Design and Experimental Validation of a SoC-FPGA-Based Compact NQR Spectrometer

Nuclear quadrupolar resonance (NQR) is a radio frequency (RF) spectroscopy technique providing high-resolution molecular analysis of solid materials containing quadrupolar atomic nuclei. The NQR technique does not necessitate an external magnetic field and, therefore, permits a large number of appli...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 73; pp. 1 - 12
Main Authors Kachkachi, Noreddine, Gansmuller, Axel, Rabah, Hassan
Format Journal Article
LanguageEnglish
Published New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nuclear quadrupolar resonance (NQR) is a radio frequency (RF) spectroscopy technique providing high-resolution molecular analysis of solid materials containing quadrupolar atomic nuclei. The NQR technique does not necessitate an external magnetic field and, therefore, permits a large number of applications; it nevertheless suffers from relatively low sensitivity. The challenges of NQR instrumentation are therefore to increase its portability and sensitivity, and to limit interference from various noise sources (e.g., RF interference) in order to perform field applications outside the laboratory. To address these challenges, we present a system-on-chip field-programmable gate array (SoC-FPGA) based portable spectrometer integrating the major hardware elements of NQR instrumentation. These include: a high pulsewidth resolution pulse programmer, a fully controllable pulse transmitter, an acquisition module that performs detection, digital signal processing, and storage of the acquired signal in an external memory, in addition to a hardware debugger. Pulser and acquisition Linux applications are embedded on the SoC-FPGA. While many recent compact spectrometers still have crucial RF parts in the analog domain and lack performance optimization, most of our hardware and software modules are digitally implemented on SoC-FPGA. The designed portable spectrometer was successfully tested by detecting the expected frequencies of several samples such as sodium nitrite (NaNO 2 ), hexamethylenetetramine (HMT) or 1,3,5-trichlorobenzene (1,3,5-TCB) covering hence the typical <inline-formula> <tex-math notation="LaTeX">^{14}\text {N} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">^{35}\text {Cl} </tex-math></inline-formula> NQR frequency ranges.
AbstractList Nuclear quadrupolar resonance (NQR) is a radio frequency (RF) spectroscopy technique providing high-resolution molecular analysis of solid materials containing quadrupolar atomic nuclei. The NQR technique does not necessitate an external magnetic field and, therefore, permits a large number of applications; it nevertheless suffers from relatively low sensitivity. The challenges of NQR instrumentation are therefore to increase its portability and sensitivity, and to limit interference from various noise sources (e.g., RF interference) in order to perform field applications outside the laboratory. To address these challenges, we present a system-on-chip field-programmable gate array (SoC-FPGA) based portable spectrometer integrating the major hardware elements of NQR instrumentation. These include: a high pulsewidth resolution pulse programmer, a fully controllable pulse transmitter, an acquisition module that performs detection, digital signal processing, and storage of the acquired signal in an external memory, in addition to a hardware debugger. Pulser and acquisition Linux applications are embedded on the SoC-FPGA. While many recent compact spectrometers still have crucial RF parts in the analog domain and lack performance optimization, most of our hardware and software modules are digitally implemented on SoC-FPGA. The designed portable spectrometer was successfully tested by detecting the expected frequencies of several samples such as sodium nitrite (NaNO 2 ), hexamethylenetetramine (HMT) or 1,3,5-trichlorobenzene (1,3,5-TCB) covering hence the typical <inline-formula> <tex-math notation="LaTeX">^{14}\text {N} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">^{35}\text {Cl} </tex-math></inline-formula> NQR frequency ranges.
Nuclear Quadrupolar Resonance (NQR) is a radio frequency spectroscopy technique providing high resolutionmolecular analysis of solid materials containing quadrupolar atomic nuclei. The NQR technique does not necessitate an external magnetic field and, therefore, permits a large number of applications; it nevertheless suffers from relatively low sensitivity.The challenges of NQR instrumentation are therefore to increase its portability and sensitivity, and to limit interference from various noise sources (e.g., radio frequency interference) in order to perform field applications outside the laboratory. To address these challenges, we present a System-on-Chip Field-ProgrammableGate Array (SoC-FPGA) based portable spectrometer integrating the major hardware elements of NQR instrumentation. These include : a high pulse width resolution pulse programmer, a fully controllable pulse transmitter, an acquisition module that performs detection, digital signal processing and storage of the acquired signal in an external memory, in addition to a hardware debugger. Pulser and acquisition Linux applications are embedded on the SoC-FPGA. While many recent compact spectrometers still have crucial radio frequency (RF) parts in the analog domain and lack performance optimization, most of our hardware and software modules are digitally implemented on SoC-FPGA. The designed portable spectrometer was successfully tested by detecting the expected frequencies of several samples such as NaNO2 , HMT or 1, 3, 5 − TCB covering hence thetypical 14N and 35Cl NQR frequency ranges.
Nuclear quadrupolar resonance (NQR) is a radio frequency (RF) spectroscopy technique providing high-resolution molecular analysis of solid materials containing quadrupolar atomic nuclei. The NQR technique does not necessitate an external magnetic field and, therefore, permits a large number of applications; it nevertheless suffers from relatively low sensitivity. The challenges of NQR instrumentation are therefore to increase its portability and sensitivity, and to limit interference from various noise sources (e.g., RF interference) in order to perform field applications outside the laboratory. To address these challenges, we present a system-on-chip field-programmable gate array (SoC-FPGA) based portable spectrometer integrating the major hardware elements of NQR instrumentation. These include: a high pulsewidth resolution pulse programmer, a fully controllable pulse transmitter, an acquisition module that performs detection, digital signal processing, and storage of the acquired signal in an external memory, in addition to a hardware debugger. Pulser and acquisition Linux applications are embedded on the SoC-FPGA. While many recent compact spectrometers still have crucial RF parts in the analog domain and lack performance optimization, most of our hardware and software modules are digitally implemented on SoC-FPGA. The designed portable spectrometer was successfully tested by detecting the expected frequencies of several samples such as sodium nitrite (NaNO2), hexamethylenetetramine (HMT) or 1,3,5-trichlorobenzene (1,3,5-TCB) covering hence the typical [Formula Omitted] and [Formula Omitted] NQR frequency ranges.
Author Gansmuller, Axel
Rabah, Hassan
Kachkachi, Noreddine
Author_xml – sequence: 1
  givenname: Noreddine
  orcidid: 0009-0007-1817-5609
  surname: Kachkachi
  fullname: Kachkachi, Noreddine
  email: noreddine.kachkachi@univ-lorraine.fr
  organization: CRM2, CNRS, Université de Lorraine, Nancy, France
– sequence: 2
  givenname: Axel
  orcidid: 0000-0002-1156-8430
  surname: Gansmuller
  fullname: Gansmuller, Axel
  organization: CRM2, Université de Lorraine, Nancy, France
– sequence: 3
  givenname: Hassan
  orcidid: 0000-0001-6334-3084
  surname: Rabah
  fullname: Rabah, Hassan
  organization: Institut Jean Lamour, Université de Lorraine, Nancy, France
BackLink https://hal.science/hal-04519770$$DView record in HAL
BookMark eNpNkEtPwkAUhScGEwHdu3AxiSsXxXk_loi8EhQVdDsZ2lstgU5ti9F_bwnEuLrJzXdOTr4OauUhB4QuKelRSuztcvrQY4SJHudacGpPUJtKqSOrFGuhNiHURFZIdYY6VbUmhGgldBvN76HK3nPs8wQPvwsosy3ktd_gN7_JEl9nIcchxR4vwiAaPY370Z2vIMGDsC18XOPH5xe8KCCuy7CFGspzdJr6TQUXx9tFr6PhcjCJZvPxdNCfRTFntI6sJpIx00wFltAURJquJNExNUJRBamRMWimlE64hNhrs1JJbI2UzHthjORddHPo_fAbVzSrffnjgs_cpD9z-x8RklqtyRdt2OsDW5ThcwdV7dZhV-bNPMes5cZSbURDkQMVl6GqSkj_ailxe8WuUez2it1RcRO5OkQyAPiHC8Wk5vwXY-52IQ
CODEN IEIMAO
Cites_doi 10.3390/s21186029
10.1016/j.jmr.2018.12.007
10.1109/TIM.2020.2993981
10.1016/S0009-2614(01)00602-9
10.1063/1.4872710
10.1007/0-387-37590-2_2
10.1016/j.jmr.2009.09.019
10.1016/j.ssnmr.2012.08.004
10.1038/s41598-019-47634-2
10.1016/j.jmr.2015.02.011
10.1063/1.4916206
10.1109/TCBB.2015.2511763
10.1063/1.1743129
10.1109/JSSC.2016.2579158
10.1504/IJIT.2018.090863
10.1109/JSEN.2013.2285177
10.1109/TCSI.2005.857870
10.1016/j.jmr.2014.08.002
10.1109/isscc.2016.7418113
10.1063/1.1374599
10.1038/nm.1711
10.1016/S0009-2614(02)01109-0
10.1109/JSSC.2009.2017007
10.1109/JSEN.2020.3038158
10.1016/S0924-4247(97)01722-6
10.1063/1.4896351
10.1002/cmr.b.21401
10.1016/j.mri.2018.09.018
10.1063/1.2712940
10.3390/electronics9121996
10.1016/j.jmr.2016.03.004
10.1063/1.4754296
10.1109/JSSC.2010.2074630
10.1039/C5AN00500K
10.11591/ijece.v8i3.pp1442-1450
10.1016/j.sse.2013.02.005
10.1016/j.crci.2007.08.011
10.1016/j.jmr.2008.02.019
10.1016/j.jmr.2010.12.005
10.1109/asscc.2013.6691076
10.1039/C4AN01285B
10.1016/B978-0-12-409547-2.12673-3
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
1XC
VOOES
DOI 10.1109/TIM.2024.3374319
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEL
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList

Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 12
ExternalDocumentID oai_HAL_hal_04519770v1
10_1109_TIM_2024_3374319
10462573
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AASAJ
AAYOK
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TN5
TWZ
VH1
VJK
XFK
AAYXX
CITATION
7SP
7U5
8FD
L7M
1XC
VOOES
ID FETCH-LOGICAL-c321t-9705228374e2d1fe4ffb507c184616ef85ce72667d35eca78b6dc98552aa48853
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Tue Oct 15 15:57:40 EDT 2024
Thu Oct 10 19:49:35 EDT 2024
Fri Aug 23 02:17:00 EDT 2024
Wed Jun 26 19:40:20 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords NQR instrumentation
RTL design
Sensitivity
Experimental validation
SoC-FPGA
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-9705228374e2d1fe4ffb507c184616ef85ce72667d35eca78b6dc98552aa48853
ORCID 0000-0002-1156-8430
0000-0001-6334-3084
0009-0007-1817-5609
OpenAccessLink https://hal.science/hal-04519770
PQID 2993891784
PQPubID 85462
PageCount 12
ParticipantIDs ieee_primary_10462573
proquest_journals_2993891784
crossref_primary_10_1109_TIM_2024_3374319
hal_primary_oai_HAL_hal_04519770v1
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref50
ref46
ref48
ref43
(ref45) 2015
ref49
Bedet (ref39) 2004
ref8
ref7
ref9
(ref37) 2015
ref4
ref3
ref6
ref5
(ref53) 2020
ref40
ref35
ref34
ref36
ref31
ref30
ref33
ref32
ref2
ref1
(ref44) 2016
(ref41) 2016
(ref54) 2020
(ref51) 2019
ref24
(ref52) 2023
ref23
ref26
ref25
ref20
ref22
ref21
(ref38) 2016
ref28
Zorin (ref47) 2022
ref27
ref29
Demin (ref42) 2016
References_xml – volume-title: Zynq-7000 All Programmable SoC Data Sheet
  year: 2016
  ident: ref44
– ident: ref25
  doi: 10.3390/s21186029
– ident: ref30
  doi: 10.1016/j.jmr.2018.12.007
– ident: ref32
  doi: 10.1109/TIM.2020.2993981
– ident: ref49
  doi: 10.1016/S0009-2614(01)00602-9
– volume-title: Redstone
  year: 2020
  ident: ref54
– ident: ref36
  doi: 10.1063/1.4872710
– ident: ref1
  doi: 10.1007/0-387-37590-2_2
– volume-title: (1525). MITEQ-AU-1525
  year: 2015
  ident: ref37
– volume-title: Zynq UltraScale+ RFSoC Boards, Kits, and Modules
  year: 2023
  ident: ref52
– ident: ref16
  doi: 10.1016/j.jmr.2009.09.019
– ident: ref46
  doi: 10.1016/j.ssnmr.2012.08.004
– ident: ref10
  doi: 10.1038/s41598-019-47634-2
– ident: ref28
  doi: 10.1016/j.jmr.2015.02.011
– ident: ref9
  doi: 10.1063/1.4916206
– ident: ref2
  doi: 10.1109/TCBB.2015.2511763
– ident: ref50
  doi: 10.1063/1.1743129
– ident: ref21
  doi: 10.1109/JSSC.2016.2579158
– ident: ref34
  doi: 10.1504/IJIT.2018.090863
– ident: ref8
  doi: 10.1109/JSEN.2013.2285177
– volume-title: Kea2 Spectrometer
  year: 2020
  ident: ref53
– ident: ref11
  doi: 10.1109/TCSI.2005.857870
– ident: ref26
  doi: 10.1016/j.jmr.2014.08.002
– volume-title: Redpitaya FPGA
  year: 2016
  ident: ref41
– year: 2016
  ident: ref42
  publication-title: Red Pitaya Notes
  contributor:
    fullname: Demin
– ident: ref20
  doi: 10.1109/isscc.2016.7418113
– ident: ref17
  doi: 10.1063/1.1374599
– ident: ref4
  doi: 10.1038/nm.1711
– ident: ref48
  doi: 10.1016/S0009-2614(02)01109-0
– start-page: 125
  volume-title: STEMlab
  year: 2016
  ident: ref38
– ident: ref5
  doi: 10.1109/JSSC.2009.2017007
– ident: ref35
  doi: 10.1109/JSEN.2020.3038158
– ident: ref12
  doi: 10.1016/S0924-4247(97)01722-6
– ident: ref27
  doi: 10.1063/1.4896351
– ident: ref29
  doi: 10.1002/cmr.b.21401
– ident: ref31
  doi: 10.1016/j.mri.2018.09.018
– ident: ref43
  doi: 10.1063/1.2712940
– ident: ref24
  doi: 10.3390/electronics9121996
– year: 2022
  ident: ref47
  publication-title: GSim—Visualisation and Processing Tool for NMR Experiments and Simulations
  contributor:
    fullname: Zorin
– ident: ref14
  doi: 10.1016/j.jmr.2016.03.004
– ident: ref23
  doi: 10.1063/1.4754296
– ident: ref6
  doi: 10.1109/JSSC.2010.2074630
– ident: ref19
  doi: 10.1039/C5AN00500K
– ident: ref33
  doi: 10.11591/ijece.v8i3.pp1442-1450
– ident: ref7
  doi: 10.1016/j.sse.2013.02.005
– volume-title: Elaboration d’un logiciel de traitement de données d’experience de RMN
  year: 2004
  ident: ref39
  contributor:
    fullname: Bedet
– ident: ref40
  doi: 10.1016/j.crci.2007.08.011
– ident: ref22
  doi: 10.1016/j.jmr.2008.02.019
– ident: ref13
  doi: 10.1016/j.jmr.2010.12.005
– volume-title: Nqrprobe
  year: 2015
  ident: ref45
– start-page: 250
  volume-title: SIGNALlab
  year: 2019
  ident: ref51
– ident: ref15
  doi: 10.1109/asscc.2013.6691076
– ident: ref18
  doi: 10.1039/C4AN01285B
– ident: ref3
  doi: 10.1016/B978-0-12-409547-2.12673-3
SSID ssj0007647
Score 2.4367845
Snippet Nuclear quadrupolar resonance (NQR) is a radio frequency (RF) spectroscopy technique providing high-resolution molecular analysis of solid materials containing...
Nuclear Quadrupolar Resonance (NQR) is a radio frequency spectroscopy technique providing high resolutionmolecular analysis of solid materials containing...
SourceID hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 1
SubjectTerms Controllability
Digital signal processing
Electronics
Engineering Sciences
Experimental validation
Field programmable gate arrays
Frequency ranges
Hardware
Hexamethylenetetramine
Instrumentation and Detectors
Instruments
Modules
Nuclear magnetic resonance
nuclear quadrupolar resonance (NQR) instrumentation
Nuclei (nuclear physics)
Physics
Portability
Pulse duration
Radio frequency
Radio frequency interference
register transfer level (RTL) design
Registers
Sensitivity
Sodium nitrite
Software
Spectrometers
System on chip
system-on-chip field-programmable gate array (SoC-FPGA)
Title Design and Experimental Validation of a SoC-FPGA-Based Compact NQR Spectrometer
URI https://ieeexplore.ieee.org/document/10462573
https://www.proquest.com/docview/2993891784
https://hal.science/hal-04519770
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5sQdCDz4rVKkG8eNi6j2yyOVZtraL1Ld6WzWMRhFbs1oO_3kl2K1URvC3Lbgj5kvkmmck3APsCKUeyzMYHFfUok4EnEyk8qpkttx0o5moRXA5Y_4GeP8VP1WV1dxfGGOOSz0zbPrpYvh6piT0qO7TxSJxiUQ1qXIjystaX2eWMlgKZAa5gdAumMUlfHN6fXeJOMKTtKLKEKb5xUO3ZZkC60iq_7LEjmd4yDKbdK3NLXtqTQrbVxw_lxn_3fwWWKneTdMr5sQpzZrgGizMihGsw75JA1Xgdrk5cOgfJhpp0Z5T_ySM662XtJTLKSUbuRsde7_q04x0hB2ribIoqyODmlth69oWVQEC8GvDQ694f972q4IKnojAoPMH92MnhUBPqIDc0zyX6iwp3gSxgJk9iZTgyOtdRbFTGE8m0Ekkch1mGhiCONqA-HA3NJpA48yPlZyyRoaa4tBPBlUJCZppJbEc04WAKQfpa6mqkbj_iixThSi1caQVXE_YQo6_PrCB2v3OR2ndOHYdz_z1oQsMO-Exj5Vg3oTXFNK2W5zhFDrbxWZ7QrT9-24YF24XysKUF9eJtYnbQ_Sjkrpt2n_V10jo
link.rule.ids 230,315,783,787,799,888,4033,27937,27938,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB4Vqgo4lJaHCIR2VfXSg4Mf-_Ae05Q0tElaSkDcVt6HhYSUIHA48OuZXTsopULqzbLslb3f7nyzO7PfAHyWSDmaFz4-aGhEuU4inWsZUct9ue3E8FCLYDTmg3P645JdNofVw1kY51xIPnMdfxli-XZm5n6r7MjHI3GIZSvwmnnHoj6u9WR4Bae1RGaCcxgdg0VUMpZHk5MRrgVT2skyT5nyLxZaufI5kKG4yj8WOdBMfxPGiw-ss0uuO_NKd8zDM-3G__6Dd_C2cThJtx4h7-GVm27BxpIM4Ra8CWmg5m4bfn0LCR2kmFpyvKT9Ty7QXa-rL5FZSQpyNutF_d_fu9FXZEFLglUxFRmf_iG-on3lRRAQsR047x9PeoOoKbkQmSxNqkiKmAVBHOpSm5SOlqVGj9HgOpAn3JU5M04gpwubMWcKkWtujcwZS4sCTQHLdmF1Opu6PSCsiDMTFzzXqaU4uXMpjEFK5pZrbEe24MsCAnVTK2uosCKJpUK4lIdLNXC14BNi9PSYl8QedIfK3wv6OELE90kLdnyHLzVW93UL2gtMVTNB7xSysI_Qipzuv_DaR1gbTEZDNTwZ_zyAdf859dZLG1ar27k7RGek0h_CEHwEJWvVhw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+Experimental+Validation+of+a+SoC-FPGA-Based+Compact+NQR+Spectrometer&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Kachkachi%2C+Noreddine&rft.au=Gansmuller%2C+Axel&rft.au=Rabah%2C+Hassan&rft.date=2024&rft.pub=IEEE&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=73&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTIM.2024.3374319&rft.externalDocID=10462573
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon