Optimum design of nonlinear structures via deep neural network-based parameterization framework

In this paper, a robust deep neural network (DNN)-based parameterization framework is proposed to directly solve the optimum design for geometrically nonlinear trusses subject to displacement constraints. The core idea is to integrate DNN into Bayesian optimization (BO) to find the best optimum stru...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of mechanics, A, Solids Vol. 98; p. 104869
Main Authors Mai, Hau T., Lee, Seunghye, Kim, Donghyun, Lee, Jaewook, Kang, Joowon, Lee, Jaehong
Format Journal Article
LanguageEnglish
Published Elsevier Masson SAS 01.03.2023
Subjects
Online AccessGet full text
ISSN0997-7538
1873-7285
DOI10.1016/j.euromechsol.2022.104869

Cover

Loading…
Abstract In this paper, a robust deep neural network (DNN)-based parameterization framework is proposed to directly solve the optimum design for geometrically nonlinear trusses subject to displacement constraints. The core idea is to integrate DNN into Bayesian optimization (BO) to find the best optimum structural weight. Herein, the design variables of the structure are parameterized by weights and biases of the network with the spatial coordinates of all joints as the training data. A loss function of the network is built based on the predicted cross-sectional areas and deflection constraints obtained by supporting finite element analysis (FEA) and arc-length method. Accordingly, the optimum weight corresponding to the minimum loss function is indicated as soon as the complete training process. And then it is also serving as an objective of the BO for performing the hyperparameter optimization (HPO) to find the best optimum structural weight. Several illustrative numerical examples for geometrically nonlinear space trusses are examined to determine the efficiency and reliability of the proposed approach. The obtained results demonstrate that our framework can overcome the drawbacks of applications of machine learning in computational mechanics. •A deep neural network-based parameterization framework for structural optimization.•Automatic tuning of hyperparameters of the network by using Bayesian optimization.•The best optimum weight is found by training without any other algorithms.•The suggested model provides high-quality solutions and avoids the local optimum.
AbstractList In this paper, a robust deep neural network (DNN)-based parameterization framework is proposed to directly solve the optimum design for geometrically nonlinear trusses subject to displacement constraints. The core idea is to integrate DNN into Bayesian optimization (BO) to find the best optimum structural weight. Herein, the design variables of the structure are parameterized by weights and biases of the network with the spatial coordinates of all joints as the training data. A loss function of the network is built based on the predicted cross-sectional areas and deflection constraints obtained by supporting finite element analysis (FEA) and arc-length method. Accordingly, the optimum weight corresponding to the minimum loss function is indicated as soon as the complete training process. And then it is also serving as an objective of the BO for performing the hyperparameter optimization (HPO) to find the best optimum structural weight. Several illustrative numerical examples for geometrically nonlinear space trusses are examined to determine the efficiency and reliability of the proposed approach. The obtained results demonstrate that our framework can overcome the drawbacks of applications of machine learning in computational mechanics. •A deep neural network-based parameterization framework for structural optimization.•Automatic tuning of hyperparameters of the network by using Bayesian optimization.•The best optimum weight is found by training without any other algorithms.•The suggested model provides high-quality solutions and avoids the local optimum.
ArticleNumber 104869
Author Lee, Seunghye
Kim, Donghyun
Kang, Joowon
Lee, Jaehong
Mai, Hau T.
Lee, Jaewook
Author_xml – sequence: 1
  givenname: Hau T.
  surname: Mai
  fullname: Mai, Hau T.
  email: maitienhaunx@gmail.com
  organization: Deep Learning Architectural Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
– sequence: 2
  givenname: Seunghye
  surname: Lee
  fullname: Lee, Seunghye
  email: seunghye@sejong.ac.kr
  organization: Deep Learning Architectural Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
– sequence: 3
  givenname: Donghyun
  surname: Kim
  fullname: Kim, Donghyun
  organization: Deep Learning Architectural Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
– sequence: 4
  givenname: Jaewook
  surname: Lee
  fullname: Lee, Jaewook
  organization: Deep Learning Architectural Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
– sequence: 5
  givenname: Joowon
  surname: Kang
  fullname: Kang, Joowon
  organization: School of Architecture, Yeungnam University, 280, Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
– sequence: 6
  givenname: Jaehong
  surname: Lee
  fullname: Lee, Jaehong
  email: jhlee@sejong.ac.kr
  organization: Deep Learning Architectural Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
BookMark eNqNUElOwzAUtVCRKIU7mAOk2E4TxyuEKiapUjewtn6cH3DJJNspgtPjUBaIVVd_0Bv03jmZdX2HhFxxtuSM59e7JY6ub9G8-b5ZCiZE_K-KXJ2QOS9kmkhRZDMyZ0rJRGZpcUbOvd8xxiKWz4neDsG2Y0sr9Pa1o31No0NjOwRHfXCjCaNDT_cWIgQH2kU_aOIIH717T0rwWNEBHLQY0NkvCLbvaD3dE-CCnNbQeLz8nQvycn_3vH5MNtuHp_XtJjGp4CGBFfIUKinygvO0lKLKFDeyZFhCWa5yJoClcZcSCqaYzAzEmIgqNxzzUqULog66xvXeO6z14GwL7lNzpqem9E7_aUpPTelDU5F7849rbPjJERzY5iiF9UEBY8S9Rae9sdgZrKxDE3TV2yNUvgFJspLA
CitedBy_id crossref_primary_10_1016_j_engappai_2024_109991
crossref_primary_10_1007_s00707_024_04090_y
crossref_primary_10_1590_0370_44672024780008
crossref_primary_10_1016_j_jobe_2025_112131
crossref_primary_10_3390_jmse11071348
crossref_primary_10_1007_s00521_025_11039_2
crossref_primary_10_1007_s41062_024_01831_9
crossref_primary_10_3390_machines12060356
Cites_doi 10.1016/j.finel.2008.07.004
10.1016/j.euromechsol.2022.104584
10.1016/j.compstruc.2006.09.002
10.1016/0045-7949(91)90178-O
10.1016/j.compstruc.2006.02.004
10.1016/j.apacoust.2020.107547
10.1016/0956-0521(91)90050-F
10.1016/0045-7949(95)00179-K
10.1023/A:1008306431147
10.1016/j.euromechsol.2019.103874
10.2514/3.8882
10.1016/S0045-7949(01)00035-9
10.1016/j.finel.2014.07.001
10.1061/(ASCE)0733-9445(2000)126:3(382)
10.1016/0045-7949(89)90070-9
10.1016/j.asoc.2010.09.003
10.1016/j.oceaneng.2021.110142
10.1016/j.eswa.2021.116104
10.1016/j.apm.2022.02.036
10.1007/s00158-021-03025-8
10.1016/j.finel.2021.103572
10.1016/j.cad.2019.05.038
10.2514/3.8224
10.1016/j.engstruct.2021.112109
10.1016/0045-7949(92)90025-U
10.1007/s00404-021-05994-z
10.1007/s00158-002-0179-1
10.1016/j.knosys.2020.105887
10.1016/j.apm.2012.06.018
10.1142/S0219455420300037
10.1016/j.compstruct.2019.111517
10.1016/j.compstruc.2007.05.012
10.1016/0020-7683(79)90081-7
10.1007/s00158-020-02748-4
10.1007/s00419-010-0407-x
10.1016/j.cma.2021.113933
10.1016/j.compstruc.2020.106283
10.1016/j.softx.2020.100591
10.1016/j.engstruct.2020.111755
10.1016/0020-7683(71)90038-2
10.1016/j.apm.2021.12.043
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
DOI 10.1016/j.euromechsol.2022.104869
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1873-7285
ExternalDocumentID 10_1016_j_euromechsol_2022_104869
S0997753822002996
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SST
SSZ
T5K
VH1
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c321t-a4e13ad7268113b72d591c7b0ebabb4602a03eba77a809075ca104ee96c1e6b93
IEDL.DBID .~1
ISSN 0997-7538
IngestDate Thu Apr 24 23:10:08 EDT 2025
Tue Jul 01 01:55:25 EDT 2025
Fri Feb 23 02:37:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hyperparameter optimization
Deep neural network
Bayesian optimization
Geometric nonlinear
Truss optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-a4e13ad7268113b72d591c7b0ebabb4602a03eba77a809075ca104ee96c1e6b93
ParticipantIDs crossref_primary_10_1016_j_euromechsol_2022_104869
crossref_citationtrail_10_1016_j_euromechsol_2022_104869
elsevier_sciencedirect_doi_10_1016_j_euromechsol_2022_104869
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March-April 2023
2023-03-00
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March-April 2023
PublicationDecade 2020
PublicationTitle European journal of mechanics, A, Solids
PublicationYear 2023
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
References Missoum, Gürdal, Gu (b36) 2002; 23
Coda, Paccola (b8) 2014; 91
Kaveh, Rahami (b22) 2006; 84
Nguyen-Thanh, Zhuang, Rabczuk (b37) 2020; 80
Zehnder, Li, Coros, Thomaszewski (b51) 2021; 34
Truong, Lee, Nguyen-Thoi (b48) 2022; 243
Lee, Kim, Lieu, Lee (b27) 2020; 198
Lee, Vo, Thai, Lee, Patel (b29) 2021; 238
Saka, Ulker (b41) 1992; 42
Afshari, Enayatollahi, Xu, Liang (b2) 2022; 219
Hrinda, Nguyen (b16) 2008; 44
Kadapa (b19) 2021; 234
Hajela, Berke (b12) 1991; 41
Truong, Dinh-Cong, Lee, Nguyen-Thoi (b46) 2020; 30
Jia, Wu (b17) 2022
Lieu, Nguyen, Dang, Lee, Kang, Lee (b32) 2022; 189
Hertel, Collado, Sadowski, Ott, Baldi (b14) 2020; 12
Li, Bazant, Zhu (b30) 2021; 383
Riks (b40) 1979; 15
Vo, Lee (b49) 2011; 81
Kameshki, Saka (b20) 2001; 79
Ramasamy, Rajasekaran (b39) 1996; 58
Anitescu, Atroshchenko, Alajlan, Rabczuk (b3) 2019; 59
El-Sayed, Ridgely, Sandgren (b10) 1989; 32
Truong, Lee, Lee (b47) 2020; 233
Hajela, Berke (b11) 1991; 2
Chandrasekhar, Sridhara, Suresh (b6) 2021; 64
Thai, Nguyen, Lee, Patel, Vo (b44) 2020; 20
Sonmez (b42) 2011; 11
Wempner (b50) 1971; 7
Mai, Kang, Lee (b33) 2021; 196
Hoyer, Sohl-Dickstein, Greydanus (b15) 2019
Abueidda, Koric, Sobh (b1) 2020; 237
Hasançebi (b13) 2008; 86
Kingma, Ba (b25) 2014
Mai, Lieu, Kang, Lee (b35) 2022
Trinh, Lee, Kang, Lee (b45) 2022
Chandrasekhar, Suresh (b7) 2021; 63
Kameshki, Saka (b21) 2007; 85
Asali, Ravid, Shalev, David, Yogev, Yogev, Schonman, Biron-Shental, Miller (b4) 2021; 304
Korenciak (b26) 2018
Pezeshk, Camp, Chen (b38) 2000; 126
Srinivasan, Saghir (b43) 2013; 37
Khot (b23) 1983; 21
Lee, Park, Kim, Lieu, Lee (b28) 2021; 172
Bradbury, Frostig, Hawkins, Johnson, Leary, Maclaurin, Wanderman-Milne (b5) 2020
De Borst, Crisfield, Remmers, Verhoosel (b9) 2012
Khot, Kamat (b24) 1985; 23
Li, Huang, Li, Zheng, Hong (b31) 2019; 115
Mai, Lieu, Kang, Lee (b34) 2022
Jones, Schonlau, Welch (b18) 1998; 13
Chandrasekhar (10.1016/j.euromechsol.2022.104869_b7) 2021; 63
Thai (10.1016/j.euromechsol.2022.104869_b44) 2020; 20
Jia (10.1016/j.euromechsol.2022.104869_b17) 2022
Jones (10.1016/j.euromechsol.2022.104869_b18) 1998; 13
Li (10.1016/j.euromechsol.2022.104869_b30) 2021; 383
Mai (10.1016/j.euromechsol.2022.104869_b35) 2022
Hertel (10.1016/j.euromechsol.2022.104869_b14) 2020; 12
Hajela (10.1016/j.euromechsol.2022.104869_b12) 1991; 41
Srinivasan (10.1016/j.euromechsol.2022.104869_b43) 2013; 37
Chandrasekhar (10.1016/j.euromechsol.2022.104869_b6) 2021; 64
Khot (10.1016/j.euromechsol.2022.104869_b24) 1985; 23
Lee (10.1016/j.euromechsol.2022.104869_b28) 2021; 172
Mai (10.1016/j.euromechsol.2022.104869_b33) 2021; 196
Kadapa (10.1016/j.euromechsol.2022.104869_b19) 2021; 234
Kameshki (10.1016/j.euromechsol.2022.104869_b20) 2001; 79
Wempner (10.1016/j.euromechsol.2022.104869_b50) 1971; 7
Pezeshk (10.1016/j.euromechsol.2022.104869_b38) 2000; 126
Vo (10.1016/j.euromechsol.2022.104869_b49) 2011; 81
Missoum (10.1016/j.euromechsol.2022.104869_b36) 2002; 23
Truong (10.1016/j.euromechsol.2022.104869_b46) 2020; 30
Abueidda (10.1016/j.euromechsol.2022.104869_b1) 2020; 237
Hrinda (10.1016/j.euromechsol.2022.104869_b16) 2008; 44
Zehnder (10.1016/j.euromechsol.2022.104869_b51) 2021; 34
Li (10.1016/j.euromechsol.2022.104869_b31) 2019; 115
Kameshki (10.1016/j.euromechsol.2022.104869_b21) 2007; 85
Lieu (10.1016/j.euromechsol.2022.104869_b32) 2022; 189
De Borst (10.1016/j.euromechsol.2022.104869_b9) 2012
Coda (10.1016/j.euromechsol.2022.104869_b8) 2014; 91
Kingma (10.1016/j.euromechsol.2022.104869_b25) 2014
Truong (10.1016/j.euromechsol.2022.104869_b48) 2022; 243
Asali (10.1016/j.euromechsol.2022.104869_b4) 2021; 304
Mai (10.1016/j.euromechsol.2022.104869_b34) 2022
Nguyen-Thanh (10.1016/j.euromechsol.2022.104869_b37) 2020; 80
Hajela (10.1016/j.euromechsol.2022.104869_b11) 1991; 2
Hoyer (10.1016/j.euromechsol.2022.104869_b15) 2019
El-Sayed (10.1016/j.euromechsol.2022.104869_b10) 1989; 32
Trinh (10.1016/j.euromechsol.2022.104869_b45) 2022
Kaveh (10.1016/j.euromechsol.2022.104869_b22) 2006; 84
Sonmez (10.1016/j.euromechsol.2022.104869_b42) 2011; 11
Khot (10.1016/j.euromechsol.2022.104869_b23) 1983; 21
Hasançebi (10.1016/j.euromechsol.2022.104869_b13) 2008; 86
Lee (10.1016/j.euromechsol.2022.104869_b29) 2021; 238
Saka (10.1016/j.euromechsol.2022.104869_b41) 1992; 42
Lee (10.1016/j.euromechsol.2022.104869_b27) 2020; 198
Riks (10.1016/j.euromechsol.2022.104869_b40) 1979; 15
Anitescu (10.1016/j.euromechsol.2022.104869_b3) 2019; 59
Truong (10.1016/j.euromechsol.2022.104869_b47) 2020; 233
Bradbury (10.1016/j.euromechsol.2022.104869_b5) 2020
Korenciak (10.1016/j.euromechsol.2022.104869_b26) 2018
Afshari (10.1016/j.euromechsol.2022.104869_b2) 2022; 219
Ramasamy (10.1016/j.euromechsol.2022.104869_b39) 1996; 58
References_xml – volume: 21
  start-page: 1181
  year: 1983
  end-page: 1186
  ident: b23
  article-title: Nonlinear analysis of optimized structure with constraints on systemstability
  publication-title: AIAA J.
– volume: 198
  year: 2020
  ident: b27
  article-title: CNN-based image recognition for topology optimization
  publication-title: Knowl.-Based Syst.
– volume: 20
  year: 2020
  ident: b44
  article-title: Review of nonlinear analysis and modeling of steel and composite structures
  publication-title: Int. J. Struct. Stab. Dyn.
– volume: 189
  year: 2022
  ident: b32
  article-title: An adaptive surrogate model to structural reliability analysis using deep neural network
  publication-title: Expert Syst. Appl.
– volume: 37
  start-page: 2850
  year: 2013
  end-page: 2869
  ident: b43
  article-title: Modeling of thermotransport phenomenon in metal alloys using artificial neural networks
  publication-title: Appl. Math. Model.
– volume: 115
  start-page: 172
  year: 2019
  end-page: 180
  ident: b31
  article-title: Non-iterative structural topology optimization using deep learning
  publication-title: Comput. Aided Des.
– start-page: 16
  year: 2020
  ident: b5
  article-title: JAX: composable transformations of Python+ NumPy programs, 2018, 4
– volume: 85
  start-page: 71
  year: 2007
  end-page: 79
  ident: b21
  article-title: Optimum geometry design of nonlinear braced domes using genetic algorithm
  publication-title: Comput. Struct.
– volume: 233
  year: 2020
  ident: b47
  article-title: An artificial neural network-differential evolution approach for optimization of bidirectional functionally graded beams
  publication-title: Compos. Struct.
– volume: 238
  year: 2021
  ident: b29
  article-title: Strength prediction of concrete-filled steel tubular columns using Categorical Gradient Boosting algorithm
  publication-title: Eng. Struct.
– volume: 81
  start-page: 419
  year: 2011
  end-page: 435
  ident: b49
  article-title: Geometrical nonlinear analysis of thin-walled composite beams using finite element method based on first order shear deformation theory
  publication-title: Arch. Appl. Mech.
– volume: 23
  start-page: 214
  year: 2002
  end-page: 221
  ident: b36
  article-title: Optimization of nonlinear trusses using a displacement-based approach
  publication-title: Struct. Multidiscip. Optim.
– volume: 91
  start-page: 1
  year: 2014
  end-page: 15
  ident: b8
  article-title: A total-Lagrangian position-based FEM applied to physical and geometrical nonlinear dynamics of plane frames including semi-rigid connections and progressive collapse
  publication-title: Finite Elem. Anal. Des.
– volume: 234
  year: 2021
  ident: b19
  article-title: A simple extrapolated predictor for overcoming the starting and tracking issues in the arc-length method for nonlinear structural mechanics
  publication-title: Eng. Struct.
– volume: 34
  year: 2021
  ident: b51
  article-title: NTopo: Mesh-free topology optimization using implicit neural representations
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 64
  start-page: 4355
  year: 2021
  end-page: 4365
  ident: b6
  article-title: AuTO: A framework for automatic differentiation in Topology Optimization
  publication-title: Struct. Multidiscip. Optim.
– volume: 58
  start-page: 747
  year: 1996
  end-page: 755
  ident: b39
  article-title: Artificial neural network and genetic algorithm for the design optimizaton of industrial roofs—A comparison
  publication-title: Comput. Struct.
– volume: 2
  start-page: 473
  year: 1991
  end-page: 481
  ident: b11
  article-title: Neural network based decomposition in optimal structural synthesis
  publication-title: Comput. Syst. Eng.
– year: 2019
  ident: b15
  article-title: Neural reparameterization improves structural optimization
– volume: 86
  start-page: 119
  year: 2008
  end-page: 132
  ident: b13
  article-title: Adaptive evolution strategies in structural optimization: Enhancing their computational performance with applications to large-scale structures
  publication-title: Comput. Struct.
– volume: 12
  year: 2020
  ident: b14
  article-title: Sherpa: Robust hyperparameter optimization for machine learning
  publication-title: SoftwareX
– volume: 63
  start-page: 1135
  year: 2021
  end-page: 1149
  ident: b7
  article-title: TOuNN: Topology Optimization using Neural Networks
  publication-title: Struct. Multidiscip. Optim.
– year: 2018
  ident: b26
  article-title: Go Game Move Prediction Using Convolutional Neural Network
– year: 2012
  ident: b9
  article-title: Nonlinear Finite Element Analysis of Solids and Structures
– volume: 80
  year: 2020
  ident: b37
  article-title: A deep energy method for finite deformation hyperelasticity
  publication-title: Eur. J. Mech. A Solids
– volume: 23
  start-page: 139
  year: 1985
  end-page: 144
  ident: b24
  article-title: Minimum weight design of truss structures with geometric nonlinear behavior
  publication-title: AIAA J.
– volume: 383
  year: 2021
  ident: b30
  article-title: A physics-guided neural network framework for elastic plates: Comparison of governing equations-based and energy-based approaches
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 126
  start-page: 382
  year: 2000
  end-page: 388
  ident: b38
  article-title: Design of nonlinear framed structures using genetic optimization
  publication-title: J. Struct. Eng.
– volume: 237
  year: 2020
  ident: b1
  article-title: Topology optimization of 2D structures with nonlinearities using deep learning
  publication-title: Comput. Struct.
– start-page: 1
  year: 2022
  end-page: 24
  ident: b34
  article-title: A novel deep unsupervised learning-based framework for optimization of truss structures
  publication-title: Eng. Comput.
– volume: 304
  start-page: 641
  year: 2021
  end-page: 647
  ident: b4
  article-title: Intrahepatic cholestasis of pregnancy: Machine-learning algorithm to predict elevated bile acid based on clinical and laboratory data
  publication-title: Arch. Gynecol. Obstet.
– year: 2014
  ident: b25
  article-title: Adam: A method for stochastic optimization
– volume: 30
  year: 2020
  ident: b46
  article-title: An effective Deep Feedforward Neural Networks (DFNN) method for damage identification of truss structures using noisy incomplete modal data
  publication-title: J. Build. Eng.
– volume: 41
  start-page: 657
  year: 1991
  end-page: 667
  ident: b12
  article-title: Neurobiological computational models in structural analysis and design
  publication-title: Comput. Struct.
– volume: 11
  start-page: 2406
  year: 2011
  end-page: 2418
  ident: b42
  article-title: Artificial Bee Colony algorithm for optimization of truss structures
  publication-title: Appl. Soft Comput.
– volume: 44
  start-page: 933
  year: 2008
  end-page: 950
  ident: b16
  article-title: Optimization of stability-constrained geometrically nonlinear shallow trusses using an arc length sparse method with a strain energy density approach
  publication-title: Finite Elem. Anal. Des.
– year: 2022
  ident: b45
  article-title: Force density-informed neural network for prestress design of tensegrity structures with multiple self-stress modes
  publication-title: Eur. J. Mech. A Solids
– year: 2022
  ident: b17
  article-title: A Laplace asymptotic integral-based reliability analysis method combined with artificial neural network
  publication-title: Appl. Math. Model.
– year: 2022
  ident: b35
  article-title: A robust unsupervised neural network framework for geometrically nonlinear analysis of inelastic truss structures
  publication-title: Appl. Math. Model.
– volume: 32
  start-page: 69
  year: 1989
  end-page: 73
  ident: b10
  article-title: Nonlinear structural optimization using goal programming
  publication-title: Comput. Struct.
– volume: 59
  start-page: 345
  year: 2019
  end-page: 359
  ident: b3
  article-title: Artificial neural network methods for the solution of second order boundary value problems
  publication-title: Comput. Mater. Contin.
– volume: 42
  start-page: 289
  year: 1992
  end-page: 299
  ident: b41
  article-title: Optimum design of geometrically nonlinear space trusses
  publication-title: Comput. Struct.
– volume: 79
  start-page: 1593
  year: 2001
  end-page: 1604
  ident: b20
  article-title: Optimum design of nonlinear steel frames with semi-rigid connections using a genetic algorithm
  publication-title: Comput. Struct.
– volume: 172
  year: 2021
  ident: b28
  article-title: Damage quantification in truss structures by limited sensor-based surrogate model
  publication-title: Appl. Acoust.
– volume: 7
  start-page: 1581
  year: 1971
  end-page: 1599
  ident: b50
  article-title: Discrete approximations related to nonlinear theories of solids
  publication-title: Int. J. Solids Struct.
– volume: 13
  start-page: 455
  year: 1998
  end-page: 492
  ident: b18
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Global Optim.
– volume: 196
  year: 2021
  ident: b33
  article-title: A machine learning-based surrogate model for optimization of truss structures with geometrically nonlinear behavior
  publication-title: Finite Elem. Anal. Des.
– volume: 84
  start-page: 770
  year: 2006
  end-page: 778
  ident: b22
  article-title: Nonlinear analysis and optimal design of structures via force method and genetic algorithm
  publication-title: Comput. Struct.
– volume: 15
  start-page: 529
  year: 1979
  end-page: 551
  ident: b40
  article-title: An incremental approach to the solution of snapping and buckling problems
  publication-title: Int. J. Solids Struct.
– volume: 243
  year: 2022
  ident: b48
  article-title: Joint damage detection of structures with noisy data by an effective deep learning framework using autoencoder-convolutional gated recurrent unit
  publication-title: Ocean Eng.
– volume: 219
  year: 2022
  ident: b2
  article-title: Machine learning-based methods in structural reliability analysis: A review
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 44
  start-page: 933
  issue: 15
  year: 2008
  ident: 10.1016/j.euromechsol.2022.104869_b16
  article-title: Optimization of stability-constrained geometrically nonlinear shallow trusses using an arc length sparse method with a strain energy density approach
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2008.07.004
– year: 2022
  ident: 10.1016/j.euromechsol.2022.104869_b45
  article-title: Force density-informed neural network for prestress design of tensegrity structures with multiple self-stress modes
  publication-title: Eur. J. Mech. A Solids
  doi: 10.1016/j.euromechsol.2022.104584
– volume: 85
  start-page: 71
  issue: 1–2
  year: 2007
  ident: 10.1016/j.euromechsol.2022.104869_b21
  article-title: Optimum geometry design of nonlinear braced domes using genetic algorithm
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2006.09.002
– volume: 41
  start-page: 657
  issue: 4
  year: 1991
  ident: 10.1016/j.euromechsol.2022.104869_b12
  article-title: Neurobiological computational models in structural analysis and design
  publication-title: Comput. Struct.
  doi: 10.1016/0045-7949(91)90178-O
– volume: 84
  start-page: 770
  issue: 12
  year: 2006
  ident: 10.1016/j.euromechsol.2022.104869_b22
  article-title: Nonlinear analysis and optimal design of structures via force method and genetic algorithm
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2006.02.004
– volume: 172
  year: 2021
  ident: 10.1016/j.euromechsol.2022.104869_b28
  article-title: Damage quantification in truss structures by limited sensor-based surrogate model
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2020.107547
– volume: 2
  start-page: 473
  issue: 5–6
  year: 1991
  ident: 10.1016/j.euromechsol.2022.104869_b11
  article-title: Neural network based decomposition in optimal structural synthesis
  publication-title: Comput. Syst. Eng.
  doi: 10.1016/0956-0521(91)90050-F
– volume: 58
  start-page: 747
  issue: 4
  year: 1996
  ident: 10.1016/j.euromechsol.2022.104869_b39
  article-title: Artificial neural network and genetic algorithm for the design optimizaton of industrial roofs—A comparison
  publication-title: Comput. Struct.
  doi: 10.1016/0045-7949(95)00179-K
– volume: 13
  start-page: 455
  issue: 4
  year: 1998
  ident: 10.1016/j.euromechsol.2022.104869_b18
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008306431147
– volume: 80
  year: 2020
  ident: 10.1016/j.euromechsol.2022.104869_b37
  article-title: A deep energy method for finite deformation hyperelasticity
  publication-title: Eur. J. Mech. A Solids
  doi: 10.1016/j.euromechsol.2019.103874
– volume: 23
  start-page: 139
  issue: 1
  year: 1985
  ident: 10.1016/j.euromechsol.2022.104869_b24
  article-title: Minimum weight design of truss structures with geometric nonlinear behavior
  publication-title: AIAA J.
  doi: 10.2514/3.8882
– volume: 79
  start-page: 1593
  issue: 17
  year: 2001
  ident: 10.1016/j.euromechsol.2022.104869_b20
  article-title: Optimum design of nonlinear steel frames with semi-rigid connections using a genetic algorithm
  publication-title: Comput. Struct.
  doi: 10.1016/S0045-7949(01)00035-9
– volume: 91
  start-page: 1
  year: 2014
  ident: 10.1016/j.euromechsol.2022.104869_b8
  article-title: A total-Lagrangian position-based FEM applied to physical and geometrical nonlinear dynamics of plane frames including semi-rigid connections and progressive collapse
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2014.07.001
– volume: 126
  start-page: 382
  issue: 3
  year: 2000
  ident: 10.1016/j.euromechsol.2022.104869_b38
  article-title: Design of nonlinear framed structures using genetic optimization
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)0733-9445(2000)126:3(382)
– volume: 32
  start-page: 69
  issue: 1
  year: 1989
  ident: 10.1016/j.euromechsol.2022.104869_b10
  article-title: Nonlinear structural optimization using goal programming
  publication-title: Comput. Struct.
  doi: 10.1016/0045-7949(89)90070-9
– volume: 11
  start-page: 2406
  issue: 2
  year: 2011
  ident: 10.1016/j.euromechsol.2022.104869_b42
  article-title: Artificial Bee Colony algorithm for optimization of truss structures
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.09.003
– volume: 243
  year: 2022
  ident: 10.1016/j.euromechsol.2022.104869_b48
  article-title: Joint damage detection of structures with noisy data by an effective deep learning framework using autoencoder-convolutional gated recurrent unit
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.110142
– volume: 189
  year: 2022
  ident: 10.1016/j.euromechsol.2022.104869_b32
  article-title: An adaptive surrogate model to structural reliability analysis using deep neural network
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116104
– volume: 30
  year: 2020
  ident: 10.1016/j.euromechsol.2022.104869_b46
  article-title: An effective Deep Feedforward Neural Networks (DFNN) method for damage identification of truss structures using noisy incomplete modal data
  publication-title: J. Build. Eng.
– year: 2022
  ident: 10.1016/j.euromechsol.2022.104869_b35
  article-title: A robust unsupervised neural network framework for geometrically nonlinear analysis of inelastic truss structures
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2022.02.036
– volume: 64
  start-page: 4355
  issue: 6
  year: 2021
  ident: 10.1016/j.euromechsol.2022.104869_b6
  article-title: AuTO: A framework for automatic differentiation in Topology Optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-021-03025-8
– volume: 196
  year: 2021
  ident: 10.1016/j.euromechsol.2022.104869_b33
  article-title: A machine learning-based surrogate model for optimization of truss structures with geometrically nonlinear behavior
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2021.103572
– volume: 115
  start-page: 172
  year: 2019
  ident: 10.1016/j.euromechsol.2022.104869_b31
  article-title: Non-iterative structural topology optimization using deep learning
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2019.05.038
– volume: 21
  start-page: 1181
  issue: 8
  year: 1983
  ident: 10.1016/j.euromechsol.2022.104869_b23
  article-title: Nonlinear analysis of optimized structure with constraints on systemstability
  publication-title: AIAA J.
  doi: 10.2514/3.8224
– volume: 238
  year: 2021
  ident: 10.1016/j.euromechsol.2022.104869_b29
  article-title: Strength prediction of concrete-filled steel tubular columns using Categorical Gradient Boosting algorithm
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2021.112109
– volume: 42
  start-page: 289
  issue: 3
  year: 1992
  ident: 10.1016/j.euromechsol.2022.104869_b41
  article-title: Optimum design of geometrically nonlinear space trusses
  publication-title: Comput. Struct.
  doi: 10.1016/0045-7949(92)90025-U
– volume: 304
  start-page: 641
  issue: 3
  year: 2021
  ident: 10.1016/j.euromechsol.2022.104869_b4
  article-title: Intrahepatic cholestasis of pregnancy: Machine-learning algorithm to predict elevated bile acid based on clinical and laboratory data
  publication-title: Arch. Gynecol. Obstet.
  doi: 10.1007/s00404-021-05994-z
– volume: 23
  start-page: 214
  issue: 3
  year: 2002
  ident: 10.1016/j.euromechsol.2022.104869_b36
  article-title: Optimization of nonlinear trusses using a displacement-based approach
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-002-0179-1
– volume: 198
  year: 2020
  ident: 10.1016/j.euromechsol.2022.104869_b27
  article-title: CNN-based image recognition for topology optimization
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105887
– year: 2019
  ident: 10.1016/j.euromechsol.2022.104869_b15
– volume: 37
  start-page: 2850
  issue: 5
  year: 2013
  ident: 10.1016/j.euromechsol.2022.104869_b43
  article-title: Modeling of thermotransport phenomenon in metal alloys using artificial neural networks
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2012.06.018
– volume: 20
  issue: 04
  year: 2020
  ident: 10.1016/j.euromechsol.2022.104869_b44
  article-title: Review of nonlinear analysis and modeling of steel and composite structures
  publication-title: Int. J. Struct. Stab. Dyn.
  doi: 10.1142/S0219455420300037
– volume: 34
  year: 2021
  ident: 10.1016/j.euromechsol.2022.104869_b51
  article-title: NTopo: Mesh-free topology optimization using implicit neural representations
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 16
  year: 2020
  ident: 10.1016/j.euromechsol.2022.104869_b5
– volume: 233
  year: 2020
  ident: 10.1016/j.euromechsol.2022.104869_b47
  article-title: An artificial neural network-differential evolution approach for optimization of bidirectional functionally graded beams
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2019.111517
– volume: 86
  start-page: 119
  issue: 1–2
  year: 2008
  ident: 10.1016/j.euromechsol.2022.104869_b13
  article-title: Adaptive evolution strategies in structural optimization: Enhancing their computational performance with applications to large-scale structures
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2007.05.012
– volume: 15
  start-page: 529
  issue: 7
  year: 1979
  ident: 10.1016/j.euromechsol.2022.104869_b40
  article-title: An incremental approach to the solution of snapping and buckling problems
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/0020-7683(79)90081-7
– volume: 63
  start-page: 1135
  issue: 3
  year: 2021
  ident: 10.1016/j.euromechsol.2022.104869_b7
  article-title: TOuNN: Topology Optimization using Neural Networks
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-020-02748-4
– volume: 81
  start-page: 419
  issue: 4
  year: 2011
  ident: 10.1016/j.euromechsol.2022.104869_b49
  article-title: Geometrical nonlinear analysis of thin-walled composite beams using finite element method based on first order shear deformation theory
  publication-title: Arch. Appl. Mech.
  doi: 10.1007/s00419-010-0407-x
– volume: 219
  year: 2022
  ident: 10.1016/j.euromechsol.2022.104869_b2
  article-title: Machine learning-based methods in structural reliability analysis: A review
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 383
  year: 2021
  ident: 10.1016/j.euromechsol.2022.104869_b30
  article-title: A physics-guided neural network framework for elastic plates: Comparison of governing equations-based and energy-based approaches
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2021.113933
– volume: 237
  year: 2020
  ident: 10.1016/j.euromechsol.2022.104869_b1
  article-title: Topology optimization of 2D structures with nonlinearities using deep learning
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2020.106283
– year: 2018
  ident: 10.1016/j.euromechsol.2022.104869_b26
– start-page: 1
  year: 2022
  ident: 10.1016/j.euromechsol.2022.104869_b34
  article-title: A novel deep unsupervised learning-based framework for optimization of truss structures
  publication-title: Eng. Comput.
– volume: 12
  year: 2020
  ident: 10.1016/j.euromechsol.2022.104869_b14
  article-title: Sherpa: Robust hyperparameter optimization for machine learning
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2020.100591
– volume: 234
  year: 2021
  ident: 10.1016/j.euromechsol.2022.104869_b19
  article-title: A simple extrapolated predictor for overcoming the starting and tracking issues in the arc-length method for nonlinear structural mechanics
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2020.111755
– year: 2014
  ident: 10.1016/j.euromechsol.2022.104869_b25
– year: 2012
  ident: 10.1016/j.euromechsol.2022.104869_b9
– volume: 7
  start-page: 1581
  issue: 11
  year: 1971
  ident: 10.1016/j.euromechsol.2022.104869_b50
  article-title: Discrete approximations related to nonlinear theories of solids
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/0020-7683(71)90038-2
– volume: 59
  start-page: 345
  issue: 1
  year: 2019
  ident: 10.1016/j.euromechsol.2022.104869_b3
  article-title: Artificial neural network methods for the solution of second order boundary value problems
  publication-title: Comput. Mater. Contin.
– year: 2022
  ident: 10.1016/j.euromechsol.2022.104869_b17
  article-title: A Laplace asymptotic integral-based reliability analysis method combined with artificial neural network
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2021.12.043
SSID ssj0002021
Score 2.404468
Snippet In this paper, a robust deep neural network (DNN)-based parameterization framework is proposed to directly solve the optimum design for geometrically nonlinear...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104869
SubjectTerms Bayesian optimization
Deep neural network
Geometric nonlinear
Hyperparameter optimization
Truss optimization
Title Optimum design of nonlinear structures via deep neural network-based parameterization framework
URI https://dx.doi.org/10.1016/j.euromechsol.2022.104869
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA9DQXzxW5wfI4KvdW2atSn4MoZjKs4HHewtJGmKEzeHbj76t3vXpG6CoOBbKbmS3iW5O_K73xFyBkFyaEOjA6VEGHBuk0DxwgZZEYNzKJguCqwdvu0nvQG_HraGNdKpamEQVunPfneml6e1f9P02mxOR6PmPdZ8QrANHg6vljKk3eY8xVV-_rGAeUByX3bNQ9ZRHL1GThcYL-S_GFvzCGaGVJExvPEUiH3-yUct-Z3uFtnwASNtuzltk5qd7JBNHzxSvzXfdom8g80_no9pXmIy6EtBJ44GQ71SxxI7h9Savo8UDLFTikyW8OGJw4EH6M5yikzgY0TI-PJMWlTgrT0y6F4-dHqB754QmJhFM1C5jWKVpywRURTrlOWtLDKpDq1WWvMkZCqM4TlNwUqQIreMgr-3NktMZBOdxftkBeZpDwjVyMnDExUKJXguMpErmxkIpCKeW57GdSIqfUnjqcWxw8WzrDBkT3JJ1RJVLZ2q64R9iU4dv8ZfhC4qo8hvi0WCH_hd_PB_4kdkHXvOOyDaMVkBC9oTiExmulEuvQZZbV_d9PqfVZvnsQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB5qC-qLt1jPFXwNzbG5wJdSLK09fLCFvi27yQYrthZt_f3ONJtaQVDwLYRMSGZ252C_-QbgBpNkW9uJsqSMbItzHViSZ9qKMw-DQ-aqLKPe4V4_aA35_cgflaBR9MIQrNL4_tynL721uVMz2qzNxuPaI_V8YrKNEY6OluJgAyrETuWXoVJvd1r9lUPG-n45OI-IR0lgE66_YF5EgTHRyRNaGqtF16VDz4jgzz-FqbXQ09yDHZMzsnr-WftQ0tMD2DX5IzO78_0QxAPu_8liwtIlLIO9ZmyaM2HIN5YTxS6wumYfY4mP6BkjMkt88TSHglsU0VJGZOATAsmYDk2WFfitIxg27waNlmUGKFiJ5zpz1Lp2PJmGbhA5jqdCN_VjJwmVrZVUige2K20Pr8MQDYVVsp9I_Hut4yBxdKBi7xjK-J36BJgiWh4eSDuSEU-jOEqljhPMpRyeah56VYgKfYnEsIvTkIsXUcDInsWaqgWpWuSqroK7Ep3lFBt_EbotjCK-rReBoeB38dP_iV_BVmvQ64puu985g20aQZ_j0s6hjNbUF5iozNWlWYifQwnqYg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimum+design+of+nonlinear+structures+via+deep+neural+network-based+parameterization+framework&rft.jtitle=European+journal+of+mechanics%2C+A%2C+Solids&rft.au=Mai%2C+Hau+T.&rft.au=Lee%2C+Seunghye&rft.au=Kim%2C+Donghyun&rft.au=Lee%2C+Jaewook&rft.date=2023-03-01&rft.pub=Elsevier+Masson+SAS&rft.issn=0997-7538&rft.eissn=1873-7285&rft.volume=98&rft_id=info:doi/10.1016%2Fj.euromechsol.2022.104869&rft.externalDocID=S0997753822002996
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0997-7538&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0997-7538&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0997-7538&client=summon