Ammonia/ammonium removal/recovery from wastewaters using bioelectrochemical systems (BES): A review
This review updates the current research efforts on using BES to recover NH3/NH4+, highlighting the novel configurations and introducing the working principles and the applications of microbial fuel cell (MFC), microbial electrolysis cell (MEC), microbial desalination cell (MDC), and microbial elect...
Saved in:
Published in | Bioresource technology Vol. 363; p. 127927 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
01.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This review updates the current research efforts on using BES to recover NH3/NH4+, highlighting the novel configurations and introducing the working principles and the applications of microbial fuel cell (MFC), microbial electrolysis cell (MEC), microbial desalination cell (MDC), and microbial electrosynthesis cell (MESC) for NH3/NH4+ removal/recovery. However, commonly studied BES processes for NH3/NH4+ removal/recovery are energy intensive with external aeration needed for NH3 stripping being the largest energy input. In such a process bipolar membranes used for yielding a local alkaline pool recovering NH3 is not cost-effective. This gives a chance to microbial electrosynthesis which turned out to be a potential alternative option to approach circular bioeconomy. Furtherly, the reactor volume and NH3/NH4+ removal/recovery efficiency has a weakly positive correlation, indicating that there might be other factors controlling the reactor performance that are yet to be investigated.This review updates the current research efforts on using BES to recover NH3/NH4+, highlighting the novel configurations and introducing the working principles and the applications of microbial fuel cell (MFC), microbial electrolysis cell (MEC), microbial desalination cell (MDC), and microbial electrosynthesis cell (MESC) for NH3/NH4+ removal/recovery. However, commonly studied BES processes for NH3/NH4+ removal/recovery are energy intensive with external aeration needed for NH3 stripping being the largest energy input. In such a process bipolar membranes used for yielding a local alkaline pool recovering NH3 is not cost-effective. This gives a chance to microbial electrosynthesis which turned out to be a potential alternative option to approach circular bioeconomy. Furtherly, the reactor volume and NH3/NH4+ removal/recovery efficiency has a weakly positive correlation, indicating that there might be other factors controlling the reactor performance that are yet to be investigated. |
---|---|
AbstractList | This review updates the current research efforts on using BES to recover NH₃/NH₄⁺, highlighting the novel configurations and introducing the working principles and the applications of microbial fuel cell (MFC), microbial electrolysis cell (MEC), microbial desalination cell (MDC), and microbial electrosynthesis cell (MESC) for NH₃/NH₄⁺ removal/recovery. However, commonly studied BES processes for NH₃/NH₄⁺ removal/recovery are energy intensive with external aeration needed for NH₃ stripping being the largest energy input. In such a process bipolar membranes used for yielding a local alkaline pool recovering NH₃ is not cost-effective. This gives a chance to microbial electrosynthesis which turned out to be a potential alternative option to approach circular bioeconomy. Furtherly, the reactor volume and NH₃/NH₄⁺ removal/recovery efficiency has a weakly positive correlation, indicating that there might be other factors controlling the reactor performance that are yet to be investigated. This review updates the current research efforts on using BES to recover NH3/NH4+, highlighting the novel configurations and introducing the working principles and the applications of microbial fuel cell (MFC), microbial electrolysis cell (MEC), microbial desalination cell (MDC), and microbial electrosynthesis cell (MESC) for NH3/NH4+ removal/recovery. However, commonly studied BES processes for NH3/NH4+ removal/recovery are energy intensive with external aeration needed for NH3 stripping being the largest energy input. In such a process bipolar membranes used for yielding a local alkaline pool recovering NH3 is not cost-effective. This gives a chance to microbial electrosynthesis which turned out to be a potential alternative option to approach circular bioeconomy. Furtherly, the reactor volume and NH3/NH4+ removal/recovery efficiency has a weakly positive correlation, indicating that there might be other factors controlling the reactor performance that are yet to be investigated.This review updates the current research efforts on using BES to recover NH3/NH4+, highlighting the novel configurations and introducing the working principles and the applications of microbial fuel cell (MFC), microbial electrolysis cell (MEC), microbial desalination cell (MDC), and microbial electrosynthesis cell (MESC) for NH3/NH4+ removal/recovery. However, commonly studied BES processes for NH3/NH4+ removal/recovery are energy intensive with external aeration needed for NH3 stripping being the largest energy input. In such a process bipolar membranes used for yielding a local alkaline pool recovering NH3 is not cost-effective. This gives a chance to microbial electrosynthesis which turned out to be a potential alternative option to approach circular bioeconomy. Furtherly, the reactor volume and NH3/NH4+ removal/recovery efficiency has a weakly positive correlation, indicating that there might be other factors controlling the reactor performance that are yet to be investigated. |
ArticleNumber | 127927 |
Author | Xue, Mianqiang Lin, Bin-Le Lee, Yu-Jen Tsunemi, Kiyotaka |
Author_xml | – sequence: 1 givenname: Yu-Jen surname: Lee fullname: Lee, Yu-Jen – sequence: 2 givenname: Bin-Le surname: Lin fullname: Lin, Bin-Le – sequence: 3 givenname: Mianqiang surname: Xue fullname: Xue, Mianqiang – sequence: 4 givenname: Kiyotaka surname: Tsunemi fullname: Tsunemi, Kiyotaka |
BookMark | eNqNkbFu2zAURYnCBeqk_YVCozvIJh8lUgy6uEbSBjCQIelMUPRTQ0MUXZK24b-PErdLlmS6y7n3DueCTIYwICFfGZ0zysRiO29diBnt4xwowJyBVCA_kClrJC9BSTEhU6oELZsaqk_kIqUtpZQzCVNil96HwZmFecm9LyL6cDD9IqINB4ynoovBF0eTMh5NxpiKfXLDn2I8xR5tjsE-onfW9EU6jZBPxezH9f23q2I5bh0cHj-Tj53pE375l5fk9831w-pXub77ebtarkvLgeVSWgBOW6ZQmVpA2xmhNm2rhGhYw5DLDauBd5w3bYuWG2YlF5XswFb1RlUtvySz8-4uhr97TFl7lyz2vRkw7JMGCZxRoLR-B8oqWqtKshEVZ9TGkFLETu-i8yaeNKP6WYDe6v8C9LMAfRYwFr-_KlqXTXZhyNG4_q36EzAckx0 |
CitedBy_id | crossref_primary_10_1016_j_watres_2023_120276 crossref_primary_10_1016_j_cej_2023_144855 crossref_primary_10_1007_s13201_024_02355_4 crossref_primary_10_1016_j_biortech_2023_129969 crossref_primary_10_1016_j_jwpe_2024_105006 crossref_primary_10_1016_j_biortech_2022_128327 crossref_primary_10_1016_j_jclepro_2023_137309 crossref_primary_10_1016_j_seppur_2023_125002 crossref_primary_10_2478_pjct_2023_0024 crossref_primary_10_1016_j_chemosphere_2023_139027 crossref_primary_10_1016_j_cej_2022_140782 crossref_primary_10_1016_j_jece_2025_116161 crossref_primary_10_1007_s00449_024_03079_0 crossref_primary_10_1016_j_bioelechem_2024_108707 crossref_primary_10_1016_j_cogsc_2023_100853 crossref_primary_10_1016_j_jclepro_2023_137641 |
Cites_doi | 10.1016/j.cej.2017.06.182 10.1016/j.jwpe.2020.101734 10.1016/j.biortech.2012.11.080 10.3390/pr9111916 10.1016/j.scitotenv.2021.148755 10.1016/j.biosystemseng.2022.02.002 10.1021/acs.iecr.8b04944 10.1016/j.jece.2021.105289 10.1016/S0304-3800(00)00372-0 10.1016/S0043-1354(00)00484-X 10.1016/j.biortech.2019.121926 10.1007/s11356-021-12700-8 10.1016/j.jclepro.2020.120788 10.1016/j.chemosphere.2021.132383 10.1016/j.biortech.2021.124980 10.1021/acssuschemeng.1c06161 10.1016/j.watres.2021.117722 10.1016/j.bioelechem.2021.107889 10.1021/es3028154 10.1016/j.cej.2017.07.130 10.1016/j.cej.2019.123689 10.1016/j.bios.2019.111884 10.1016/j.scitotenv.2020.144133 10.1016/j.jclepro.2021.126639 10.1016/j.watres.2012.02.025 10.1007/s11157-018-9470-5 10.3390/su13168796 10.5004/dwt.2018.23149 10.1016/j.jwpe.2021.102471 10.1016/j.biortech.2013.05.108 10.1038/nature08465 10.1016/j.rser.2010.10.005 10.1016/j.scitotenv.2020.141379 10.1016/j.jclepro.2021.129326 10.1016/j.tibtech.2010.01.007 10.1016/j.biortech.2021.125025 10.1016/j.copbio.2019.03.007 10.1016/j.scitotenv.2019.04.206 10.1016/j.biortech.2021.126641 10.1016/j.biortech.2021.126512 10.1016/j.jenvman.2021.113871 10.1016/j.biortech.2021.124741 10.1039/C8GC01771A 10.3390/pr9060985 10.1016/j.biortech.2015.01.002 10.1016/j.chemosphere.2021.132386 10.1016/j.renene.2017.02.001 10.1016/j.apenergy.2020.114616 10.1016/j.jclepro.2021.126554 10.1016/j.biortech.2021.125358 10.1016/j.jwpe.2021.101938 10.1016/j.biortech.2021.125308 10.1016/j.jwpe.2021.102450 10.1016/j.biortech.2021.125088 10.1016/j.scitotenv.2021.148446 10.1016/j.biortech.2021.125995 10.1016/j.procbio.2020.11.002 10.1016/j.biortech.2021.125913 10.1016/j.biortech.2020.124168 10.1016/j.wasman.2017.06.012 10.1016/j.biotechadv.2013.10.001 10.1016/j.biortech.2013.07.130 10.1016/j.biortech.2021.125353 10.1016/j.chemosphere.2021.129715 10.1016/j.envpol.2021.118033 10.1016/j.biortech.2021.126589 10.1016/j.jece.2021.106193 10.1016/j.biortech.2016.02.006 10.1016/j.jclepro.2017.10.022 10.1016/j.scitotenv.2020.144231 10.1016/j.jclepro.2021.126834 10.1016/j.jclepro.2020.123203 10.1016/j.cej.2021.131281 10.1016/j.biortech.2015.12.046 10.1016/j.renene.2016.03.047 10.1016/j.biortech.2020.122863 10.1126/science.1185383 10.1016/j.biortech.2021.126462 10.1016/j.biortech.2021.125231 10.1016/j.jcou.2017.04.014 10.1016/j.ijhydene.2012.01.092 10.1016/j.biortech.2022.126698 10.1063/5.0045047 10.1080/10643389.2020.1813065 10.1016/j.ijhydene.2011.02.130 10.1016/j.scitotenv.2020.143485 10.1021/acs.est.5b03821 10.1016/j.memsci.2020.118538 10.1016/j.biortech.2016.07.006 10.1007/s11783-018-1005-3 10.1016/j.jclepro.2021.128650 10.1016/j.biortech.2018.07.111 10.1016/j.ijhydene.2015.07.139 10.1016/j.biortech.2010.12.015 10.3390/membranes11090661 10.1016/j.jece.2021.106286 10.1016/j.coelec.2019.04.015 10.1016/j.biortech.2020.124363 10.1016/j.wasman.2015.12.011 10.1186/s40643-022-00544-0 10.1021/es801553z 10.1016/j.jtice.2015.04.028 10.1016/j.watres.2018.11.072 10.1002/bit.21687 10.1016/j.ijhydene.2020.09.110 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.biortech.2022.127927 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
ExternalDocumentID | 10_1016_j_biortech_2022_127927 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AATTM AAXKI AAXUO AAYWO AAYXX ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABWVN ABXDB ACDAQ ACGFS ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADQTV ADUVX AEBSH AEGFY AEHWI AEIPS AEKER AENEX AEQOU AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGEKW AGHFR AGQPQ AGRDE AGRNS AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC BNPGV CITATION CJTIS CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSH SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c321t-7c2230b19e9a562bfa69dbb9668181e37d1523f338bbec3a1c73647f2c45d94b3 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Sun Aug 24 03:47:27 EDT 2025 Thu Aug 07 13:55:28 EDT 2025 Tue Jul 01 03:19:09 EDT 2025 Thu Apr 24 23:10:16 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c321t-7c2230b19e9a562bfa69dbb9668181e37d1523f338bbec3a1c73647f2c45d94b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PQID | 2714059471 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2723102005 proquest_miscellaneous_2714059471 crossref_primary_10_1016_j_biortech_2022_127927 crossref_citationtrail_10_1016_j_biortech_2022_127927 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-00 20221101 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-00 |
PublicationDecade | 2020 |
PublicationTitle | Bioresource technology |
PublicationYear | 2022 |
References | Lee (10.1016/j.biortech.2022.127927_b0235) 2019; 292 Godfray (10.1016/j.biortech.2022.127927_b0145) 2010; 327 Chen (10.1016/j.biortech.2022.127927_b0065) 2022; 17 Lin (10.1016/j.biortech.2022.127927_b0255) 2001; 35 Arun (10.1016/j.biortech.2022.127927_b0010) 2022; 301 Cerrillo (10.1016/j.biortech.2022.127927_b0035) 2021; 9 10.1016/j.biortech.2022.127927_b0310 Tong (10.1016/j.biortech.2022.127927_b0455) 2022; 9 Dai (10.1016/j.biortech.2022.127927_b0105) 2021; 9 Desloover (10.1016/j.biortech.2022.127927_b0120) 2012; 46 Jiang (10.1016/j.biortech.2022.127927_b0185) 2021; 336 Chawley (10.1016/j.biortech.2022.127927_b0055) 2021 Koomson (10.1016/j.biortech.2022.127927_b0215) 2021; 11 Qin (10.1016/j.biortech.2022.127927_b0370) 2017; 327 Schievano (10.1016/j.biortech.2022.127927_b0410) 2018; 71 van Linden (10.1016/j.biortech.2022.127927_b0460) 2020; 259 Zhu (10.1016/j.biortech.2022.127927_b0625) 2022; 45 Tao (10.1016/j.biortech.2022.127927_b0450) 2021; 297 10.1016/j.biortech.2022.127927_b0305 Yang (10.1016/j.biortech.2022.127927_b0540) 2021; 320 10.1016/j.biortech.2022.127927_b0425 Cerrillo (10.1016/j.biortech.2022.127927_b0045) 2021; 9 Qiu (10.1016/j.biortech.2022.127927_b0375) 2021 10.1016/j.biortech.2022.127927_b0140 Zhang (10.1016/j.biortech.2022.127927_b0595) 2021; 296 Kim (10.1016/j.biortech.2022.127927_b0205) 2008; 99 Arends (10.1016/j.biortech.2022.127927_b0005) 2017; 20 Wang (10.1016/j.biortech.2022.127927_b0490) 2022; 334 Zhang (10.1016/j.biortech.2022.127927_b0575) 2016; 218 Nagendranatha (10.1016/j.biortech.2022.127927_b0320) 2016; 98 Tan (10.1016/j.biortech.2022.127927_b0445) 2021; 9 Gujjala (10.1016/j.biortech.2022.127927_b0155) 2022; 288 Wang (10.1016/j.biortech.2022.127927_b0485) 2021; 330 Noori (10.1016/j.biortech.2022.127927_b0340) 2020; 392 Noori (10.1016/j.biortech.2022.127927_b0345) 2022 Han (10.1016/j.biortech.2022.127927_b0160) 2021; 101 Zhang (10.1016/j.biortech.2022.127927_b0570) 2016; 217 Han (10.1016/j.biortech.2022.127927_b0165) 2021; 319 Varjani (10.1016/j.biortech.2022.127927_b0465) 2021; 39 Wang (10.1016/j.biortech.2022.127927_b0480) 2021; 206 Logan (10.1016/j.biortech.2022.127927_b0280) 2008; 42 Cerrillo (10.1016/j.biortech.2022.127927_b0040) 2021; 9 Zhang (10.1016/j.biortech.2022.127927_b0590) 2020; 276 Zhang (10.1016/j.biortech.2022.127927_b0605) 2021; 331 Zhao (10.1016/j.biortech.2022.127927_b0615) 2021; 326 Logan (10.1016/j.biortech.2022.127927_b0275) 2007 Salehmin (10.1016/j.biortech.2022.127927_b0395) 2021; 759 Baek (10.1016/j.biortech.2022.127927_b0015) 2021; 426 Nelabhotla (10.1016/j.biortech.2022.127927_b0330) 2018; 17 Talan (10.1016/j.biortech.2022.127927_b0440) 2022; 17 Weng (10.1016/j.biortech.2022.127927_b0510) 2015; 56 Yang (10.1016/j.biortech.2022.127927_b0535) 2020; 748 Koffi (10.1016/j.biortech.2022.127927_b0210) 2021; 274 10.1016/j.biortech.2022.127927_b0325 Lu (10.1016/j.biortech.2022.127927_b0290) 2019; 300 Pant (10.1016/j.biortech.2022.127927_b0350) 2011; 15 Wang (10.1016/j.biortech.2022.127927_b0505) 2022; 346 10.1016/j.biortech.2022.127927_b0565 Lopes (10.1016/j.biortech.2022.127927_b0285) 2021; 92 Wu (10.1016/j.biortech.2022.127927_b0515) 2013; 146 Cohen (10.1016/j.biortech.2022.127927_b0100) 2021; 325 Gonzalez-Pabon (10.1016/j.biortech.2022.127927_b0150) 2021; 319 Beckinghausen (10.1016/j.biortech.2022.127927_b0020) 2020; 263 Dange (10.1016/j.biortech.2022.127927_b0115) 2021; 13 Ramdin (10.1016/j.biortech.2022.127927_b0380) 2019; 58 Karimian (10.1016/j.biortech.2022.127927_b0195) 2019; 17 Tabassum (10.1016/j.biortech.2022.127927_b0430) 2018; 172 Bousek (10.1016/j.biortech.2022.127927_b0030) 2016; 203 Kuntke (10.1016/j.biortech.2022.127927_b0225) 2012; 46 Takahashi (10.1016/j.biortech.2022.127927_b0435) 2021; 9 Zhang (10.1016/j.biortech.2022.127927_b0610) 2020; 45 Lu (10.1016/j.biortech.2022.127927_b0295) 2018; 12 Selvasembian (10.1016/j.biortech.2022.127927_b0420) 2022; 346 Villano (10.1016/j.biortech.2022.127927_b0470) 2013; 130 Lin (10.1016/j.biortech.2022.127927_b0250) 2000; 135 Zhang (10.1016/j.biortech.2022.127927_b0585) 2022 Huang (10.1016/j.biortech.2022.127927_b0175) 2022; 52 Cheng (10.1016/j.biortech.2022.127927_b0085) 2013; 143 Fernandez-Gatell (10.1016/j.biortech.2022.127927_b0135) 2022; 287 Chen (10.1016/j.biortech.2022.127927_b0080) 2017; 330 Zhang (10.1016/j.biortech.2022.127927_b0580) 2021; 334 Li (10.1016/j.biortech.2022.127927_b0245) 2016; 2 Satinover (10.1016/j.biortech.2022.127927_b0405) 2021; 299 Sanchez (10.1016/j.biortech.2022.127927_b0400) 2020; 150 Xu (10.1016/j.biortech.2022.127927_b0525) 2018; 135 Dang (10.1016/j.biortech.2022.127927_b0110) 2022; 347 Wang (10.1016/j.biortech.2022.127927_b0495) 2013; 31 Yang (10.1016/j.biortech.2022.127927_b0545) 2021; 337 Saeed (10.1016/j.biortech.2022.127927_b0390) 2021; 28 Liu (10.1016/j.biortech.2022.127927_b0270) 2016; 41 Parnamae (10.1016/j.biortech.2022.127927_b0360) 2021; 617 Lee (10.1016/j.biortech.2022.127927_b0230) 2012; 37 Hu (10.1016/j.biortech.2022.127927_b0170) 2018; 129 Park (10.1016/j.biortech.2022.127927_b0355) 2021; 764 10.1016/j.biortech.2022.127927_b0060 Dube (10.1016/j.biortech.2022.127927_b0130) 2016; 49 Katuri (10.1016/j.biortech.2022.127927_b0200) 2019; 57 Patel (10.1016/j.biortech.2022.127927_b0365) 2021; 332 Xu (10.1016/j.biortech.2022.127927_b0530) 2021; 40 Sciarria (10.1016/j.biortech.2022.127927_b0415) 2018; 20 Jourdin (10.1016/j.biortech.2022.127927_b0190) 2015; 49 Wang (10.1016/j.biortech.2022.127927_b0475) 2022; 335 Cheng (10.1016/j.biortech.2022.127927_b0090) 2021; 756 Do (10.1016/j.biortech.2022.127927_b0125) 2021; 795 Wang (10.1016/j.biortech.2022.127927_b0500) 2021; 342 Zhou (10.1016/j.biortech.2022.127927_b0620) 2021; 142 Chen (10.1016/j.biortech.2022.127927_b0075) 2022; 343 Lee (10.1016/j.biortech.2022.127927_b0240) 2010; 28 Liu (10.1016/j.biortech.2022.127927_b0265) 2011; 36 Luo (10.1016/j.biortech.2022.127927_b0300) 2019; 674 Nien (10.1016/j.biortech.2022.127927_b0335) 2011; 102 Minami (10.1016/j.biortech.2022.127927_b0315) 2022; 216 Jiang (10.1016/j.biortech.2022.127927_b0180) 2021; 337 Christiaens (10.1016/j.biortech.2022.127927_b0095) 2019; 150 Ye (10.1016/j.biortech.2022.127927_b0550) 2018; 268 Bian (10.1016/j.biortech.2022.127927_b0025) 2020; 302 Xu (10.1016/j.biortech.2022.127927_b0520) 2021; 44 Lin (10.1016/j.biortech.2022.127927_b0260) 2021; 290 Koskue (10.1016/j.biortech.2022.127927_b0220) 2021; 9 |
References_xml | – volume: 327 start-page: 924 year: 2017 ident: 10.1016/j.biortech.2022.127927_b0370 article-title: Integrated experimental and modeling evaluation of energy consumption for ammonia recovery in bioelectrochemical systems publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.06.182 – volume: 39 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0465 article-title: Trends in dye industry effluent treatment and recovery of value added products publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2020.101734 – volume: 130 start-page: 366 year: 2013 ident: 10.1016/j.biortech.2022.127927_b0470 article-title: Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.11.080 – volume: 9 start-page: 1916 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0045 article-title: Ammonium and phosphate recovery in a three chambered microbial electrolysis cell: Towards obtaining struvite from livestock manure publication-title: Processes doi: 10.3390/pr9111916 – start-page: 1 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0055 article-title: Envisioning role of ammonia oxidizing bacteria in bioenergy production and its challenges: a review publication-title: Crit. Rev. Biotechnol. – volume: 795 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0125 article-title: Performance of a dual-chamber microbial fuel cell as biosensor for on-line measuring ammonium nitrogen in synthetic municipal wastewater publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.148755 – volume: 216 start-page: 98 year: 2022 ident: 10.1016/j.biortech.2022.127927_b0315 article-title: Apparatus for ammonia removal in livestock farms based on copper hexacyanoferrate granules publication-title: Biosys. Eng. doi: 10.1016/j.biosystemseng.2022.02.002 – volume: 58 start-page: 1834 year: 2019 ident: 10.1016/j.biortech.2022.127927_b0380 article-title: High pressure electrochemical reduction of CO2 to formic acid/formate: A comparison between bipolar membranes and cation exchange membranes publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b04944 – volume: 335 year: 2022 ident: 10.1016/j.biortech.2022.127927_b0475 article-title: Integrating anaerobic digestion with bioelectrochemical system for performance enhancement: A mini review publication-title: Bioresour. Technol. – volume: 17 year: 2022 ident: 10.1016/j.biortech.2022.127927_b0440 article-title: Biorefinery strategies for microbial bioplastics production: Sustainable pathway towards circular bioeconomy publication-title: Bioresour. Technol. Rep. – volume: 9 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0040 article-title: Hydrophobic membranes for ammonia recovery from digestates in microbial electrolysis cells: Assessment of different configurations publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2021.105289 – volume: 135 start-page: 89 year: 2000 ident: 10.1016/j.biortech.2022.127927_b0250 article-title: Modelling a global biogeochemical nitrogen cycle in terrestrial ecosystems publication-title: Ecol. Model. doi: 10.1016/S0304-3800(00)00372-0 – volume: 35 start-page: 1961 year: 2001 ident: 10.1016/j.biortech.2022.127927_b0255 article-title: A modelling approach to global nitrogen leaching caused by anthropogenic fertilization publication-title: Water Res. doi: 10.1016/S0043-1354(00)00484-X – volume: 292 year: 2019 ident: 10.1016/j.biortech.2022.127927_b0235 article-title: Impact of adding metal nanoparticles on anaerobic digestion performance-A review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.121926 – ident: 10.1016/j.biortech.2022.127927_b0325 – volume: 28 start-page: 30908 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0390 article-title: Intensified constructed wetlands for the treatment of municipal wastewater: experimental investigation and kinetic modelling publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-021-12700-8 – volume: 259 year: 2020 ident: 10.1016/j.biortech.2022.127927_b0460 article-title: Bipolar membrane electrodialysis for energetically competitive ammonium removal and dissolved ammonia production publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.120788 – volume: 287 year: 2022 ident: 10.1016/j.biortech.2022.127927_b0135 article-title: Microbial activity enhancement in constructed wetlands operated as bioelectrochemical systems publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.132383 – volume: 300 year: 2019 ident: 10.1016/j.biortech.2022.127927_b0290 article-title: Adding carbon-based materials on anaerobic digestion performance: A mini-review publication-title: Bioresour. Technol. – volume: 330 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0485 article-title: Direct interspecies electron transfer mechanism in enhanced methanogenesis: A mini-review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.124980 – volume: 9 start-page: 16865 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0435 article-title: Harvesting a solid fertilizer directly from fetid air publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.1c06161 – volume: 206 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0480 article-title: Enhanced microalgae cultivation using wastewater nutrients extracted by a microbial electrochemical system publication-title: Water Res. doi: 10.1016/j.watres.2021.117722 – volume: 142 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0620 article-title: Electrode-dependent ammonium oxidation with different low C/N ratios in single-chambered microbial electrolysis cells publication-title: Bioelectrochem. doi: 10.1016/j.bioelechem.2021.107889 – year: 2022 ident: 10.1016/j.biortech.2022.127927_b0585 article-title: Efficient removal of tetracycline using U-type continuous-flow bioelectrochemical system without ion exchange membrane or cathodic catalyst publication-title: Bioresour. Technol. – volume: 46 start-page: 12209 year: 2012 ident: 10.1016/j.biortech.2022.127927_b0120 article-title: Electrochemical resource recovery from digestate to prevent ammonia toxicity during anaerobic digestion publication-title: Environ. Sci. Technol. doi: 10.1021/es3028154 – volume: 17 year: 2022 ident: 10.1016/j.biortech.2022.127927_b0065 article-title: Correlation of cells with proteins in extracellular polymeric substance matrix of bioaggregates publication-title: Bioresour. Technol. Rep. – volume: 330 start-page: 692 year: 2017 ident: 10.1016/j.biortech.2022.127927_b0080 article-title: Self-sustaining advanced wastewater purification and simultaneous in situ nutrient recovery in a novel bioelectrochemical system publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.07.130 – volume: 392 year: 2020 ident: 10.1016/j.biortech.2022.127927_b0340 article-title: Recent advances in cathode materials and configurations for upgrading methane in bioelectrochemical systems integrated with anaerobic digestion publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123689 – volume: 150 year: 2020 ident: 10.1016/j.biortech.2022.127927_b0400 article-title: Microbial electrochemical technologies: Electronic circuitry and characterization tools publication-title: Biosen. Bioelectron. doi: 10.1016/j.bios.2019.111884 – volume: 756 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0090 article-title: Evaluation of a continuous flow microbial fuel cell for treating synthetic swine wastewater containing antibiotics publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.144133 – volume: 297 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0450 article-title: Improvements of nitrogen removal and electricity generation in microbial fuel cell-constructed wetland with extra corncob for carbon-limited wastewater treatment publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.126639 – volume: 46 start-page: 2627 year: 2012 ident: 10.1016/j.biortech.2022.127927_b0225 article-title: Ammonium recovery and energy production from urine by a microbial fuel cell publication-title: Water Res. doi: 10.1016/j.watres.2012.02.025 – volume: 17 start-page: 531 year: 2018 ident: 10.1016/j.biortech.2022.127927_b0330 article-title: Electrochemically mediated CO2 reduction for bio-methane production: A review publication-title: Rev. Environ. Sci. Bio-technol. doi: 10.1007/s11157-018-9470-5 – volume: 9 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0035 article-title: Hydrophobic membranes for ammonia recovery from digestates in microbial electrolysis cells: Assessment of different configurations publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2021.105289 – volume: 13 start-page: 8796 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0115 article-title: Recent developments in microbial electrolysis cell-based biohydrogen production utilizing wastewater as a feedstock publication-title: Sustainability doi: 10.3390/su13168796 – volume: 135 start-page: 5993 year: 2018 ident: 10.1016/j.biortech.2022.127927_b0525 article-title: Economic benefit analysis of typical microbial fuel cells based on a cost-benefit analysis model publication-title: Desalinat. Water Treat. doi: 10.5004/dwt.2018.23149 – volume: 45 year: 2022 ident: 10.1016/j.biortech.2022.127927_b0625 article-title: Porous Co, N co-doped carbon derived from tea residue as efficient cathode catalyst in microbial fuel cells for swine wastewater treatment and the microbial community analysis publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2021.102471 – volume: 143 start-page: 25 year: 2013 ident: 10.1016/j.biortech.2022.127927_b0085 article-title: Ammonia recycling enables sustainable operation of bioelectrochemical systems publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.05.108 – ident: 10.1016/j.biortech.2022.127927_b0305 doi: 10.1038/nature08465 – ident: 10.1016/j.biortech.2022.127927_b0310 – volume: 15 start-page: 1305 year: 2011 ident: 10.1016/j.biortech.2022.127927_b0350 article-title: An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: Relevance and key aspects publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2010.10.005 – volume: 748 year: 2020 ident: 10.1016/j.biortech.2022.127927_b0535 article-title: One-pot degradation of urine wastewater by combining simultaneous halophilic nitrification and aerobic denitrification in air-exposed biocathode microbial fuel cells (AEB-MFCs) publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.141379 – volume: 325 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0100 article-title: Relieving pressure from coral reefs: Artificial oyster rocks can replace reef rocks used for biological filtration in marine aquariums publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.129326 – volume: 28 start-page: 262 year: 2010 ident: 10.1016/j.biortech.2022.127927_b0240 article-title: Biological hydrogen production: Prospects and challenges publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2010.01.007 – volume: 331 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0605 article-title: Enhanced performance of microbial fuel cells with enriched ferrous iron oxidation microflora at room temperatures publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.125025 – volume: 57 start-page: 101 year: 2019 ident: 10.1016/j.biortech.2022.127927_b0200 article-title: The role of microbial electrolysis cell in urban wastewater treatment: Integration options, challenges, and prospects publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2019.03.007 – volume: 674 start-page: 336 year: 2019 ident: 10.1016/j.biortech.2022.127927_b0300 article-title: Efficient reduction of nitrobenzene by sulfate-reducer enriched biocathode in microbial electrolysis cell publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.04.206 – volume: 346 year: 2022 ident: 10.1016/j.biortech.2022.127927_b0505 article-title: Enhancement of methane production from waste activated sludge using hybrid microbial electrolysis cells-anaerobic digestion (MEC-AD) process-A review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.126641 – volume: 2 start-page: 1022 year: 2016 ident: 10.1016/j.biortech.2022.127927_b0245 article-title: Self-sustained high-rate anammox: from biological to bioelectrochemical processes publication-title: Environ. Sci.: Water Res. Technol. – ident: 10.1016/j.biortech.2022.127927_b0425 doi: 10.1016/j.biortech.2021.126512 – volume: 301 year: 2022 ident: 10.1016/j.biortech.2022.127927_b0010 article-title: Bioelectricity production and shortcut nitrogen removal by microalgal-bacterial consortia using membrane photosynthetic microbial fuel cell publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2021.113871 – volume: 326 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0615 article-title: Coupling of nitrifying granular sludge into microbial fuel cell system for wastewater treatment: System performance, electricity production and microbial community shift publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.124741 – ident: 10.1016/j.biortech.2022.127927_b0140 – volume: 20 start-page: 4058 year: 2018 ident: 10.1016/j.biortech.2022.127927_b0415 article-title: Bio-electrorecycling of carbon dioxide into bioplastics publication-title: Green Chem. doi: 10.1039/C8GC01771A – volume: 9 start-page: 985 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0445 article-title: Microbial fuel cell technology – A critical review on scale-up issues publication-title: Processes doi: 10.3390/pr9060985 – ident: 10.1016/j.biortech.2022.127927_b0565 doi: 10.1016/j.biortech.2015.01.002 – volume: 288 year: 2022 ident: 10.1016/j.biortech.2022.127927_b0155 article-title: A state-of-the-art review on microbial desalination cells publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.132386 – volume: 129 start-page: 824 year: 2018 ident: 10.1016/j.biortech.2022.127927_b0170 article-title: Feasible use of microbial fuel cells for pollution treatment publication-title: Renew. Energy doi: 10.1016/j.renene.2017.02.001 – volume: 263 year: 2020 ident: 10.1016/j.biortech.2022.127927_b0020 article-title: From removal to recovery: An evaluation of nitrogen recovery techniques from wastewater publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.114616 – volume: 296 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0595 article-title: Ammonia recovery from wastewater using a bioelectrochemical membrane-absorbed ammonia system with authigenic acid and base publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.126554 – volume: 337 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0180 article-title: Enhanced bioelectricity output of microbial fuel cells via electrospinning zeolitic imidazolate framework-67/polyacrylonitrile carbon nanofiber cathode publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.125358 – year: 2007 ident: 10.1016/j.biortech.2022.127927_b0275 – volume: 40 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0530 article-title: Simultaneous removal of nitrate/nitrite and ammonia in a circular microbial electrolysis cell at low C/N ratios publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2021.101938 – volume: 336 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0185 article-title: The influence of external resistance on the performance of microbial fuel cell and the removal of sulfamethoxazole wastewater publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.125308 – volume: 44 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0520 article-title: Effect of drained-flooded time ratio on ammonia nitrogen removal in a constructed wetland-microbial fuel cell system by tidal flow operation publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2021.102450 – volume: 332 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0365 article-title: Electroactive bacterial community augmentation enhances the performance of a pilot scale constructed wetland microbial fuel cell for treatment of textile dye wastewater publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.125088 – start-page: 148446 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0375 article-title: Simultaneous mineralization of 2-anilinophenylacetate and denitrification by Ru/Fe modified biocathode double-chamber microbial fuel cell publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.148446 – volume: 342 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0500 article-title: Cost-efficient microbial electrosynthesis of hydrogen peroxide on a facile-prepared floating electrode by entrapping oxygen publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.125995 – volume: 101 start-page: 104 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0160 article-title: Combined microbial electrolysis cell–iron-air battery system for hydrogen production and swine wastewater treatment publication-title: Process Biochem. doi: 10.1016/j.procbio.2020.11.002 – volume: 343 year: 2022 ident: 10.1016/j.biortech.2022.127927_b0075 article-title: Biofilm with highly heterogeneous interior structure for pollutant removal: Cell distribution and manipulated mass transport publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.125913 – volume: 319 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0150 article-title: Hydrogen production in two-chamber MEC using a low-cost and biodegradable poly(vinyl) alcohol/chitosan membrane publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.124168 – volume: 71 start-page: 785 year: 2018 ident: 10.1016/j.biortech.2022.127927_b0410 article-title: Single-chamber microbial fuel cells as on-line shock-sensors for volatile fatty acids in anaerobic digesters publication-title: Waste Manage. doi: 10.1016/j.wasman.2017.06.012 – volume: 31 start-page: 1796 year: 2013 ident: 10.1016/j.biortech.2022.127927_b0495 article-title: A comprehensive review of microbial electrochemical systems as a platform technology publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2013.10.001 – volume: 146 start-page: 530 year: 2013 ident: 10.1016/j.biortech.2022.127927_b0515 article-title: Ammonium recovery from reject water combined with hydrogen production in a bioelectrochemical reactor publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.07.130 – volume: 337 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0545 article-title: Bio-electrochemically extracted nitrogen from residual resources for microbial protein production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.125353 – volume: 274 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0210 article-title: Bioelectrochemical anoxic ammonium nitrogen removal by an MFC driven single chamber microbial electrolysis cell publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.129715 – volume: 290 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0260 article-title: Increased nitrogen deposition contributes to plant biodiversity loss in Japan: Insights from long-term historical monitoring data publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2021.118033 – year: 2022 ident: 10.1016/j.biortech.2022.127927_b0345 article-title: A critical review on microbe-electrode interactions towards heavy metal ion detection using microbial fuel cell technology publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.126589 – volume: 9 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0105 article-title: Mechanism involved in the treatment of sulfamethoxazole in wastewater using a constructed wetland microbial fuel cell system publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2021.106193 – volume: 217 start-page: 121 year: 2016 ident: 10.1016/j.biortech.2022.127927_b0570 article-title: Microbial fuel cells as pollutant treatment units: Research updates publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.02.006 – volume: 172 start-page: 368 year: 2018 ident: 10.1016/j.biortech.2022.127927_b0430 article-title: Efficient nitrification treatment of comprehensive industrial wastewater by using novel mass biosystem publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.10.022 – volume: 764 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0355 article-title: Understanding complete ammonium removal mechanism in single-chamber microbial fuel cells based on microbial ecology publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.144231 – volume: 299 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0405 article-title: Green hydrogen from microalgal liquefaction byproducts with ammonia recovery and effluent recycle for developing circular processes publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.126834 – volume: 276 year: 2020 ident: 10.1016/j.biortech.2022.127927_b0590 article-title: Simultaneous electricity generation and nitrogen and carbon removal in single-chamber microbial fuel cell for high-salinity wastewater treatment publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.123203 – volume: 426 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0015 article-title: Impact of surface area and current generation of microbial electrolysis cell electrodes inserted into anaerobic digesters publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131281 – volume: 203 start-page: 259 year: 2016 ident: 10.1016/j.biortech.2022.127927_b0030 article-title: Influence of the gas composition on the efficiency of ammonia stripping of biogas digestate publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.12.046 – volume: 98 start-page: 188 year: 2016 ident: 10.1016/j.biortech.2022.127927_b0320 article-title: Integrated bio-electrogenic process for bioelectricity production and cathodic nutrient recovery from azo dye wastewater publication-title: Renew. Energ. doi: 10.1016/j.renene.2016.03.047 – ident: 10.1016/j.biortech.2022.127927_b0060 – volume: 302 year: 2020 ident: 10.1016/j.biortech.2022.127927_b0025 article-title: Microbial electrosynthesis from CO2: Challenges, opportunities and perspectives in the context of circular bioeconomy publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.122863 – volume: 327 start-page: 812 year: 2010 ident: 10.1016/j.biortech.2022.127927_b0145 article-title: Food security: The challenge of feeding 9 billion people publication-title: Science doi: 10.1126/science.1185383 – volume: 346 year: 2022 ident: 10.1016/j.biortech.2022.127927_b0420 article-title: Recent progress in microbial fuel cells for industrial effluent treatment and energy generation: Fundamentals to scale-up application and challenges publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.126462 – volume: 334 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0580 article-title: Circular economy-driven ammonium recovery from municipal wastewater: State of the art, challenges and solutions forward publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.125231 – volume: 20 start-page: 141 year: 2017 ident: 10.1016/j.biortech.2022.127927_b0005 article-title: Continuous long-term electricity-driven bioproduction of carboxylates and isopropanol from CO2 with a mixed microbial community publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2017.04.014 – volume: 37 start-page: 15827 year: 2012 ident: 10.1016/j.biortech.2022.127927_b0230 article-title: Electricity harvest from nitrate/sulfide-containing wastewaters using microbial fuel cell with autotrophic denitrified, Pseudomonas sp. C27 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.01.092 – volume: 347 year: 2022 ident: 10.1016/j.biortech.2022.127927_b0110 article-title: Current application of algae derivatives for bioplastic production: A review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2022.126698 – volume: 92 start-page: 25119 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0285 article-title: Prediction of fish mortality based on a probabilistic anomaly detection approach for recirculating aquaculture system facilities publication-title: Rev. Sci. Instrum. doi: 10.1063/5.0045047 – volume: 52 year: 2022 ident: 10.1016/j.biortech.2022.127927_b0175 article-title: A critical review of microbial electrolysis cells coupled with anaerobic digester for enhanced biomethane recovery from high-strength feedstocks publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2020.1813065 – volume: 36 start-page: 13896 year: 2011 ident: 10.1016/j.biortech.2022.127927_b0265 article-title: Occurrence of power overshoot for two-chambered MFC at nearly steady-state operation publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2011.02.130 – volume: 759 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0395 article-title: Pushing microbial desalination cells towards field application: Prevailing challenges, potential mitigation strategies, and future prospects publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.143485 – volume: 49 start-page: 13566 year: 2015 ident: 10.1016/j.biortech.2022.127927_b0190 article-title: High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b03821 – volume: 617 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0360 article-title: Bipolar membranes: A review on principles, latest developments and applications publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.118538 – volume: 218 start-page: 680 year: 2016 ident: 10.1016/j.biortech.2022.127927_b0575 article-title: Treatment of domestic sewage with anoxic/oxic membrane-less microbial fuel cell with intermittent aeration publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.07.006 – volume: 334 year: 2022 ident: 10.1016/j.biortech.2022.127927_b0490 article-title: Integrating anaerobic digestion with microbial electrolysis cell for performance enhancement: A review publication-title: Bioresour. Technol. – volume: 12 start-page: 13 issue: 2 year: 2018 ident: 10.1016/j.biortech.2022.127927_b0295 article-title: PM2.5-related health impacts of utilizing ammonia-hydrogen energy in Kanto Region, Japan publication-title: Front. Environ. Sci. Eng. doi: 10.1007/s11783-018-1005-3 – volume: 319 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0165 article-title: Decomposition of pollutants from domestic sewage with the combination systems of hydrolytic acidification coupling with constructed wetland microbial fuel cell publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.128650 – volume: 268 start-page: 749 year: 2018 ident: 10.1016/j.biortech.2022.127927_b0550 article-title: A critical review on ammonium recovery from wastewater for sustainable wastewater management publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.07.111 – volume: 41 start-page: 4504 year: 2016 ident: 10.1016/j.biortech.2022.127927_b0270 article-title: Performance of freshwater sediment microbial fuel cells: Consistency publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2015.07.139 – volume: 102 start-page: 4742 year: 2011 ident: 10.1016/j.biortech.2022.127927_b0335 article-title: Power overshoot in two-chambered microbial fuel cell (MFC) publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.12.015 – volume: 11 start-page: 661 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0215 article-title: Comparative studies of recirculatory microbial desalination cell–microbial electrolysis cell coupled systems publication-title: Membranes doi: 10.3390/membranes11090661 – volume: 9 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0220 article-title: Efficient nitrogen removal and recovery from real digestate sewage sludge reject water through elecrtoconcentration publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2021.106286 – volume: 17 start-page: 30 year: 2019 ident: 10.1016/j.biortech.2022.127927_b0195 article-title: The principles of bipolar electrochemistry and its electroanalysis applications publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2019.04.015 – volume: 320 year: 2021 ident: 10.1016/j.biortech.2022.127927_b0540 article-title: A review on self-sustainable microbial electrolysis cells for electro-biohydrogen production via coupling with carbon-neutral renewable energy technologies publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.124363 – volume: 49 start-page: 372 year: 2016 ident: 10.1016/j.biortech.2022.127927_b0130 article-title: Enhancing recovery of ammonia from swine anaerobic digester effluent using gas-permeable membrane technology publication-title: Waste Manag. doi: 10.1016/j.wasman.2015.12.011 – volume: 9 start-page: 55 year: 2022 ident: 10.1016/j.biortech.2022.127927_b0455 article-title: From formic acid to single-cell protein: genome-scale revealing the metabolic network of Paracoccus commumis MA5 publication-title: Bioresour. Bioprocess. doi: 10.1186/s40643-022-00544-0 – volume: 42 start-page: 8630 year: 2008 ident: 10.1016/j.biortech.2022.127927_b0280 article-title: Microbia electrolysis cells for high yield hydrogen gas production from organic matter publication-title: Environ. Sci. Technol. doi: 10.1021/es801553z – volume: 56 start-page: 148 year: 2015 ident: 10.1016/j.biortech.2022.127927_b0510 article-title: Performance of sulfate reducing bacteria-microbial fuel cells: reproducibility publication-title: J. Taiwan Inst. Chem. Engrs. doi: 10.1016/j.jtice.2015.04.028 – volume: 150 start-page: 349 year: 2019 ident: 10.1016/j.biortech.2022.127927_b0095 article-title: Membrane stripping enables effective electrochemical ammonia recovery from urine while retaining microorganisms and micropollutants publication-title: Water Res. doi: 10.1016/j.watres.2018.11.072 – volume: 99 start-page: 1120 year: 2008 ident: 10.1016/j.biortech.2022.127927_b0205 article-title: Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.21687 – volume: 45 start-page: 34099 year: 2020 ident: 10.1016/j.biortech.2022.127927_b0610 article-title: Effect of dissolved oxygen concentration on nitrogen removal and electricity generation in self pH-buffer microbial fuel cell publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.09.110 |
SSID | ssj0003172 |
Score | 2.5001657 |
SecondaryResourceType | review_article |
Snippet | This review updates the current research efforts on using BES to recover NH3/NH4+, highlighting the novel configurations and introducing the working principles... This review updates the current research efforts on using BES to recover NH₃/NH₄⁺, highlighting the novel configurations and introducing the working principles... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 127927 |
SubjectTerms | aeration ammonia ammonium bioeconomics cost effectiveness desalination electrosynthesis energy microbial electrolysis cells wastewater |
Title | Ammonia/ammonium removal/recovery from wastewaters using bioelectrochemical systems (BES): A review |
URI | https://www.proquest.com/docview/2714059471 https://www.proquest.com/docview/2723102005 |
Volume | 363 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fj5NAEN7U80F9MHpqPH9lTTTRNEuBXaD4Vi9tLk09H2yT-kR2Ybn09OCkoDkf_NudhV3gco2ePpQQyrKw87HMfLMzg9ArN5GMC88hScw4YaEtCLxFAfF9j4qQcbCcFaH_4dg_WrH52lsPBvPeqqWqFFb8c2dcyf9IFY6BXFWU7D9Itr0oHIB9kC9sQcKwvZaMJ6ortdp1xuu96mxYyLP8u0riP1OmLjzRRRNB8oNvFU2mcmkOq5ofEJtc18CJTdKAJq1zzcO-n3567YZN3HrR-Q-M-3eTF5r3H5ZXyHm9uOdzReZdoNlCF4bfZGTRgmldNcQ4YPQb_E5aHmFbZXBP9Sy0uchL_oX36QmwbJ2WntA8o2-TsdcESpspl_p0eG45KnlhQHZO5A2ncGrBWBTqOSx1bd2i-3QZd_3xx2i2Wiyi5XS9vIFuumAyqGoW1q9uuQ_oSbVHydxOL1p8dy-XFZXL3-la-VjeQ3e11YAnDQTuo4HM9tGdyUmhM6fIfXTr0JTug396WSYfoFjDZGRAgjVIRgYiWEEE9yCCa4jgqxDBGiL4DQDk7Ts8wQ04HqLVbLo8PCK6tgaJqeuUJIhBL7SFE8qQgwosUu6HiRBg_IIG50gaJKDY0ZTSsYC3nHInDlSlgdSNmZeETNBHaC_LM_kY4ZSGCZU2A9VWMo8x7iTuOIVWtmApdHGAPDOQUawTz6v6J18js8LwNDICiJQAokYAB2jUtjtvUq_8tcVLI6cIRly5vngm82obuSovpReCJvanc5Sto1jWJ9c45ym63cH9Gdori0o-B_20FC9q4P0G54GTQw |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ammonia%2Fammonium+removal%2Frecovery+from+wastewaters+using+bioelectrochemical+systems+%28BES%29%3A+A+review&rft.jtitle=Bioresource+technology&rft.au=Lee%2C+Yu-Jen&rft.au=Lin%2C+Bin-Le&rft.au=Xue%2C+Mianqiang&rft.au=Tsunemi%2C+Kiyotaka&rft.date=2022-11-01&rft.issn=0960-8524&rft.volume=363+p.127927-&rft_id=info:doi/10.1016%2Fj.biortech.2022.127927&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |