Ammonia/ammonium removal/recovery from wastewaters using bioelectrochemical systems (BES): A review

This review updates the current research efforts on using BES to recover NH3/NH4+, highlighting the novel configurations and introducing the working principles and the applications of microbial fuel cell (MFC), microbial electrolysis cell (MEC), microbial desalination cell (MDC), and microbial elect...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 363; p. 127927
Main Authors Lee, Yu-Jen, Lin, Bin-Le, Xue, Mianqiang, Tsunemi, Kiyotaka
Format Journal Article
LanguageEnglish
Published 01.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This review updates the current research efforts on using BES to recover NH3/NH4+, highlighting the novel configurations and introducing the working principles and the applications of microbial fuel cell (MFC), microbial electrolysis cell (MEC), microbial desalination cell (MDC), and microbial electrosynthesis cell (MESC) for NH3/NH4+ removal/recovery. However, commonly studied BES processes for NH3/NH4+ removal/recovery are energy intensive with external aeration needed for NH3 stripping being the largest energy input. In such a process bipolar membranes used for yielding a local alkaline pool recovering NH3 is not cost-effective. This gives a chance to microbial electrosynthesis which turned out to be a potential alternative option to approach circular bioeconomy. Furtherly, the reactor volume and NH3/NH4+ removal/recovery efficiency has a weakly positive correlation, indicating that there might be other factors controlling the reactor performance that are yet to be investigated.This review updates the current research efforts on using BES to recover NH3/NH4+, highlighting the novel configurations and introducing the working principles and the applications of microbial fuel cell (MFC), microbial electrolysis cell (MEC), microbial desalination cell (MDC), and microbial electrosynthesis cell (MESC) for NH3/NH4+ removal/recovery. However, commonly studied BES processes for NH3/NH4+ removal/recovery are energy intensive with external aeration needed for NH3 stripping being the largest energy input. In such a process bipolar membranes used for yielding a local alkaline pool recovering NH3 is not cost-effective. This gives a chance to microbial electrosynthesis which turned out to be a potential alternative option to approach circular bioeconomy. Furtherly, the reactor volume and NH3/NH4+ removal/recovery efficiency has a weakly positive correlation, indicating that there might be other factors controlling the reactor performance that are yet to be investigated.
AbstractList This review updates the current research efforts on using BES to recover NH₃/NH₄⁺, highlighting the novel configurations and introducing the working principles and the applications of microbial fuel cell (MFC), microbial electrolysis cell (MEC), microbial desalination cell (MDC), and microbial electrosynthesis cell (MESC) for NH₃/NH₄⁺ removal/recovery. However, commonly studied BES processes for NH₃/NH₄⁺ removal/recovery are energy intensive with external aeration needed for NH₃ stripping being the largest energy input. In such a process bipolar membranes used for yielding a local alkaline pool recovering NH₃ is not cost-effective. This gives a chance to microbial electrosynthesis which turned out to be a potential alternative option to approach circular bioeconomy. Furtherly, the reactor volume and NH₃/NH₄⁺ removal/recovery efficiency has a weakly positive correlation, indicating that there might be other factors controlling the reactor performance that are yet to be investigated.
This review updates the current research efforts on using BES to recover NH3/NH4+, highlighting the novel configurations and introducing the working principles and the applications of microbial fuel cell (MFC), microbial electrolysis cell (MEC), microbial desalination cell (MDC), and microbial electrosynthesis cell (MESC) for NH3/NH4+ removal/recovery. However, commonly studied BES processes for NH3/NH4+ removal/recovery are energy intensive with external aeration needed for NH3 stripping being the largest energy input. In such a process bipolar membranes used for yielding a local alkaline pool recovering NH3 is not cost-effective. This gives a chance to microbial electrosynthesis which turned out to be a potential alternative option to approach circular bioeconomy. Furtherly, the reactor volume and NH3/NH4+ removal/recovery efficiency has a weakly positive correlation, indicating that there might be other factors controlling the reactor performance that are yet to be investigated.This review updates the current research efforts on using BES to recover NH3/NH4+, highlighting the novel configurations and introducing the working principles and the applications of microbial fuel cell (MFC), microbial electrolysis cell (MEC), microbial desalination cell (MDC), and microbial electrosynthesis cell (MESC) for NH3/NH4+ removal/recovery. However, commonly studied BES processes for NH3/NH4+ removal/recovery are energy intensive with external aeration needed for NH3 stripping being the largest energy input. In such a process bipolar membranes used for yielding a local alkaline pool recovering NH3 is not cost-effective. This gives a chance to microbial electrosynthesis which turned out to be a potential alternative option to approach circular bioeconomy. Furtherly, the reactor volume and NH3/NH4+ removal/recovery efficiency has a weakly positive correlation, indicating that there might be other factors controlling the reactor performance that are yet to be investigated.
ArticleNumber 127927
Author Xue, Mianqiang
Lin, Bin-Le
Lee, Yu-Jen
Tsunemi, Kiyotaka
Author_xml – sequence: 1
  givenname: Yu-Jen
  surname: Lee
  fullname: Lee, Yu-Jen
– sequence: 2
  givenname: Bin-Le
  surname: Lin
  fullname: Lin, Bin-Le
– sequence: 3
  givenname: Mianqiang
  surname: Xue
  fullname: Xue, Mianqiang
– sequence: 4
  givenname: Kiyotaka
  surname: Tsunemi
  fullname: Tsunemi, Kiyotaka
BookMark eNqNkbFu2zAURYnCBeqk_YVCozvIJh8lUgy6uEbSBjCQIelMUPRTQ0MUXZK24b-PErdLlmS6y7n3DueCTIYwICFfGZ0zysRiO29diBnt4xwowJyBVCA_kClrJC9BSTEhU6oELZsaqk_kIqUtpZQzCVNil96HwZmFecm9LyL6cDD9IqINB4ynoovBF0eTMh5NxpiKfXLDn2I8xR5tjsE-onfW9EU6jZBPxezH9f23q2I5bh0cHj-Tj53pE375l5fk9831w-pXub77ebtarkvLgeVSWgBOW6ZQmVpA2xmhNm2rhGhYw5DLDauBd5w3bYuWG2YlF5XswFb1RlUtvySz8-4uhr97TFl7lyz2vRkw7JMGCZxRoLR-B8oqWqtKshEVZ9TGkFLETu-i8yaeNKP6WYDe6v8C9LMAfRYwFr-_KlqXTXZhyNG4_q36EzAckx0
CitedBy_id crossref_primary_10_1016_j_watres_2023_120276
crossref_primary_10_1016_j_cej_2023_144855
crossref_primary_10_1007_s13201_024_02355_4
crossref_primary_10_1016_j_biortech_2023_129969
crossref_primary_10_1016_j_jwpe_2024_105006
crossref_primary_10_1016_j_biortech_2022_128327
crossref_primary_10_1016_j_jclepro_2023_137309
crossref_primary_10_1016_j_seppur_2023_125002
crossref_primary_10_2478_pjct_2023_0024
crossref_primary_10_1016_j_chemosphere_2023_139027
crossref_primary_10_1016_j_cej_2022_140782
crossref_primary_10_1016_j_jece_2025_116161
crossref_primary_10_1007_s00449_024_03079_0
crossref_primary_10_1016_j_bioelechem_2024_108707
crossref_primary_10_1016_j_cogsc_2023_100853
crossref_primary_10_1016_j_jclepro_2023_137641
Cites_doi 10.1016/j.cej.2017.06.182
10.1016/j.jwpe.2020.101734
10.1016/j.biortech.2012.11.080
10.3390/pr9111916
10.1016/j.scitotenv.2021.148755
10.1016/j.biosystemseng.2022.02.002
10.1021/acs.iecr.8b04944
10.1016/j.jece.2021.105289
10.1016/S0304-3800(00)00372-0
10.1016/S0043-1354(00)00484-X
10.1016/j.biortech.2019.121926
10.1007/s11356-021-12700-8
10.1016/j.jclepro.2020.120788
10.1016/j.chemosphere.2021.132383
10.1016/j.biortech.2021.124980
10.1021/acssuschemeng.1c06161
10.1016/j.watres.2021.117722
10.1016/j.bioelechem.2021.107889
10.1021/es3028154
10.1016/j.cej.2017.07.130
10.1016/j.cej.2019.123689
10.1016/j.bios.2019.111884
10.1016/j.scitotenv.2020.144133
10.1016/j.jclepro.2021.126639
10.1016/j.watres.2012.02.025
10.1007/s11157-018-9470-5
10.3390/su13168796
10.5004/dwt.2018.23149
10.1016/j.jwpe.2021.102471
10.1016/j.biortech.2013.05.108
10.1038/nature08465
10.1016/j.rser.2010.10.005
10.1016/j.scitotenv.2020.141379
10.1016/j.jclepro.2021.129326
10.1016/j.tibtech.2010.01.007
10.1016/j.biortech.2021.125025
10.1016/j.copbio.2019.03.007
10.1016/j.scitotenv.2019.04.206
10.1016/j.biortech.2021.126641
10.1016/j.biortech.2021.126512
10.1016/j.jenvman.2021.113871
10.1016/j.biortech.2021.124741
10.1039/C8GC01771A
10.3390/pr9060985
10.1016/j.biortech.2015.01.002
10.1016/j.chemosphere.2021.132386
10.1016/j.renene.2017.02.001
10.1016/j.apenergy.2020.114616
10.1016/j.jclepro.2021.126554
10.1016/j.biortech.2021.125358
10.1016/j.jwpe.2021.101938
10.1016/j.biortech.2021.125308
10.1016/j.jwpe.2021.102450
10.1016/j.biortech.2021.125088
10.1016/j.scitotenv.2021.148446
10.1016/j.biortech.2021.125995
10.1016/j.procbio.2020.11.002
10.1016/j.biortech.2021.125913
10.1016/j.biortech.2020.124168
10.1016/j.wasman.2017.06.012
10.1016/j.biotechadv.2013.10.001
10.1016/j.biortech.2013.07.130
10.1016/j.biortech.2021.125353
10.1016/j.chemosphere.2021.129715
10.1016/j.envpol.2021.118033
10.1016/j.biortech.2021.126589
10.1016/j.jece.2021.106193
10.1016/j.biortech.2016.02.006
10.1016/j.jclepro.2017.10.022
10.1016/j.scitotenv.2020.144231
10.1016/j.jclepro.2021.126834
10.1016/j.jclepro.2020.123203
10.1016/j.cej.2021.131281
10.1016/j.biortech.2015.12.046
10.1016/j.renene.2016.03.047
10.1016/j.biortech.2020.122863
10.1126/science.1185383
10.1016/j.biortech.2021.126462
10.1016/j.biortech.2021.125231
10.1016/j.jcou.2017.04.014
10.1016/j.ijhydene.2012.01.092
10.1016/j.biortech.2022.126698
10.1063/5.0045047
10.1080/10643389.2020.1813065
10.1016/j.ijhydene.2011.02.130
10.1016/j.scitotenv.2020.143485
10.1021/acs.est.5b03821
10.1016/j.memsci.2020.118538
10.1016/j.biortech.2016.07.006
10.1007/s11783-018-1005-3
10.1016/j.jclepro.2021.128650
10.1016/j.biortech.2018.07.111
10.1016/j.ijhydene.2015.07.139
10.1016/j.biortech.2010.12.015
10.3390/membranes11090661
10.1016/j.jece.2021.106286
10.1016/j.coelec.2019.04.015
10.1016/j.biortech.2020.124363
10.1016/j.wasman.2015.12.011
10.1186/s40643-022-00544-0
10.1021/es801553z
10.1016/j.jtice.2015.04.028
10.1016/j.watres.2018.11.072
10.1002/bit.21687
10.1016/j.ijhydene.2020.09.110
ContentType Journal Article
Copyright Copyright © 2022 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.biortech.2022.127927
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
ExternalDocumentID 10_1016_j_biortech_2022_127927
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFS
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADQTV
ADUVX
AEBSH
AEGFY
AEHWI
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGEKW
AGHFR
AGQPQ
AGRDE
AGRNS
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
BNPGV
CITATION
CJTIS
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSH
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c321t-7c2230b19e9a562bfa69dbb9668181e37d1523f338bbec3a1c73647f2c45d94b3
ISSN 0960-8524
1873-2976
IngestDate Sun Aug 24 03:47:27 EDT 2025
Thu Aug 07 13:55:28 EDT 2025
Tue Jul 01 03:19:09 EDT 2025
Thu Apr 24 23:10:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c321t-7c2230b19e9a562bfa69dbb9668181e37d1523f338bbec3a1c73647f2c45d94b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PQID 2714059471
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2723102005
proquest_miscellaneous_2714059471
crossref_primary_10_1016_j_biortech_2022_127927
crossref_citationtrail_10_1016_j_biortech_2022_127927
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-00
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-00
PublicationDecade 2020
PublicationTitle Bioresource technology
PublicationYear 2022
References Lee (10.1016/j.biortech.2022.127927_b0235) 2019; 292
Godfray (10.1016/j.biortech.2022.127927_b0145) 2010; 327
Chen (10.1016/j.biortech.2022.127927_b0065) 2022; 17
Lin (10.1016/j.biortech.2022.127927_b0255) 2001; 35
Arun (10.1016/j.biortech.2022.127927_b0010) 2022; 301
Cerrillo (10.1016/j.biortech.2022.127927_b0035) 2021; 9
10.1016/j.biortech.2022.127927_b0310
Tong (10.1016/j.biortech.2022.127927_b0455) 2022; 9
Dai (10.1016/j.biortech.2022.127927_b0105) 2021; 9
Desloover (10.1016/j.biortech.2022.127927_b0120) 2012; 46
Jiang (10.1016/j.biortech.2022.127927_b0185) 2021; 336
Chawley (10.1016/j.biortech.2022.127927_b0055) 2021
Koomson (10.1016/j.biortech.2022.127927_b0215) 2021; 11
Qin (10.1016/j.biortech.2022.127927_b0370) 2017; 327
Schievano (10.1016/j.biortech.2022.127927_b0410) 2018; 71
van Linden (10.1016/j.biortech.2022.127927_b0460) 2020; 259
Zhu (10.1016/j.biortech.2022.127927_b0625) 2022; 45
Tao (10.1016/j.biortech.2022.127927_b0450) 2021; 297
10.1016/j.biortech.2022.127927_b0305
Yang (10.1016/j.biortech.2022.127927_b0540) 2021; 320
10.1016/j.biortech.2022.127927_b0425
Cerrillo (10.1016/j.biortech.2022.127927_b0045) 2021; 9
Qiu (10.1016/j.biortech.2022.127927_b0375) 2021
10.1016/j.biortech.2022.127927_b0140
Zhang (10.1016/j.biortech.2022.127927_b0595) 2021; 296
Kim (10.1016/j.biortech.2022.127927_b0205) 2008; 99
Arends (10.1016/j.biortech.2022.127927_b0005) 2017; 20
Wang (10.1016/j.biortech.2022.127927_b0490) 2022; 334
Zhang (10.1016/j.biortech.2022.127927_b0575) 2016; 218
Nagendranatha (10.1016/j.biortech.2022.127927_b0320) 2016; 98
Tan (10.1016/j.biortech.2022.127927_b0445) 2021; 9
Gujjala (10.1016/j.biortech.2022.127927_b0155) 2022; 288
Wang (10.1016/j.biortech.2022.127927_b0485) 2021; 330
Noori (10.1016/j.biortech.2022.127927_b0340) 2020; 392
Noori (10.1016/j.biortech.2022.127927_b0345) 2022
Han (10.1016/j.biortech.2022.127927_b0160) 2021; 101
Zhang (10.1016/j.biortech.2022.127927_b0570) 2016; 217
Han (10.1016/j.biortech.2022.127927_b0165) 2021; 319
Varjani (10.1016/j.biortech.2022.127927_b0465) 2021; 39
Wang (10.1016/j.biortech.2022.127927_b0480) 2021; 206
Logan (10.1016/j.biortech.2022.127927_b0280) 2008; 42
Cerrillo (10.1016/j.biortech.2022.127927_b0040) 2021; 9
Zhang (10.1016/j.biortech.2022.127927_b0590) 2020; 276
Zhang (10.1016/j.biortech.2022.127927_b0605) 2021; 331
Zhao (10.1016/j.biortech.2022.127927_b0615) 2021; 326
Logan (10.1016/j.biortech.2022.127927_b0275) 2007
Salehmin (10.1016/j.biortech.2022.127927_b0395) 2021; 759
Baek (10.1016/j.biortech.2022.127927_b0015) 2021; 426
Nelabhotla (10.1016/j.biortech.2022.127927_b0330) 2018; 17
Talan (10.1016/j.biortech.2022.127927_b0440) 2022; 17
Weng (10.1016/j.biortech.2022.127927_b0510) 2015; 56
Yang (10.1016/j.biortech.2022.127927_b0535) 2020; 748
Koffi (10.1016/j.biortech.2022.127927_b0210) 2021; 274
10.1016/j.biortech.2022.127927_b0325
Lu (10.1016/j.biortech.2022.127927_b0290) 2019; 300
Pant (10.1016/j.biortech.2022.127927_b0350) 2011; 15
Wang (10.1016/j.biortech.2022.127927_b0505) 2022; 346
10.1016/j.biortech.2022.127927_b0565
Lopes (10.1016/j.biortech.2022.127927_b0285) 2021; 92
Wu (10.1016/j.biortech.2022.127927_b0515) 2013; 146
Cohen (10.1016/j.biortech.2022.127927_b0100) 2021; 325
Gonzalez-Pabon (10.1016/j.biortech.2022.127927_b0150) 2021; 319
Beckinghausen (10.1016/j.biortech.2022.127927_b0020) 2020; 263
Dange (10.1016/j.biortech.2022.127927_b0115) 2021; 13
Ramdin (10.1016/j.biortech.2022.127927_b0380) 2019; 58
Karimian (10.1016/j.biortech.2022.127927_b0195) 2019; 17
Tabassum (10.1016/j.biortech.2022.127927_b0430) 2018; 172
Bousek (10.1016/j.biortech.2022.127927_b0030) 2016; 203
Kuntke (10.1016/j.biortech.2022.127927_b0225) 2012; 46
Takahashi (10.1016/j.biortech.2022.127927_b0435) 2021; 9
Zhang (10.1016/j.biortech.2022.127927_b0610) 2020; 45
Lu (10.1016/j.biortech.2022.127927_b0295) 2018; 12
Selvasembian (10.1016/j.biortech.2022.127927_b0420) 2022; 346
Villano (10.1016/j.biortech.2022.127927_b0470) 2013; 130
Lin (10.1016/j.biortech.2022.127927_b0250) 2000; 135
Zhang (10.1016/j.biortech.2022.127927_b0585) 2022
Huang (10.1016/j.biortech.2022.127927_b0175) 2022; 52
Cheng (10.1016/j.biortech.2022.127927_b0085) 2013; 143
Fernandez-Gatell (10.1016/j.biortech.2022.127927_b0135) 2022; 287
Chen (10.1016/j.biortech.2022.127927_b0080) 2017; 330
Zhang (10.1016/j.biortech.2022.127927_b0580) 2021; 334
Li (10.1016/j.biortech.2022.127927_b0245) 2016; 2
Satinover (10.1016/j.biortech.2022.127927_b0405) 2021; 299
Sanchez (10.1016/j.biortech.2022.127927_b0400) 2020; 150
Xu (10.1016/j.biortech.2022.127927_b0525) 2018; 135
Dang (10.1016/j.biortech.2022.127927_b0110) 2022; 347
Wang (10.1016/j.biortech.2022.127927_b0495) 2013; 31
Yang (10.1016/j.biortech.2022.127927_b0545) 2021; 337
Saeed (10.1016/j.biortech.2022.127927_b0390) 2021; 28
Liu (10.1016/j.biortech.2022.127927_b0270) 2016; 41
Parnamae (10.1016/j.biortech.2022.127927_b0360) 2021; 617
Lee (10.1016/j.biortech.2022.127927_b0230) 2012; 37
Hu (10.1016/j.biortech.2022.127927_b0170) 2018; 129
Park (10.1016/j.biortech.2022.127927_b0355) 2021; 764
10.1016/j.biortech.2022.127927_b0060
Dube (10.1016/j.biortech.2022.127927_b0130) 2016; 49
Katuri (10.1016/j.biortech.2022.127927_b0200) 2019; 57
Patel (10.1016/j.biortech.2022.127927_b0365) 2021; 332
Xu (10.1016/j.biortech.2022.127927_b0530) 2021; 40
Sciarria (10.1016/j.biortech.2022.127927_b0415) 2018; 20
Jourdin (10.1016/j.biortech.2022.127927_b0190) 2015; 49
Wang (10.1016/j.biortech.2022.127927_b0475) 2022; 335
Cheng (10.1016/j.biortech.2022.127927_b0090) 2021; 756
Do (10.1016/j.biortech.2022.127927_b0125) 2021; 795
Wang (10.1016/j.biortech.2022.127927_b0500) 2021; 342
Zhou (10.1016/j.biortech.2022.127927_b0620) 2021; 142
Chen (10.1016/j.biortech.2022.127927_b0075) 2022; 343
Lee (10.1016/j.biortech.2022.127927_b0240) 2010; 28
Liu (10.1016/j.biortech.2022.127927_b0265) 2011; 36
Luo (10.1016/j.biortech.2022.127927_b0300) 2019; 674
Nien (10.1016/j.biortech.2022.127927_b0335) 2011; 102
Minami (10.1016/j.biortech.2022.127927_b0315) 2022; 216
Jiang (10.1016/j.biortech.2022.127927_b0180) 2021; 337
Christiaens (10.1016/j.biortech.2022.127927_b0095) 2019; 150
Ye (10.1016/j.biortech.2022.127927_b0550) 2018; 268
Bian (10.1016/j.biortech.2022.127927_b0025) 2020; 302
Xu (10.1016/j.biortech.2022.127927_b0520) 2021; 44
Lin (10.1016/j.biortech.2022.127927_b0260) 2021; 290
Koskue (10.1016/j.biortech.2022.127927_b0220) 2021; 9
References_xml – volume: 327
  start-page: 924
  year: 2017
  ident: 10.1016/j.biortech.2022.127927_b0370
  article-title: Integrated experimental and modeling evaluation of energy consumption for ammonia recovery in bioelectrochemical systems
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.06.182
– volume: 39
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0465
  article-title: Trends in dye industry effluent treatment and recovery of value added products
  publication-title: J. Water Process Eng.
  doi: 10.1016/j.jwpe.2020.101734
– volume: 130
  start-page: 366
  year: 2013
  ident: 10.1016/j.biortech.2022.127927_b0470
  article-title: Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.11.080
– volume: 9
  start-page: 1916
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0045
  article-title: Ammonium and phosphate recovery in a three chambered microbial electrolysis cell: Towards obtaining struvite from livestock manure
  publication-title: Processes
  doi: 10.3390/pr9111916
– start-page: 1
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0055
  article-title: Envisioning role of ammonia oxidizing bacteria in bioenergy production and its challenges: a review
  publication-title: Crit. Rev. Biotechnol.
– volume: 795
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0125
  article-title: Performance of a dual-chamber microbial fuel cell as biosensor for on-line measuring ammonium nitrogen in synthetic municipal wastewater
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.148755
– volume: 216
  start-page: 98
  year: 2022
  ident: 10.1016/j.biortech.2022.127927_b0315
  article-title: Apparatus for ammonia removal in livestock farms based on copper hexacyanoferrate granules
  publication-title: Biosys. Eng.
  doi: 10.1016/j.biosystemseng.2022.02.002
– volume: 58
  start-page: 1834
  year: 2019
  ident: 10.1016/j.biortech.2022.127927_b0380
  article-title: High pressure electrochemical reduction of CO2 to formic acid/formate: A comparison between bipolar membranes and cation exchange membranes
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b04944
– volume: 335
  year: 2022
  ident: 10.1016/j.biortech.2022.127927_b0475
  article-title: Integrating anaerobic digestion with bioelectrochemical system for performance enhancement: A mini review
  publication-title: Bioresour. Technol.
– volume: 17
  year: 2022
  ident: 10.1016/j.biortech.2022.127927_b0440
  article-title: Biorefinery strategies for microbial bioplastics production: Sustainable pathway towards circular bioeconomy
  publication-title: Bioresour. Technol. Rep.
– volume: 9
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0040
  article-title: Hydrophobic membranes for ammonia recovery from digestates in microbial electrolysis cells: Assessment of different configurations
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2021.105289
– volume: 135
  start-page: 89
  year: 2000
  ident: 10.1016/j.biortech.2022.127927_b0250
  article-title: Modelling a global biogeochemical nitrogen cycle in terrestrial ecosystems
  publication-title: Ecol. Model.
  doi: 10.1016/S0304-3800(00)00372-0
– volume: 35
  start-page: 1961
  year: 2001
  ident: 10.1016/j.biortech.2022.127927_b0255
  article-title: A modelling approach to global nitrogen leaching caused by anthropogenic fertilization
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(00)00484-X
– volume: 292
  year: 2019
  ident: 10.1016/j.biortech.2022.127927_b0235
  article-title: Impact of adding metal nanoparticles on anaerobic digestion performance-A review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.121926
– ident: 10.1016/j.biortech.2022.127927_b0325
– volume: 28
  start-page: 30908
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0390
  article-title: Intensified constructed wetlands for the treatment of municipal wastewater: experimental investigation and kinetic modelling
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-021-12700-8
– volume: 259
  year: 2020
  ident: 10.1016/j.biortech.2022.127927_b0460
  article-title: Bipolar membrane electrodialysis for energetically competitive ammonium removal and dissolved ammonia production
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.120788
– volume: 287
  year: 2022
  ident: 10.1016/j.biortech.2022.127927_b0135
  article-title: Microbial activity enhancement in constructed wetlands operated as bioelectrochemical systems
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.132383
– volume: 300
  year: 2019
  ident: 10.1016/j.biortech.2022.127927_b0290
  article-title: Adding carbon-based materials on anaerobic digestion performance: A mini-review
  publication-title: Bioresour. Technol.
– volume: 330
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0485
  article-title: Direct interspecies electron transfer mechanism in enhanced methanogenesis: A mini-review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.124980
– volume: 9
  start-page: 16865
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0435
  article-title: Harvesting a solid fertilizer directly from fetid air
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.1c06161
– volume: 206
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0480
  article-title: Enhanced microalgae cultivation using wastewater nutrients extracted by a microbial electrochemical system
  publication-title: Water Res.
  doi: 10.1016/j.watres.2021.117722
– volume: 142
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0620
  article-title: Electrode-dependent ammonium oxidation with different low C/N ratios in single-chambered microbial electrolysis cells
  publication-title: Bioelectrochem.
  doi: 10.1016/j.bioelechem.2021.107889
– year: 2022
  ident: 10.1016/j.biortech.2022.127927_b0585
  article-title: Efficient removal of tetracycline using U-type continuous-flow bioelectrochemical system without ion exchange membrane or cathodic catalyst
  publication-title: Bioresour. Technol.
– volume: 46
  start-page: 12209
  year: 2012
  ident: 10.1016/j.biortech.2022.127927_b0120
  article-title: Electrochemical resource recovery from digestate to prevent ammonia toxicity during anaerobic digestion
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es3028154
– volume: 17
  year: 2022
  ident: 10.1016/j.biortech.2022.127927_b0065
  article-title: Correlation of cells with proteins in extracellular polymeric substance matrix of bioaggregates
  publication-title: Bioresour. Technol. Rep.
– volume: 330
  start-page: 692
  year: 2017
  ident: 10.1016/j.biortech.2022.127927_b0080
  article-title: Self-sustaining advanced wastewater purification and simultaneous in situ nutrient recovery in a novel bioelectrochemical system
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.07.130
– volume: 392
  year: 2020
  ident: 10.1016/j.biortech.2022.127927_b0340
  article-title: Recent advances in cathode materials and configurations for upgrading methane in bioelectrochemical systems integrated with anaerobic digestion
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123689
– volume: 150
  year: 2020
  ident: 10.1016/j.biortech.2022.127927_b0400
  article-title: Microbial electrochemical technologies: Electronic circuitry and characterization tools
  publication-title: Biosen. Bioelectron.
  doi: 10.1016/j.bios.2019.111884
– volume: 756
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0090
  article-title: Evaluation of a continuous flow microbial fuel cell for treating synthetic swine wastewater containing antibiotics
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.144133
– volume: 297
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0450
  article-title: Improvements of nitrogen removal and electricity generation in microbial fuel cell-constructed wetland with extra corncob for carbon-limited wastewater treatment
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.126639
– volume: 46
  start-page: 2627
  year: 2012
  ident: 10.1016/j.biortech.2022.127927_b0225
  article-title: Ammonium recovery and energy production from urine by a microbial fuel cell
  publication-title: Water Res.
  doi: 10.1016/j.watres.2012.02.025
– volume: 17
  start-page: 531
  year: 2018
  ident: 10.1016/j.biortech.2022.127927_b0330
  article-title: Electrochemically mediated CO2 reduction for bio-methane production: A review
  publication-title: Rev. Environ. Sci. Bio-technol.
  doi: 10.1007/s11157-018-9470-5
– volume: 9
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0035
  article-title: Hydrophobic membranes for ammonia recovery from digestates in microbial electrolysis cells: Assessment of different configurations
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2021.105289
– volume: 13
  start-page: 8796
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0115
  article-title: Recent developments in microbial electrolysis cell-based biohydrogen production utilizing wastewater as a feedstock
  publication-title: Sustainability
  doi: 10.3390/su13168796
– volume: 135
  start-page: 5993
  year: 2018
  ident: 10.1016/j.biortech.2022.127927_b0525
  article-title: Economic benefit analysis of typical microbial fuel cells based on a cost-benefit analysis model
  publication-title: Desalinat. Water Treat.
  doi: 10.5004/dwt.2018.23149
– volume: 45
  year: 2022
  ident: 10.1016/j.biortech.2022.127927_b0625
  article-title: Porous Co, N co-doped carbon derived from tea residue as efficient cathode catalyst in microbial fuel cells for swine wastewater treatment and the microbial community analysis
  publication-title: J. Water Process Eng.
  doi: 10.1016/j.jwpe.2021.102471
– volume: 143
  start-page: 25
  year: 2013
  ident: 10.1016/j.biortech.2022.127927_b0085
  article-title: Ammonia recycling enables sustainable operation of bioelectrochemical systems
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.05.108
– ident: 10.1016/j.biortech.2022.127927_b0305
  doi: 10.1038/nature08465
– ident: 10.1016/j.biortech.2022.127927_b0310
– volume: 15
  start-page: 1305
  year: 2011
  ident: 10.1016/j.biortech.2022.127927_b0350
  article-title: An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: Relevance and key aspects
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2010.10.005
– volume: 748
  year: 2020
  ident: 10.1016/j.biortech.2022.127927_b0535
  article-title: One-pot degradation of urine wastewater by combining simultaneous halophilic nitrification and aerobic denitrification in air-exposed biocathode microbial fuel cells (AEB-MFCs)
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.141379
– volume: 325
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0100
  article-title: Relieving pressure from coral reefs: Artificial oyster rocks can replace reef rocks used for biological filtration in marine aquariums
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.129326
– volume: 28
  start-page: 262
  year: 2010
  ident: 10.1016/j.biortech.2022.127927_b0240
  article-title: Biological hydrogen production: Prospects and challenges
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2010.01.007
– volume: 331
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0605
  article-title: Enhanced performance of microbial fuel cells with enriched ferrous iron oxidation microflora at room temperatures
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.125025
– volume: 57
  start-page: 101
  year: 2019
  ident: 10.1016/j.biortech.2022.127927_b0200
  article-title: The role of microbial electrolysis cell in urban wastewater treatment: Integration options, challenges, and prospects
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2019.03.007
– volume: 674
  start-page: 336
  year: 2019
  ident: 10.1016/j.biortech.2022.127927_b0300
  article-title: Efficient reduction of nitrobenzene by sulfate-reducer enriched biocathode in microbial electrolysis cell
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.04.206
– volume: 346
  year: 2022
  ident: 10.1016/j.biortech.2022.127927_b0505
  article-title: Enhancement of methane production from waste activated sludge using hybrid microbial electrolysis cells-anaerobic digestion (MEC-AD) process-A review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.126641
– volume: 2
  start-page: 1022
  year: 2016
  ident: 10.1016/j.biortech.2022.127927_b0245
  article-title: Self-sustained high-rate anammox: from biological to bioelectrochemical processes
  publication-title: Environ. Sci.: Water Res. Technol.
– ident: 10.1016/j.biortech.2022.127927_b0425
  doi: 10.1016/j.biortech.2021.126512
– volume: 301
  year: 2022
  ident: 10.1016/j.biortech.2022.127927_b0010
  article-title: Bioelectricity production and shortcut nitrogen removal by microalgal-bacterial consortia using membrane photosynthetic microbial fuel cell
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2021.113871
– volume: 326
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0615
  article-title: Coupling of nitrifying granular sludge into microbial fuel cell system for wastewater treatment: System performance, electricity production and microbial community shift
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.124741
– ident: 10.1016/j.biortech.2022.127927_b0140
– volume: 20
  start-page: 4058
  year: 2018
  ident: 10.1016/j.biortech.2022.127927_b0415
  article-title: Bio-electrorecycling of carbon dioxide into bioplastics
  publication-title: Green Chem.
  doi: 10.1039/C8GC01771A
– volume: 9
  start-page: 985
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0445
  article-title: Microbial fuel cell technology – A critical review on scale-up issues
  publication-title: Processes
  doi: 10.3390/pr9060985
– ident: 10.1016/j.biortech.2022.127927_b0565
  doi: 10.1016/j.biortech.2015.01.002
– volume: 288
  year: 2022
  ident: 10.1016/j.biortech.2022.127927_b0155
  article-title: A state-of-the-art review on microbial desalination cells
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.132386
– volume: 129
  start-page: 824
  year: 2018
  ident: 10.1016/j.biortech.2022.127927_b0170
  article-title: Feasible use of microbial fuel cells for pollution treatment
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.02.001
– volume: 263
  year: 2020
  ident: 10.1016/j.biortech.2022.127927_b0020
  article-title: From removal to recovery: An evaluation of nitrogen recovery techniques from wastewater
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.114616
– volume: 296
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0595
  article-title: Ammonia recovery from wastewater using a bioelectrochemical membrane-absorbed ammonia system with authigenic acid and base
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.126554
– volume: 337
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0180
  article-title: Enhanced bioelectricity output of microbial fuel cells via electrospinning zeolitic imidazolate framework-67/polyacrylonitrile carbon nanofiber cathode
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.125358
– year: 2007
  ident: 10.1016/j.biortech.2022.127927_b0275
– volume: 40
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0530
  article-title: Simultaneous removal of nitrate/nitrite and ammonia in a circular microbial electrolysis cell at low C/N ratios
  publication-title: J. Water Process Eng.
  doi: 10.1016/j.jwpe.2021.101938
– volume: 336
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0185
  article-title: The influence of external resistance on the performance of microbial fuel cell and the removal of sulfamethoxazole wastewater
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.125308
– volume: 44
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0520
  article-title: Effect of drained-flooded time ratio on ammonia nitrogen removal in a constructed wetland-microbial fuel cell system by tidal flow operation
  publication-title: J. Water Process Eng.
  doi: 10.1016/j.jwpe.2021.102450
– volume: 332
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0365
  article-title: Electroactive bacterial community augmentation enhances the performance of a pilot scale constructed wetland microbial fuel cell for treatment of textile dye wastewater
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.125088
– start-page: 148446
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0375
  article-title: Simultaneous mineralization of 2-anilinophenylacetate and denitrification by Ru/Fe modified biocathode double-chamber microbial fuel cell
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.148446
– volume: 342
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0500
  article-title: Cost-efficient microbial electrosynthesis of hydrogen peroxide on a facile-prepared floating electrode by entrapping oxygen
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.125995
– volume: 101
  start-page: 104
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0160
  article-title: Combined microbial electrolysis cell–iron-air battery system for hydrogen production and swine wastewater treatment
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2020.11.002
– volume: 343
  year: 2022
  ident: 10.1016/j.biortech.2022.127927_b0075
  article-title: Biofilm with highly heterogeneous interior structure for pollutant removal: Cell distribution and manipulated mass transport
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.125913
– volume: 319
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0150
  article-title: Hydrogen production in two-chamber MEC using a low-cost and biodegradable poly(vinyl) alcohol/chitosan membrane
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.124168
– volume: 71
  start-page: 785
  year: 2018
  ident: 10.1016/j.biortech.2022.127927_b0410
  article-title: Single-chamber microbial fuel cells as on-line shock-sensors for volatile fatty acids in anaerobic digesters
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2017.06.012
– volume: 31
  start-page: 1796
  year: 2013
  ident: 10.1016/j.biortech.2022.127927_b0495
  article-title: A comprehensive review of microbial electrochemical systems as a platform technology
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2013.10.001
– volume: 146
  start-page: 530
  year: 2013
  ident: 10.1016/j.biortech.2022.127927_b0515
  article-title: Ammonium recovery from reject water combined with hydrogen production in a bioelectrochemical reactor
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.07.130
– volume: 337
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0545
  article-title: Bio-electrochemically extracted nitrogen from residual resources for microbial protein production
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.125353
– volume: 274
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0210
  article-title: Bioelectrochemical anoxic ammonium nitrogen removal by an MFC driven single chamber microbial electrolysis cell
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.129715
– volume: 290
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0260
  article-title: Increased nitrogen deposition contributes to plant biodiversity loss in Japan: Insights from long-term historical monitoring data
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2021.118033
– year: 2022
  ident: 10.1016/j.biortech.2022.127927_b0345
  article-title: A critical review on microbe-electrode interactions towards heavy metal ion detection using microbial fuel cell technology
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.126589
– volume: 9
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0105
  article-title: Mechanism involved in the treatment of sulfamethoxazole in wastewater using a constructed wetland microbial fuel cell system
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2021.106193
– volume: 217
  start-page: 121
  year: 2016
  ident: 10.1016/j.biortech.2022.127927_b0570
  article-title: Microbial fuel cells as pollutant treatment units: Research updates
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.02.006
– volume: 172
  start-page: 368
  year: 2018
  ident: 10.1016/j.biortech.2022.127927_b0430
  article-title: Efficient nitrification treatment of comprehensive industrial wastewater by using novel mass biosystem
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.10.022
– volume: 764
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0355
  article-title: Understanding complete ammonium removal mechanism in single-chamber microbial fuel cells based on microbial ecology
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.144231
– volume: 299
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0405
  article-title: Green hydrogen from microalgal liquefaction byproducts with ammonia recovery and effluent recycle for developing circular processes
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.126834
– volume: 276
  year: 2020
  ident: 10.1016/j.biortech.2022.127927_b0590
  article-title: Simultaneous electricity generation and nitrogen and carbon removal in single-chamber microbial fuel cell for high-salinity wastewater treatment
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.123203
– volume: 426
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0015
  article-title: Impact of surface area and current generation of microbial electrolysis cell electrodes inserted into anaerobic digesters
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131281
– volume: 203
  start-page: 259
  year: 2016
  ident: 10.1016/j.biortech.2022.127927_b0030
  article-title: Influence of the gas composition on the efficiency of ammonia stripping of biogas digestate
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.12.046
– volume: 98
  start-page: 188
  year: 2016
  ident: 10.1016/j.biortech.2022.127927_b0320
  article-title: Integrated bio-electrogenic process for bioelectricity production and cathodic nutrient recovery from azo dye wastewater
  publication-title: Renew. Energ.
  doi: 10.1016/j.renene.2016.03.047
– ident: 10.1016/j.biortech.2022.127927_b0060
– volume: 302
  year: 2020
  ident: 10.1016/j.biortech.2022.127927_b0025
  article-title: Microbial electrosynthesis from CO2: Challenges, opportunities and perspectives in the context of circular bioeconomy
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.122863
– volume: 327
  start-page: 812
  year: 2010
  ident: 10.1016/j.biortech.2022.127927_b0145
  article-title: Food security: The challenge of feeding 9 billion people
  publication-title: Science
  doi: 10.1126/science.1185383
– volume: 346
  year: 2022
  ident: 10.1016/j.biortech.2022.127927_b0420
  article-title: Recent progress in microbial fuel cells for industrial effluent treatment and energy generation: Fundamentals to scale-up application and challenges
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.126462
– volume: 334
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0580
  article-title: Circular economy-driven ammonium recovery from municipal wastewater: State of the art, challenges and solutions forward
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.125231
– volume: 20
  start-page: 141
  year: 2017
  ident: 10.1016/j.biortech.2022.127927_b0005
  article-title: Continuous long-term electricity-driven bioproduction of carboxylates and isopropanol from CO2 with a mixed microbial community
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2017.04.014
– volume: 37
  start-page: 15827
  year: 2012
  ident: 10.1016/j.biortech.2022.127927_b0230
  article-title: Electricity harvest from nitrate/sulfide-containing wastewaters using microbial fuel cell with autotrophic denitrified, Pseudomonas sp. C27
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.01.092
– volume: 347
  year: 2022
  ident: 10.1016/j.biortech.2022.127927_b0110
  article-title: Current application of algae derivatives for bioplastic production: A review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2022.126698
– volume: 92
  start-page: 25119
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0285
  article-title: Prediction of fish mortality based on a probabilistic anomaly detection approach for recirculating aquaculture system facilities
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/5.0045047
– volume: 52
  year: 2022
  ident: 10.1016/j.biortech.2022.127927_b0175
  article-title: A critical review of microbial electrolysis cells coupled with anaerobic digester for enhanced biomethane recovery from high-strength feedstocks
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2020.1813065
– volume: 36
  start-page: 13896
  year: 2011
  ident: 10.1016/j.biortech.2022.127927_b0265
  article-title: Occurrence of power overshoot for two-chambered MFC at nearly steady-state operation
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2011.02.130
– volume: 759
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0395
  article-title: Pushing microbial desalination cells towards field application: Prevailing challenges, potential mitigation strategies, and future prospects
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.143485
– volume: 49
  start-page: 13566
  year: 2015
  ident: 10.1016/j.biortech.2022.127927_b0190
  article-title: High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b03821
– volume: 617
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0360
  article-title: Bipolar membranes: A review on principles, latest developments and applications
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.118538
– volume: 218
  start-page: 680
  year: 2016
  ident: 10.1016/j.biortech.2022.127927_b0575
  article-title: Treatment of domestic sewage with anoxic/oxic membrane-less microbial fuel cell with intermittent aeration
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.07.006
– volume: 334
  year: 2022
  ident: 10.1016/j.biortech.2022.127927_b0490
  article-title: Integrating anaerobic digestion with microbial electrolysis cell for performance enhancement: A review
  publication-title: Bioresour. Technol.
– volume: 12
  start-page: 13
  issue: 2
  year: 2018
  ident: 10.1016/j.biortech.2022.127927_b0295
  article-title: PM2.5-related health impacts of utilizing ammonia-hydrogen energy in Kanto Region, Japan
  publication-title: Front. Environ. Sci. Eng.
  doi: 10.1007/s11783-018-1005-3
– volume: 319
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0165
  article-title: Decomposition of pollutants from domestic sewage with the combination systems of hydrolytic acidification coupling with constructed wetland microbial fuel cell
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.128650
– volume: 268
  start-page: 749
  year: 2018
  ident: 10.1016/j.biortech.2022.127927_b0550
  article-title: A critical review on ammonium recovery from wastewater for sustainable wastewater management
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.07.111
– volume: 41
  start-page: 4504
  year: 2016
  ident: 10.1016/j.biortech.2022.127927_b0270
  article-title: Performance of freshwater sediment microbial fuel cells: Consistency
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2015.07.139
– volume: 102
  start-page: 4742
  year: 2011
  ident: 10.1016/j.biortech.2022.127927_b0335
  article-title: Power overshoot in two-chambered microbial fuel cell (MFC)
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.12.015
– volume: 11
  start-page: 661
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0215
  article-title: Comparative studies of recirculatory microbial desalination cell–microbial electrolysis cell coupled systems
  publication-title: Membranes
  doi: 10.3390/membranes11090661
– volume: 9
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0220
  article-title: Efficient nitrogen removal and recovery from real digestate sewage sludge reject water through elecrtoconcentration
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2021.106286
– volume: 17
  start-page: 30
  year: 2019
  ident: 10.1016/j.biortech.2022.127927_b0195
  article-title: The principles of bipolar electrochemistry and its electroanalysis applications
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2019.04.015
– volume: 320
  year: 2021
  ident: 10.1016/j.biortech.2022.127927_b0540
  article-title: A review on self-sustainable microbial electrolysis cells for electro-biohydrogen production via coupling with carbon-neutral renewable energy technologies
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.124363
– volume: 49
  start-page: 372
  year: 2016
  ident: 10.1016/j.biortech.2022.127927_b0130
  article-title: Enhancing recovery of ammonia from swine anaerobic digester effluent using gas-permeable membrane technology
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2015.12.011
– volume: 9
  start-page: 55
  year: 2022
  ident: 10.1016/j.biortech.2022.127927_b0455
  article-title: From formic acid to single-cell protein: genome-scale revealing the metabolic network of Paracoccus commumis MA5
  publication-title: Bioresour. Bioprocess.
  doi: 10.1186/s40643-022-00544-0
– volume: 42
  start-page: 8630
  year: 2008
  ident: 10.1016/j.biortech.2022.127927_b0280
  article-title: Microbia electrolysis cells for high yield hydrogen gas production from organic matter
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es801553z
– volume: 56
  start-page: 148
  year: 2015
  ident: 10.1016/j.biortech.2022.127927_b0510
  article-title: Performance of sulfate reducing bacteria-microbial fuel cells: reproducibility
  publication-title: J. Taiwan Inst. Chem. Engrs.
  doi: 10.1016/j.jtice.2015.04.028
– volume: 150
  start-page: 349
  year: 2019
  ident: 10.1016/j.biortech.2022.127927_b0095
  article-title: Membrane stripping enables effective electrochemical ammonia recovery from urine while retaining microorganisms and micropollutants
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.11.072
– volume: 99
  start-page: 1120
  year: 2008
  ident: 10.1016/j.biortech.2022.127927_b0205
  article-title: Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.21687
– volume: 45
  start-page: 34099
  year: 2020
  ident: 10.1016/j.biortech.2022.127927_b0610
  article-title: Effect of dissolved oxygen concentration on nitrogen removal and electricity generation in self pH-buffer microbial fuel cell
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.09.110
SSID ssj0003172
Score 2.5001657
SecondaryResourceType review_article
Snippet This review updates the current research efforts on using BES to recover NH3/NH4+, highlighting the novel configurations and introducing the working principles...
This review updates the current research efforts on using BES to recover NH₃/NH₄⁺, highlighting the novel configurations and introducing the working principles...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 127927
SubjectTerms aeration
ammonia
ammonium
bioeconomics
cost effectiveness
desalination
electrosynthesis
energy
microbial electrolysis cells
wastewater
Title Ammonia/ammonium removal/recovery from wastewaters using bioelectrochemical systems (BES): A review
URI https://www.proquest.com/docview/2714059471
https://www.proquest.com/docview/2723102005
Volume 363
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fj5NAEN7U80F9MHpqPH9lTTTRNEuBXaD4Vi9tLk09H2yT-kR2Ybn09OCkoDkf_NudhV3gco2ePpQQyrKw87HMfLMzg9ArN5GMC88hScw4YaEtCLxFAfF9j4qQcbCcFaH_4dg_WrH52lsPBvPeqqWqFFb8c2dcyf9IFY6BXFWU7D9Itr0oHIB9kC9sQcKwvZaMJ6ortdp1xuu96mxYyLP8u0riP1OmLjzRRRNB8oNvFU2mcmkOq5ofEJtc18CJTdKAJq1zzcO-n3567YZN3HrR-Q-M-3eTF5r3H5ZXyHm9uOdzReZdoNlCF4bfZGTRgmldNcQ4YPQb_E5aHmFbZXBP9Sy0uchL_oX36QmwbJ2WntA8o2-TsdcESpspl_p0eG45KnlhQHZO5A2ncGrBWBTqOSx1bd2i-3QZd_3xx2i2Wiyi5XS9vIFuumAyqGoW1q9uuQ_oSbVHydxOL1p8dy-XFZXL3-la-VjeQ3e11YAnDQTuo4HM9tGdyUmhM6fIfXTr0JTug396WSYfoFjDZGRAgjVIRgYiWEEE9yCCa4jgqxDBGiL4DQDk7Ts8wQ04HqLVbLo8PCK6tgaJqeuUJIhBL7SFE8qQgwosUu6HiRBg_IIG50gaJKDY0ZTSsYC3nHInDlSlgdSNmZeETNBHaC_LM_kY4ZSGCZU2A9VWMo8x7iTuOIVWtmApdHGAPDOQUawTz6v6J18js8LwNDICiJQAokYAB2jUtjtvUq_8tcVLI6cIRly5vngm82obuSovpReCJvanc5Sto1jWJ9c45ym63cH9Gdori0o-B_20FC9q4P0G54GTQw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ammonia%2Fammonium+removal%2Frecovery+from+wastewaters+using+bioelectrochemical+systems+%28BES%29%3A+A+review&rft.jtitle=Bioresource+technology&rft.au=Lee%2C+Yu-Jen&rft.au=Lin%2C+Bin-Le&rft.au=Xue%2C+Mianqiang&rft.au=Tsunemi%2C+Kiyotaka&rft.date=2022-11-01&rft.issn=0960-8524&rft.volume=363+p.127927-&rft_id=info:doi/10.1016%2Fj.biortech.2022.127927&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon