Circularly polarized wave propagation in a class of bodies defined by a new class of implicit constitutive relations

In this paper, we show that circularly polarized transverse stress waves, standing shear stress waves, and oscillatory shear stress waves can propagate in a new class of viscoelastic solid bodies which are a subclass of bodies described by implicit constitutive theories. The class of models that is...

Full description

Saved in:
Bibliographic Details
Published inZeitschrift für angewandte Mathematik und Physik Vol. 65; no. 5; pp. 1003 - 1010
Main Authors Rajagopal, K. R., Saccomandi, Giuseppe
Format Journal Article
LanguageEnglish
Published Basel Springer Basel 01.10.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we show that circularly polarized transverse stress waves, standing shear stress waves, and oscillatory shear stress waves can propagate in a new class of viscoelastic solid bodies which are a subclass of bodies described by implicit constitutive theories. The class of models that is being considered includes as sub-classes, the classical Kelvin–Voigt model, the new models introduced by Rajagopal wherein the Cauchy–Green tensor is a non-linear function of the stress, and the Navier–Stokes fluid model. The solutions established in this paper are generalizations of solutions that have been established within the context of nonlinear elasticity by Carroll, and Destrade and Saccomandi, to the new class of elastic and viscoelastic bodies that are being considered.
AbstractList In this paper, we show that circularly polarized transverse stress waves, standing shear stress waves, and oscillatory shear stress waves can propagate in a new class of viscoelastic solid bodies which are a subclass of bodies described by implicit constitutive theories. The class of models that is being considered includes as sub-classes, the classical Kelvin–Voigt model, the new models introduced by Rajagopal wherein the Cauchy–Green tensor is a non-linear function of the stress, and the Navier–Stokes fluid model. The solutions established in this paper are generalizations of solutions that have been established within the context of nonlinear elasticity by Carroll, and Destrade and Saccomandi, to the new class of elastic and viscoelastic bodies that are being considered.
Author Rajagopal, K. R.
Saccomandi, Giuseppe
Author_xml – sequence: 1
  givenname: K. R.
  surname: Rajagopal
  fullname: Rajagopal, K. R.
  organization: Department of Mechanical Engineering, Texas A & M University
– sequence: 2
  givenname: Giuseppe
  surname: Saccomandi
  fullname: Saccomandi, Giuseppe
  email: giuseppe.saccomandi@unipg.it
  organization: Dipartimento di Ingegneria Industriale, Università degli Studi di Perugia
BookMark eNp9kEtLAzEUhYNUsK3-AHf5A6N5zSNLKT4KBTe6DpmZm5IyTYYktdRfb9oKgosuLvdCznc4OTM0cd4BQveUPFBC6sdICOG8IDQPr1ghr9CUCkYKSbicoCkhQhSM1eUNmsW4yeqaEj5FaWFDtxt0GA549Hnbb-jxXn8BHoMf9Von6x22DmvcDTpG7A1ufW8h4h6MdVndHvKjg_2fwG7HwXY24c67mGzaJZsNAwwnt3iLro0eItz97jn6fHn-WLwVq_fX5eJpVXSc0ZSjt62poBFVLZsGSi5LRqu2bIRgPYiyB1qVoje80sI0WlLCTMckaMinoA2fo_rs2wUfYwCjcqZThBS0HRQl6lieOpencnnqWJ6SmaT_yDHYrQ6Hiww7MzFr3RqC2vhdcPmDF6AfnP6E4A
CitedBy_id crossref_primary_10_1177_1081286519872233
crossref_primary_10_1016_j_ijnonlinmec_2015_07_005
crossref_primary_10_1016_j_wavemoti_2016_03_008
crossref_primary_10_1016_j_apples_2021_100058
crossref_primary_10_1093_imamat_hxae017
crossref_primary_10_1186_s13662_023_03751_x
crossref_primary_10_1007_s00033_020_01315_7
crossref_primary_10_1142_S021820252350001X
crossref_primary_10_3389_fmats_2016_00036
crossref_primary_10_3390_math12193011
crossref_primary_10_3934_cpaa_2021053
crossref_primary_10_1016_j_ijengsci_2015_10_009
crossref_primary_10_1016_j_wavemoti_2017_12_003
crossref_primary_10_1177_10812865231188931
crossref_primary_10_1016_j_ijsolstr_2021_111255
crossref_primary_10_1016_j_jde_2020_06_052
crossref_primary_10_1016_j_ijnonlinmec_2020_103433
crossref_primary_10_1137_21M1455322
Cites_doi 10.1016/j.wavemoti.2007.07.002
10.1002/andp.18922831210
10.1016/j.ijengsci.2010.06.013
10.1007/3-540-29089-3
10.1007/BF01602111
10.1023/A:1026062615145
10.1098/rspa.1950.0035
10.1007/BF00130471
10.1016/j.wavemoti.2014.02.004
10.1017/S0022112005008025
10.1007/s00033-006-6084-5
10.1103/PhysRevE.72.016620
10.1098/rspl.1865.0052
10.1093/qjmam/30.2.223
10.1016/j.amc.2013.03.049
10.1007/BF01453713
ContentType Journal Article
Copyright Springer Basel 2013
Copyright_xml – notice: Springer Basel 2013
DBID AAYXX
CITATION
DOI 10.1007/s00033-013-0362-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Physics
EISSN 1420-9039
EndPage 1010
ExternalDocumentID 10_1007_s00033_013_0362_9
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1SB
2.D
203
28-
29R
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
6TJ
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFFNX
AFLOW
AFQWF
AFWTZ
AFZKB
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
MBV
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9P
PF0
PQQKQ
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
YLTOR
Z45
ZMTXR
_50
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c321t-90bbf6e8467988e5395216b58442de45de1654df36a4f8a9102fc29eae9104183
IEDL.DBID U2A
ISSN 0044-2275
IngestDate Tue Jul 01 03:39:38 EDT 2025
Thu Apr 24 23:08:21 EDT 2025
Fri Feb 21 02:38:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Viscoelasticity
Implicit elastic models
Shear waves
Circularly polarized waves
Secondary 74B99
Primary 74J30
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-90bbf6e8467988e5395216b58442de45de1654df36a4f8a9102fc29eae9104183
PageCount 8
ParticipantIDs crossref_citationtrail_10_1007_s00033_013_0362_9
crossref_primary_10_1007_s00033_013_0362_9
springer_journals_10_1007_s00033_013_0362_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-10-01
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationSubtitle Journal of Applied Mathematics and Physics / Journal de Mathématiques et de Physique appliquées
PublicationTitle Zeitschrift für angewandte Mathematik und Physik
PublicationTitleAbbrev Z. Angew. Math. Phys
PublicationYear 2014
Publisher Springer Basel
Publisher_xml – name: Springer Basel
References Kannan, K., Rajagopal K.R., Saccomandi G.: Unsteady motions of a new class of elastic solids. submitted (2013)
CarrollM.M.Oscillatory shearing of nonlinearly elastic solidsZ. Angew Math. Phys.197425838810.1007/BF016021110291.73027
VoigtW.Ueber inner Reiburg fester Koerper, insbesondere der MetalleAnnalen der Physik189228367169310.1002/andp.18922831210
BoltzmannL.Sitzungsber KaiserlichAkad. Wiss (Wien) Math. Naturwiss Classe187470II275
MaxwellJ.C.On the dynamical theory of gasesPhilos. Trans. R. Soc. Lond. A18661572678
OldroydJ.G.On the formulation of rheological equations of stateProc. R. Soc. Lond. A1950200235913519210.1098/rspa.1950.0035
ThompsonW.On the elasticity and viscosity of metalsProc. R. Soc. Lond. A186514289297
RajagopalK.R.On implicit constitutive theoriesAppl. Math.200348279319199437810.1023/A:10260626151451099.74009
BoillatG.La propagation des ondes1965ParisGauthier-Villars0151.45104
CarrollM.M.Some results on finite amplitude elastic wavesActa Mechanica1967316718110.1007/BF01453713
MalekJ.PrusaV.RajagopalK.R.Generalizations of a Navier–Stokes fluid from a new perspectiveInt. J. Eng. Sci.20104819071924277875210.1016/j.ijengsci.2010.06.0131231.76073
CarrollM.M.Finite amplitude standing waves in compressible elastic solidsJ. Elast.1978832332810.1007/BF00130471
CarrollM.M.Plane circular shearing of incompressible fluids and solidsQ. J. Mech. Appl. Math.19763022323410.1093/qjmam/30.2.223
DestradeM.SaccomandiG.On finite amplitude elastic waves propagating in compressible solidsPhys. Rev. E2005720016620217839110.1103/PhysRevE.72.016620
Burgers, J.M.: Mechanical considerations-model systems. phenomenological theories of relaxation and viscosity. In: First Report on Viscosity and Plasticity, 2nd ed. Nordeman Publishing Company Inc., New York. Prepared by the committee of viscosity of the Academy of Sciences at Amsterdam (1939)
DafermosC.Hyperbolic Conservation Laws in Continuum Physics20052HeidelbergSpringer10.1007/3-540-29089-31078.35001
NarayananA.RajagopalK.R.Unsteady flows of a class of novel generalizations of a Navier–Stokes fluidAppl. Math. Comput.201321999359946305571110.1016/j.amc.2013.03.049
Saccomandi, G.: On the mathematical structure of the determining equations for transverse waves in nonlinear elasticity. submitted (2013)
DestradeM.SaccomandiG.Nonlinear transverse waves in deformed dispersive solidsWave Motion200845325336245005110.1016/j.wavemoti.2007.07.0021231.74244
SpencerA.J.M.EringenC.Theory of invariantsContinuum Physics1971New YorkAcademic Press239353
RajagopalK.R.On implicit constitutive theories for fluidsJ. Fluid Mech.2006550243249226398410.1017/S00221120050080251097.76009
RajagopalK.R.The elasticity of elasticityZAMP20075830931710.1007/s00033-006-6084-51113.74006
C. Dafermos (362_CR8) 2005
K.R. Rajagopal (362_CR16) 2003; 48
K.R. Rajagopal (362_CR18) 2007; 58
362_CR3
A.J.M. Spencer (362_CR20) 1971
362_CR11
M. Destrade (362_CR10) 2008; 45
M. Destrade (362_CR9) 2005; 72
K.R. Rajagopal (362_CR17) 2006; 550
M.M. Carroll (362_CR4) 1967; 3
W. Voigt (362_CR22) 1892; 283
L. Boltzmann (362_CR2) 1874; 70
M.M. Carroll (362_CR6) 1976; 30
M.M. Carroll (362_CR7) 1978; 8
J.G. Oldroyd (362_CR15) 1950; 200
A. Narayanan (362_CR14) 2013; 219
M.M. Carroll (362_CR5) 1974; 25
J.C. Maxwell (362_CR12) 1866; 157
J. Malek (362_CR13) 2010; 48
W. Thompson (362_CR21) 1865; 14
G. Boillat (362_CR1) 1965
362_CR19
References_xml – reference: MalekJ.PrusaV.RajagopalK.R.Generalizations of a Navier–Stokes fluid from a new perspectiveInt. J. Eng. Sci.20104819071924277875210.1016/j.ijengsci.2010.06.0131231.76073
– reference: OldroydJ.G.On the formulation of rheological equations of stateProc. R. Soc. Lond. A1950200235913519210.1098/rspa.1950.0035
– reference: BoillatG.La propagation des ondes1965ParisGauthier-Villars0151.45104
– reference: CarrollM.M.Oscillatory shearing of nonlinearly elastic solidsZ. Angew Math. Phys.197425838810.1007/BF016021110291.73027
– reference: RajagopalK.R.On implicit constitutive theories for fluidsJ. Fluid Mech.2006550243249226398410.1017/S00221120050080251097.76009
– reference: MaxwellJ.C.On the dynamical theory of gasesPhilos. Trans. R. Soc. Lond. A18661572678
– reference: CarrollM.M.Plane circular shearing of incompressible fluids and solidsQ. J. Mech. Appl. Math.19763022323410.1093/qjmam/30.2.223
– reference: DestradeM.SaccomandiG.Nonlinear transverse waves in deformed dispersive solidsWave Motion200845325336245005110.1016/j.wavemoti.2007.07.0021231.74244
– reference: Saccomandi, G.: On the mathematical structure of the determining equations for transverse waves in nonlinear elasticity. submitted (2013)
– reference: DestradeM.SaccomandiG.On finite amplitude elastic waves propagating in compressible solidsPhys. Rev. E2005720016620217839110.1103/PhysRevE.72.016620
– reference: VoigtW.Ueber inner Reiburg fester Koerper, insbesondere der MetalleAnnalen der Physik189228367169310.1002/andp.18922831210
– reference: ThompsonW.On the elasticity and viscosity of metalsProc. R. Soc. Lond. A186514289297
– reference: CarrollM.M.Finite amplitude standing waves in compressible elastic solidsJ. Elast.1978832332810.1007/BF00130471
– reference: Burgers, J.M.: Mechanical considerations-model systems. phenomenological theories of relaxation and viscosity. In: First Report on Viscosity and Plasticity, 2nd ed. Nordeman Publishing Company Inc., New York. Prepared by the committee of viscosity of the Academy of Sciences at Amsterdam (1939)
– reference: Kannan, K., Rajagopal K.R., Saccomandi G.: Unsteady motions of a new class of elastic solids. submitted (2013)
– reference: SpencerA.J.M.EringenC.Theory of invariantsContinuum Physics1971New YorkAcademic Press239353
– reference: BoltzmannL.Sitzungsber KaiserlichAkad. Wiss (Wien) Math. Naturwiss Classe187470II275
– reference: RajagopalK.R.On implicit constitutive theoriesAppl. Math.200348279319199437810.1023/A:10260626151451099.74009
– reference: NarayananA.RajagopalK.R.Unsteady flows of a class of novel generalizations of a Navier–Stokes fluidAppl. Math. Comput.201321999359946305571110.1016/j.amc.2013.03.049
– reference: CarrollM.M.Some results on finite amplitude elastic wavesActa Mechanica1967316718110.1007/BF01453713
– reference: DafermosC.Hyperbolic Conservation Laws in Continuum Physics20052HeidelbergSpringer10.1007/3-540-29089-31078.35001
– reference: RajagopalK.R.The elasticity of elasticityZAMP20075830931710.1007/s00033-006-6084-51113.74006
– volume: 45
  start-page: 325
  year: 2008
  ident: 362_CR10
  publication-title: Wave Motion
  doi: 10.1016/j.wavemoti.2007.07.002
– volume: 283
  start-page: 671
  year: 1892
  ident: 362_CR22
  publication-title: Annalen der Physik
  doi: 10.1002/andp.18922831210
– volume: 48
  start-page: 1907
  year: 2010
  ident: 362_CR13
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2010.06.013
– ident: 362_CR19
– volume-title: La propagation des ondes
  year: 1965
  ident: 362_CR1
– volume-title: Hyperbolic Conservation Laws in Continuum Physics
  year: 2005
  ident: 362_CR8
  doi: 10.1007/3-540-29089-3
– volume: 25
  start-page: 83
  year: 1974
  ident: 362_CR5
  publication-title: Z. Angew Math. Phys.
  doi: 10.1007/BF01602111
– volume: 157
  start-page: 26
  year: 1866
  ident: 362_CR12
  publication-title: Philos. Trans. R. Soc. Lond. A
– volume: 48
  start-page: 279
  year: 2003
  ident: 362_CR16
  publication-title: Appl. Math.
  doi: 10.1023/A:1026062615145
– ident: 362_CR3
– volume: 200
  start-page: 23
  year: 1950
  ident: 362_CR15
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1950.0035
– start-page: 239
  volume-title: Continuum Physics
  year: 1971
  ident: 362_CR20
– volume: 8
  start-page: 323
  year: 1978
  ident: 362_CR7
  publication-title: J. Elast.
  doi: 10.1007/BF00130471
– ident: 362_CR11
  doi: 10.1016/j.wavemoti.2014.02.004
– volume: 550
  start-page: 243
  year: 2006
  ident: 362_CR17
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112005008025
– volume: 58
  start-page: 309
  year: 2007
  ident: 362_CR18
  publication-title: ZAMP
  doi: 10.1007/s00033-006-6084-5
– volume: 72
  start-page: 0016620
  year: 2005
  ident: 362_CR9
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.72.016620
– volume: 14
  start-page: 289
  year: 1865
  ident: 362_CR21
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspl.1865.0052
– volume: 70
  start-page: 275
  issue: II
  year: 1874
  ident: 362_CR2
  publication-title: Akad. Wiss (Wien) Math. Naturwiss Classe
– volume: 30
  start-page: 223
  year: 1976
  ident: 362_CR6
  publication-title: Q. J. Mech. Appl. Math.
  doi: 10.1093/qjmam/30.2.223
– volume: 219
  start-page: 9935
  year: 2013
  ident: 362_CR14
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2013.03.049
– volume: 3
  start-page: 167
  year: 1967
  ident: 362_CR4
  publication-title: Acta Mechanica
  doi: 10.1007/BF01453713
SSID ssj0007103
Score 2.1365428
Snippet In this paper, we show that circularly polarized transverse stress waves, standing shear stress waves, and oscillatory shear stress waves can propagate in a...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 1003
SubjectTerms Engineering
Mathematical Methods in Physics
Theoretical and Applied Mechanics
Title Circularly polarized wave propagation in a class of bodies defined by a new class of implicit constitutive relations
URI https://link.springer.com/article/10.1007/s00033-013-0362-9
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60RdCDaFWsj7IHT8pCs9mkybGU1qLUk4V6CvuEQElKG5X6653dJtGCCt4SMklgJzvzTeabGYRuPC6pp4QkYB01YcwXJIpiSrjyDJc96QXc_tCfPIXjKXuYBbOyjntVsd2rlKSz1HWxW9fNHXPTCGypT7yLmgGE7pbHNaX92vyCyyzTyoxQ2guqVOZPj9h2RtuZUOdgRkfosESGuL9R5THa0VkLHXzrFwhnk7rJ6qqF9hx7U65OUDFIl45POl_jhY1V0w-t8Dt_0xgMJJgMt_w4zTDH0sJlnBsscksgxEobeIHCYg0XAWN_CaSObJ4WWOYlowAsI15W7LlTNB0NnwdjUo5TINKnXkHirhAm1BZwxFGkAz8G1x0KQCCMKs0CpW1lkzJ-yJmJOOAIaiSNNddwyGDrn6FGlmf6HGGIIQFnRIxLA3jLZmZD34hAaAjgFESEbdSt1jWRZa9xO_JintRdkp0qElBFYlWRxG10W9-y2DTa-Ev4rlJWUu651e_SF_-SvkT7AIrYhrB3hRrF8lVfA_AoRAc1-_cvj8OO--A-ATUmz8k
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60IupBtCrW5x48KYFms0mTYymWqm1PLfQW9gmBkpQmKvXXO7tNogUVvCVkksDOZuabzDczCN25TBBXcuGAdVQOpR53wjAiDpOuZqIjXJ-ZH_qjcTCY0ueZPyvruPOK7V6lJK2lrovd2nbumJ1GYEp9om20A1ggNFt5Srq1-QWXWaaVqUNIx69SmT89YtMZbWZCrYPpH6HDEhni7lqVx2hLpU108K1fIJyN6iareRPtWvamyE9Q0UuWlk86X-GFiVWTDyXxO3tTGAwkmAy7_DhJMcPCwGWcacwzQyDEUml4gcR8BRcBY38JJJZsnhRYZCWjACwjXlbsuVM07T9OegOnHKfgCI-4hRO1OdeBMoAjCkPlexG47oADAqFEKupLZSqbpPYCRnXIAEcQLUikmIJDCp_-GWqkWarOEYYYEnBGSJnQgLdMZjbwNPe5ggBOQkTYQu1qXWNR9ho3Iy_mcd0l2aoiBlXERhVx1EL39S2LdaONv4QfKmXF5TeX_y598S_pW7Q3mIyG8fBp_HKJ9gEg0TV57wo1iuWrugYQUvAbu-k-AZ8c0Sg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60ouhBtCrW5x48KaHNZpMmx1It9dHiwUJvYZ8QKElpo1J_vbPbJFpQwVtCJglkNjPf7Hwzg9CVywRxJRcOWEflUOpxJwwj4jDpaibawvWZ2dAfDIP-iD6M_XEx53Rest3LlOSypsF0aUrz5lTqZlX41rIzyOxkAlP2E62jDWqKgWFBj0inMsXgPosUM3UIaftlWvOnR6w6ptWsqHU2vT20W6BE3FmqdR-tqbSOdr71DoSzQdVwdV5Hm5bJKeYHKO8mM8stnSzw1MStyYeS-J29KQzGEsyHVQVOUsywMNAZZxrzzJAJsVQaXiAxX8BFwNtfAoklnic5FlnBLgAriWclk-4QjXp3L92-U4xWcIRH3NyJWpzrQBnwEYWh8r0I3HjAAY1QIhX1pTJVTlJ7AaM6ZIApiBYkUkzBIQUzcIRqaZaqY4QhngTMEVImNGAvk6UNPM19riCYkxAdNlCr_K6xKPqOm_EXk7jqmGxVEYMqYqOKOGqg6-qW6bLpxl_CN6Wy4uL_m_8uffIv6Uu09Xzbi5_uh4-naBuwEl3y-M5QLZ-9qnPAIzm_sGvuE9x71Vs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Circularly+polarized+wave+propagation+in+a+class+of+bodies+defined+by+a+new+class+of+implicit+constitutive+relations&rft.jtitle=Zeitschrift+f%C3%BCr+angewandte+Mathematik+und+Physik&rft.au=Rajagopal%2C+K.+R.&rft.au=Saccomandi%2C+Giuseppe&rft.date=2014-10-01&rft.pub=Springer+Basel&rft.issn=0044-2275&rft.eissn=1420-9039&rft.volume=65&rft.issue=5&rft.spage=1003&rft.epage=1010&rft_id=info:doi/10.1007%2Fs00033-013-0362-9&rft.externalDocID=10_1007_s00033_013_0362_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-2275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-2275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-2275&client=summon