110 crossref_primary_10_1039_D4EE05500D crossref_primary_10_1002_adma_202409278 crossref_primary_10_1039_D3EE02392C crossref_primary_10_1021_acs_chemmater_3c01698 crossref_primary_10_1002_celc_202400659 crossref_primary_10_1002_cssc_202401517 crossref_primary_10_1002_smll_202500962 crossref_primary_10_1007_s12274_023_6037_8 crossref_primary_10_1002_anie_202423765 crossref_primary_10_1002_aic_18748 crossref_primary_10_1002_ange_202414719 crossref_primary_10_1016_j_ensm_2024_103750 crossref_primary_10_1002_ange_202423765 crossref_primary_10_1038_s41467_025_56189_y crossref_primary_10_1021_acs_nanolett_4c04758 crossref_primary_10_1016_j_mtcomm_2024_108719 crossref_primary_10_1039_D3SC03897A crossref_primary_10_1002_aesr_202300297 crossref_primary_10_1002_chem_202402859 crossref_primary_10_1016_j_jallcom_2023_170479 crossref_primary_10_1002_anie_202419369 crossref_primary_10_1038_s41467_024_54589_0 crossref_primary_10_1016_j_cclet_2025_111066 crossref_primary_10_1021_acsestengg_4c00087 crossref_primary_10_1038_s41467_024_45874_z crossref_primary_10_1016_j_ijhydene_2024_02_192 crossref_primary_10_1016_j_cej_2023_146884 crossref_primary_10_1021_jacs_3c11943 crossref_primary_10_1038_s41467_023_40246_5 crossref_primary_10_1002_smll_202302130 crossref_primary_10_1002_anie_202413826 crossref_primary_10_1016_j_matt_2024_06_042 crossref_primary_10_1038_s41467_024_50009_5 crossref_primary_10_1007_s12274_022_5259_5 crossref_primary_10_1038_s41578_024_00720_y crossref_primary_10_1038_s41467_023_44145_7 crossref_primary_10_1021_acs_nanolett_3c01831 crossref_primary_10_1016_j_ensm_2024_103734 crossref_primary_10_1021_acs_chemrev_3c00382 crossref_primary_10_1038_s41467_024_51112_3 crossref_primary_10_1002_cey2_228 crossref_primary_10_1002_adma_202411426 crossref_primary_10_1016_j_jma_2025_01_015 crossref_primary_10_1039_D3NJ01680C crossref_primary_10_1016_j_matt_2025_102009 crossref_primary_10_1002_anie_202208667 crossref_primary_10_1021_acs_nanolett_4c00730 crossref_primary_10_1021_jacs_3c07915 crossref_primary_10_1021_acsnano_4c03435 crossref_primary_10_3390_met13020205 crossref_primary_10_1002_anie_202407589 crossref_primary_10_1016_j_pmatsci_2024_101300 crossref_primary_10_1039_D4NR05019C crossref_primary_10_1007_s11708_023_0892_6 crossref_primary_10_1002_celc_202300606 crossref_primary_10_1002_adfm_202315248 crossref_primary_10_1002_aenm_202300239 crossref_primary_10_1021_acsmaterialslett_4c01849 crossref_primary_10_1002_adma_202202943 crossref_primary_10_1002_aenm_202405534 crossref_primary_10_1002_advs_202404095 crossref_primary_10_1021_acsnano_3c07703 crossref_primary_10_1021_acsmaterialslett_4c01952 crossref_primary_10_1002_ange_202411123 crossref_primary_10_1021_acssuschemeng_3c01602 crossref_primary_10_1126_sciadv_adn2877 crossref_primary_10_1002_adma_202408114 crossref_primary_10_1002_adma_202304867 crossref_primary_10_1002_smll_202203340 crossref_primary_10_1038_s41467_024_52225_5 crossref_primary_10_1007_s40242_025_5010_3 crossref_primary_10_1016_j_jiec_2024_11_050 crossref_primary_10_1039_D4CC00170B crossref_primary_10_1021_jacs_3c12048 crossref_primary_10_1088_2752_5724_ad8463 crossref_primary_10_1039_D2TA02597C crossref_primary_10_1039_D3YA00305A crossref_primary_10_1039_D4TA01747A crossref_primary_10_1002_smll_202309819 crossref_primary_10_1021_acs_jpcc_3c00571 crossref_primary_10_1002_ange_202503493 crossref_primary_10_1016_j_cclet_2024_110532 crossref_primary_10_1016_j_ceramint_2023_11_189 crossref_primary_10_1002_smll_202309937 crossref_primary_10_1016_j_joule_2023_06_003 crossref_primary_10_1021_acsnano_2c05465 crossref_primary_10_1016_j_smaim_2024_09_001 crossref_primary_10_1016_j_est_2023_107419 crossref_primary_10_1021_acs_accounts_2c00646 crossref_primary_10_1002_adma_202206276 crossref_primary_10_1039_D3IM00046J crossref_primary_10_1002_smll_202400892 crossref_primary_10_1002_adma_202209545 crossref_primary_10_1038_s41524_024_01358_8 crossref_primary_10_1002_anie_202407116 crossref_primary_10_1016_j_jallcom_2024_175356 crossref_primary_10_1016_j_scib_2022_08_022 crossref_primary_10_1007_s12598_023_02553_0 crossref_primary_10_1002_adma_202412954 crossref_primary_10_1016_j_jmst_2022_08_012 crossref_primary_10_1039_D4EE01139B crossref_primary_10_1002_advs_202401975 crossref_primary_10_1038_d41586_023_03656_5 crossref_primary_10_20517_energymater_2024_130 crossref_primary_10_1016_j_matchar_2024_114058 crossref_primary_10_1021_acs_jpclett_2c01180 crossref_primary_10_1021_acsnano_3c07506 crossref_primary_10_1039_D3QI00316G crossref_primary_10_1016_j_apsusc_2024_161306 crossref_primary_10_1021_acs_chemmater_2c02842 crossref_primary_10_1016_j_cej_2022_138659 crossref_primary_10_1002_smtd_202201138 crossref_primary_10_1002_adfm_202416389 crossref_primary_10_1038_s44160_024_00690_7 crossref_primary_10_1021_acsnano_4c08929 crossref_primary_10_1016_j_jeurceramsoc_2022_09_023 crossref_primary_10_1039_D3EY00201B crossref_primary_10_1016_j_nanoen_2023_108992 crossref_primary_10_1038_s41467_024_54393_w crossref_primary_10_1039_D4TA01418A crossref_primary_10_1016_j_jallcom_2024_175144 crossref_primary_10_2320_matertrans_MT_MH2022003 crossref_primary_10_1039_D3SE01535A crossref_primary_10_1002_adma_202209242 crossref_primary_10_1002_nano_202200081 crossref_primary_10_1038_s41586_023_06785_z crossref_primary_10_1039_D3MH01302B crossref_primary_10_1021_acs_jpcc_3c00456 crossref_primary_10_1038_s44160_025_00758_y crossref_primary_10_1039_D3NR02273K crossref_primary_10_1016_j_seppur_2025_132609 crossref_primary_10_1021_acsnano_3c02290 crossref_primary_10_1021_jacs_4c16638 crossref_primary_10_1063_5_0138877 crossref_primary_10_1021_acs_jpcc_4c01308 crossref_primary_10_1016_j_jallcom_2023_172928 crossref_primary_10_1360_SST_2023_0057 crossref_primary_10_1039_D4MH01180E crossref_primary_10_1016_j_apcatb_2024_124788 crossref_primary_10_1002_adfm_202307923 crossref_primary_10_1016_j_joule_2024_07_019 crossref_primary_10_1016_j_actamat_2023_119459 crossref_primary_10_1039_D2TA09278F crossref_primary_10_1016_j_foodchem_2024_142468 crossref_primary_10_1021_acssuschemeng_4c04178 crossref_primary_10_1021_jacs_4c17756 crossref_primary_10_1021_acsphyschemau_2c00064 crossref_primary_10_1039_D3VA00175J crossref_primary_10_1002_adma_202302499 crossref_primary_10_1021_acscatal_2c03675 crossref_primary_10_1039_D3TA08101J crossref_primary_10_1002_ange_202400496 crossref_primary_10_1039_D3TA06817J crossref_primary_10_1002_adma_202405170 crossref_primary_10_1002_ange_202217976 crossref_primary_10_1038_s44160_023_00289_4 crossref_primary_10_1016_j_cej_2024_155005 crossref_primary_10_1002_advs_202307649 crossref_primary_10_1016_j_apcatb_2023_123382 crossref_primary_10_1016_j_apsusc_2022_155624 crossref_primary_10_1021_acs_nanolett_3c02882 crossref_primary_10_1039_D3CS00087G crossref_primary_10_1016_j_susmat_2025_e01316 crossref_primary_10_1016_j_apcatb_2024_124775 crossref_primary_10_1021_acsnano_4c16417 |
Cites_doi | 10.1038/s41467-020-17738-9 10.1016/j.matt.2020.07.027 10.1002/anie.202014374 10.1103/PhysRevMaterials.2.045801 10.1038/s41586-019-1317-x 10.1007/BFb0035358 10.1039/C9RA03254A 10.1126/sciadv.abg1600 10.1126/science.abj9980 10.1021/acsami.9b07198 10.1016/j.checat.2021.06.001 10.1038/s41586-020-1994-5 10.1039/C8NR10137J 10.1038/nmat1219 10.1002/chem.201903928 10.1002/aenm.201800466 10.1038/s41524-019-0265-1 10.1002/adma.202100347 10.1002/anie.201914666 10.1038/s41524-019-0153-8 10.1016/j.mattod.2019.11.004 10.1002/aenm.202103312 10.1002/adem.200300567 10.1126/science.aaf8402 10.1038/natrevmats.2015.4 10.1007/s12274-021-3912-z 10.1021/acscatal.9b04343 10.1126/sciadv.abm4322 10.1038/ncomms9485 10.1021/jacs.0c04807 10.1038/s41578-020-0216-y 10.1038/s41467-020-19277-9 10.1038/s41565-019-0518-7 10.1093/nsr/nwv023 10.1039/C6TA08088J 10.1002/adma.202101473 10.1143/JJAP.47.5755 10.1002/anie.201712202 10.1021/jacs.0c11384 10.1021/acs.langmuir.9b03392 10.1002/elsa.202100105 10.1039/D1EE00505G 10.1007/s12274-021-3794-0 10.1021/jacs.1c01580 10.1002/adma.201702884 10.1039/C9TA00505F 10.1039/D0NH00656D 10.1126/science.aan5412 10.1002/aenm.201802269 10.1038/s41467-020-15934-1 10.1126/sciadv.aaz6844 10.1039/C8SC03077D 10.1016/j.joule.2018.12.015 10.1038/nchem.367 10.1016/j.jallcom.2018.07.048 10.1103/PhysRevX.5.011041 10.1038/s41467-019-10303-z 10.1002/anie.202109212 10.1073/pnas.1815358116 10.1021/acscatal.9b04302 10.1038/ncomms11241 10.1038/s41586-019-1617-1 10.1021/acs.chemrev.7b00488 10.1038/s41467-019-11848-9 10.1038/s41467-021-24228-z 10.1038/s41929-019-0376-6 10.1038/nature21042 10.1016/j.xcrp.2021.100641 10.1016/j.commatsci.2012.02.002 10.1021/acsenergylett.9b00531 10.1002/smll.202104761 10.1039/D0SC02351E 10.1073/pnas.1903721117 10.1021/acscatal.0c03313 10.1021/acsnano.1c02775 10.1002/adfm.202010561 10.1016/j.matt.2020.07.029 10.1126/science.abe1292 10.1016/j.checat.2021.04.001 10.1038/s41598-017-03644-6 10.1021/acsnano.0c05250 10.1146/annurev-chembioeng-080615-034413 10.1002/anie.202108116 10.1016/j.matt.2019.11.006 10.1016/j.scriptamat.2020.05.049 10.1007/s12274-021-3637-z 10.1126/science.aaf2157 10.1038/s41586-021-03354-0 10.1016/j.matt.2021.04.014 10.1126/sciadv.aaz0510 10.1039/D0TA09578H 10.1038/s41929-020-00554-1 10.1038/ncomms7529 10.1038/ncomms12332 10.1021/nl302992q 10.1016/j.scriptamat.2019.02.015 10.1021/jacs.9b12377 10.1002/aenm.202001119 10.1038/s41578-019-0121-4 10.1002/adfm.202006939 10.1038/nchem.121 10.1021/acsnano.0c03993 10.1021/acsnano.1c05113 10.1038/s41524-019-0205-0 10.1016/j.matlet.2015.08.032 10.1038/nmat4115 10.1126/science.aav4302 10.1002/adma.202106436 10.1038/s41467-020-20084-5 10.1021/acsnano.0c06528 10.1016/j.actamat.2016.08.081 10.1039/C7MH00486A 10.1017/S1431927619001351 10.1021/acsmaterialslett.0c00484 10.1002/adma.202002853 |
ContentType | Journal Article |
Copyright | Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.abn3103 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
ExternalDocumentID | 35389801 10_1126_science_abn3103 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Review Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ 0B8 AEUPB ESX GX1 IGG NPM OK1 PKN UIG VQA YCJ YIF YIN 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c321t-bdcf503b62a7b449236dae456b9f42ba31202755d9ca53dbab877eb6f65ad4f83 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Mon Jul 21 11:11:13 EDT 2025 Fri Jul 25 09:11:14 EDT 2025 Wed Feb 19 02:26:29 EST 2025 Tue Jul 01 02:24:10 EDT 2025 Thu Apr 24 23:04:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6589 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c321t-bdcf503b62a7b449236dae456b9f42ba31202755d9ca53dbab877eb6f65ad4f83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-8249-4101 0000-0002-9191-2982 0000-0002-7553-4213 0000-0003-4033-3945 0000-0002-9456-9315 0000-0001-8469-1715 0000-0002-5424-0216 0000-0001-7398-2090 0000-0001-7606-0331 0000-0002-5045-2123 0000-0003-2220-3522 0000-0003-0764-1567 |
PMID | 35389801 |
PQID | 2648273836 |
PQPubID | 1256 |
ParticipantIDs | proquest_miscellaneous_2648895064 proquest_journals_2648273836 pubmed_primary_35389801 crossref_primary_10_1126_science_abn3103 crossref_citationtrail_10_1126_science_abn3103 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-08 20220408 |
PublicationDateYYYYMMDD | 2022-04-08 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2022 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_1_118_2 e_1_3_1_81_2 e_1_3_1_114_2 e_1_3_1_110_2 e_1_3_1_43_2 e_1_3_1_66_2 e_1_3_1_89_2 e_1_3_1_24_2 e_1_3_1_62_2 e_1_3_1_85_2 e_1_3_1_20_2 e_1_3_1_6_2 e_1_3_1_47_2 e_1_3_1_2_2 e_1_3_1_28_2 e_1_3_1_106_2 e_1_3_1_70_2 e_1_3_1_93_2 e_1_3_1_102_2 e_1_3_1_121_2 e_1_3_1_32_2 e_1_3_1_55_2 e_1_3_1_78_2 e_1_3_1_13_2 e_1_3_1_51_2 e_1_3_1_74_2 e_1_3_1_97_2 e_1_3_1_17_2 e_1_3_1_36_2 e_1_3_1_59_2 e_1_3_1_119_2 e_1_3_1_115_2 e_1_3_1_80_2 e_1_3_1_111_2 e_1_3_1_65_2 e_1_3_1_46_2 e_1_3_1_88_2 e_1_3_1_7_2 e_1_3_1_61_2 e_1_3_1_42_2 e_1_3_1_84_2 e_1_3_1_3_2 e_1_3_1_69_2 e_1_3_1_27_2 e_1_3_1_107_2 e_1_3_1_103_2 e_1_3_1_92_2 e_1_3_1_122_2 e_1_3_1_54_2 e_1_3_1_35_2 e_1_3_1_77_2 e_1_3_1_12_2 e_1_3_1_50_2 e_1_3_1_96_2 e_1_3_1_31_2 e_1_3_1_73_2 e_1_3_1_16_2 e_1_3_1_58_2 e_1_3_1_39_2 e_1_3_1_116_2 e_1_3_1_60_2 e_1_3_1_112_2 e_1_3_1_22_2 e_1_3_1_45_2 e_1_3_1_68_2 e_1_3_1_87_2 e_1_3_1_8_2 e_1_3_1_41_2 e_1_3_1_64_2 e_1_3_1_83_2 e_1_3_1_4_2 e_1_3_1_26_2 e_1_3_1_49_2 e_1_3_1_91_2 e_1_3_1_104_2 e_1_3_1_100_2 e_1_3_1_34_2 e_1_3_1_57_2 e_1_3_1_76_2 e_1_3_1_99_2 e_1_3_1_11_2 e_1_3_1_30_2 e_1_3_1_53_2 e_1_3_1_72_2 e_1_3_1_95_2 e_1_3_1_15_2 e_1_3_1_19_2 e_1_3_1_38_2 e_1_3_1_117_2 e_1_3_1_82_2 e_1_3_1_113_2 e_1_3_1_21_2 e_1_3_1_44_2 e_1_3_1_67_2 e_1_3_1_40_2 e_1_3_1_86_2 e_1_3_1_9_2 e_1_3_1_63_2 e_1_3_1_29_2 e_1_3_1_5_2 Deshpande S. (e_1_3_1_108_2) 2020; 6 e_1_3_1_25_2 e_1_3_1_48_2 e_1_3_1_109_2 e_1_3_1_71_2 e_1_3_1_105_2 e_1_3_1_90_2 e_1_3_1_101_2 e_1_3_1_120_2 Cui M. (e_1_3_1_23_2) 2020; 2002887 e_1_3_1_33_2 e_1_3_1_79_2 e_1_3_1_56_2 e_1_3_1_98_2 e_1_3_1_75_2 e_1_3_1_10_2 e_1_3_1_52_2 e_1_3_1_94_2 e_1_3_1_14_2 e_1_3_1_37_2 e_1_3_1_18_2 |
References_xml | – ident: e_1_3_1_71_2 doi: 10.1038/s41467-020-17738-9 – ident: e_1_3_1_114_2 – ident: e_1_3_1_14_2 doi: 10.1016/j.matt.2020.07.027 – ident: e_1_3_1_64_2 doi: 10.1002/anie.202014374 – ident: e_1_3_1_99_2 doi: 10.1103/PhysRevMaterials.2.045801 – ident: e_1_3_1_82_2 doi: 10.1038/s41586-019-1317-x – ident: e_1_3_1_55_2 doi: 10.1007/BFb0035358 – ident: e_1_3_1_66_2 doi: 10.1039/C9RA03254A – ident: e_1_3_1_31_2 doi: 10.1126/sciadv.abg1600 – ident: e_1_3_1_19_2 doi: 10.1126/science.abj9980 – ident: e_1_3_1_57_2 doi: 10.1021/acsami.9b07198 – ident: e_1_3_1_117_2 doi: 10.1016/j.checat.2021.06.001 – ident: e_1_3_1_104_2 doi: 10.1038/s41586-020-1994-5 – ident: e_1_3_1_70_2 doi: 10.1039/C8NR10137J – ident: e_1_3_1_83_2 doi: 10.1038/nmat1219 – ident: e_1_3_1_53_2 – ident: e_1_3_1_34_2 doi: 10.1002/chem.201903928 – ident: e_1_3_1_56_2 doi: 10.1002/aenm.201800466 – ident: e_1_3_1_115_2 doi: 10.1038/s41524-019-0265-1 – ident: e_1_3_1_92_2 doi: 10.1002/adma.202100347 – ident: e_1_3_1_63_2 doi: 10.1002/anie.201914666 – ident: e_1_3_1_118_2 doi: 10.1038/s41524-019-0153-8 – ident: e_1_3_1_69_2 doi: 10.1016/j.mattod.2019.11.004 – ident: e_1_3_1_112_2 doi: 10.1002/aenm.202103312 – ident: e_1_3_1_2_2 doi: 10.1002/adem.200300567 – ident: e_1_3_1_8_2 doi: 10.1126/science.aaf8402 – ident: e_1_3_1_100_2 doi: 10.1038/natrevmats.2015.4 – ident: e_1_3_1_48_2 doi: 10.1007/s12274-021-3912-z – ident: e_1_3_1_72_2 doi: 10.1021/acscatal.9b04343 – ident: e_1_3_1_18_2 doi: 10.1126/sciadv.abm4322 – ident: e_1_3_1_3_2 doi: 10.1038/ncomms9485 – ident: e_1_3_1_44_2 doi: 10.1021/jacs.0c04807 – ident: e_1_3_1_103_2 doi: 10.1038/s41578-020-0216-y – ident: e_1_3_1_12_2 doi: 10.1038/s41467-020-19277-9 – ident: e_1_3_1_58_2 doi: 10.1038/s41565-019-0518-7 – ident: e_1_3_1_86_2 doi: 10.1093/nsr/nwv023 – ident: e_1_3_1_111_2 doi: 10.1039/C6TA08088J – ident: e_1_3_1_24_2 doi: 10.1002/adma.202101473 – ident: e_1_3_1_7_2 doi: 10.1143/JJAP.47.5755 – ident: e_1_3_1_59_2 doi: 10.1002/anie.201712202 – ident: e_1_3_1_22_2 doi: 10.1021/jacs.0c11384 – ident: e_1_3_1_61_2 doi: 10.1021/acs.langmuir.9b03392 – ident: e_1_3_1_89_2 doi: 10.1002/elsa.202100105 – ident: e_1_3_1_33_2 doi: 10.1039/D1EE00505G – ident: e_1_3_1_42_2 doi: 10.1007/s12274-021-3794-0 – ident: e_1_3_1_27_2 doi: 10.1021/jacs.1c01580 – ident: e_1_3_1_119_2 doi: 10.1002/adma.201702884 – ident: e_1_3_1_38_2 doi: 10.1039/C9TA00505F – ident: e_1_3_1_60_2 doi: 10.1039/D0NH00656D – ident: e_1_3_1_9_2 doi: 10.1126/science.aan5412 – ident: e_1_3_1_10_2 doi: 10.1002/aenm.201802269 – ident: e_1_3_1_13_2 doi: 10.1038/s41467-020-15934-1 – ident: e_1_3_1_40_2 doi: 10.1126/sciadv.aaz6844 – ident: e_1_3_1_116_2 doi: 10.1039/C8SC03077D – ident: e_1_3_1_28_2 doi: 10.1016/j.joule.2018.12.015 – ident: e_1_3_1_85_2 doi: 10.1038/nchem.367 – ident: e_1_3_1_97_2 doi: 10.1016/j.jallcom.2018.07.048 – ident: e_1_3_1_47_2 doi: 10.1103/PhysRevX.5.011041 – ident: e_1_3_1_16_2 doi: 10.1038/s41467-019-10303-z – ident: e_1_3_1_41_2 doi: 10.1002/anie.202109212 – ident: e_1_3_1_109_2 doi: 10.1073/pnas.1815358116 – ident: e_1_3_1_107_2 doi: 10.1021/acscatal.9b04302 – ident: e_1_3_1_120_2 doi: 10.1038/ncomms11241 – ident: e_1_3_1_78_2 doi: 10.1038/s41586-019-1617-1 – ident: e_1_3_1_91_2 doi: 10.1021/acs.chemrev.7b00488 – ident: e_1_3_1_37_2 doi: 10.1038/s41467-019-11848-9 – ident: e_1_3_1_62_2 doi: 10.1038/s41467-021-24228-z – ident: e_1_3_1_84_2 doi: 10.1038/s41929-019-0376-6 – ident: e_1_3_1_81_2 doi: 10.1038/nature21042 – ident: e_1_3_1_75_2 doi: 10.1016/j.xcrp.2021.100641 – ident: e_1_3_1_105_2 doi: 10.1016/j.commatsci.2012.02.002 – ident: e_1_3_1_29_2 doi: 10.1021/acsenergylett.9b00531 – ident: e_1_3_1_26_2 doi: 10.1002/smll.202104761 – ident: e_1_3_1_76_2 doi: 10.1039/D0SC02351E – ident: e_1_3_1_73_2 doi: 10.1073/pnas.1903721117 – ident: e_1_3_1_43_2 doi: 10.1021/acscatal.0c03313 – ident: e_1_3_1_122_2 – ident: e_1_3_1_25_2 doi: 10.1021/acsnano.1c02775 – ident: e_1_3_1_88_2 doi: 10.1002/adfm.202010561 – ident: e_1_3_1_102_2 doi: 10.1016/j.matt.2020.07.029 – ident: e_1_3_1_36_2 doi: 10.1126/science.abe1292 – ident: e_1_3_1_94_2 doi: 10.1016/j.checat.2021.04.001 – ident: e_1_3_1_5_2 doi: 10.1038/s41598-017-03644-6 – ident: e_1_3_1_98_2 doi: 10.1021/acsnano.0c05250 – ident: e_1_3_1_90_2 doi: 10.1146/annurev-chembioeng-080615-034413 – ident: e_1_3_1_121_2 doi: 10.1002/anie.202108116 – ident: e_1_3_1_68_2 doi: 10.1016/j.matt.2019.11.006 – ident: e_1_3_1_54_2 doi: 10.1016/j.scriptamat.2020.05.049 – ident: e_1_3_1_113_2 doi: 10.1007/s12274-021-3637-z – ident: e_1_3_1_80_2 doi: 10.1126/science.aaf2157 – ident: e_1_3_1_17_2 doi: 10.1038/s41586-021-03354-0 – ident: e_1_3_1_15_2 doi: 10.1016/j.matt.2021.04.014 – ident: e_1_3_1_74_2 doi: 10.1126/sciadv.aaz0510 – ident: e_1_3_1_30_2 doi: 10.1039/D0TA09578H – ident: e_1_3_1_21_2 doi: 10.1038/s41929-020-00554-1 – ident: e_1_3_1_106_2 doi: 10.1038/ncomms7529 – volume: 2002887 start-page: 1 year: 2020 ident: e_1_3_1_23_2 article-title: High-entropy metal sulfide nanoparticles promise high-performance oxygen evolution reaction publication-title: Adv. Energy Mater. – ident: e_1_3_1_51_2 doi: 10.1038/ncomms12332 – ident: e_1_3_1_110_2 doi: 10.1021/nl302992q – ident: e_1_3_1_93_2 doi: 10.1016/j.scriptamat.2019.02.015 – ident: e_1_3_1_20_2 doi: 10.1021/jacs.9b12377 – volume: 6 start-page: 1 year: 2020 ident: e_1_3_1_108_2 article-title: Graph theory approach to determine configurations of multidentate and high coverage adsorbates for heterogeneous catalysis. npj Comput publication-title: Mater. – ident: e_1_3_1_45_2 doi: 10.1002/aenm.202001119 – ident: e_1_3_1_4_2 doi: 10.1038/s41578-019-0121-4 – ident: e_1_3_1_39_2 doi: 10.1002/adfm.202006939 – ident: e_1_3_1_101_2 doi: 10.1038/nchem.121 – ident: e_1_3_1_35_2 doi: 10.1021/acsnano.0c03993 – ident: e_1_3_1_67_2 doi: 10.1021/acsnano.1c05113 – ident: e_1_3_1_65_2 doi: 10.1038/s41524-019-0205-0 – ident: e_1_3_1_6_2 doi: 10.1016/j.matlet.2015.08.032 – ident: e_1_3_1_50_2 doi: 10.1038/nmat4115 – ident: e_1_3_1_49_2 doi: 10.1126/science.aav4302 – ident: e_1_3_1_95_2 doi: 10.1002/adma.202106436 – ident: e_1_3_1_77_2 doi: 10.1038/s41467-020-20084-5 – ident: e_1_3_1_87_2 doi: 10.1021/acsnano.0c06528 – ident: e_1_3_1_46_2 doi: 10.1016/j.actamat.2016.08.081 – ident: e_1_3_1_52_2 – ident: e_1_3_1_96_2 doi: 10.1039/C7MH00486A – ident: e_1_3_1_79_2 doi: 10.1017/S1431927619001351 – ident: e_1_3_1_32_2 doi: 10.1021/acsmaterialslett.0c00484 – ident: e_1_3_1_11_2 doi: 10.1002/adma.202002853 |
SSID | ssj0009593 |
Score | 2.7346225 |
SecondaryResourceType | review_article |
Snippet | High-entropy nanoparticles have become a rapidly growing area of research in recent years. Because of their multielemental compositions and unique high-entropy... BACKGROUNDHigh-entropy nanoparticles contain more than four elements uniformly mixed into a solid-solution structure, offering opportunities for materials... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | eabn3103 |
SubjectTerms | Amorphous materials Atomic structure Cascade chemical reactions Catalysis Catalysts Catalytic activity Composition Computer applications Crystal defects Data mining Design optimization Electron states Energy Energy technology Entropy Evolution Experimental methods Experimentation Exploration High-throughput screening Literary Devices Machine learning Nanomaterials Nanoparticles Opportunities Optimization Phosphates Physicochemical properties Scientific Concepts Selectivity Solid solutions Structural analysis Structural stability Synthesis |
Title | High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35389801 https://www.proquest.com/docview/2648273836 https://www.proquest.com/docview/2648895064 |
Volume | 376 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FVkhcEC2vQEFG4lCENnK8tmNzSylRgFKBmkrtyezLJRLaRE5ySP8Yf4-Z7NrZSE1FuVjRxi_tjGe_mf1mhpC33RIWgZRxqlSpaAyOMuUaC14KzbHBiFAR5jt_O02H5_GXi-Si1frjsZYWc9GR1zfmlfyPVGEM5IpZsneQbHNTGIDfIF84goTh-E8yRpIGxfDsZLp8b7gBB9jjuZ0tDaC72XhGbZHYRaXpFGPvFQDvqibB_RpPbZlm5IpSVaH1w20bidzOjT3f2gwAJm32eTzpNoTFvqUV1CwDd5kXcrjkq_js5cRcXXG3ciKWduzgH2MvRnCtbdKaS8SpmlXkZGH3jGr1dpELcHqR8JI1ujZap87c5XV9a-6KKdu1zBrwEHtPRiHzLTyzLWacKgPmym9ePLx2l7rDhcEebOt1suYGDPtnxffjQXHy-fTrPbIbgX8CBna3f3R8NNha79lVlfLyteoHbAKiLV7OCu2MHpGHzk0J-lad9khLm31y3zYuXe6TPTdLs-DQ1S1_95j89NUx2FDHD8FtyhhsKGMAYg48ZQwaZXxCzgefRh-H1DXwoJJF3TkVSpZJyEQa8Z6IsRRgqrgGyC7yMo4EZ10MvSWJyiVPmBJcZD3s0VOmCVdxmbGnZMdMjH5OgpSHWdmLZShKHsuE5aoUAP51zqXMYLhNOvUsFtJVt8cmK7-LlZcbpYWb9sJNe5scNhdMbWGX7ace1GIp3Nc_K5AZimltLG2TN83fYJtxw40bPVnYc7IcS0K2yTMrzuZZDJBGDvDwxe03f0kerD-dA7IDItKvAAbPxWuncn8B1Ky-1A |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-entropy+nanoparticles%3A+Synthesis-structure-property+relationships+and+data-driven+discovery&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Yao%2C+Yonggang&rft.au=Dong%2C+Qi&rft.au=Brozena%2C+Alexandra&rft.au=Luo%2C+Jian&rft.date=2022-04-08&rft.pub=The+American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=376&rft.issue=6589&rft_id=info:doi/10.1126%2Fscience.abn3103&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |