ActiVis: Visual Exploration of Industry-Scale Deep Neural Network Models
While deep learning models have achieved state-of-the-art accuracies for many prediction tasks, understanding these models remains a challenge. Despite the recent interest in developing visual tools to help users interpret deep learning models, the complexity and wide variety of models deployed in i...
Saved in:
Published in | IEEE transactions on visualization and computer graphics Vol. 24; no. 1; pp. 88 - 97 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | While deep learning models have achieved state-of-the-art accuracies for many prediction tasks, understanding these models remains a challenge. Despite the recent interest in developing visual tools to help users interpret deep learning models, the complexity and wide variety of models deployed in industry, and the large-scale datasets that they used, pose unique design challenges that are inadequately addressed by existing work. Through participatory design sessions with over 15 researchers and engineers at Facebook, we have developed, deployed, and iteratively improved ActiVis, an interactive visualization system for interpreting large-scale deep learning models and results. By tightly integrating multiple coordinated views, such as a computation graph overview of the model architecture, and a neuron activation view for pattern discovery and comparison, users can explore complex deep neural network models at both the instance-and subset-level. ActiVis has been deployed on Facebook's machine learning platform. We present case studies with Facebook researchers and engineers, and usage scenarios of how ActiVis may work with different models. |
---|---|
AbstractList | While deep learning models have achieved state-of-the-art accuracies for many prediction tasks, understanding these models remains a challenge. Despite the recent interest in developing visual tools to help users interpret deep learning models, the complexity and wide variety of models deployed in industry, and the large-scale datasets that they used, pose unique design challenges that are inadequately addressed by existing work. Through participatory design sessions with over 15 researchers and engineers at Facebook, we have developed, deployed, and iteratively improved ACTIVIS, an interactive visualization system for interpreting large-scale deep learning models and results. By tightly integrating multiple coordinated views, such as a computation graph overview of the model architecture, and a neuron activation view for pattern discovery and comparison, users can explore complex deep neural network models at both the instance- and subset-level. ACTIVIS has been deployed on Facebook's machine learning platform. We present case studies with Facebook researchers and engineers, and usage scenarios of how ACTIVIS may work with different models.While deep learning models have achieved state-of-the-art accuracies for many prediction tasks, understanding these models remains a challenge. Despite the recent interest in developing visual tools to help users interpret deep learning models, the complexity and wide variety of models deployed in industry, and the large-scale datasets that they used, pose unique design challenges that are inadequately addressed by existing work. Through participatory design sessions with over 15 researchers and engineers at Facebook, we have developed, deployed, and iteratively improved ACTIVIS, an interactive visualization system for interpreting large-scale deep learning models and results. By tightly integrating multiple coordinated views, such as a computation graph overview of the model architecture, and a neuron activation view for pattern discovery and comparison, users can explore complex deep neural network models at both the instance- and subset-level. ACTIVIS has been deployed on Facebook's machine learning platform. We present case studies with Facebook researchers and engineers, and usage scenarios of how ACTIVIS may work with different models. While deep learning models have achieved state-of-the-art accuracies for many prediction tasks, understanding these models remains a challenge. Despite the recent interest in developing visual tools to help users interpret deep learning models, the complexity and wide variety of models deployed in industry, and the large-scale datasets that they used, pose unique design challenges that are inadequately addressed by existing work. Through participatory design sessions with over 15 researchers and engineers at Facebook, we have developed, deployed, and iteratively improved ActiVis, an interactive visualization system for interpreting large-scale deep learning models and results. By tightly integrating multiple coordinated views, such as a computation graph overview of the model architecture, and a neuron activation view for pattern discovery and comparison, users can explore complex deep neural network models at both the instance-and subset-level. ActiVis has been deployed on Facebook's machine learning platform. We present case studies with Facebook researchers and engineers, and usage scenarios of how ActiVis may work with different models. |
Author | Andrews, Pierre Y. Kalro, Aditya Minsuk Kahng Chau, Duen Horng |
Author_xml | – sequence: 1 surname: Minsuk Kahng fullname: Minsuk Kahng email: kahng@gatech.edu – sequence: 2 givenname: Pierre Y. surname: Andrews fullname: Andrews, Pierre Y. email: mortimer@fb.com – sequence: 3 givenname: Aditya surname: Kalro fullname: Kalro, Aditya email: adityakalro@fb.com – sequence: 4 givenname: Duen Horng surname: Chau fullname: Chau, Duen Horng email: polo@gatech.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28866557$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kLFOwzAURS0EorTwAQgJZWRJsZ8T22FDBdpKpQyUrpabvEiBNA52IuDvSWnLwMDi5-HcK93TJ4eVrZCQc0aHjNHkerEcjYdAmRyCjCLJ1AE5YUnEQhpTcdj9qZQhCBA90vf-lVIWRSo5Jj1QSog4lidkcps2xbLwN0H3tKYM7j_r0jrTFLYKbB5Mq6z1jfsKn1NTYnCHWAdzbF1HzrH5sO4teLQZlv6UHOWm9Hi2uwPy8nC_GE3C2dN4OrqdhSkH1oRmxVFAjAoxN1zSTMkUACmHGBBiQWUmDaUgMkiyXIk8gxSBg5IcVWISPiBX297a2fcWfaPXhU-xLE2FtvWaJTyOaFcUd-jlDm1Xa8x07Yq1cV96v74D5BZInfXeYa7TovmZ3jhTlJpRvfGsN571xrPeee6S7E9yX_5f5mKbKRDxl1cUunGMfwO8Nob8 |
CODEN | ITVGEA |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3409843 crossref_primary_10_1016_j_ress_2024_110089 crossref_primary_10_14778_3485450_3485460 crossref_primary_10_1109_TVCG_2019_2934307 crossref_primary_10_1109_ACCESS_2021_3137630 crossref_primary_10_1109_TVCG_2020_3030449 crossref_primary_10_1007_s12559_022_10084_6 crossref_primary_10_1016_j_cag_2018_09_018 crossref_primary_10_15187_adr_2021_02_34_1_133 crossref_primary_10_1007_s11042_018_6706_x crossref_primary_10_1007_s12650_022_00899_8 crossref_primary_10_1109_TVCG_2019_2934267 crossref_primary_10_1177_14738716231216030 crossref_primary_10_1016_j_jss_2022_111359 crossref_primary_10_1016_j_visinf_2023_04_001 crossref_primary_10_1109_ACCESS_2020_3008171 crossref_primary_10_1109_TVCG_2018_2865027 crossref_primary_10_1109_TVCG_2019_2934261 crossref_primary_10_1109_TVCG_2021_3076749 crossref_primary_10_1016_j_cag_2019_07_001 crossref_primary_10_1109_TVCG_2024_3456354 crossref_primary_10_1109_ACCESS_2024_3480791 crossref_primary_10_1186_s13673_019_0167_8 crossref_primary_10_1007_s00170_022_10520_9 crossref_primary_10_1080_02701367_2024_2343815 crossref_primary_10_1016_j_heliyon_2024_e25950 crossref_primary_10_1007_s12650_021_00809_4 crossref_primary_10_1109_TVCG_2024_3388557 crossref_primary_10_1109_TVCG_2023_3326577 crossref_primary_10_3390_make3030032 crossref_primary_10_1109_TVCG_2021_3114812 crossref_primary_10_1109_TVCG_2022_3209425 crossref_primary_10_1155_2021_3532963 crossref_primary_10_1109_TVCG_2018_2864500 crossref_primary_10_1109_TVCG_2022_3148107 crossref_primary_10_1109_TVCG_2022_3165347 crossref_primary_10_1109_TVCG_2018_2864504 crossref_primary_10_1016_j_inffus_2023_101805 crossref_primary_10_1109_TVCG_2021_3057483 crossref_primary_10_3390_app14010437 crossref_primary_10_1177_14738716231212568 crossref_primary_10_2139_ssrn_4098528 crossref_primary_10_1145_3426866 crossref_primary_10_1111_cgf_15085 crossref_primary_10_1111_cgf_14034 crossref_primary_10_1109_TVCG_2020_3030342 crossref_primary_10_1111_cgf_13981 crossref_primary_10_1007_s12650_024_00985_z crossref_primary_10_1109_TVCG_2018_2864838 crossref_primary_10_1007_s11063_021_10499_6 crossref_primary_10_1007_s12650_018_0514_2 crossref_primary_10_1016_j_ins_2022_10_013 crossref_primary_10_1186_s42492_021_00090_0 crossref_primary_10_1145_3392878 crossref_primary_10_1145_3387166 crossref_primary_10_1109_TVCG_2019_2934614 crossref_primary_10_1109_TVCG_2022_3192364 crossref_primary_10_1109_TVCG_2024_3456371 crossref_primary_10_1145_3529318 crossref_primary_10_1111_cgf_14329 crossref_primary_10_1109_TVCG_2023_3339585 crossref_primary_10_1109_TVCG_2022_3209489 crossref_primary_10_3390_app11052199 crossref_primary_10_1109_TVCG_2022_3209404 crossref_primary_10_1016_j_visinf_2023_11_003 crossref_primary_10_1109_TVCG_2018_2843369 crossref_primary_10_3934_mbe_2023613 crossref_primary_10_1088_1742_6596_1650_3_032207 crossref_primary_10_1016_j_visinf_2018_09_001 crossref_primary_10_1016_j_cag_2022_04_013 crossref_primary_10_1155_2018_8580959 crossref_primary_10_1109_TVCG_2019_2934629 crossref_primary_10_3390_su14116569 crossref_primary_10_1016_j_crad_2020_11_113 crossref_primary_10_1016_j_compbiomed_2024_108908 crossref_primary_10_3390_info11090426 crossref_primary_10_1109_TVCG_2018_2864812 crossref_primary_10_3390_app142311288 crossref_primary_10_1109_TVCG_2018_2864499 crossref_primary_10_1109_TVCG_2024_3357065 crossref_primary_10_1109_TVCG_2019_2921323 crossref_primary_10_1109_TVCG_2022_3146806 crossref_primary_10_4132_jptm_2019_12_31 crossref_primary_10_1109_TVCG_2018_2865230 crossref_primary_10_3390_electronics8080832 crossref_primary_10_1016_j_cag_2023_06_010 crossref_primary_10_3390_electronics10222862 crossref_primary_10_1111_cgf_14302 crossref_primary_10_1007_s11424_020_9002_6 crossref_primary_10_1109_TVCG_2019_2934595 crossref_primary_10_1109_TVCG_2022_3209462 crossref_primary_10_1109_MCG_2018_2878902 crossref_primary_10_1007_s41324_023_00535_z crossref_primary_10_1109_TVCG_2019_2934631 crossref_primary_10_1109_TVCG_2023_3239909 crossref_primary_10_1002_ail2_49 crossref_primary_10_1016_j_cag_2021_09_002 crossref_primary_10_1109_TVCG_2019_2934591 crossref_primary_10_3390_fi12120218 crossref_primary_10_1109_TVCG_2020_3030418 crossref_primary_10_1109_TVCG_2022_3184247 crossref_primary_10_1109_TVCG_2019_2903946 crossref_primary_10_1109_TVCG_2022_3230832 crossref_primary_10_1109_TVCG_2022_3172107 crossref_primary_10_1007_s41095_020_0191_7 crossref_primary_10_1109_TVCG_2018_2865044 crossref_primary_10_1007_s42979_023_02284_0 crossref_primary_10_1007_s13198_021_01197_6 crossref_primary_10_1109_TVCG_2020_3030384 crossref_primary_10_1007_s00521_021_05735_y crossref_primary_10_1007_s11704_024_3735_7 crossref_primary_10_1109_TVCG_2020_3030420 crossref_primary_10_1177_14738716241238476 crossref_primary_10_1145_3555590 crossref_primary_10_3390_app12199423 crossref_primary_10_1111_cgf_13667 crossref_primary_10_1007_s11704_023_2691_y crossref_primary_10_1109_TVCG_2021_3102051 crossref_primary_10_1109_TVCG_2020_2969185 crossref_primary_10_1007_s11042_024_18177_0 crossref_primary_10_3390_ai5020023 crossref_primary_10_35940_ijitee_F8804_0410621 crossref_primary_10_1145_3576935 crossref_primary_10_1016_j_ijhcs_2022_102941 crossref_primary_10_1109_TVCG_2019_2903943 crossref_primary_10_1145_3551385 crossref_primary_10_1109_TVCG_2019_2947037 crossref_primary_10_1177_14738716231168671 crossref_primary_10_1109_TAI_2021_3133846 crossref_primary_10_1007_s12650_020_00704_4 crossref_primary_10_1109_TVCG_2023_3326591 crossref_primary_10_1007_s12650_018_0531_1 crossref_primary_10_1145_3702004 crossref_primary_10_1109_TVCG_2019_2934659 crossref_primary_10_1016_j_imavis_2019_02_005 crossref_primary_10_1007_s00521_021_06812_y crossref_primary_10_1109_TVCG_2021_3114794 crossref_primary_10_1109_TVCG_2023_3327201 crossref_primary_10_1145_3458928 crossref_primary_10_1109_TVCG_2020_3012063 crossref_primary_10_1007_s10639_023_12349_5 crossref_primary_10_1016_j_compag_2020_105947 crossref_primary_10_1109_TVCG_2020_3028888 crossref_primary_10_1109_TVCG_2022_3219248 crossref_primary_10_3389_frai_2020_00049 crossref_primary_10_1016_j_cag_2023_07_030 crossref_primary_10_1016_j_visinf_2021_11_001 crossref_primary_10_1109_TVCG_2022_3182488 |
Cites_doi | 10.3115/v1/D14-1181 10.1145/2030365.2030367 10.1145/1357054.1357160 10.1109/VAST.2010.5652443 10.1145/2939502.2939503 10.1145/2835776.2835848 10.1145/2959100.2959190 10.1109/TVCG.2015.2467622 10.1109/TVCG.2016.2598838 10.1007/978-3-319-27857-5_77 10.1109/VAST.2011.6102453 10.1145/2487575.2488200 10.1109/TVCG.2016.2598828 10.25080/Majora-92bf1922-003 10.1145/2702123.2702509 10.1109/TVCG.2016.2598831 10.1145/2678025.2701399 10.3115/1072228.1072378 10.1109/VAST.2015.7347637 10.1109/TVCG.2014.2346482 10.1145/2648584.2648589 10.1145/2858036.2858529 10.1145/2939672.2939778 10.1145/1866029.1866038 10.1109/TVCG.2013.157 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
DOI | 10.1109/TVCG.2017.2744718 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0506 |
EndPage | 97 |
ExternalDocumentID | 28866557 10_1109_TVCG_2017_2744718 8022871 |
Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GrantInformation_xml | – fundername: NSF Graduate Research Fellowship Program grantid: DGE-1650044 |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNI RNS RZB TN5 VH1 AAYOK AAYXX CITATION RIG NPM 7X8 |
ID | FETCH-LOGICAL-c321t-ab3e625e8eefa370d87c22e03252e25607d7a0026d29df86fd2ce232873e89a93 |
IEDL.DBID | RIE |
ISSN | 1077-2626 1941-0506 |
IngestDate | Fri Jul 11 03:00:46 EDT 2025 Thu Apr 03 06:57:02 EDT 2025 Tue Jul 01 03:58:51 EDT 2025 Thu Apr 24 22:51:57 EDT 2025 Wed Aug 27 05:51:33 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c321t-ab3e625e8eefa370d87c22e03252e25607d7a0026d29df86fd2ce232873e89a93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 28866557 |
PQID | 1935405605 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1109_TVCG_2017_2744718 proquest_miscellaneous_1935405605 pubmed_primary_28866557 ieee_primary_8022871 crossref_primary_10_1109_TVCG_2017_2744718 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-Jan. 2018-1-00 2018-01-00 20180101 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-Jan. |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transactions on visualization and computer graphics |
PublicationTitleAbbrev | TVCG |
PublicationTitleAlternate | IEEE Trans Vis Comput Graph |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref37 ref15 ref14 ref31 ref30 ref33 ref11 ref32 abdulkader (ref2) 0 ref17 ref19 maaten (ref27) 2008; 9 bergstra (ref6) 2010 abadi (ref1) 2016 karpathy (ref18) 0 ref24 ref23 ref26 ref25 tzeng (ref36) 2005 ref20 ref22 ref21 smilkov (ref34) 2016 ref28 andrews (ref4) 2016 dunn (ref12) 0 ref29 ref8 yosinski (ref38) 2016 smilkov (ref35) 2016 joulin (ref16) 2016 chung (ref10) 2016 ref9 ref3 ref5 britz (ref7) 0 |
References_xml | – ident: ref19 doi: 10.3115/v1/D14-1181 – ident: ref24 doi: 10.1145/2030365.2030367 – ident: ref30 doi: 10.1145/1357054.1357160 – year: 2016 ident: ref16 publication-title: Bag of tricks for efficient text classification – ident: ref9 doi: 10.1109/VAST.2010.5652443 – year: 2016 ident: ref4 article-title: Productionizing machine learning pipelines at scale publication-title: ML Systems Workshop at the 33rd International Conference on Machine Learning (ICML) – ident: ref17 doi: 10.1145/2939502.2939503 – ident: ref5 doi: 10.1145/2835776.2835848 – ident: ref11 doi: 10.1145/2959100.2959190 – start-page: 383 year: 2005 ident: ref36 article-title: Opening the black box: Data driven visualization of neural networks publication-title: IEEE Visualization – year: 0 ident: ref18 publication-title: Convnetjs – ident: ref22 doi: 10.1109/TVCG.2015.2467622 – year: 0 ident: ref12 publication-title: Introducing FBLearner Flow Facebook's AI backbone – ident: ref31 doi: 10.1109/TVCG.2016.2598838 – ident: ref14 doi: 10.1007/978-3-319-27857-5_77 – ident: ref37 doi: 10.1109/VAST.2011.6102453 – ident: ref28 doi: 10.1145/2487575.2488200 – ident: ref32 doi: 10.1109/TVCG.2016.2598828 – year: 2016 ident: ref38 article-title: Understanding neural networks through deep visualization publication-title: Workshop on Visualization for Deep Learning at the 33rd International Conference on Machine Learning (ICML) – year: 2010 ident: ref6 article-title: Theano: A CPU and GPU math expression compiler publication-title: Proceedings of the Python for Scientific Computing Conference (SciPy) doi: 10.25080/Majora-92bf1922-003 – ident: ref3 doi: 10.1145/2702123.2702509 – year: 2016 ident: ref1 publication-title: Tensorflow Large-scale machine learning on heterogeneous distributed systems – ident: ref26 doi: 10.1109/TVCG.2016.2598831 – ident: ref23 doi: 10.1145/2678025.2701399 – ident: ref25 doi: 10.3115/1072228.1072378 – ident: ref8 doi: 10.1109/VAST.2015.7347637 – year: 0 ident: ref2 publication-title: Introducing DeepText Facebook's text understanding engine – ident: ref20 doi: 10.1109/TVCG.2014.2346482 – ident: ref15 doi: 10.1145/2648584.2648589 – year: 2016 ident: ref10 article-title: ReVACNN: Steering convolutional neural network via real-time visual analytics publication-title: Future of Interactive Learning Machines Workshop at the 30th Annual Conference on Neural Information Processing Systems (NIPS) – ident: ref21 doi: 10.1145/2858036.2858529 – year: 2016 ident: ref34 article-title: Direct-manipulation visualization of deep networks publication-title: Workshop on Visualization for Deep Learning at the 33rd International Conference on Machine Learning (ICML) – volume: 9 start-page: 2579 year: 2008 ident: ref27 article-title: Visualizing data using t-SNE publication-title: Journal of Machine Learning Research – year: 0 ident: ref7 publication-title: Implementing a CNN for text classification in TensorFlow – ident: ref33 doi: 10.1145/2939672.2939778 – year: 2016 ident: ref35 article-title: Embedding Projector: Interactive visualization and interpretation of embeddings publication-title: Workshop on Interpretable Machine Learning in Complex Systems at the 30th Annual conference on Neural Information Processing Systems (NIPS) – ident: ref29 doi: 10.1145/1866029.1866038 – ident: ref13 doi: 10.1109/TVCG.2013.157 |
SSID | ssj0014489 |
Score | 2.6297798 |
Snippet | While deep learning models have achieved state-of-the-art accuracies for many prediction tasks, understanding these models remains a challenge. Despite the... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 88 |
SubjectTerms | Computational modeling Data models Data visualization deep learning information visualization Machine learning Neurons Visual analytics |
Title | ActiVis: Visual Exploration of Industry-Scale Deep Neural Network Models |
URI | https://ieeexplore.ieee.org/document/8022871 https://www.ncbi.nlm.nih.gov/pubmed/28866557 https://www.proquest.com/docview/1935405605 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB0BJziwlaVsChInhEtqZ7G5IbYKCS60FbfISSYSArWINgf4embiNEIIEJcoh3EWPyfzxrMBHAXI6Z5BIGI_lyJANEIH0oqUlLNOfZVJw8nJd_dRbxDcPoaPc3DS5MIgYhV8hh0-rXz5-TgreavslNNCNSeMz5Ph5nK1Go8BmRnGxRfGQhJLrz2YXd-c9ocXNxzEFXe4HB79jLkCsOZCb6yUvqijqr_K71SzUjnXK3A3e1gXafLcKadpJ_v4Vsfxv2-zCss19_TO3WJZgzkcrcPSl4qELeid0_9v-DQ58-hQkrCL0avg88aFV3f6eBcPhC16l4ivHtf3IMl7F1DucXe1l8kGDK6v-hc9UTdbEJmS3amwqUKyhVAjFlYRcjrOpERfyVAi86I4jy1bbLk0eaGjIpcZEh3TsUJtrFGbsDAaj3AbvNBEXQwVKmttkGNos8AUXaIiNrK6yKM2-LM5T7K6Ejk3xHhJKovENwkjljBiSY1YG46bIa-uDMdfwi2e7Uawnug2HM6ATegbYseIHeG4nCREYpm4kmXXhi2HeDN4tlB2fr7oLizSrbXblNmDhelbiftEU6bpQbU-PwGWv99w |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hOEAPPNuyPFOpp6peEjsPmxvitTx2L10Qt8hJJlIF2kXs5gC_npk4GyFEKy5RDuMo8ed4vvG8AH6GyOmeYSgSv5AiRDRCh9KKjJSzznyVS8PJyf1B3LsJL--iuzn43ebCIGIdfIZdvq19-cU4r_io7IDTQjUnjC-Q3o8Cl63V-gzI0DAuwjARknh648MMfHMwvD0-5zCupMsF8Wg75hrAmku9sVp6o5DqDiv_Jpu10jlbgf7sdV2syX23mmbd_OVdJcfPfs8qLDfs0ztyy2UN5nC0Dl_e1CTcgN4R7YC3fyeHHl0qEnZRejWA3rj0ml4fz-IPoYveCeKjxxU-SHLgQso97q_2MPkKN2enw-OeaNotiFzJYCpsppCsIdSIpVWEnU5yKdFXMpLIzCgpEss2WyFNUeq4LGSORMh0olAba9Q3mB-NR7gJXmTiACOFylobFhjZPDRlQGTExlaXRdwBfzbnad7UIueWGA9pbZP4JmXEUkYsbRDrwK92yKMrxPE_4Q2e7VawmegO_JgBm9JfxK4RO8JxNUmJxjJ1JduuA98d4u3g2ULZ-vih-7DYG_av0-uLwdU2LNFraHdEswPz06cKd4m0TLO9eq2-Ampf4rk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ActiVis%3A+Visual+Exploration+of+Industry-Scale+Deep+Neural+Network+Models&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Kahng%2C+Minsuk&rft.au=Andrews%2C+Pierre+Y.&rft.au=Kalro%2C+Aditya&rft.au=Chau%2C+Duen+Horng&rft.date=2018-01-01&rft.issn=1077-2626&rft.eissn=1941-0506&rft.volume=24&rft.issue=1&rft.spage=88&rft.epage=97&rft_id=info:doi/10.1109%2FTVCG.2017.2744718&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TVCG_2017_2744718 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon |