Asymptotic Lyapunov stability with probability one of quasi linear systems subject to multi-time-delayed feedback control and wide-band parametric random excitation

The asymptotic Lyapunov stability with probability one of multi-degree-of-freedom quasi linear systems subject to multi-time-delayed feedback control and multiplicative (parametric) excitation of wide-band random process is studied. First, the multi-time-delayed feedback control forces are expressed...

Full description

Saved in:
Bibliographic Details
Published inArchive of applied mechanics (1991) Vol. 79; no. 11; pp. 1051 - 1061
Main Authors Li, Xue Ping, Liu, Zhong Hua, Huan, Rong Hua, Zhu, Wei Qiu
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.11.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The asymptotic Lyapunov stability with probability one of multi-degree-of-freedom quasi linear systems subject to multi-time-delayed feedback control and multiplicative (parametric) excitation of wide-band random process is studied. First, the multi-time-delayed feedback control forces are expressed approximately in terms of the system state variables without time delay and the system is converted into ordinary quasi linear system. Then, the averaged Itô stochastic differential equations are derived by using the stochastic averaging method for quasi linear systems and the expression for the largest Lyapunov exponent of the linearized averaged Itô equations is derived. Finally, the necessary and sufficient condition for the asymptotic Lyapunov stability with probability one of the trivial solution of the original system is obtained approximately by letting the largest Lyapunov exponent to be negative. An example is worked out in detail to illustrate the application and validity of the proposed procedure and to show the effect of the time delay in feedback control on the largest Lyapunov exponent and the stability of system.
AbstractList The asymptotic Lyapunov stability with probability one of multi-degree-of-freedom quasi linear systems subject to multi-time-delayed feedback control and multiplicative (parametric) excitation of wide-band random process is studied. First, the multi-time-delayed feedback control forces are expressed approximately in terms of the system state variables without time delay and the system is converted into ordinary quasi linear system. Then, the averaged Ito stochastic differential equations are derived by using the stochastic averaging method for quasi linear systems and the expression for the largest Lyapunov exponent of the linearized averaged Ito equations is derived. Finally, the necessary and sufficient condition for the asymptotic Lyapunov stability with probability one of the trivial solution of the original system is obtained approximately by letting the largest Lyapunov exponent to be negative. An example is worked out in detail to illustrate the application and validity of the proposed procedure and to show the effect of the time delay in feedback control on the largest Lyapunov exponent and the stability of system.
The asymptotic Lyapunov stability with probability one of multi-degree-of-freedom quasi linear systems subject to multi-time-delayed feedback control and multiplicative (parametric) excitation of wide-band random process is studied. First, the multi-time-delayed feedback control forces are expressed approximately in terms of the system state variables without time delay and the system is converted into ordinary quasi linear system. Then, the averaged Itô stochastic differential equations are derived by using the stochastic averaging method for quasi linear systems and the expression for the largest Lyapunov exponent of the linearized averaged Itô equations is derived. Finally, the necessary and sufficient condition for the asymptotic Lyapunov stability with probability one of the trivial solution of the original system is obtained approximately by letting the largest Lyapunov exponent to be negative. An example is worked out in detail to illustrate the application and validity of the proposed procedure and to show the effect of the time delay in feedback control on the largest Lyapunov exponent and the stability of system.
Author Huan, Rong Hua
Zhu, Wei Qiu
Li, Xue Ping
Liu, Zhong Hua
Author_xml – sequence: 1
  givenname: Xue Ping
  surname: Li
  fullname: Li, Xue Ping
  email: 10408001@zju.edu.cn
  organization: School of Civil Engineering and Transportation, South China University of Technology
– sequence: 2
  givenname: Zhong Hua
  surname: Liu
  fullname: Liu, Zhong Hua
  organization: Department of Civil Engineering, Xiamen University
– sequence: 3
  givenname: Rong Hua
  surname: Huan
  fullname: Huan, Rong Hua
  organization: College of Civil Engineering and Architecture, Zhejiang University
– sequence: 4
  givenname: Wei Qiu
  surname: Zhu
  fullname: Zhu, Wei Qiu
  organization: Department of Mechanics, School of Aeronautics and Astronautics, Zhejiang University
BookMark eNp9kctuFDEQRS0UJCYhH8DOSzYGP3r6sYwiIEgjsYG1VW2XEw_ddsd2A_0_fGg8GrJhkZXt0j11q3wvyUWIAQl5J_gHwXn3MXPeiIFx3jMuO8W2V2QnGiUZb3txQXZ8UAMTe6XekMucj7zK95LvyN-bvM1LicUbethgWUP8RXOB0U--bPS3Lw90SXF8LlRXGh19XCF7OvmAkGjecsE507yORzSFlkjndSqeFT8jszjBhpY6RDuC-UlNDCXFiUKwtb9FNp5uCySYsaQ6R6rvOFP8Y3yB4mN4S147mDJe_zuvyI_Pn77f3rHDty9fb28OzCgpChuNAC6xHx0o1XI7dsbiIKVyRoFt0BnTWGE6B2YE23fYDK6VDveiBbRiUFfk_blv3fhxxVz07LPBaYKAcc1ayF61fdvveZWKs9SkmHNCp5fkZ0ibFlyfEtHnRHRNRJ8S0Vtluv-Y5wVLAj-9SMozmatLuMekj3FNof7FC9ATDAypjw
CitedBy_id crossref_primary_10_1007_s11071_017_3832_3
crossref_primary_10_1155_2022_9108004
crossref_primary_10_1002_msd2_12043
Cites_doi 10.1007/978-3-662-05030-9
10.1016/S0266-8920(02)00035-8
10.1016/0020-7462(86)90025-9
10.1061/(ASCE)0733-9399(1998)124:9(1018)
10.1002/(SICI)1096-9845(199711)26:11<1169::AID-EQE702>3.0.CO;2-S
10.1115/1.2789009
10.1016/S0266-8920(96)00028-8
10.1137/1111038
10.1115/1.3151891
10.1115/1.2789148
ContentType Journal Article
Copyright Springer-Verlag 2008
Copyright_xml – notice: Springer-Verlag 2008
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1007/s00419-008-0273-y
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1432-0681
EndPage 1061
ExternalDocumentID 10_1007_s00419_008_0273_y
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
2.D
203
23M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9P
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
ZMTXR
ZY4
_50
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7TB
8FD
ABRTQ
FR3
KR7
ID FETCH-LOGICAL-c321t-bc1a02e8bfa3360db7cde9223fc3ad4efcc4d1c7facbad87e49f62fe516aed193
IEDL.DBID U2A
ISSN 0939-1533
IngestDate Sun Aug 24 04:01:43 EDT 2025
Thu Apr 24 23:06:31 EDT 2025
Tue Jul 01 02:24:15 EDT 2025
Fri Feb 21 02:36:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Stochastic averaging
Wide-band random excitation
Multi-time-delayed feedback
Lyapunov exponent
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-bc1a02e8bfa3360db7cde9223fc3ad4efcc4d1c7facbad87e49f62fe516aed193
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1283686850
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1283686850
crossref_primary_10_1007_s00419_008_0273_y
crossref_citationtrail_10_1007_s00419_008_0273_y
springer_journals_10_1007_s00419_008_0273_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20091100
2009-11-00
20091101
PublicationDateYYYYMMDD 2009-11-01
PublicationDate_xml – month: 11
  year: 2009
  text: 20091100
PublicationDecade 2000
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle Archive of applied mechanics (1991)
PublicationTitleAbbrev Arch Appl Mech
PublicationYear 2009
Publisher Springer-Verlag
Publisher_xml – name: Springer-Verlag
References KhasminskiiR.Z.On the averaging principle for Itô stochastic differential equationsKybernetika196843260260052(in Russian)
StepanG.Retarded dynamical systems: stability and characteristic functions1989EssexLongman Scientific and Technical0686.34044
ZhuW.Q.HuangZ.L.YangY.Q.Stochastic averaging of quasi integrable Hamiltonian systemsASME J. Appl. Mech.1997649750918.70009160585010.1115/1.2789009
FofanaM.S.Asymptotic stability of a stochastic delay equationProbab. Eng. Mech.20021738510.1016/S0266-8920(02)00035-8
RobersJ.B.SpanosP.D.Stochastic averaging: an approximate method of solving random vibration problemsInt. J. Non-linear Mech.19862111113410.1016/0020-7462(86)90025-9
HuH.Y.WangZ.H.Dynamics of Controlled Mechanical Systems with Delayed Feedback2002BerlinSpringer1035.93002
ZhuW.Q.Stochastic averaging methods in random vibrationASME Appl. Mech. Rev.19884118910.1115/1.3151891
KuoB.C.Automatic Control Systems1987Englewood CliffsPrentice-Hall
PuJ.P.Time delay compensation in active control of structuresASCE J. Eng. Mech.19981249101810.1061/(ASCE)0733-9399(1998)124:9(1018)1667186
LiuZ.H.ZhuW.Q.Stochastic Hopf bifurcation of quasi-integrable Hamiltonian systems with time-delayed feedback controlJ. Theor. Appl. Mech.2008463531
ZhuW.Q.HuangZ.L.Lyapunov exponents and stochastic stability of quasi-integrable Hamiltonian systemsASME J. Appl. Mech.1999662111690120
Malek-ZavareiM.JamshidiM.Time-Delay Systems: Analysis, Optimization and Applications1987Now YorkNorth-Holland0658.93001
AgrawalA.K.YangJ.N.Effect of fixed time delay on stability and performance of actively controlled civil engineering structuresEarthq. Eng. Struct. Dyn.199726116910.1002/(SICI)1096-9845(199711)26:11<1169::AID-EQE702>3.0.CO;2-S
GrigoriuM.Control of time delay linear systems with Gaussian white noiseProbab. Eng. Mech.19971228910.1016/S0266-8920(96)00028-8
StratonovichR.L.Topics in the Theory of Random Noise, vol. 21967New YorkGordon and breach
Li, X.P., Liu, Z.H., Zhu, W.Q.: Stochastic averaging of quasi linear systems subject to multi- time-delayed feedback control and wide-band random excitation. J. Vib. Control (2007) (in press)
KhasminskiiR.Z.Sufficient and necessary conditions of almost sure asymptotic stability of a linear stochastic systemTheory Probab. Appl.19671139010.1137/1111038
OseledecV.I.A multiplicative ergodic theorem, Lyapunov characteristic numbers for dynamical systemsTrans. Moscow Math. Soc.196819197240280
B.C. Kuo (273_CR1) 1987
A.K. Agrawal (273_CR4) 1997; 26
G. Stepan (273_CR3) 1989
H.Y. Hu (273_CR6) 2002
M.S. Fofana (273_CR8) 2002; 17
J.P. Pu (273_CR5) 1998; 124
J.B. Robers (273_CR14) 1986; 21
W.Q. Zhu (273_CR15) 1988; 41
W.Q. Zhu (273_CR11) 1999; 66
V.I. Oseledec (273_CR17) 1968; 19
M. Malek-Zavarei (273_CR2) 1987
Z.H. Liu (273_CR9) 2008; 46
273_CR12
M. Grigoriu (273_CR7) 1997; 12
W.Q. Zhu (273_CR10) 1997; 64
R.Z. Khasminskii (273_CR18) 1968; 4
R.Z. Khasminskii (273_CR16) 1967; 11
R.L. Stratonovich (273_CR13) 1967
References_xml – reference: GrigoriuM.Control of time delay linear systems with Gaussian white noiseProbab. Eng. Mech.19971228910.1016/S0266-8920(96)00028-8
– reference: RobersJ.B.SpanosP.D.Stochastic averaging: an approximate method of solving random vibration problemsInt. J. Non-linear Mech.19862111113410.1016/0020-7462(86)90025-9
– reference: FofanaM.S.Asymptotic stability of a stochastic delay equationProbab. Eng. Mech.20021738510.1016/S0266-8920(02)00035-8
– reference: AgrawalA.K.YangJ.N.Effect of fixed time delay on stability and performance of actively controlled civil engineering structuresEarthq. Eng. Struct. Dyn.199726116910.1002/(SICI)1096-9845(199711)26:11<1169::AID-EQE702>3.0.CO;2-S
– reference: PuJ.P.Time delay compensation in active control of structuresASCE J. Eng. Mech.19981249101810.1061/(ASCE)0733-9399(1998)124:9(1018)1667186
– reference: ZhuW.Q.Stochastic averaging methods in random vibrationASME Appl. Mech. Rev.19884118910.1115/1.3151891
– reference: HuH.Y.WangZ.H.Dynamics of Controlled Mechanical Systems with Delayed Feedback2002BerlinSpringer1035.93002
– reference: LiuZ.H.ZhuW.Q.Stochastic Hopf bifurcation of quasi-integrable Hamiltonian systems with time-delayed feedback controlJ. Theor. Appl. Mech.2008463531
– reference: ZhuW.Q.HuangZ.L.Lyapunov exponents and stochastic stability of quasi-integrable Hamiltonian systemsASME J. Appl. Mech.1999662111690120
– reference: Malek-ZavareiM.JamshidiM.Time-Delay Systems: Analysis, Optimization and Applications1987Now YorkNorth-Holland0658.93001
– reference: KhasminskiiR.Z.On the averaging principle for Itô stochastic differential equationsKybernetika196843260260052(in Russian)
– reference: KhasminskiiR.Z.Sufficient and necessary conditions of almost sure asymptotic stability of a linear stochastic systemTheory Probab. Appl.19671139010.1137/1111038
– reference: StepanG.Retarded dynamical systems: stability and characteristic functions1989EssexLongman Scientific and Technical0686.34044
– reference: Li, X.P., Liu, Z.H., Zhu, W.Q.: Stochastic averaging of quasi linear systems subject to multi- time-delayed feedback control and wide-band random excitation. J. Vib. Control (2007) (in press)
– reference: KuoB.C.Automatic Control Systems1987Englewood CliffsPrentice-Hall
– reference: OseledecV.I.A multiplicative ergodic theorem, Lyapunov characteristic numbers for dynamical systemsTrans. Moscow Math. Soc.196819197240280
– reference: ZhuW.Q.HuangZ.L.YangY.Q.Stochastic averaging of quasi integrable Hamiltonian systemsASME J. Appl. Mech.1997649750918.70009160585010.1115/1.2789009
– reference: StratonovichR.L.Topics in the Theory of Random Noise, vol. 21967New YorkGordon and breach
– volume-title: Dynamics of Controlled Mechanical Systems with Delayed Feedback
  year: 2002
  ident: 273_CR6
  doi: 10.1007/978-3-662-05030-9
– volume: 17
  start-page: 385
  year: 2002
  ident: 273_CR8
  publication-title: Probab. Eng. Mech.
  doi: 10.1016/S0266-8920(02)00035-8
– volume: 21
  start-page: 111
  year: 1986
  ident: 273_CR14
  publication-title: Int. J. Non-linear Mech.
  doi: 10.1016/0020-7462(86)90025-9
– volume: 124
  start-page: 1018
  issue: 9
  year: 1998
  ident: 273_CR5
  publication-title: ASCE J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(1998)124:9(1018)
– volume: 26
  start-page: 1169
  year: 1997
  ident: 273_CR4
  publication-title: Earthq. Eng. Struct. Dyn.
  doi: 10.1002/(SICI)1096-9845(199711)26:11<1169::AID-EQE702>3.0.CO;2-S
– volume-title: Automatic Control Systems
  year: 1987
  ident: 273_CR1
– volume-title: Time-Delay Systems: Analysis, Optimization and Applications
  year: 1987
  ident: 273_CR2
– volume: 19
  start-page: 197
  year: 1968
  ident: 273_CR17
  publication-title: Trans. Moscow Math. Soc.
– ident: 273_CR12
– volume: 64
  start-page: 975
  year: 1997
  ident: 273_CR10
  publication-title: ASME J. Appl. Mech.
  doi: 10.1115/1.2789009
– volume: 4
  start-page: 260
  issue: 3
  year: 1968
  ident: 273_CR18
  publication-title: Kybernetika
– volume-title: Topics in the Theory of Random Noise, vol. 2
  year: 1967
  ident: 273_CR13
– volume: 12
  start-page: 89
  issue: 2
  year: 1997
  ident: 273_CR7
  publication-title: Probab. Eng. Mech.
  doi: 10.1016/S0266-8920(96)00028-8
– volume: 46
  start-page: 531
  issue: 3
  year: 2008
  ident: 273_CR9
  publication-title: J. Theor. Appl. Mech.
– volume-title: Retarded dynamical systems: stability and characteristic functions
  year: 1989
  ident: 273_CR3
– volume: 11
  start-page: 390
  year: 1967
  ident: 273_CR16
  publication-title: Theory Probab. Appl.
  doi: 10.1137/1111038
– volume: 41
  start-page: 189
  year: 1988
  ident: 273_CR15
  publication-title: ASME Appl. Mech. Rev.
  doi: 10.1115/1.3151891
– volume: 66
  start-page: 211
  year: 1999
  ident: 273_CR11
  publication-title: ASME J. Appl. Mech.
  doi: 10.1115/1.2789148
SSID ssj0004520
Score 1.8270007
Snippet The asymptotic Lyapunov stability with probability one of multi-degree-of-freedom quasi linear systems subject to multi-time-delayed feedback control and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1051
SubjectTerms Asymptotic properties
Classical Mechanics
Engineering
Feedback control
Linear systems
Lyapunov exponents
Mathematical analysis
Original
Stability
Stochasticity
Theoretical and Applied Mechanics
Time delay
Title Asymptotic Lyapunov stability with probability one of quasi linear systems subject to multi-time-delayed feedback control and wide-band parametric random excitation
URI https://link.springer.com/article/10.1007/s00419-008-0273-y
https://www.proquest.com/docview/1283686850
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKe4FDRXmILVANEieQpXVemxxX0FLRxwVWKqdo_JIQbLI0SdX8H34oM95kKRUg9ZQockZJxvb3xTP-RojXKUuaEKxKZzGWCUZGokq9VGrm0jxDrYOI69l5drxIPl6kF8M-7mbMdh9DkmGm3mx2Y2moQoZwPWGu7O-JnZR_3akTL6L5TYnwsLBSxIVkMjOGMv9m4k8w-s0wbwVFA9YcPRS7A0mE-dqre2LLVY_EgxvSgY_Fz3nTL1dtTS3gtMdVV9VXQEwv5Lr2wMurwMVixgt15aD28KPD5iswtcRLWKs4N9B0mldjoK0h5BdKLjgvWT6ydxY84ZtG8w2GrHbAypJ966TmM9YOX3JZLgMEe7Zegrs2g_D3E7E4Ovz87lgOFRekiSPVSm0UTiOXa49xnE2tnhnrCmIQ3sRoE-eNSawyM49Go81nLil8FnmXqgydJS74VGxX9ELPBGTK8mSaKu114p3X2vucLMcGybbOJ2I6fvpyfCquivG93AgpB2-VoUwmeavsJ-LN5pbVWovjf41fjf4sacRwGAQrV3dNSYgcZ3mWp9OJeDs6uhyGbvNvi_t3av1c3A-Bp7Bt8YXYbi8795L4S6sPxM78_dnpJz5--HJyeBD67y-cG_Ie
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZ4HKCHqpRWbB8wSD1RWVrntclxVYEWWDixErdo_JIq2GQhSdX8n_7Qjr3JAhVF4hZFzijxxP4-eWa-Yexb7CRNCFa50RjyCAPFUcSWCzEycZqglF7E9eIymcyis-v4uqvjrvps9z4k6XfqVbGbk4bKuA_XE-bydp1tEhdIXR7XLBg_lgj3BytZmHFHZvpQ5nMmnoLRA8P8JyjqsebkHXvbkUQYL726w9ZM8Z69eSQduMv-jKt2vqhLGgHTFhdNUf4CYno-17UFd7wKrllMf6MsDJQW7hqsfoKjlngPSxXnCqpGutMYqEvw-YXcNZznTj6yNRos4ZtEdQNdVjtgocm-Nly6K6cdPndtuRQQ7OlyDua36oS_P7DZyfHVjwnvOi5wFQai5lIJHAYmlRbDMBlqOVLaZMQgrApRR8YqFWmhRhaVRJ2OTJTZJLAmFgkaTVzwI9so6IP2GCRCu800FtLKyBorpbUpWQ4Vkm2ZDtiwn_q8fyvXFeM2Xwkpe2_lvk0meStvB-xo9chiqcXx0uDD3p85rRgXBsHClE2VEyKHSZqk8XDAvveOzrulW_3f4qdXjT5gW5Ori2k-Pb08_8y2fRDKlzB-YRv1fWO-Epep5b7_d_8C_zrx6Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF9qC6IPYv3A86sj-KQsvc3XJY-H9mhrLT540Lcw-wWil5xNIub_8Q91Zi85a1HBtxA2Q5LZ3d-PnZnfCPEyZUkTglXpLMYywchIVKmXSs1cmmeodRBxfX-eHS-T04v0Yuhz2ozZ7mNIclPTwCpNVXu4tv5wW_jGMlGFDKF7wl_Z3xB7tBsrntbLaH5VLjwcshRxIZnYjGHNP5n4HZh-sc1rAdKAO4u74s5AGGG-8fC-2HHVPXH7iozgffFj3vSrdVvTCDjrcd1V9Tcg1hfyXnvgo1bgxjHjjbpyUHv42mHzCZhm4iVsFJ0baDrNJzPQ1hByDSU3n5csJdk7C56wTqP5DEOGO2Blyb51UvMV64ivuEWXAYJAW6_AfTeDCPgDsVwcfXxzLIfuC9LEkWqlNgqnkcu1xzjOplbPjHUFsQlvYrSJ88YkVpmZR6PR5jOXFD6LvEtVhs4SL3wodiv6oEcCMmV5Y02V9jrxzmvtfU6WY4NkW-cTMR1_fTm-FXfI-FJuRZWDt8rQMpO8VfYT8Wr7yHqjy_GvwS9Gf5a0ejgkgpWru6YkdI6zPMvT6US8Hh1dDsu4-bvFx_81-kDc_PB2UZ6dnL97Im6FeFSoZnwqdtvLzj0jWtPq52Hq_gRyXfYl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymptotic+Lyapunov+stability+with+probability+one+of+quasi+linear+systems+subject+to+multi-time-delayed+feedback+control+and+wide-band+parametric+random+excitation&rft.jtitle=Archive+of+applied+mechanics+%281991%29&rft.au=Li%2C+Xue+Ping&rft.au=Liu%2C+Zhong+Hua&rft.au=Huan%2C+Rong+Hua&rft.au=Zhu%2C+Wei+Qiu&rft.date=2009-11-01&rft.issn=0939-1533&rft.eissn=1432-0681&rft.volume=79&rft.issue=11&rft.spage=1051&rft.epage=1061&rft_id=info:doi/10.1007%2Fs00419-008-0273-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0939-1533&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0939-1533&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0939-1533&client=summon