Implementation of an embedded model predictive controller for a novel medical oxygen concentrator
•Medical Oxygen Concentrators are growing in importance for COVID-19 and COPD.•MOCs operate complex cyclic RPSA processes that are difficult to control.•Advanced model-based predictive control provides a framework for exploiting the nonlinear interactions and constraints.•Integration of control with...
Saved in:
Published in | Computers & chemical engineering Vol. 160; p. 107706 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0098-1354 |
DOI | 10.1016/j.compchemeng.2022.107706 |
Cover
Abstract | •Medical Oxygen Concentrators are growing in importance for COVID-19 and COPD.•MOCs operate complex cyclic RPSA processes that are difficult to control.•Advanced model-based predictive control provides a framework for exploiting the nonlinear interactions and constraints.•Integration of control with the MOC device requires embedding the control algorithm in hardware.
Medical Oxygen Concentrators (MOCs) produce high purity oxygen from ambient air for medical therapies, and can range in size from large stationary units to small ultra-portable devices. These devices use a complex Rapid Pressure Swing Adsorption (RPSA) cyclic process which is subject to many process disturbances. Feedback control is required to operate a MOC reliably in different operating conditions and in presence of disturbances. Recently, a multivariable Model Predictive Controller (MPC) for a single-bed MOC device was developed in simulation, and we now present an implementation of this MPC for a lab-scale MOC device. The single-bed MOC uses a four-step RPSA cycle which can be controlled in real-time by adjusting the four cycle step durations to control the product oxygen concentration and product storage tank pressure. The MPC uses a linear model, identified using experimental sub-space system identification techniques, and an embedded convex quadratic optimization problem for making control decisions. This work presents the implementation of this MPC algorithm using Raspberry Pi hardware for the single-bed MOC device. The complete closed-loop system is evaluated using various set point tracking and disturbance case studies. |
---|---|
AbstractList | •Medical Oxygen Concentrators are growing in importance for COVID-19 and COPD.•MOCs operate complex cyclic RPSA processes that are difficult to control.•Advanced model-based predictive control provides a framework for exploiting the nonlinear interactions and constraints.•Integration of control with the MOC device requires embedding the control algorithm in hardware.
Medical Oxygen Concentrators (MOCs) produce high purity oxygen from ambient air for medical therapies, and can range in size from large stationary units to small ultra-portable devices. These devices use a complex Rapid Pressure Swing Adsorption (RPSA) cyclic process which is subject to many process disturbances. Feedback control is required to operate a MOC reliably in different operating conditions and in presence of disturbances. Recently, a multivariable Model Predictive Controller (MPC) for a single-bed MOC device was developed in simulation, and we now present an implementation of this MPC for a lab-scale MOC device. The single-bed MOC uses a four-step RPSA cycle which can be controlled in real-time by adjusting the four cycle step durations to control the product oxygen concentration and product storage tank pressure. The MPC uses a linear model, identified using experimental sub-space system identification techniques, and an embedded convex quadratic optimization problem for making control decisions. This work presents the implementation of this MPC algorithm using Raspberry Pi hardware for the single-bed MOC device. The complete closed-loop system is evaluated using various set point tracking and disturbance case studies. |
ArticleNumber | 107706 |
Author | Urich, Matthew D. Vemula, Rama Rao Kothare, Mayuresh V. |
Author_xml | – sequence: 1 givenname: Matthew D. surname: Urich fullname: Urich, Matthew D. email: murich1991@gmail.com – sequence: 2 givenname: Rama Rao surname: Vemula fullname: Vemula, Rama Rao email: vrrao12@gmail.com – sequence: 3 givenname: Mayuresh V. orcidid: 0000-0001-7681-7445 surname: Kothare fullname: Kothare, Mayuresh V. email: mvk2@lehigh.edu, mayuresh.kothare@lehigh.edu |
BookMark | eNqNkMtqwzAQRbVIoUnaf1A_wKkkP2SvSgl9BALdtGshS-NUQQ8jm9D8fWXcRegqq4Hh3sPMWaGFDx4QeqBkQwmtHo8bFVyvvsGBP2wYYSztOSfVAi0JaeqM5mVxi1bDcCSEsKKul0juXG-nwihHEzwOHZYeg2tBa9DYBQ0W9xG0UaM5AVbBjzFYCxF3IWKJfTilhJsC0uLwcz6An1IqIaMcQ7xDN520A9z_zTX6en353L5n-4-33fZ5n6mc0TGTXAJXdcPLBlrFW6brjrO6AC4laEI0r9LNuu0aDqpqqVaM5KwoCwalzAnka9TMXBXDMEToRB-Nk_EsKBGTH3EUF37E5EfMflL36V9XmVlI-sHYqwjbmQDpxZOBKAZlIFnQJoIahQ7mCsovHXKQ0w |
CitedBy_id | crossref_primary_10_3389_fmed_2023_1147373 crossref_primary_10_3390_math11051129 crossref_primary_10_1016_j_rineng_2023_101119 crossref_primary_10_3390_pr12081738 crossref_primary_10_3390_pr11102997 |
Cites_doi | 10.1513/pats.200708-124ET 10.1016/j.jprocont.2010.10.021 10.1021/acs.iecr.5b01862 10.1002/aic.13783 10.1002/aic.16011 10.1016/0005-1098(94)90230-5 10.1002/aic.14518 10.1002/aic.16998 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.compchemeng.2022.107706 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_compchemeng_2022_107706 S0098135422000497 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABFNM ABJNI ABMAC ABNUV ABTAH ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ADBBV ADEWK ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LX7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCE SDF SDG SDP SES SEW SPC SPCBC SSG SSH SST SSZ T5K VH1 WUQ ZY4 ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c321t-a7ae7c89759ebc7b2d8f7284e7aaed00d76002dbf97ec6b1dc20324542e5a30e3 |
IEDL.DBID | AIKHN |
ISSN | 0098-1354 |
IngestDate | Tue Jul 01 03:20:53 EDT 2025 Thu Apr 24 23:02:27 EDT 2025 Sun Apr 06 06:59:01 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Sub-space identification Cyclic systems Medical oxygen concentrator Embedded control Model Predictive Control |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c321t-a7ae7c89759ebc7b2d8f7284e7aaed00d76002dbf97ec6b1dc20324542e5a30e3 |
ORCID | 0000-0001-7681-7445 |
ParticipantIDs | crossref_primary_10_1016_j_compchemeng_2022_107706 crossref_citationtrail_10_1016_j_compchemeng_2022_107706 elsevier_sciencedirect_doi_10_1016_j_compchemeng_2022_107706 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2022 2022-04-00 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
PublicationDecade | 2020 |
PublicationTitle | Computers & chemical engineering |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ljung (bib0005) 1987 Khajuria, Pistikopoulos (bib0003) 2013; 59 Vemula, Kothare, Sircar (bib0016) 2014; 60 Schnirring, L., 2020. Covid-19 demands intensify efforts to ease oxygen shortages. CIDRAP News Vemula, R. R., Sircar, S., Kothare, M. V., 2017. Oxygen concentrator system and method. US Patent 9,649,589. Skarstrom, C. W., 1960. Method and apparatus for fractionating gaseous mixtures by adsorption. US Patent 2,944,627. Kim, Benditt, Wise, Sharafkhaneh (bib0004) 2008; 5 Khajuria, Pistikopoulos (bib0002) 2011; 21 Oxygen Concentrator Market OpportunitiesMarket Forcasts, and Market Strategies: 2011–2017 (bib0007) 2011 Urich, Rao, Kothare (bib0013) 2020; 66 Urich, Vemula, Kothare (bib0015) 2018; 64 Urich, Vemula, Kothare (bib0014) 2016 . WHO (bib0018) 2017 Portable Oxygen Concentrators Market SharesStrategies, and Forecasts, Worldwide, 2020 to 2026 (bib0008) 2020 Sun, Shen, Zhang, Yang, Ma (bib0012) 2015; 54 Siew-Wah, C., Sircar, S., Kothare, M. V., 2012. Miniature oxygen concentrators and methods. US Patent 8,226,745. Overschee, Moor (bib0006) 1994; 30 WHO (bib0019) 2020 Anderson, M. D., Dahl, J., Vandenberghe., L., 2013. CVXOPT: A Python package for convex optimization.Version 1.6. Overschee (10.1016/j.compchemeng.2022.107706_bib0006) 1994; 30 Kim (10.1016/j.compchemeng.2022.107706_bib0004) 2008; 5 Oxygen Concentrator Market OpportunitiesMarket Forcasts, and Market Strategies: 2011–2017 (10.1016/j.compchemeng.2022.107706_sbref0007) 2011 Portable Oxygen Concentrators Market SharesStrategies, and Forecasts, Worldwide, 2020 to 2026 (10.1016/j.compchemeng.2022.107706_sbref0008) 2020 Vemula (10.1016/j.compchemeng.2022.107706_bib0016) 2014; 60 WHO (10.1016/j.compchemeng.2022.107706_sbref0019) 2020 Khajuria (10.1016/j.compchemeng.2022.107706_bib0003) 2013; 59 WHO (10.1016/j.compchemeng.2022.107706_sbref0018) 2017 Sun (10.1016/j.compchemeng.2022.107706_bib0012) 2015; 54 10.1016/j.compchemeng.2022.107706_bib0017 Khajuria (10.1016/j.compchemeng.2022.107706_bib0002) 2011; 21 10.1016/j.compchemeng.2022.107706_bib0009 Urich (10.1016/j.compchemeng.2022.107706_bib0013) 2020; 66 Urich (10.1016/j.compchemeng.2022.107706_bib0014) 2016 Urich (10.1016/j.compchemeng.2022.107706_bib0015) 2018; 64 10.1016/j.compchemeng.2022.107706_bib0010 10.1016/j.compchemeng.2022.107706_bib0011 10.1016/j.compchemeng.2022.107706_bib0001 Ljung (10.1016/j.compchemeng.2022.107706_bib0005) 1987 |
References_xml | – volume: 5 start-page: 513 year: 2008 end-page: 518 ident: bib0004 article-title: Oxygen therapy in chronic obstructive pulmonary disease publication-title: Proc Am Thorac Soc – year: 2016 ident: bib0014 article-title: Model predictive control of a rapid pressure swing adsorption medical oxygen concentrator publication-title: AIChE Annual Meeting 2016 – volume: 59 start-page: 120 year: 2013 end-page: 131 ident: bib0003 article-title: Optimization and control of pressure swing adsorption processes under uncertainty publication-title: AlChE J. – year: 2011 ident: bib0007 article-title: Technical report – volume: 54 start-page: 7489 year: 2015 end-page: 7501 ident: bib0012 article-title: A systematic simulation and proposed optimization of the pressure swing adsorption process for n-2/CH4 separation under external disturbances publication-title: Industrial & Engineering Chemistry Research – volume: 64 start-page: 1234 year: 2018 end-page: 1245 ident: bib0015 article-title: Multivariable model predictive control of a novel rapid pressure swing adsorption system publication-title: AlChE J. – volume: 21 start-page: 151 year: 2011 end-page: 163 ident: bib0002 article-title: Dynamic modeling and explicit/multi-parametric mpc control of pressure swing adsorption systems publication-title: J Process Control – reference: Anderson, M. D., Dahl, J., Vandenberghe., L., 2013. CVXOPT: A Python package for convex optimization.Version 1.6. – reference: . – volume: 60 start-page: 3330 year: 2014 end-page: 3335 ident: bib0016 article-title: Novel design and performance of a medical oxygen concentrator using a rapid pressure swing adsorption concept publication-title: AlChE J. – reference: Schnirring, L., 2020. Covid-19 demands intensify efforts to ease oxygen shortages. CIDRAP News – volume: 66 start-page: e16998 year: 2020 ident: bib0013 article-title: Piecewise linear model predictive control of a rapid pressure swing adsorption system publication-title: AlChE J. – reference: Siew-Wah, C., Sircar, S., Kothare, M. V., 2012. Miniature oxygen concentrators and methods. US Patent 8,226,745. – year: 2017 ident: bib0018 article-title: Chronic obstructive pulmonary disease (COPD). Fact sheets publication-title: Technical Report – year: 2020 ident: bib0019 article-title: Oxygen Sources and distribution for COVID-19 treatment centres. Interim guide publication-title: Technical Report – volume: 30 start-page: 75 year: 1994 end-page: 93 ident: bib0006 article-title: N4sid: Subspace algorithms for the identification of combined deterministic-stochastic systems publication-title: Automatica – reference: Vemula, R. R., Sircar, S., Kothare, M. V., 2017. Oxygen concentrator system and method. US Patent 9,649,589. – reference: Skarstrom, C. W., 1960. Method and apparatus for fractionating gaseous mixtures by adsorption. US Patent 2,944,627. – year: 1987 ident: bib0005 article-title: System identication: Theory for the user – year: 2020 ident: bib0008 article-title: Technical report – volume: 5 start-page: 513 issue: 4 year: 2008 ident: 10.1016/j.compchemeng.2022.107706_bib0004 article-title: Oxygen therapy in chronic obstructive pulmonary disease publication-title: Proc Am Thorac Soc doi: 10.1513/pats.200708-124ET – volume: 21 start-page: 151 issue: 1 year: 2011 ident: 10.1016/j.compchemeng.2022.107706_bib0002 article-title: Dynamic modeling and explicit/multi-parametric mpc control of pressure swing adsorption systems publication-title: J Process Control doi: 10.1016/j.jprocont.2010.10.021 – volume: 54 start-page: 7489 issue: 30 year: 2015 ident: 10.1016/j.compchemeng.2022.107706_bib0012 article-title: A systematic simulation and proposed optimization of the pressure swing adsorption process for n-2/CH4 separation under external disturbances publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/acs.iecr.5b01862 – year: 2020 ident: 10.1016/j.compchemeng.2022.107706_sbref0019 article-title: Oxygen Sources and distribution for COVID-19 treatment centres. Interim guide – year: 1987 ident: 10.1016/j.compchemeng.2022.107706_bib0005 – volume: 59 start-page: 120 issue: 1 year: 2013 ident: 10.1016/j.compchemeng.2022.107706_bib0003 article-title: Optimization and control of pressure swing adsorption processes under uncertainty publication-title: AlChE J. doi: 10.1002/aic.13783 – ident: 10.1016/j.compchemeng.2022.107706_bib0017 – volume: 64 start-page: 1234 issue: 4 year: 2018 ident: 10.1016/j.compchemeng.2022.107706_bib0015 article-title: Multivariable model predictive control of a novel rapid pressure swing adsorption system publication-title: AlChE J. doi: 10.1002/aic.16011 – ident: 10.1016/j.compchemeng.2022.107706_bib0009 – ident: 10.1016/j.compchemeng.2022.107706_bib0010 – ident: 10.1016/j.compchemeng.2022.107706_bib0011 – volume: 30 start-page: 75 issue: 1 year: 1994 ident: 10.1016/j.compchemeng.2022.107706_bib0006 article-title: N4sid: Subspace algorithms for the identification of combined deterministic-stochastic systems publication-title: Automatica doi: 10.1016/0005-1098(94)90230-5 – year: 2011 ident: 10.1016/j.compchemeng.2022.107706_sbref0007 – year: 2016 ident: 10.1016/j.compchemeng.2022.107706_bib0014 article-title: Model predictive control of a rapid pressure swing adsorption medical oxygen concentrator – volume: 60 start-page: 3330 issue: 9 year: 2014 ident: 10.1016/j.compchemeng.2022.107706_bib0016 article-title: Novel design and performance of a medical oxygen concentrator using a rapid pressure swing adsorption concept publication-title: AlChE J. doi: 10.1002/aic.14518 – volume: 66 start-page: e16998 issue: 11 year: 2020 ident: 10.1016/j.compchemeng.2022.107706_bib0013 article-title: Piecewise linear model predictive control of a rapid pressure swing adsorption system publication-title: AlChE J. doi: 10.1002/aic.16998 – year: 2017 ident: 10.1016/j.compchemeng.2022.107706_sbref0018 article-title: Chronic obstructive pulmonary disease (COPD). Fact sheets – year: 2020 ident: 10.1016/j.compchemeng.2022.107706_sbref0008 – ident: 10.1016/j.compchemeng.2022.107706_bib0001 |
SSID | ssj0002488 |
Score | 2.3928502 |
Snippet | •Medical Oxygen Concentrators are growing in importance for COVID-19 and COPD.•MOCs operate complex cyclic RPSA processes that are difficult to... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107706 |
SubjectTerms | Cyclic systems Embedded control Medical oxygen concentrator Model Predictive Control Sub-space identification |
Title | Implementation of an embedded model predictive controller for a novel medical oxygen concentrator |
URI | https://dx.doi.org/10.1016/j.compchemeng.2022.107706 |
Volume | 160 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB72AaIH8YnPJYLX6jZNmwa8iCir4p4UvJU0mRVlt7ssq-jF3-6kTXUFQcFjQgbar8PMpPPNDMChMEZRmKyD3ERxIJRWQc4xDBIpyfl1rbBlB76bftK7E1f38X0DzupaGEer9La_sumltfY7xx7N48njo6vxVWkYxYLzMs6VTWjzSCVxC9qnl9e9_qdB5iJN69aZTmABDr5oXo65TfCMsHig2yLntC-lm3_0k5uacz0XK7DsY0Z2Wj3WKjSwWIOluU6C66DLLr8jX0hUsPGA6YLhKEcyLJaV827YZOqyMs6-Mc9QH-KUUdTKNCvGL3RiVKVt2Pj1jRTLnarIm3Qx34C7i_Pbs17gpycEJuLhLNBSozSpkrHC3Mic23QgyRmh1Bptt2vLlJzNB0qiSfLQGjdMXRCeGOuoi9EmtIpxgVvAZEiuNEqlMO7_o5VKI4p4QGtJr2GSbUhrsDLjW4u7CRfDrOaQPWVzOGcO56zCeRv4p-ik6q_xF6GT-otk35QlIz_wu_jO_8R3YdGtKvrOHrRm02fcp8hklnegefQedrz-fQAEQOZw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60go-D-MT6XMFrsNlsugl4KWKp2vak4C1sdqdSadJSqui_dzbZ1AqCgsdsdiD5MszMZr6ZAbgQWscUJisv1UHoiVjFXsrR95pSkvNrGGGKDny9frPzKO6ewqcluK5qYSyt0tn-0qYX1tqtXDo0LyfDoa3xjSM_CAXnRZwrl2FFhHTaq8FK6_a-058bZC6iqGqdaQVW4fyL5mWZ2wRPhvkznRY5p3Up7fyjn9zUgutpb8GmixlZq3ysbVjCfAc2FjoJ7oIquvxmrpAoZ-MBUznDLEUyLIYV827YZGqzMta-McdQH-GUUdTKFMvHb7QjK9M2bPz-QYpld5XkTTqY78Fj--bhuuO56QmeDrg_85RUKHUUyzDGVMuUm2ggyRmhVApNo2GKlJxJB7FE3Ux9o-0wdUKQY6iCBgb7UMvHOR4Akz650iCSQtv_j0bGClGEA7qW9Bq6WYeoAivRrrW4nXAxSioO2UuygHNicU5KnOvA56KTsr_GX4Suqi-SfFOWhPzA7-KH_xM_g7XOQ6-bdG_790ewbu-UVJ5jqM2mr3hCUcosPXVa-AmL6-hf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implementation+of+an+embedded+model+predictive+controller+for+a+novel+medical+oxygen+concentrator&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Urich%2C+Matthew+D.&rft.au=Vemula%2C+Rama+Rao&rft.au=Kothare%2C+Mayuresh+V.&rft.date=2022-04-01&rft.pub=Elsevier+Ltd&rft.issn=0098-1354&rft.volume=160&rft_id=info:doi/10.1016%2Fj.compchemeng.2022.107706&rft.externalDocID=S0098135422000497 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon |