Optimum design of nonlinear structures via deep neural network-based parameterization framework
In this paper, a robust deep neural network (DNN)-based parameterization framework is proposed to directly solve the optimum design for geometrically nonlinear trusses subject to displacement constraints. The core idea is to integrate DNN into Bayesian optimization (BO) to find the best optimum stru...
Saved in:
Published in | European journal of mechanics, A, Solids Vol. 98; p. 104869 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Masson SAS
01.03.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0997-7538 1873-7285 |
DOI | 10.1016/j.euromechsol.2022.104869 |
Cover
Loading…
Abstract | In this paper, a robust deep neural network (DNN)-based parameterization framework is proposed to directly solve the optimum design for geometrically nonlinear trusses subject to displacement constraints. The core idea is to integrate DNN into Bayesian optimization (BO) to find the best optimum structural weight. Herein, the design variables of the structure are parameterized by weights and biases of the network with the spatial coordinates of all joints as the training data. A loss function of the network is built based on the predicted cross-sectional areas and deflection constraints obtained by supporting finite element analysis (FEA) and arc-length method. Accordingly, the optimum weight corresponding to the minimum loss function is indicated as soon as the complete training process. And then it is also serving as an objective of the BO for performing the hyperparameter optimization (HPO) to find the best optimum structural weight. Several illustrative numerical examples for geometrically nonlinear space trusses are examined to determine the efficiency and reliability of the proposed approach. The obtained results demonstrate that our framework can overcome the drawbacks of applications of machine learning in computational mechanics.
•A deep neural network-based parameterization framework for structural optimization.•Automatic tuning of hyperparameters of the network by using Bayesian optimization.•The best optimum weight is found by training without any other algorithms.•The suggested model provides high-quality solutions and avoids the local optimum. |
---|---|
AbstractList | In this paper, a robust deep neural network (DNN)-based parameterization framework is proposed to directly solve the optimum design for geometrically nonlinear trusses subject to displacement constraints. The core idea is to integrate DNN into Bayesian optimization (BO) to find the best optimum structural weight. Herein, the design variables of the structure are parameterized by weights and biases of the network with the spatial coordinates of all joints as the training data. A loss function of the network is built based on the predicted cross-sectional areas and deflection constraints obtained by supporting finite element analysis (FEA) and arc-length method. Accordingly, the optimum weight corresponding to the minimum loss function is indicated as soon as the complete training process. And then it is also serving as an objective of the BO for performing the hyperparameter optimization (HPO) to find the best optimum structural weight. Several illustrative numerical examples for geometrically nonlinear space trusses are examined to determine the efficiency and reliability of the proposed approach. The obtained results demonstrate that our framework can overcome the drawbacks of applications of machine learning in computational mechanics.
•A deep neural network-based parameterization framework for structural optimization.•Automatic tuning of hyperparameters of the network by using Bayesian optimization.•The best optimum weight is found by training without any other algorithms.•The suggested model provides high-quality solutions and avoids the local optimum. |
ArticleNumber | 104869 |
Author | Lee, Seunghye Kim, Donghyun Kang, Joowon Lee, Jaehong Mai, Hau T. Lee, Jaewook |
Author_xml | – sequence: 1 givenname: Hau T. surname: Mai fullname: Mai, Hau T. email: maitienhaunx@gmail.com organization: Deep Learning Architectural Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea – sequence: 2 givenname: Seunghye surname: Lee fullname: Lee, Seunghye email: seunghye@sejong.ac.kr organization: Deep Learning Architectural Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea – sequence: 3 givenname: Donghyun surname: Kim fullname: Kim, Donghyun organization: Deep Learning Architectural Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea – sequence: 4 givenname: Jaewook surname: Lee fullname: Lee, Jaewook organization: Deep Learning Architectural Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea – sequence: 5 givenname: Joowon surname: Kang fullname: Kang, Joowon organization: School of Architecture, Yeungnam University, 280, Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea – sequence: 6 givenname: Jaehong surname: Lee fullname: Lee, Jaehong email: jhlee@sejong.ac.kr organization: Deep Learning Architectural Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea |
BookMark | eNqNUElOwzAUtVCRKIU7mAOk2E4TxyuEKiapUjewtn6cH3DJJNspgtPjUBaIVVd_0Bv03jmZdX2HhFxxtuSM59e7JY6ub9G8-b5ZCiZE_K-KXJ2QOS9kmkhRZDMyZ0rJRGZpcUbOvd8xxiKWz4neDsG2Y0sr9Pa1o31No0NjOwRHfXCjCaNDT_cWIgQH2kU_aOIIH717T0rwWNEBHLQY0NkvCLbvaD3dE-CCnNbQeLz8nQvycn_3vH5MNtuHp_XtJjGp4CGBFfIUKinygvO0lKLKFDeyZFhCWa5yJoClcZcSCqaYzAzEmIgqNxzzUqULog66xvXeO6z14GwL7lNzpqem9E7_aUpPTelDU5F7849rbPjJERzY5iiF9UEBY8S9Rae9sdgZrKxDE3TV2yNUvgFJspLA |
CitedBy_id | crossref_primary_10_1016_j_engappai_2024_109991 crossref_primary_10_1007_s00707_024_04090_y crossref_primary_10_1590_0370_44672024780008 crossref_primary_10_1016_j_jobe_2025_112131 crossref_primary_10_3390_jmse11071348 crossref_primary_10_1007_s00521_025_11039_2 crossref_primary_10_1007_s41062_024_01831_9 crossref_primary_10_3390_machines12060356 |
Cites_doi | 10.1016/j.finel.2008.07.004 10.1016/j.euromechsol.2022.104584 10.1016/j.compstruc.2006.09.002 10.1016/0045-7949(91)90178-O 10.1016/j.compstruc.2006.02.004 10.1016/j.apacoust.2020.107547 10.1016/0956-0521(91)90050-F 10.1016/0045-7949(95)00179-K 10.1023/A:1008306431147 10.1016/j.euromechsol.2019.103874 10.2514/3.8882 10.1016/S0045-7949(01)00035-9 10.1016/j.finel.2014.07.001 10.1061/(ASCE)0733-9445(2000)126:3(382) 10.1016/0045-7949(89)90070-9 10.1016/j.asoc.2010.09.003 10.1016/j.oceaneng.2021.110142 10.1016/j.eswa.2021.116104 10.1016/j.apm.2022.02.036 10.1007/s00158-021-03025-8 10.1016/j.finel.2021.103572 10.1016/j.cad.2019.05.038 10.2514/3.8224 10.1016/j.engstruct.2021.112109 10.1016/0045-7949(92)90025-U 10.1007/s00404-021-05994-z 10.1007/s00158-002-0179-1 10.1016/j.knosys.2020.105887 10.1016/j.apm.2012.06.018 10.1142/S0219455420300037 10.1016/j.compstruct.2019.111517 10.1016/j.compstruc.2007.05.012 10.1016/0020-7683(79)90081-7 10.1007/s00158-020-02748-4 10.1007/s00419-010-0407-x 10.1016/j.cma.2021.113933 10.1016/j.compstruc.2020.106283 10.1016/j.softx.2020.100591 10.1016/j.engstruct.2020.111755 10.1016/0020-7683(71)90038-2 10.1016/j.apm.2021.12.043 |
ContentType | Journal Article |
Copyright | 2022 |
Copyright_xml | – notice: 2022 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.euromechsol.2022.104869 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1873-7285 |
ExternalDocumentID | 10_1016_j_euromechsol_2022_104869 S0997753822002996 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADEZE ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SST SSZ T5K VH1 XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c321t-a4e13ad7268113b72d591c7b0ebabb4602a03eba77a809075ca104ee96c1e6b93 |
IEDL.DBID | .~1 |
ISSN | 0997-7538 |
IngestDate | Thu Apr 24 23:10:08 EDT 2025 Tue Jul 01 01:55:25 EDT 2025 Fri Feb 23 02:37:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hyperparameter optimization Deep neural network Bayesian optimization Geometric nonlinear Truss optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c321t-a4e13ad7268113b72d591c7b0ebabb4602a03eba77a809075ca104ee96c1e6b93 |
ParticipantIDs | crossref_primary_10_1016_j_euromechsol_2022_104869 crossref_citationtrail_10_1016_j_euromechsol_2022_104869 elsevier_sciencedirect_doi_10_1016_j_euromechsol_2022_104869 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March-April 2023 2023-03-00 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: March-April 2023 |
PublicationDecade | 2020 |
PublicationTitle | European journal of mechanics, A, Solids |
PublicationYear | 2023 |
Publisher | Elsevier Masson SAS |
Publisher_xml | – name: Elsevier Masson SAS |
References | Missoum, Gürdal, Gu (b36) 2002; 23 Coda, Paccola (b8) 2014; 91 Kaveh, Rahami (b22) 2006; 84 Nguyen-Thanh, Zhuang, Rabczuk (b37) 2020; 80 Zehnder, Li, Coros, Thomaszewski (b51) 2021; 34 Truong, Lee, Nguyen-Thoi (b48) 2022; 243 Lee, Kim, Lieu, Lee (b27) 2020; 198 Lee, Vo, Thai, Lee, Patel (b29) 2021; 238 Saka, Ulker (b41) 1992; 42 Afshari, Enayatollahi, Xu, Liang (b2) 2022; 219 Hrinda, Nguyen (b16) 2008; 44 Kadapa (b19) 2021; 234 Hajela, Berke (b12) 1991; 41 Truong, Dinh-Cong, Lee, Nguyen-Thoi (b46) 2020; 30 Jia, Wu (b17) 2022 Lieu, Nguyen, Dang, Lee, Kang, Lee (b32) 2022; 189 Hertel, Collado, Sadowski, Ott, Baldi (b14) 2020; 12 Li, Bazant, Zhu (b30) 2021; 383 Riks (b40) 1979; 15 Vo, Lee (b49) 2011; 81 Kameshki, Saka (b20) 2001; 79 Ramasamy, Rajasekaran (b39) 1996; 58 Anitescu, Atroshchenko, Alajlan, Rabczuk (b3) 2019; 59 El-Sayed, Ridgely, Sandgren (b10) 1989; 32 Truong, Lee, Lee (b47) 2020; 233 Hajela, Berke (b11) 1991; 2 Chandrasekhar, Sridhara, Suresh (b6) 2021; 64 Thai, Nguyen, Lee, Patel, Vo (b44) 2020; 20 Sonmez (b42) 2011; 11 Wempner (b50) 1971; 7 Mai, Kang, Lee (b33) 2021; 196 Hoyer, Sohl-Dickstein, Greydanus (b15) 2019 Abueidda, Koric, Sobh (b1) 2020; 237 Hasançebi (b13) 2008; 86 Kingma, Ba (b25) 2014 Mai, Lieu, Kang, Lee (b35) 2022 Trinh, Lee, Kang, Lee (b45) 2022 Chandrasekhar, Suresh (b7) 2021; 63 Kameshki, Saka (b21) 2007; 85 Asali, Ravid, Shalev, David, Yogev, Yogev, Schonman, Biron-Shental, Miller (b4) 2021; 304 Korenciak (b26) 2018 Pezeshk, Camp, Chen (b38) 2000; 126 Srinivasan, Saghir (b43) 2013; 37 Khot (b23) 1983; 21 Lee, Park, Kim, Lieu, Lee (b28) 2021; 172 Bradbury, Frostig, Hawkins, Johnson, Leary, Maclaurin, Wanderman-Milne (b5) 2020 De Borst, Crisfield, Remmers, Verhoosel (b9) 2012 Khot, Kamat (b24) 1985; 23 Li, Huang, Li, Zheng, Hong (b31) 2019; 115 Mai, Lieu, Kang, Lee (b34) 2022 Jones, Schonlau, Welch (b18) 1998; 13 Chandrasekhar (10.1016/j.euromechsol.2022.104869_b7) 2021; 63 Thai (10.1016/j.euromechsol.2022.104869_b44) 2020; 20 Jia (10.1016/j.euromechsol.2022.104869_b17) 2022 Jones (10.1016/j.euromechsol.2022.104869_b18) 1998; 13 Li (10.1016/j.euromechsol.2022.104869_b30) 2021; 383 Mai (10.1016/j.euromechsol.2022.104869_b35) 2022 Hertel (10.1016/j.euromechsol.2022.104869_b14) 2020; 12 Hajela (10.1016/j.euromechsol.2022.104869_b12) 1991; 41 Srinivasan (10.1016/j.euromechsol.2022.104869_b43) 2013; 37 Chandrasekhar (10.1016/j.euromechsol.2022.104869_b6) 2021; 64 Khot (10.1016/j.euromechsol.2022.104869_b24) 1985; 23 Lee (10.1016/j.euromechsol.2022.104869_b28) 2021; 172 Mai (10.1016/j.euromechsol.2022.104869_b33) 2021; 196 Kadapa (10.1016/j.euromechsol.2022.104869_b19) 2021; 234 Kameshki (10.1016/j.euromechsol.2022.104869_b20) 2001; 79 Wempner (10.1016/j.euromechsol.2022.104869_b50) 1971; 7 Pezeshk (10.1016/j.euromechsol.2022.104869_b38) 2000; 126 Vo (10.1016/j.euromechsol.2022.104869_b49) 2011; 81 Missoum (10.1016/j.euromechsol.2022.104869_b36) 2002; 23 Truong (10.1016/j.euromechsol.2022.104869_b46) 2020; 30 Abueidda (10.1016/j.euromechsol.2022.104869_b1) 2020; 237 Hrinda (10.1016/j.euromechsol.2022.104869_b16) 2008; 44 Zehnder (10.1016/j.euromechsol.2022.104869_b51) 2021; 34 Li (10.1016/j.euromechsol.2022.104869_b31) 2019; 115 Kameshki (10.1016/j.euromechsol.2022.104869_b21) 2007; 85 Lieu (10.1016/j.euromechsol.2022.104869_b32) 2022; 189 De Borst (10.1016/j.euromechsol.2022.104869_b9) 2012 Coda (10.1016/j.euromechsol.2022.104869_b8) 2014; 91 Kingma (10.1016/j.euromechsol.2022.104869_b25) 2014 Truong (10.1016/j.euromechsol.2022.104869_b48) 2022; 243 Asali (10.1016/j.euromechsol.2022.104869_b4) 2021; 304 Mai (10.1016/j.euromechsol.2022.104869_b34) 2022 Nguyen-Thanh (10.1016/j.euromechsol.2022.104869_b37) 2020; 80 Hajela (10.1016/j.euromechsol.2022.104869_b11) 1991; 2 Hoyer (10.1016/j.euromechsol.2022.104869_b15) 2019 El-Sayed (10.1016/j.euromechsol.2022.104869_b10) 1989; 32 Trinh (10.1016/j.euromechsol.2022.104869_b45) 2022 Kaveh (10.1016/j.euromechsol.2022.104869_b22) 2006; 84 Sonmez (10.1016/j.euromechsol.2022.104869_b42) 2011; 11 Khot (10.1016/j.euromechsol.2022.104869_b23) 1983; 21 Hasançebi (10.1016/j.euromechsol.2022.104869_b13) 2008; 86 Lee (10.1016/j.euromechsol.2022.104869_b29) 2021; 238 Saka (10.1016/j.euromechsol.2022.104869_b41) 1992; 42 Lee (10.1016/j.euromechsol.2022.104869_b27) 2020; 198 Riks (10.1016/j.euromechsol.2022.104869_b40) 1979; 15 Anitescu (10.1016/j.euromechsol.2022.104869_b3) 2019; 59 Truong (10.1016/j.euromechsol.2022.104869_b47) 2020; 233 Bradbury (10.1016/j.euromechsol.2022.104869_b5) 2020 Korenciak (10.1016/j.euromechsol.2022.104869_b26) 2018 Afshari (10.1016/j.euromechsol.2022.104869_b2) 2022; 219 Ramasamy (10.1016/j.euromechsol.2022.104869_b39) 1996; 58 |
References_xml | – volume: 21 start-page: 1181 year: 1983 end-page: 1186 ident: b23 article-title: Nonlinear analysis of optimized structure with constraints on systemstability publication-title: AIAA J. – volume: 198 year: 2020 ident: b27 article-title: CNN-based image recognition for topology optimization publication-title: Knowl.-Based Syst. – volume: 20 year: 2020 ident: b44 article-title: Review of nonlinear analysis and modeling of steel and composite structures publication-title: Int. J. Struct. Stab. Dyn. – volume: 189 year: 2022 ident: b32 article-title: An adaptive surrogate model to structural reliability analysis using deep neural network publication-title: Expert Syst. Appl. – volume: 37 start-page: 2850 year: 2013 end-page: 2869 ident: b43 article-title: Modeling of thermotransport phenomenon in metal alloys using artificial neural networks publication-title: Appl. Math. Model. – volume: 115 start-page: 172 year: 2019 end-page: 180 ident: b31 article-title: Non-iterative structural topology optimization using deep learning publication-title: Comput. Aided Des. – start-page: 16 year: 2020 ident: b5 article-title: JAX: composable transformations of Python+ NumPy programs, 2018, 4 – volume: 85 start-page: 71 year: 2007 end-page: 79 ident: b21 article-title: Optimum geometry design of nonlinear braced domes using genetic algorithm publication-title: Comput. Struct. – volume: 233 year: 2020 ident: b47 article-title: An artificial neural network-differential evolution approach for optimization of bidirectional functionally graded beams publication-title: Compos. Struct. – volume: 238 year: 2021 ident: b29 article-title: Strength prediction of concrete-filled steel tubular columns using Categorical Gradient Boosting algorithm publication-title: Eng. Struct. – volume: 81 start-page: 419 year: 2011 end-page: 435 ident: b49 article-title: Geometrical nonlinear analysis of thin-walled composite beams using finite element method based on first order shear deformation theory publication-title: Arch. Appl. Mech. – volume: 23 start-page: 214 year: 2002 end-page: 221 ident: b36 article-title: Optimization of nonlinear trusses using a displacement-based approach publication-title: Struct. Multidiscip. Optim. – volume: 91 start-page: 1 year: 2014 end-page: 15 ident: b8 article-title: A total-Lagrangian position-based FEM applied to physical and geometrical nonlinear dynamics of plane frames including semi-rigid connections and progressive collapse publication-title: Finite Elem. Anal. Des. – volume: 234 year: 2021 ident: b19 article-title: A simple extrapolated predictor for overcoming the starting and tracking issues in the arc-length method for nonlinear structural mechanics publication-title: Eng. Struct. – volume: 34 year: 2021 ident: b51 article-title: NTopo: Mesh-free topology optimization using implicit neural representations publication-title: Adv. Neural Inf. Process. Syst. – volume: 64 start-page: 4355 year: 2021 end-page: 4365 ident: b6 article-title: AuTO: A framework for automatic differentiation in Topology Optimization publication-title: Struct. Multidiscip. Optim. – volume: 58 start-page: 747 year: 1996 end-page: 755 ident: b39 article-title: Artificial neural network and genetic algorithm for the design optimizaton of industrial roofs—A comparison publication-title: Comput. Struct. – volume: 2 start-page: 473 year: 1991 end-page: 481 ident: b11 article-title: Neural network based decomposition in optimal structural synthesis publication-title: Comput. Syst. Eng. – year: 2019 ident: b15 article-title: Neural reparameterization improves structural optimization – volume: 86 start-page: 119 year: 2008 end-page: 132 ident: b13 article-title: Adaptive evolution strategies in structural optimization: Enhancing their computational performance with applications to large-scale structures publication-title: Comput. Struct. – volume: 12 year: 2020 ident: b14 article-title: Sherpa: Robust hyperparameter optimization for machine learning publication-title: SoftwareX – volume: 63 start-page: 1135 year: 2021 end-page: 1149 ident: b7 article-title: TOuNN: Topology Optimization using Neural Networks publication-title: Struct. Multidiscip. Optim. – year: 2018 ident: b26 article-title: Go Game Move Prediction Using Convolutional Neural Network – year: 2012 ident: b9 article-title: Nonlinear Finite Element Analysis of Solids and Structures – volume: 80 year: 2020 ident: b37 article-title: A deep energy method for finite deformation hyperelasticity publication-title: Eur. J. Mech. A Solids – volume: 23 start-page: 139 year: 1985 end-page: 144 ident: b24 article-title: Minimum weight design of truss structures with geometric nonlinear behavior publication-title: AIAA J. – volume: 383 year: 2021 ident: b30 article-title: A physics-guided neural network framework for elastic plates: Comparison of governing equations-based and energy-based approaches publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 126 start-page: 382 year: 2000 end-page: 388 ident: b38 article-title: Design of nonlinear framed structures using genetic optimization publication-title: J. Struct. Eng. – volume: 237 year: 2020 ident: b1 article-title: Topology optimization of 2D structures with nonlinearities using deep learning publication-title: Comput. Struct. – start-page: 1 year: 2022 end-page: 24 ident: b34 article-title: A novel deep unsupervised learning-based framework for optimization of truss structures publication-title: Eng. Comput. – volume: 304 start-page: 641 year: 2021 end-page: 647 ident: b4 article-title: Intrahepatic cholestasis of pregnancy: Machine-learning algorithm to predict elevated bile acid based on clinical and laboratory data publication-title: Arch. Gynecol. Obstet. – year: 2014 ident: b25 article-title: Adam: A method for stochastic optimization – volume: 30 year: 2020 ident: b46 article-title: An effective Deep Feedforward Neural Networks (DFNN) method for damage identification of truss structures using noisy incomplete modal data publication-title: J. Build. Eng. – volume: 41 start-page: 657 year: 1991 end-page: 667 ident: b12 article-title: Neurobiological computational models in structural analysis and design publication-title: Comput. Struct. – volume: 11 start-page: 2406 year: 2011 end-page: 2418 ident: b42 article-title: Artificial Bee Colony algorithm for optimization of truss structures publication-title: Appl. Soft Comput. – volume: 44 start-page: 933 year: 2008 end-page: 950 ident: b16 article-title: Optimization of stability-constrained geometrically nonlinear shallow trusses using an arc length sparse method with a strain energy density approach publication-title: Finite Elem. Anal. Des. – year: 2022 ident: b45 article-title: Force density-informed neural network for prestress design of tensegrity structures with multiple self-stress modes publication-title: Eur. J. Mech. A Solids – year: 2022 ident: b17 article-title: A Laplace asymptotic integral-based reliability analysis method combined with artificial neural network publication-title: Appl. Math. Model. – year: 2022 ident: b35 article-title: A robust unsupervised neural network framework for geometrically nonlinear analysis of inelastic truss structures publication-title: Appl. Math. Model. – volume: 32 start-page: 69 year: 1989 end-page: 73 ident: b10 article-title: Nonlinear structural optimization using goal programming publication-title: Comput. Struct. – volume: 59 start-page: 345 year: 2019 end-page: 359 ident: b3 article-title: Artificial neural network methods for the solution of second order boundary value problems publication-title: Comput. Mater. Contin. – volume: 42 start-page: 289 year: 1992 end-page: 299 ident: b41 article-title: Optimum design of geometrically nonlinear space trusses publication-title: Comput. Struct. – volume: 79 start-page: 1593 year: 2001 end-page: 1604 ident: b20 article-title: Optimum design of nonlinear steel frames with semi-rigid connections using a genetic algorithm publication-title: Comput. Struct. – volume: 172 year: 2021 ident: b28 article-title: Damage quantification in truss structures by limited sensor-based surrogate model publication-title: Appl. Acoust. – volume: 7 start-page: 1581 year: 1971 end-page: 1599 ident: b50 article-title: Discrete approximations related to nonlinear theories of solids publication-title: Int. J. Solids Struct. – volume: 13 start-page: 455 year: 1998 end-page: 492 ident: b18 article-title: Efficient global optimization of expensive black-box functions publication-title: J. Global Optim. – volume: 196 year: 2021 ident: b33 article-title: A machine learning-based surrogate model for optimization of truss structures with geometrically nonlinear behavior publication-title: Finite Elem. Anal. Des. – volume: 84 start-page: 770 year: 2006 end-page: 778 ident: b22 article-title: Nonlinear analysis and optimal design of structures via force method and genetic algorithm publication-title: Comput. Struct. – volume: 15 start-page: 529 year: 1979 end-page: 551 ident: b40 article-title: An incremental approach to the solution of snapping and buckling problems publication-title: Int. J. Solids Struct. – volume: 243 year: 2022 ident: b48 article-title: Joint damage detection of structures with noisy data by an effective deep learning framework using autoencoder-convolutional gated recurrent unit publication-title: Ocean Eng. – volume: 219 year: 2022 ident: b2 article-title: Machine learning-based methods in structural reliability analysis: A review publication-title: Reliab. Eng. Syst. Saf. – volume: 44 start-page: 933 issue: 15 year: 2008 ident: 10.1016/j.euromechsol.2022.104869_b16 article-title: Optimization of stability-constrained geometrically nonlinear shallow trusses using an arc length sparse method with a strain energy density approach publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2008.07.004 – year: 2022 ident: 10.1016/j.euromechsol.2022.104869_b45 article-title: Force density-informed neural network for prestress design of tensegrity structures with multiple self-stress modes publication-title: Eur. J. Mech. A Solids doi: 10.1016/j.euromechsol.2022.104584 – volume: 85 start-page: 71 issue: 1–2 year: 2007 ident: 10.1016/j.euromechsol.2022.104869_b21 article-title: Optimum geometry design of nonlinear braced domes using genetic algorithm publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2006.09.002 – volume: 41 start-page: 657 issue: 4 year: 1991 ident: 10.1016/j.euromechsol.2022.104869_b12 article-title: Neurobiological computational models in structural analysis and design publication-title: Comput. Struct. doi: 10.1016/0045-7949(91)90178-O – volume: 84 start-page: 770 issue: 12 year: 2006 ident: 10.1016/j.euromechsol.2022.104869_b22 article-title: Nonlinear analysis and optimal design of structures via force method and genetic algorithm publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2006.02.004 – volume: 172 year: 2021 ident: 10.1016/j.euromechsol.2022.104869_b28 article-title: Damage quantification in truss structures by limited sensor-based surrogate model publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2020.107547 – volume: 2 start-page: 473 issue: 5–6 year: 1991 ident: 10.1016/j.euromechsol.2022.104869_b11 article-title: Neural network based decomposition in optimal structural synthesis publication-title: Comput. Syst. Eng. doi: 10.1016/0956-0521(91)90050-F – volume: 58 start-page: 747 issue: 4 year: 1996 ident: 10.1016/j.euromechsol.2022.104869_b39 article-title: Artificial neural network and genetic algorithm for the design optimizaton of industrial roofs—A comparison publication-title: Comput. Struct. doi: 10.1016/0045-7949(95)00179-K – volume: 13 start-page: 455 issue: 4 year: 1998 ident: 10.1016/j.euromechsol.2022.104869_b18 article-title: Efficient global optimization of expensive black-box functions publication-title: J. Global Optim. doi: 10.1023/A:1008306431147 – volume: 80 year: 2020 ident: 10.1016/j.euromechsol.2022.104869_b37 article-title: A deep energy method for finite deformation hyperelasticity publication-title: Eur. J. Mech. A Solids doi: 10.1016/j.euromechsol.2019.103874 – volume: 23 start-page: 139 issue: 1 year: 1985 ident: 10.1016/j.euromechsol.2022.104869_b24 article-title: Minimum weight design of truss structures with geometric nonlinear behavior publication-title: AIAA J. doi: 10.2514/3.8882 – volume: 79 start-page: 1593 issue: 17 year: 2001 ident: 10.1016/j.euromechsol.2022.104869_b20 article-title: Optimum design of nonlinear steel frames with semi-rigid connections using a genetic algorithm publication-title: Comput. Struct. doi: 10.1016/S0045-7949(01)00035-9 – volume: 91 start-page: 1 year: 2014 ident: 10.1016/j.euromechsol.2022.104869_b8 article-title: A total-Lagrangian position-based FEM applied to physical and geometrical nonlinear dynamics of plane frames including semi-rigid connections and progressive collapse publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2014.07.001 – volume: 126 start-page: 382 issue: 3 year: 2000 ident: 10.1016/j.euromechsol.2022.104869_b38 article-title: Design of nonlinear framed structures using genetic optimization publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)0733-9445(2000)126:3(382) – volume: 32 start-page: 69 issue: 1 year: 1989 ident: 10.1016/j.euromechsol.2022.104869_b10 article-title: Nonlinear structural optimization using goal programming publication-title: Comput. Struct. doi: 10.1016/0045-7949(89)90070-9 – volume: 11 start-page: 2406 issue: 2 year: 2011 ident: 10.1016/j.euromechsol.2022.104869_b42 article-title: Artificial Bee Colony algorithm for optimization of truss structures publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.09.003 – volume: 243 year: 2022 ident: 10.1016/j.euromechsol.2022.104869_b48 article-title: Joint damage detection of structures with noisy data by an effective deep learning framework using autoencoder-convolutional gated recurrent unit publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.110142 – volume: 189 year: 2022 ident: 10.1016/j.euromechsol.2022.104869_b32 article-title: An adaptive surrogate model to structural reliability analysis using deep neural network publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116104 – volume: 30 year: 2020 ident: 10.1016/j.euromechsol.2022.104869_b46 article-title: An effective Deep Feedforward Neural Networks (DFNN) method for damage identification of truss structures using noisy incomplete modal data publication-title: J. Build. Eng. – year: 2022 ident: 10.1016/j.euromechsol.2022.104869_b35 article-title: A robust unsupervised neural network framework for geometrically nonlinear analysis of inelastic truss structures publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2022.02.036 – volume: 64 start-page: 4355 issue: 6 year: 2021 ident: 10.1016/j.euromechsol.2022.104869_b6 article-title: AuTO: A framework for automatic differentiation in Topology Optimization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-021-03025-8 – volume: 196 year: 2021 ident: 10.1016/j.euromechsol.2022.104869_b33 article-title: A machine learning-based surrogate model for optimization of truss structures with geometrically nonlinear behavior publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2021.103572 – volume: 115 start-page: 172 year: 2019 ident: 10.1016/j.euromechsol.2022.104869_b31 article-title: Non-iterative structural topology optimization using deep learning publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2019.05.038 – volume: 21 start-page: 1181 issue: 8 year: 1983 ident: 10.1016/j.euromechsol.2022.104869_b23 article-title: Nonlinear analysis of optimized structure with constraints on systemstability publication-title: AIAA J. doi: 10.2514/3.8224 – volume: 238 year: 2021 ident: 10.1016/j.euromechsol.2022.104869_b29 article-title: Strength prediction of concrete-filled steel tubular columns using Categorical Gradient Boosting algorithm publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2021.112109 – volume: 42 start-page: 289 issue: 3 year: 1992 ident: 10.1016/j.euromechsol.2022.104869_b41 article-title: Optimum design of geometrically nonlinear space trusses publication-title: Comput. Struct. doi: 10.1016/0045-7949(92)90025-U – volume: 304 start-page: 641 issue: 3 year: 2021 ident: 10.1016/j.euromechsol.2022.104869_b4 article-title: Intrahepatic cholestasis of pregnancy: Machine-learning algorithm to predict elevated bile acid based on clinical and laboratory data publication-title: Arch. Gynecol. Obstet. doi: 10.1007/s00404-021-05994-z – volume: 23 start-page: 214 issue: 3 year: 2002 ident: 10.1016/j.euromechsol.2022.104869_b36 article-title: Optimization of nonlinear trusses using a displacement-based approach publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-002-0179-1 – volume: 198 year: 2020 ident: 10.1016/j.euromechsol.2022.104869_b27 article-title: CNN-based image recognition for topology optimization publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105887 – year: 2019 ident: 10.1016/j.euromechsol.2022.104869_b15 – volume: 37 start-page: 2850 issue: 5 year: 2013 ident: 10.1016/j.euromechsol.2022.104869_b43 article-title: Modeling of thermotransport phenomenon in metal alloys using artificial neural networks publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2012.06.018 – volume: 20 issue: 04 year: 2020 ident: 10.1016/j.euromechsol.2022.104869_b44 article-title: Review of nonlinear analysis and modeling of steel and composite structures publication-title: Int. J. Struct. Stab. Dyn. doi: 10.1142/S0219455420300037 – volume: 34 year: 2021 ident: 10.1016/j.euromechsol.2022.104869_b51 article-title: NTopo: Mesh-free topology optimization using implicit neural representations publication-title: Adv. Neural Inf. Process. Syst. – start-page: 16 year: 2020 ident: 10.1016/j.euromechsol.2022.104869_b5 – volume: 233 year: 2020 ident: 10.1016/j.euromechsol.2022.104869_b47 article-title: An artificial neural network-differential evolution approach for optimization of bidirectional functionally graded beams publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2019.111517 – volume: 86 start-page: 119 issue: 1–2 year: 2008 ident: 10.1016/j.euromechsol.2022.104869_b13 article-title: Adaptive evolution strategies in structural optimization: Enhancing their computational performance with applications to large-scale structures publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2007.05.012 – volume: 15 start-page: 529 issue: 7 year: 1979 ident: 10.1016/j.euromechsol.2022.104869_b40 article-title: An incremental approach to the solution of snapping and buckling problems publication-title: Int. J. Solids Struct. doi: 10.1016/0020-7683(79)90081-7 – volume: 63 start-page: 1135 issue: 3 year: 2021 ident: 10.1016/j.euromechsol.2022.104869_b7 article-title: TOuNN: Topology Optimization using Neural Networks publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-020-02748-4 – volume: 81 start-page: 419 issue: 4 year: 2011 ident: 10.1016/j.euromechsol.2022.104869_b49 article-title: Geometrical nonlinear analysis of thin-walled composite beams using finite element method based on first order shear deformation theory publication-title: Arch. Appl. Mech. doi: 10.1007/s00419-010-0407-x – volume: 219 year: 2022 ident: 10.1016/j.euromechsol.2022.104869_b2 article-title: Machine learning-based methods in structural reliability analysis: A review publication-title: Reliab. Eng. Syst. Saf. – volume: 383 year: 2021 ident: 10.1016/j.euromechsol.2022.104869_b30 article-title: A physics-guided neural network framework for elastic plates: Comparison of governing equations-based and energy-based approaches publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2021.113933 – volume: 237 year: 2020 ident: 10.1016/j.euromechsol.2022.104869_b1 article-title: Topology optimization of 2D structures with nonlinearities using deep learning publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2020.106283 – year: 2018 ident: 10.1016/j.euromechsol.2022.104869_b26 – start-page: 1 year: 2022 ident: 10.1016/j.euromechsol.2022.104869_b34 article-title: A novel deep unsupervised learning-based framework for optimization of truss structures publication-title: Eng. Comput. – volume: 12 year: 2020 ident: 10.1016/j.euromechsol.2022.104869_b14 article-title: Sherpa: Robust hyperparameter optimization for machine learning publication-title: SoftwareX doi: 10.1016/j.softx.2020.100591 – volume: 234 year: 2021 ident: 10.1016/j.euromechsol.2022.104869_b19 article-title: A simple extrapolated predictor for overcoming the starting and tracking issues in the arc-length method for nonlinear structural mechanics publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2020.111755 – year: 2014 ident: 10.1016/j.euromechsol.2022.104869_b25 – year: 2012 ident: 10.1016/j.euromechsol.2022.104869_b9 – volume: 7 start-page: 1581 issue: 11 year: 1971 ident: 10.1016/j.euromechsol.2022.104869_b50 article-title: Discrete approximations related to nonlinear theories of solids publication-title: Int. J. Solids Struct. doi: 10.1016/0020-7683(71)90038-2 – volume: 59 start-page: 345 issue: 1 year: 2019 ident: 10.1016/j.euromechsol.2022.104869_b3 article-title: Artificial neural network methods for the solution of second order boundary value problems publication-title: Comput. Mater. Contin. – year: 2022 ident: 10.1016/j.euromechsol.2022.104869_b17 article-title: A Laplace asymptotic integral-based reliability analysis method combined with artificial neural network publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2021.12.043 |
SSID | ssj0002021 |
Score | 2.404468 |
Snippet | In this paper, a robust deep neural network (DNN)-based parameterization framework is proposed to directly solve the optimum design for geometrically nonlinear... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 104869 |
SubjectTerms | Bayesian optimization Deep neural network Geometric nonlinear Hyperparameter optimization Truss optimization |
Title | Optimum design of nonlinear structures via deep neural network-based parameterization framework |
URI | https://dx.doi.org/10.1016/j.euromechsol.2022.104869 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA9DQXzxW5wfI4KvdW2atSn4MoZjKs4HHewtJGmKEzeHbj76t3vXpG6CoOBbKbmS3iW5O_K73xFyBkFyaEOjA6VEGHBuk0DxwgZZEYNzKJguCqwdvu0nvQG_HraGNdKpamEQVunPfneml6e1f9P02mxOR6PmPdZ8QrANHg6vljKk3eY8xVV-_rGAeUByX3bNQ9ZRHL1GThcYL-S_GFvzCGaGVJExvPEUiH3-yUct-Z3uFtnwASNtuzltk5qd7JBNHzxSvzXfdom8g80_no9pXmIy6EtBJ44GQ71SxxI7h9Savo8UDLFTikyW8OGJw4EH6M5yikzgY0TI-PJMWlTgrT0y6F4-dHqB754QmJhFM1C5jWKVpywRURTrlOWtLDKpDq1WWvMkZCqM4TlNwUqQIreMgr-3NktMZBOdxftkBeZpDwjVyMnDExUKJXguMpErmxkIpCKeW57GdSIqfUnjqcWxw8WzrDBkT3JJ1RJVLZ2q64R9iU4dv8ZfhC4qo8hvi0WCH_hd_PB_4kdkHXvOOyDaMVkBC9oTiExmulEuvQZZbV_d9PqfVZvnsQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB5qC-qLt1jPFXwNzbG5wJdSLK09fLCFvi27yQYrthZt_f3ONJtaQVDwLYRMSGZ252C_-QbgBpNkW9uJsqSMbItzHViSZ9qKMw-DQ-aqLKPe4V4_aA35_cgflaBR9MIQrNL4_tynL721uVMz2qzNxuPaI_V8YrKNEY6OluJgAyrETuWXoVJvd1r9lUPG-n45OI-IR0lgE66_YF5EgTHRyRNaGqtF16VDz4jgzz-FqbXQ09yDHZMzsnr-WftQ0tMD2DX5IzO78_0QxAPu_8liwtIlLIO9ZmyaM2HIN5YTxS6wumYfY4mP6BkjMkt88TSHglsU0VJGZOATAsmYDk2WFfitIxg27waNlmUGKFiJ5zpz1Lp2PJmGbhA5jqdCN_VjJwmVrZVUige2K20Pr8MQDYVVsp9I_Hut4yBxdKBi7xjK-J36BJgiWh4eSDuSEU-jOEqljhPMpRyeah56VYgKfYnEsIvTkIsXUcDInsWaqgWpWuSqroK7Ep3lFBt_EbotjCK-rReBoeB38dP_iV_BVmvQ64puu985g20aQZ_j0s6hjNbUF5iozNWlWYifQwnqYg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimum+design+of+nonlinear+structures+via+deep+neural+network-based+parameterization+framework&rft.jtitle=European+journal+of+mechanics%2C+A%2C+Solids&rft.au=Mai%2C+Hau+T.&rft.au=Lee%2C+Seunghye&rft.au=Kim%2C+Donghyun&rft.au=Lee%2C+Jaewook&rft.date=2023-03-01&rft.pub=Elsevier+Masson+SAS&rft.issn=0997-7538&rft.eissn=1873-7285&rft.volume=98&rft_id=info:doi/10.1016%2Fj.euromechsol.2022.104869&rft.externalDocID=S0997753822002996 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0997-7538&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0997-7538&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0997-7538&client=summon |