ActiVis: Visual Exploration of Industry-Scale Deep Neural Network Models

While deep learning models have achieved state-of-the-art accuracies for many prediction tasks, understanding these models remains a challenge. Despite the recent interest in developing visual tools to help users interpret deep learning models, the complexity and wide variety of models deployed in i...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on visualization and computer graphics Vol. 24; no. 1; pp. 88 - 97
Main Authors Minsuk Kahng, Andrews, Pierre Y., Kalro, Aditya, Chau, Duen Horng
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract While deep learning models have achieved state-of-the-art accuracies for many prediction tasks, understanding these models remains a challenge. Despite the recent interest in developing visual tools to help users interpret deep learning models, the complexity and wide variety of models deployed in industry, and the large-scale datasets that they used, pose unique design challenges that are inadequately addressed by existing work. Through participatory design sessions with over 15 researchers and engineers at Facebook, we have developed, deployed, and iteratively improved ActiVis, an interactive visualization system for interpreting large-scale deep learning models and results. By tightly integrating multiple coordinated views, such as a computation graph overview of the model architecture, and a neuron activation view for pattern discovery and comparison, users can explore complex deep neural network models at both the instance-and subset-level. ActiVis has been deployed on Facebook's machine learning platform. We present case studies with Facebook researchers and engineers, and usage scenarios of how ActiVis may work with different models.
AbstractList While deep learning models have achieved state-of-the-art accuracies for many prediction tasks, understanding these models remains a challenge. Despite the recent interest in developing visual tools to help users interpret deep learning models, the complexity and wide variety of models deployed in industry, and the large-scale datasets that they used, pose unique design challenges that are inadequately addressed by existing work. Through participatory design sessions with over 15 researchers and engineers at Facebook, we have developed, deployed, and iteratively improved ACTIVIS, an interactive visualization system for interpreting large-scale deep learning models and results. By tightly integrating multiple coordinated views, such as a computation graph overview of the model architecture, and a neuron activation view for pattern discovery and comparison, users can explore complex deep neural network models at both the instance- and subset-level. ACTIVIS has been deployed on Facebook's machine learning platform. We present case studies with Facebook researchers and engineers, and usage scenarios of how ACTIVIS may work with different models.While deep learning models have achieved state-of-the-art accuracies for many prediction tasks, understanding these models remains a challenge. Despite the recent interest in developing visual tools to help users interpret deep learning models, the complexity and wide variety of models deployed in industry, and the large-scale datasets that they used, pose unique design challenges that are inadequately addressed by existing work. Through participatory design sessions with over 15 researchers and engineers at Facebook, we have developed, deployed, and iteratively improved ACTIVIS, an interactive visualization system for interpreting large-scale deep learning models and results. By tightly integrating multiple coordinated views, such as a computation graph overview of the model architecture, and a neuron activation view for pattern discovery and comparison, users can explore complex deep neural network models at both the instance- and subset-level. ACTIVIS has been deployed on Facebook's machine learning platform. We present case studies with Facebook researchers and engineers, and usage scenarios of how ACTIVIS may work with different models.
While deep learning models have achieved state-of-the-art accuracies for many prediction tasks, understanding these models remains a challenge. Despite the recent interest in developing visual tools to help users interpret deep learning models, the complexity and wide variety of models deployed in industry, and the large-scale datasets that they used, pose unique design challenges that are inadequately addressed by existing work. Through participatory design sessions with over 15 researchers and engineers at Facebook, we have developed, deployed, and iteratively improved ActiVis, an interactive visualization system for interpreting large-scale deep learning models and results. By tightly integrating multiple coordinated views, such as a computation graph overview of the model architecture, and a neuron activation view for pattern discovery and comparison, users can explore complex deep neural network models at both the instance-and subset-level. ActiVis has been deployed on Facebook's machine learning platform. We present case studies with Facebook researchers and engineers, and usage scenarios of how ActiVis may work with different models.
Author Andrews, Pierre Y.
Kalro, Aditya
Minsuk Kahng
Chau, Duen Horng
Author_xml – sequence: 1
  surname: Minsuk Kahng
  fullname: Minsuk Kahng
  email: kahng@gatech.edu
– sequence: 2
  givenname: Pierre Y.
  surname: Andrews
  fullname: Andrews, Pierre Y.
  email: mortimer@fb.com
– sequence: 3
  givenname: Aditya
  surname: Kalro
  fullname: Kalro, Aditya
  email: adityakalro@fb.com
– sequence: 4
  givenname: Duen Horng
  surname: Chau
  fullname: Chau, Duen Horng
  email: polo@gatech.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28866557$$D View this record in MEDLINE/PubMed
BookMark eNp9kLFOwzAURS0EorTwAQgJZWRJsZ8T22FDBdpKpQyUrpabvEiBNA52IuDvSWnLwMDi5-HcK93TJ4eVrZCQc0aHjNHkerEcjYdAmRyCjCLJ1AE5YUnEQhpTcdj9qZQhCBA90vf-lVIWRSo5Jj1QSog4lidkcps2xbLwN0H3tKYM7j_r0jrTFLYKbB5Mq6z1jfsKn1NTYnCHWAdzbF1HzrH5sO4teLQZlv6UHOWm9Hi2uwPy8nC_GE3C2dN4OrqdhSkH1oRmxVFAjAoxN1zSTMkUACmHGBBiQWUmDaUgMkiyXIk8gxSBg5IcVWISPiBX297a2fcWfaPXhU-xLE2FtvWaJTyOaFcUd-jlDm1Xa8x07Yq1cV96v74D5BZInfXeYa7TovmZ3jhTlJpRvfGsN571xrPeee6S7E9yX_5f5mKbKRDxl1cUunGMfwO8Nob8
CODEN ITVGEA
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3409843
crossref_primary_10_1016_j_ress_2024_110089
crossref_primary_10_14778_3485450_3485460
crossref_primary_10_1109_TVCG_2019_2934307
crossref_primary_10_1109_ACCESS_2021_3137630
crossref_primary_10_1109_TVCG_2020_3030449
crossref_primary_10_1007_s12559_022_10084_6
crossref_primary_10_1016_j_cag_2018_09_018
crossref_primary_10_15187_adr_2021_02_34_1_133
crossref_primary_10_1007_s11042_018_6706_x
crossref_primary_10_1007_s12650_022_00899_8
crossref_primary_10_1109_TVCG_2019_2934267
crossref_primary_10_1177_14738716231216030
crossref_primary_10_1016_j_jss_2022_111359
crossref_primary_10_1016_j_visinf_2023_04_001
crossref_primary_10_1109_ACCESS_2020_3008171
crossref_primary_10_1109_TVCG_2018_2865027
crossref_primary_10_1109_TVCG_2019_2934261
crossref_primary_10_1109_TVCG_2021_3076749
crossref_primary_10_1016_j_cag_2019_07_001
crossref_primary_10_1109_TVCG_2024_3456354
crossref_primary_10_1109_ACCESS_2024_3480791
crossref_primary_10_1186_s13673_019_0167_8
crossref_primary_10_1007_s00170_022_10520_9
crossref_primary_10_1080_02701367_2024_2343815
crossref_primary_10_1016_j_heliyon_2024_e25950
crossref_primary_10_1007_s12650_021_00809_4
crossref_primary_10_1109_TVCG_2024_3388557
crossref_primary_10_1109_TVCG_2023_3326577
crossref_primary_10_3390_make3030032
crossref_primary_10_1109_TVCG_2021_3114812
crossref_primary_10_1109_TVCG_2022_3209425
crossref_primary_10_1155_2021_3532963
crossref_primary_10_1109_TVCG_2018_2864500
crossref_primary_10_1109_TVCG_2022_3148107
crossref_primary_10_1109_TVCG_2022_3165347
crossref_primary_10_1109_TVCG_2018_2864504
crossref_primary_10_1016_j_inffus_2023_101805
crossref_primary_10_1109_TVCG_2021_3057483
crossref_primary_10_3390_app14010437
crossref_primary_10_1177_14738716231212568
crossref_primary_10_2139_ssrn_4098528
crossref_primary_10_1145_3426866
crossref_primary_10_1111_cgf_15085
crossref_primary_10_1111_cgf_14034
crossref_primary_10_1109_TVCG_2020_3030342
crossref_primary_10_1111_cgf_13981
crossref_primary_10_1007_s12650_024_00985_z
crossref_primary_10_1109_TVCG_2018_2864838
crossref_primary_10_1007_s11063_021_10499_6
crossref_primary_10_1007_s12650_018_0514_2
crossref_primary_10_1016_j_ins_2022_10_013
crossref_primary_10_1186_s42492_021_00090_0
crossref_primary_10_1145_3392878
crossref_primary_10_1145_3387166
crossref_primary_10_1109_TVCG_2019_2934614
crossref_primary_10_1109_TVCG_2022_3192364
crossref_primary_10_1109_TVCG_2024_3456371
crossref_primary_10_1145_3529318
crossref_primary_10_1111_cgf_14329
crossref_primary_10_1109_TVCG_2023_3339585
crossref_primary_10_1109_TVCG_2022_3209489
crossref_primary_10_3390_app11052199
crossref_primary_10_1109_TVCG_2022_3209404
crossref_primary_10_1016_j_visinf_2023_11_003
crossref_primary_10_1109_TVCG_2018_2843369
crossref_primary_10_3934_mbe_2023613
crossref_primary_10_1088_1742_6596_1650_3_032207
crossref_primary_10_1016_j_visinf_2018_09_001
crossref_primary_10_1016_j_cag_2022_04_013
crossref_primary_10_1155_2018_8580959
crossref_primary_10_1109_TVCG_2019_2934629
crossref_primary_10_3390_su14116569
crossref_primary_10_1016_j_crad_2020_11_113
crossref_primary_10_1016_j_compbiomed_2024_108908
crossref_primary_10_3390_info11090426
crossref_primary_10_1109_TVCG_2018_2864812
crossref_primary_10_3390_app142311288
crossref_primary_10_1109_TVCG_2018_2864499
crossref_primary_10_1109_TVCG_2024_3357065
crossref_primary_10_1109_TVCG_2019_2921323
crossref_primary_10_1109_TVCG_2022_3146806
crossref_primary_10_4132_jptm_2019_12_31
crossref_primary_10_1109_TVCG_2018_2865230
crossref_primary_10_3390_electronics8080832
crossref_primary_10_1016_j_cag_2023_06_010
crossref_primary_10_3390_electronics10222862
crossref_primary_10_1111_cgf_14302
crossref_primary_10_1007_s11424_020_9002_6
crossref_primary_10_1109_TVCG_2019_2934595
crossref_primary_10_1109_TVCG_2022_3209462
crossref_primary_10_1109_MCG_2018_2878902
crossref_primary_10_1007_s41324_023_00535_z
crossref_primary_10_1109_TVCG_2019_2934631
crossref_primary_10_1109_TVCG_2023_3239909
crossref_primary_10_1002_ail2_49
crossref_primary_10_1016_j_cag_2021_09_002
crossref_primary_10_1109_TVCG_2019_2934591
crossref_primary_10_3390_fi12120218
crossref_primary_10_1109_TVCG_2020_3030418
crossref_primary_10_1109_TVCG_2022_3184247
crossref_primary_10_1109_TVCG_2019_2903946
crossref_primary_10_1109_TVCG_2022_3230832
crossref_primary_10_1109_TVCG_2022_3172107
crossref_primary_10_1007_s41095_020_0191_7
crossref_primary_10_1109_TVCG_2018_2865044
crossref_primary_10_1007_s42979_023_02284_0
crossref_primary_10_1007_s13198_021_01197_6
crossref_primary_10_1109_TVCG_2020_3030384
crossref_primary_10_1007_s00521_021_05735_y
crossref_primary_10_1007_s11704_024_3735_7
crossref_primary_10_1109_TVCG_2020_3030420
crossref_primary_10_1177_14738716241238476
crossref_primary_10_1145_3555590
crossref_primary_10_3390_app12199423
crossref_primary_10_1111_cgf_13667
crossref_primary_10_1007_s11704_023_2691_y
crossref_primary_10_1109_TVCG_2021_3102051
crossref_primary_10_1109_TVCG_2020_2969185
crossref_primary_10_1007_s11042_024_18177_0
crossref_primary_10_3390_ai5020023
crossref_primary_10_35940_ijitee_F8804_0410621
crossref_primary_10_1145_3576935
crossref_primary_10_1016_j_ijhcs_2022_102941
crossref_primary_10_1109_TVCG_2019_2903943
crossref_primary_10_1145_3551385
crossref_primary_10_1109_TVCG_2019_2947037
crossref_primary_10_1177_14738716231168671
crossref_primary_10_1109_TAI_2021_3133846
crossref_primary_10_1007_s12650_020_00704_4
crossref_primary_10_1109_TVCG_2023_3326591
crossref_primary_10_1007_s12650_018_0531_1
crossref_primary_10_1145_3702004
crossref_primary_10_1109_TVCG_2019_2934659
crossref_primary_10_1016_j_imavis_2019_02_005
crossref_primary_10_1007_s00521_021_06812_y
crossref_primary_10_1109_TVCG_2021_3114794
crossref_primary_10_1109_TVCG_2023_3327201
crossref_primary_10_1145_3458928
crossref_primary_10_1109_TVCG_2020_3012063
crossref_primary_10_1007_s10639_023_12349_5
crossref_primary_10_1016_j_compag_2020_105947
crossref_primary_10_1109_TVCG_2020_3028888
crossref_primary_10_1109_TVCG_2022_3219248
crossref_primary_10_3389_frai_2020_00049
crossref_primary_10_1016_j_cag_2023_07_030
crossref_primary_10_1016_j_visinf_2021_11_001
crossref_primary_10_1109_TVCG_2022_3182488
Cites_doi 10.3115/v1/D14-1181
10.1145/2030365.2030367
10.1145/1357054.1357160
10.1109/VAST.2010.5652443
10.1145/2939502.2939503
10.1145/2835776.2835848
10.1145/2959100.2959190
10.1109/TVCG.2015.2467622
10.1109/TVCG.2016.2598838
10.1007/978-3-319-27857-5_77
10.1109/VAST.2011.6102453
10.1145/2487575.2488200
10.1109/TVCG.2016.2598828
10.25080/Majora-92bf1922-003
10.1145/2702123.2702509
10.1109/TVCG.2016.2598831
10.1145/2678025.2701399
10.3115/1072228.1072378
10.1109/VAST.2015.7347637
10.1109/TVCG.2014.2346482
10.1145/2648584.2648589
10.1145/2858036.2858529
10.1145/2939672.2939778
10.1145/1866029.1866038
10.1109/TVCG.2013.157
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TVCG.2017.2744718
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0506
EndPage 97
ExternalDocumentID 28866557
10_1109_TVCG_2017_2744718
8022871
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: NSF Graduate Research Fellowship Program
  grantid: DGE-1650044
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
7X8
ID FETCH-LOGICAL-c321t-ab3e625e8eefa370d87c22e03252e25607d7a0026d29df86fd2ce232873e89a93
IEDL.DBID RIE
ISSN 1077-2626
1941-0506
IngestDate Fri Jul 11 03:00:46 EDT 2025
Thu Apr 03 06:57:02 EDT 2025
Tue Jul 01 03:58:51 EDT 2025
Thu Apr 24 22:51:57 EDT 2025
Wed Aug 27 05:51:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-ab3e625e8eefa370d87c22e03252e25607d7a0026d29df86fd2ce232873e89a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 28866557
PQID 1935405605
PQPubID 23479
PageCount 10
ParticipantIDs crossref_citationtrail_10_1109_TVCG_2017_2744718
proquest_miscellaneous_1935405605
pubmed_primary_28866557
ieee_primary_8022871
crossref_primary_10_1109_TVCG_2017_2744718
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-Jan.
2018-1-00
2018-01-00
20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-Jan.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationTitleAlternate IEEE Trans Vis Comput Graph
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref37
ref15
ref14
ref31
ref30
ref33
ref11
ref32
abdulkader (ref2) 0
ref17
ref19
maaten (ref27) 2008; 9
bergstra (ref6) 2010
abadi (ref1) 2016
karpathy (ref18) 0
ref24
ref23
ref26
ref25
tzeng (ref36) 2005
ref20
ref22
ref21
smilkov (ref34) 2016
ref28
andrews (ref4) 2016
dunn (ref12) 0
ref29
ref8
yosinski (ref38) 2016
smilkov (ref35) 2016
joulin (ref16) 2016
chung (ref10) 2016
ref9
ref3
ref5
britz (ref7) 0
References_xml – ident: ref19
  doi: 10.3115/v1/D14-1181
– ident: ref24
  doi: 10.1145/2030365.2030367
– ident: ref30
  doi: 10.1145/1357054.1357160
– year: 2016
  ident: ref16
  publication-title: Bag of tricks for efficient text classification
– ident: ref9
  doi: 10.1109/VAST.2010.5652443
– year: 2016
  ident: ref4
  article-title: Productionizing machine learning pipelines at scale
  publication-title: ML Systems Workshop at the 33rd International Conference on Machine Learning (ICML)
– ident: ref17
  doi: 10.1145/2939502.2939503
– ident: ref5
  doi: 10.1145/2835776.2835848
– ident: ref11
  doi: 10.1145/2959100.2959190
– start-page: 383
  year: 2005
  ident: ref36
  article-title: Opening the black box: Data driven visualization of neural networks
  publication-title: IEEE Visualization
– year: 0
  ident: ref18
  publication-title: Convnetjs
– ident: ref22
  doi: 10.1109/TVCG.2015.2467622
– year: 0
  ident: ref12
  publication-title: Introducing FBLearner Flow Facebook's AI backbone
– ident: ref31
  doi: 10.1109/TVCG.2016.2598838
– ident: ref14
  doi: 10.1007/978-3-319-27857-5_77
– ident: ref37
  doi: 10.1109/VAST.2011.6102453
– ident: ref28
  doi: 10.1145/2487575.2488200
– ident: ref32
  doi: 10.1109/TVCG.2016.2598828
– year: 2016
  ident: ref38
  article-title: Understanding neural networks through deep visualization
  publication-title: Workshop on Visualization for Deep Learning at the 33rd International Conference on Machine Learning (ICML)
– year: 2010
  ident: ref6
  article-title: Theano: A CPU and GPU math expression compiler
  publication-title: Proceedings of the Python for Scientific Computing Conference (SciPy)
  doi: 10.25080/Majora-92bf1922-003
– ident: ref3
  doi: 10.1145/2702123.2702509
– year: 2016
  ident: ref1
  publication-title: Tensorflow Large-scale machine learning on heterogeneous distributed systems
– ident: ref26
  doi: 10.1109/TVCG.2016.2598831
– ident: ref23
  doi: 10.1145/2678025.2701399
– ident: ref25
  doi: 10.3115/1072228.1072378
– ident: ref8
  doi: 10.1109/VAST.2015.7347637
– year: 0
  ident: ref2
  publication-title: Introducing DeepText Facebook's text understanding engine
– ident: ref20
  doi: 10.1109/TVCG.2014.2346482
– ident: ref15
  doi: 10.1145/2648584.2648589
– year: 2016
  ident: ref10
  article-title: ReVACNN: Steering convolutional neural network via real-time visual analytics
  publication-title: Future of Interactive Learning Machines Workshop at the 30th Annual Conference on Neural Information Processing Systems (NIPS)
– ident: ref21
  doi: 10.1145/2858036.2858529
– year: 2016
  ident: ref34
  article-title: Direct-manipulation visualization of deep networks
  publication-title: Workshop on Visualization for Deep Learning at the 33rd International Conference on Machine Learning (ICML)
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref27
  article-title: Visualizing data using t-SNE
  publication-title: Journal of Machine Learning Research
– year: 0
  ident: ref7
  publication-title: Implementing a CNN for text classification in TensorFlow
– ident: ref33
  doi: 10.1145/2939672.2939778
– year: 2016
  ident: ref35
  article-title: Embedding Projector: Interactive visualization and interpretation of embeddings
  publication-title: Workshop on Interpretable Machine Learning in Complex Systems at the 30th Annual conference on Neural Information Processing Systems (NIPS)
– ident: ref29
  doi: 10.1145/1866029.1866038
– ident: ref13
  doi: 10.1109/TVCG.2013.157
SSID ssj0014489
Score 2.6297798
Snippet While deep learning models have achieved state-of-the-art accuracies for many prediction tasks, understanding these models remains a challenge. Despite the...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 88
SubjectTerms Computational modeling
Data models
Data visualization
deep learning
Facebook
information visualization
Machine learning
Neurons
Visual analytics
Title ActiVis: Visual Exploration of Industry-Scale Deep Neural Network Models
URI https://ieeexplore.ieee.org/document/8022871
https://www.ncbi.nlm.nih.gov/pubmed/28866557
https://www.proquest.com/docview/1935405605
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB0BJziwlaVsChInhEtqZ7G5IbYKCS60FbfISSYSArWINgf4embiNEIIEJcoh3EWPyfzxrMBHAXI6Z5BIGI_lyJANEIH0oqUlLNOfZVJw8nJd_dRbxDcPoaPc3DS5MIgYhV8hh0-rXz5-TgreavslNNCNSeMz5Ph5nK1Go8BmRnGxRfGQhJLrz2YXd-c9ocXNxzEFXe4HB79jLkCsOZCb6yUvqijqr_K71SzUjnXK3A3e1gXafLcKadpJ_v4Vsfxv2-zCss19_TO3WJZgzkcrcPSl4qELeid0_9v-DQ58-hQkrCL0avg88aFV3f6eBcPhC16l4ivHtf3IMl7F1DucXe1l8kGDK6v-hc9UTdbEJmS3amwqUKyhVAjFlYRcjrOpERfyVAi86I4jy1bbLk0eaGjIpcZEh3TsUJtrFGbsDAaj3AbvNBEXQwVKmttkGNos8AUXaIiNrK6yKM2-LM5T7K6Ejk3xHhJKovENwkjljBiSY1YG46bIa-uDMdfwi2e7Uawnug2HM6ATegbYseIHeG4nCREYpm4kmXXhi2HeDN4tlB2fr7oLizSrbXblNmDhelbiftEU6bpQbU-PwGWv99w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hOEAPPNuyPFOpp6peEjsPmxvitTx2L10Qt8hJJlIF2kXs5gC_npk4GyFEKy5RDuMo8ed4vvG8AH6GyOmeYSgSv5AiRDRCh9KKjJSzznyVS8PJyf1B3LsJL--iuzn43ebCIGIdfIZdvq19-cU4r_io7IDTQjUnjC-Q3o8Cl63V-gzI0DAuwjARknh648MMfHMwvD0-5zCupMsF8Wg75hrAmku9sVp6o5DqDiv_Jpu10jlbgf7sdV2syX23mmbd_OVdJcfPfs8qLDfs0ztyy2UN5nC0Dl_e1CTcgN4R7YC3fyeHHl0qEnZRejWA3rj0ml4fz-IPoYveCeKjxxU-SHLgQso97q_2MPkKN2enw-OeaNotiFzJYCpsppCsIdSIpVWEnU5yKdFXMpLIzCgpEss2WyFNUeq4LGSORMh0olAba9Q3mB-NR7gJXmTiACOFylobFhjZPDRlQGTExlaXRdwBfzbnad7UIueWGA9pbZP4JmXEUkYsbRDrwK92yKMrxPE_4Q2e7VawmegO_JgBm9JfxK4RO8JxNUmJxjJ1JduuA98d4u3g2ULZ-vih-7DYG_av0-uLwdU2LNFraHdEswPz06cKd4m0TLO9eq2-Ampf4rk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ActiVis%3A+Visual+Exploration+of+Industry-Scale+Deep+Neural+Network+Models&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Kahng%2C+Minsuk&rft.au=Andrews%2C+Pierre+Y.&rft.au=Kalro%2C+Aditya&rft.au=Chau%2C+Duen+Horng&rft.date=2018-01-01&rft.issn=1077-2626&rft.eissn=1941-0506&rft.volume=24&rft.issue=1&rft.spage=88&rft.epage=97&rft_id=info:doi/10.1109%2FTVCG.2017.2744718&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TVCG_2017_2744718
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon