Reaction kinetics and kinetics models of alkali activated phosphorus slag
•The hydration reaction kinetics of PS activated by a combination of water glass and sodium hydroxide was studied.•The hydration reaction of alkali activated phosphorus slag (AAPS) was facilitated by higher temperature and lower silicate Modulus (Ms).•The differences in the hydration reaction kineti...
Saved in:
Published in | Construction & building materials Vol. 237; p. 117728 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
20.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The hydration reaction kinetics of PS activated by a combination of water glass and sodium hydroxide was studied.•The hydration reaction of alkali activated phosphorus slag (AAPS) was facilitated by higher temperature and lower silicate Modulus (Ms).•The differences in the hydration reaction kinetics of AAPS as varying the Ms and curing temperatures were quantified by the kinetic models.•The rate controlling processes of AAPS have shifted with changes in the Ms and curing temperatures discussed.
The kinetics of alkali activation of phosphorus slag (PS) is highly related to silicate modulus of the activator and reaction temperature. In present study, it was probed into the hydration reaction kinetics of PS activated by a combination of water glass and sodium hydroxide. The influence of reaction temperatures (from 25 ℃ to 60 ℃) and the activator silicate modulus (Ms, SiO2/Na2O ratio by mass, from 1 to 2) on the hydration reaction kinetics of AAPS were explored by isothermal calorimetric test. The three kinetic models (the exponential mode, the Knudsen linear dispersion mode and the Jander mode) were selected to extract the correlation parameters and quantitatively analyze the acting mechanism on the hydration reaction kinetics of AAPS. The results showed that the effect of different reaction temperatures and Ms on the hydration reaction kinetics of AAPS were prominent. The exponential method was able to satisfactorily model the hydration reaction kinetics of AAPS pastes. However, higher reaction temperatures and lower Ms were required to abstract the desired kinetic parameters when the Knudsen linear dispersion model was used. With the varied curing temperatures and Ms, the variation trends of the time parameters τ and τo (from the exponential mode and the Knudsen linear dispersion mode, respectively) were in line with those trends that the time to acceleration peak and the ending time of induction stage, respectively. According to the Jander model, the rate controlling processes of AAPS shifted from phase boundary reaction controlling process (the N values less than 1) to diffusion controlling process (the N values more than 1) with decreasing Ms and increasing curing temperatures in the case of higher temperature and lower Ms, respectively. On the contrary, phase boundary reaction controlling process kept unchanged at lower temperature (25 °C) and higher Ms (2). Therefore, the conversion of the rate controlling processes of AAPS was responsible for the differences in the hydration reaction kinetics of AAPS. |
---|---|
AbstractList | •The hydration reaction kinetics of PS activated by a combination of water glass and sodium hydroxide was studied.•The hydration reaction of alkali activated phosphorus slag (AAPS) was facilitated by higher temperature and lower silicate Modulus (Ms).•The differences in the hydration reaction kinetics of AAPS as varying the Ms and curing temperatures were quantified by the kinetic models.•The rate controlling processes of AAPS have shifted with changes in the Ms and curing temperatures discussed.
The kinetics of alkali activation of phosphorus slag (PS) is highly related to silicate modulus of the activator and reaction temperature. In present study, it was probed into the hydration reaction kinetics of PS activated by a combination of water glass and sodium hydroxide. The influence of reaction temperatures (from 25 ℃ to 60 ℃) and the activator silicate modulus (Ms, SiO2/Na2O ratio by mass, from 1 to 2) on the hydration reaction kinetics of AAPS were explored by isothermal calorimetric test. The three kinetic models (the exponential mode, the Knudsen linear dispersion mode and the Jander mode) were selected to extract the correlation parameters and quantitatively analyze the acting mechanism on the hydration reaction kinetics of AAPS. The results showed that the effect of different reaction temperatures and Ms on the hydration reaction kinetics of AAPS were prominent. The exponential method was able to satisfactorily model the hydration reaction kinetics of AAPS pastes. However, higher reaction temperatures and lower Ms were required to abstract the desired kinetic parameters when the Knudsen linear dispersion model was used. With the varied curing temperatures and Ms, the variation trends of the time parameters τ and τo (from the exponential mode and the Knudsen linear dispersion mode, respectively) were in line with those trends that the time to acceleration peak and the ending time of induction stage, respectively. According to the Jander model, the rate controlling processes of AAPS shifted from phase boundary reaction controlling process (the N values less than 1) to diffusion controlling process (the N values more than 1) with decreasing Ms and increasing curing temperatures in the case of higher temperature and lower Ms, respectively. On the contrary, phase boundary reaction controlling process kept unchanged at lower temperature (25 °C) and higher Ms (2). Therefore, the conversion of the rate controlling processes of AAPS was responsible for the differences in the hydration reaction kinetics of AAPS. |
ArticleNumber | 117728 |
Author | Wang, Jixiang Liu, Ze Xie, Fuzhu Zhang, Dawang Wang, Dongmin Huang, Tianyong |
Author_xml | – sequence: 1 givenname: Fuzhu surname: Xie fullname: Xie, Fuzhu organization: School of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing 100083, China – sequence: 2 givenname: Ze surname: Liu fullname: Liu, Ze email: lzk1227@sina.com organization: School of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing 100083, China – sequence: 3 givenname: Dawang surname: Zhang fullname: Zhang, Dawang email: zhangdawang1314@163.com organization: College of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China – sequence: 4 givenname: Jixiang surname: Wang fullname: Wang, Jixiang organization: School of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing 100083, China – sequence: 5 givenname: Tianyong surname: Huang fullname: Huang, Tianyong organization: State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing 100041, China – sequence: 6 givenname: Dongmin surname: Wang fullname: Wang, Dongmin organization: School of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing 100083, China |
BookMark | eNqNkN1KAzEQRoMo2FbfYX2AXZN0k91ciRR_CgVB9DpMk4mm3W5KkhZ8e7tUULzqxTAMfN-BOWNy3oceCblhtGKUydtVZUK_3PnObiBXnDJVMdY0vD0jI9Y2qqSCy3MyokrQkkrWXpJxSitKqeSSj8j8FcFkH_pi7XvM3qQCevt7bILFLhXBFdCtofPFkN5DRltsP0M6TNylInXwcUUuHHQJr3_2hLw_PrzNnsvFy9N8dr8ozZSzXDZMYM2QKaBOTF27VI5zaRy1wghHwbYcTCNqqJVwopVMgkC0Nda8NsbBdELujlwTQ0oRnTY-w_BCjuA7zagezOiV_mNGD2b00cyBoP4RttFvIH6d1J0duwcruPcYdTIee4PWRzRZ2-BPoHwDcZ6J0A |
CitedBy_id | crossref_primary_10_1016_j_conbuildmat_2021_123287 crossref_primary_10_1016_j_conbuildmat_2022_129028 crossref_primary_10_1016_j_conbuildmat_2022_129248 crossref_primary_10_3390_ma14082080 crossref_primary_10_1007_s43615_021_00029_w crossref_primary_10_1016_j_conbuildmat_2023_133500 crossref_primary_10_1016_j_cscm_2024_e04071 crossref_primary_10_1680_jmacr_24_00194 crossref_primary_10_1016_j_conbuildmat_2022_129100 crossref_primary_10_1016_j_dibe_2024_100541 crossref_primary_10_17533_udea_redin_20230624 crossref_primary_10_1016_j_conbuildmat_2020_119788 crossref_primary_10_1016_j_conbuildmat_2023_132384 crossref_primary_10_3390_ma13102390 crossref_primary_10_1016_j_conbuildmat_2020_119488 crossref_primary_10_3390_ma13214796 crossref_primary_10_1016_j_cemconres_2023_107139 crossref_primary_10_1016_j_conbuildmat_2021_123737 crossref_primary_10_1016_j_jnoncrysol_2023_122195 crossref_primary_10_3390_ma15155395 crossref_primary_10_1016_j_conbuildmat_2023_134602 crossref_primary_10_1016_j_conbuildmat_2023_133117 crossref_primary_10_1061_JMCEE7_MTENG_16608 crossref_primary_10_1016_j_jobe_2023_107293 crossref_primary_10_1016_j_cemconcomp_2022_104649 crossref_primary_10_3390_app11167191 crossref_primary_10_1016_j_conbuildmat_2024_137688 crossref_primary_10_1016_j_cemconcomp_2025_105963 crossref_primary_10_1016_j_conbuildmat_2024_136036 crossref_primary_10_1016_j_jenvman_2022_116942 crossref_primary_10_1007_s41779_024_01038_2 crossref_primary_10_1016_j_conbuildmat_2020_119132 crossref_primary_10_1016_j_psep_2025_106839 crossref_primary_10_1061__ASCE_MT_1943_5533_0003997 |
Cites_doi | 10.1016/S0008-8846(02)00855-4 10.1061/(ASCE)MT.1943-5533.0000195 10.1016/S0008-8846(02)00717-2 10.1016/j.tca.2012.03.021 10.1016/j.cemconres.2009.01.014 10.1016/S0043-1354(01)00474-2 10.1016/j.tca.2012.07.010 10.1016/j.cemconres.2010.11.016 10.1016/j.conbuildmat.2015.01.065 10.1016/j.cemconcomp.2011.07.007 10.1007/BF00638034 10.1016/j.cemconcomp.2010.09.004 10.1016/j.cemconres.2010.10.004 10.1016/S0008-8846(00)00293-3 10.1007/BF01133772 10.1016/S0008-8846(00)00356-2 10.1016/0008-8846(93)90062-E 10.1111/j.1151-2916.2003.tb03481.x 10.1016/j.seppur.2012.01.039 10.3151/jact.6.397 10.1016/j.cemconres.2018.07.010 10.1016/0008-8846(95)00126-W 10.1016/j.cemconres.2007.08.017 10.1680/adcr.1995.7.27.93 10.1016/j.jcis.2011.06.067 10.1016/S0008-8846(98)00212-9 10.1016/S0008-8846(00)00456-7 10.1016/j.powtec.2015.10.053 10.1016/S0008-8846(97)00040-9 10.1007/s10973-017-6576-x 10.1016/j.molliq.2018.05.029 10.1016/j.conbuildmat.2013.03.061 10.1111/j.1151-2916.2003.tb03623.x 10.1021/la4000473 10.1680/adcr.2007.19.2.81 10.1016/S0008-8846(00)00291-X 10.1016/0008-8846(84)90024-3 10.1007/s10853-006-0873-2 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.conbuildmat.2019.117728 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0526 |
ExternalDocumentID | 10_1016_j_conbuildmat_2019_117728 S0950061819331812 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFRF ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADHUB ADTZH AEBSH AECPX AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BAAKF BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IAO IEA IGG IHE IHM IOF ISM J1W JJJVA KOM LY7 M24 M41 MAGPM MO0 N95 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PV9 Q38 ROL RPZ RZL SDF SDG SES SPC SPCBC SSM SST SSZ T5K UNMZH XI7 ~G- AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHDLI AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ ITC R2- RIG RNS SET SEW SMS SSH VH1 WUQ ZMT |
ID | FETCH-LOGICAL-c321t-715e41e19a0f53f8b9f226cf0d5c5f0ad82ac754a495f58616a5eed4e424ccfa3 |
IEDL.DBID | .~1 |
ISSN | 0950-0618 |
IngestDate | Tue Jul 01 04:34:10 EDT 2025 Thu Apr 24 23:11:57 EDT 2025 Fri Feb 23 02:49:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Isothermal calorimetry Alkali activation Kinetic models Phosphorus slag Reaction kinetics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c321t-715e41e19a0f53f8b9f226cf0d5c5f0ad82ac754a495f58616a5eed4e424ccfa3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_conbuildmat_2019_117728 crossref_primary_10_1016_j_conbuildmat_2019_117728 elsevier_sciencedirect_doi_10_1016_j_conbuildmat_2019_117728 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-20 |
PublicationDateYYYYMMDD | 2020-03-20 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | Construction & building materials |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wang, Pu, Scrivener, Pratt (b0065) 1995; 7 Brough, Atkinson (b0125) 2002; 32 Lothenbach, Matschei, Moschner, Glasser (b0175) 2008; 38 Chen, Brouwers (b0110) 2007; 42 MaghsoodlooRad, Allahverdi (b0010) 2015; 59 Omar (b0030) 2018; 263 Brough, Holloway, Sykes, Atkinson (b0120) 2000; 30 Mehdizadeh, Kani, Sanchez (b0035) 2018; 113 Zhang, Wang, Provis, Bullen, Reid, Zhu (b0190) 2012; 539 Shi, Krivenko, Roy (b0235) 2006 Singh, Bhattacharjee (b0020) 1996; 3 Brough, Atkinson (b0085) 2002; 32 Shi, Day (b0170) 1995; 25 Vinod, Gupta (b0215) 2002; 36 Song, Jennings (b0130) 1999; 29 Neithalath (b0195) 2008; 6 Allahverd, Pilehva, Mahinroosta (b0050) 2016; 288 ASTM, C 1679-09, Standard practice for measuring hydration kinetics of hydraulic cement mixtures using isothermal calorimetry. ASTM, international; 2009. p. 014. Ali Allahverdi, MohammadMahdi Bahri Rasht Abadi, KhandakerM. AnwarHossain, Mohamed Lachemi. Resistance of chemically-activated high phosphorous slag content cement against freeze–thaw cycles. Cold Regions Sci. Technol. 2014; 103:107–114. Thomas, Biernacki, Bullard, Bishnoi, Dolado, Scherer (b0180) 2011; 41 Cabrera, Rojas (b0230) 2001; 31 Richardson, Groves (b0090) 1992; 27 L. John, Provis, S.J. Jannie, van Deventer, Alkali Activated Materials. Knudsen (b0200) 1984; 14 Zhou, Wu, Xu, Tang (b0070) 1993; 23 Chithiraputhiran, Neithalath (b0055) 2013; 45 Gao, Yu, Brouwers (b0150) 2015; 80 Fernández-Jiménez, Puertas (b0220) 1997; 27 Baert, De Belie, De Schutter (b0210) 2011; 23 Ben Haha, Le Saout, Winnefeld, Lothenbach (b0115) 2011; 41 Li, Shen, Mao, Wu (b0045) 2000; 30 Bernal, Provis, Rose, Gutierrez (b0165) 2011; 33 Zhang, Yang, Zhang (b0025) 2013; 423–426 Rothstein, Thomas, Christensen, Jennings (b0135) 2002; 32 Dabic, Krstulovic, Ruˇsicˇı (b0205) 2000; 30 Myers, Bernal, San Nicolas, Provis (b0095) 2013; 29 Rajaokarivony-Andriambololona, Thomassin, Baillif, Touray (b0145) 1990; 25 Ravikumar, Neithalath (b0155) 2012; 546 Escalante-Garcia, Fuentes, Gorokhovsky, Fraire-Luna, Mendoza-Suarez (b0075) 2003; 86 Lin, Meyer (b0185) 2009; 39 Mohammadi, Khani (b0160) 2011; 362 Fernández-Jiménez, Puertas, Sobrados, Sanz (b0080) 2003; 86 Saleh, Gupta (b0140) 2012; 89 Gartner, Young, Damidot, Jawed, Bensted, Barnes (b0225) 2002 Wang, Huang, Wang (b0040) 2018; 131 Najafi Kani, Allahverdi, Provis (b0005) 2012; 34 Lothenbach, Gruskovnjak (b0105) 2007; 19 Omar (10.1016/j.conbuildmat.2019.117728_b0030) 2018; 263 Fernández-Jiménez (10.1016/j.conbuildmat.2019.117728_b0220) 1997; 27 Bernal (10.1016/j.conbuildmat.2019.117728_b0165) 2011; 33 Vinod (10.1016/j.conbuildmat.2019.117728_b0215) 2002; 36 Brough (10.1016/j.conbuildmat.2019.117728_b0125) 2002; 32 10.1016/j.conbuildmat.2019.117728_b0100 Shi (10.1016/j.conbuildmat.2019.117728_b0170) 1995; 25 Wang (10.1016/j.conbuildmat.2019.117728_b0065) 1995; 7 Zhang (10.1016/j.conbuildmat.2019.117728_b0190) 2012; 539 Knudsen (10.1016/j.conbuildmat.2019.117728_b0200) 1984; 14 Richardson (10.1016/j.conbuildmat.2019.117728_b0090) 1992; 27 Saleh (10.1016/j.conbuildmat.2019.117728_b0140) 2012; 89 10.1016/j.conbuildmat.2019.117728_b0060 Chen (10.1016/j.conbuildmat.2019.117728_b0110) 2007; 42 Ben Haha (10.1016/j.conbuildmat.2019.117728_b0115) 2011; 41 Najafi Kani (10.1016/j.conbuildmat.2019.117728_b0005) 2012; 34 Gao (10.1016/j.conbuildmat.2019.117728_b0150) 2015; 80 Wang (10.1016/j.conbuildmat.2019.117728_b0040) 2018; 131 Chithiraputhiran (10.1016/j.conbuildmat.2019.117728_b0055) 2013; 45 Fernández-Jiménez (10.1016/j.conbuildmat.2019.117728_b0080) 2003; 86 Rothstein (10.1016/j.conbuildmat.2019.117728_b0135) 2002; 32 Ravikumar (10.1016/j.conbuildmat.2019.117728_b0155) 2012; 546 Zhang (10.1016/j.conbuildmat.2019.117728_b0025) 2013; 423–426 Singh (10.1016/j.conbuildmat.2019.117728_b0020) 1996; 3 Lothenbach (10.1016/j.conbuildmat.2019.117728_b0105) 2007; 19 Mehdizadeh (10.1016/j.conbuildmat.2019.117728_b0035) 2018; 113 Lothenbach (10.1016/j.conbuildmat.2019.117728_b0175) 2008; 38 Gartner (10.1016/j.conbuildmat.2019.117728_b0225) 2002 Allahverd (10.1016/j.conbuildmat.2019.117728_b0050) 2016; 288 Neithalath (10.1016/j.conbuildmat.2019.117728_b0195) 2008; 6 10.1016/j.conbuildmat.2019.117728_b0015 Myers (10.1016/j.conbuildmat.2019.117728_b0095) 2013; 29 Rajaokarivony-Andriambololona (10.1016/j.conbuildmat.2019.117728_b0145) 1990; 25 Mohammadi (10.1016/j.conbuildmat.2019.117728_b0160) 2011; 362 MaghsoodlooRad (10.1016/j.conbuildmat.2019.117728_b0010) 2015; 59 Zhou (10.1016/j.conbuildmat.2019.117728_b0070) 1993; 23 Brough (10.1016/j.conbuildmat.2019.117728_b0085) 2002; 32 Song (10.1016/j.conbuildmat.2019.117728_b0130) 1999; 29 Shi (10.1016/j.conbuildmat.2019.117728_b0235) 2006 Li (10.1016/j.conbuildmat.2019.117728_b0045) 2000; 30 Brough (10.1016/j.conbuildmat.2019.117728_b0120) 2000; 30 Lin (10.1016/j.conbuildmat.2019.117728_b0185) 2009; 39 Baert (10.1016/j.conbuildmat.2019.117728_b0210) 2011; 23 Dabic (10.1016/j.conbuildmat.2019.117728_b0205) 2000; 30 Cabrera (10.1016/j.conbuildmat.2019.117728_b0230) 2001; 31 Escalante-Garcia (10.1016/j.conbuildmat.2019.117728_b0075) 2003; 86 Thomas (10.1016/j.conbuildmat.2019.117728_b0180) 2011; 41 |
References_xml | – volume: 32 start-page: 1663 year: 2002 end-page: 1671 ident: b0135 article-title: Solubility behavior of Ca-, S-, Al-, and Si-bearing solid phases in Portland cement pore solutions as a function of hydration time publication-title: Cem. Concr. Res. – reference: ASTM, C 1679-09, Standard practice for measuring hydration kinetics of hydraulic cement mixtures using isothermal calorimetry. ASTM, international; 2009. p. 014. – volume: 30 start-page: 1375 year: 2000 end-page: 1379 ident: b0120 article-title: Sodium silicate-based alkali activated slag mortars: Part II. The retarding effect of additions of sodium chloride or malic acid publication-title: Cem. Concr. Res. – volume: 23 start-page: 761 year: 2011 ident: b0210 article-title: Multicompound model for the hydration of Portland cement–fly ash binders publication-title: J. Mater. Civil Eng. – volume: 30 start-page: 1169 year: 2000 end-page: 1173 ident: b0045 article-title: The influence of admixtures on the properties of phosphorous slag cement publication-title: Cement Concr. Res. – volume: 86 start-page: 1389 year: 2003 end-page: 1394 ident: b0080 article-title: Structure of calcium silicate hydrates formed in alkaline-activated slag: influence of the type of alkaline activator publication-title: J. Am. Ceram. Soc. – volume: 25 start-page: 1333 year: 1995 end-page: 1346 ident: b0170 article-title: A calorimetric study of early hydration of alkali-slag cements publication-title: Cem. Concr. Res. – volume: 30 start-page: 1017 year: 2000 end-page: 1021 ident: b0205 article-title: A new approach in mathematical modelling of cement hydration development publication-title: Cement Concr. Res. – volume: 263 start-page: 442 year: 2018 end-page: 453 ident: b0030 article-title: Alharbi, Al Arsh Basheer, Health and environmental effects of persistent organic pollutants publication-title: J. Mol. Liq. – volume: 29 start-page: 5294 year: 2013 end-page: 5306 ident: b0095 article-title: Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the cross linked substituted tobermorite model publication-title: Langmuir – volume: 32 start-page: 865 year: 2002 end-page: 879 ident: b0125 article-title: Sodium silicate-based alkali-activated slag mortars: Part I. Strength, hydration and microstructure publication-title: Cem. Concr. Res. – volume: 19 start-page: 81 year: 2007 end-page: 92 ident: b0105 article-title: Hydration of alkali-activated slag: thermodynamic modelling publication-title: Adv. Cem. Res. – volume: 29 start-page: 159 year: 1999 end-page: 170 ident: b0130 article-title: Pore solution chemistry of alkali-activated ground granulated blast-furnace slag publication-title: Cem. Concr. Res. – volume: 34 start-page: 25 year: 2012 end-page: 33 ident: b0005 article-title: Efflorescence control in geopolymer binder based on natural pozzolan publication-title: Cem. Concr. Compos. – reference: L. John, Provis, S.J. Jannie, van Deventer, Alkali Activated Materials. – volume: 25 start-page: 2399 year: 1990 end-page: 2410 ident: b0145 article-title: Experimental hydration of two synthetic glassy blast furnace slags in water and alkaline solutions (NaOH and KOH 0.1 N) at 40 C: structure, composition and origin of the hydrated layer publication-title: J. Mater. Sci. – volume: 14 start-page: 622 year: 1984 end-page: 630 ident: b0200 article-title: The dispersion model for hydration of Portland cement I. General concepts publication-title: Cem. Concr. Res. – volume: 45 start-page: 233 year: 2013 end-page: 242 ident: b0055 article-title: Isothermal reaction kinetics and temperature dependence of alkali activation of slag, fly ash and their blends publication-title: Constr. Build. Mater. – reference: Ali Allahverdi, MohammadMahdi Bahri Rasht Abadi, KhandakerM. AnwarHossain, Mohamed Lachemi. Resistance of chemically-activated high phosphorous slag content cement against freeze–thaw cycles. Cold Regions Sci. Technol. 2014; 103:107–114. – volume: 7 start-page: 93 year: 1995 end-page: 102 ident: b0065 article-title: Alkali-activated slag cement and concrete: a review of properties and problems publication-title: Adv. Cem. Res. – volume: 23 start-page: 1253 year: 1993 end-page: 1258 ident: b0070 article-title: Kinetic study on hydration of alkali-activated slag publication-title: Cem. Concr. Res. – volume: 86 start-page: 2148 year: 2003 end-page: 2153 ident: b0075 article-title: Hydration products and reactivity of blast-furnace slag activated by various alkalis publication-title: J. Am. Ceram. Soc. – volume: 27 start-page: 6204 year: 1992 end-page: 6212 ident: b0090 article-title: Microstructure and microanalysis of hardened cement pastes involving ground granulated blast-furnace slag publication-title: J. Mater. Sci. – volume: 36 start-page: 2483 year: 2002 end-page: 2490 ident: b0215 article-title: Jain, Imran Ali, Removal of lindane and malathion from wastewater using bagasse fly ash-a sugar industry waste publication-title: Water Res. – volume: 423–426 start-page: 987 year: 2013 end-page: 992 ident: b0025 article-title: Utilization of phosphorus slag and fly ash for the preparation of ready-mixed mortar publication-title: Appl. Mech. Mater. – volume: 288 start-page: 132 year: 2016 end-page: 139 ident: b0050 article-title: Influence of curing conditions on the mechanical and physical properties of chemically-activated phosphorous slag cement publication-title: Powder Technol. – year: 2006 ident: b0235 article-title: Alkali-Activated Cements and Concretes – volume: 42 start-page: 428 year: 2007 end-page: 443 ident: b0110 article-title: The hydration of slag, part 1: reaction models for alkali-activated slag publication-title: J. Mater. Sci. – volume: 32 start-page: 865 year: 2002 end-page: 879 ident: b0085 article-title: Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure publication-title: Cem. Concr. Res. – volume: 41 start-page: 301 year: 2011 end-page: 310 ident: b0115 article-title: Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags publication-title: Cem. Concr. Res. – volume: 113 start-page: 121 year: 2018 end-page: 129 ident: b0035 article-title: Ana Fernandez-Jimenez. Rheology of activated phosphorus slag with lime and alkaline salts publication-title: Cem. Concr. Res. – volume: 80 start-page: 105 year: 2015 end-page: 115 ident: b0150 article-title: Reaction kinetics, gel character and strength of ambient temperature cured alkali activated slag–fly ash blends publication-title: Constr. Build. Mater. – volume: 27 start-page: 359 year: 1997 end-page: 368 ident: b0220 article-title: Alkali-activated slag cements: kinetic studies publication-title: Cement Concr. Res. – volume: 59 start-page: 250 year: 2015 end-page: 260 ident: b0010 article-title: Alkali-activation kinettics of phosphorus slag cement using compressive strength data publication-title: Cem. Silik – volume: 546 start-page: 32 year: 2012 end-page: 43 ident: b0155 article-title: Reaction kinetics in sodium silicate powder and liquid activated slag binders evaluated using isothermal calorimetry publication-title: Therm Acta – volume: 38 start-page: 1 year: 2008 end-page: 18 ident: b0175 article-title: Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement publication-title: Cem. Concr. Res. – volume: 6 start-page: 397 year: 2008 end-page: 408 ident: b0195 article-title: Quantifying the effects of hydration enhancement and dilution in cement pastes containing coarse glass powder publication-title: J. Adv. Concr. Technol. – volume: 362 start-page: 457 year: 2011 end-page: 462 ident: b0160 article-title: Adsorption process of methyl orange dye onto mesoporous carbon material–kinetic and thermodynamic studies publication-title: J. Colloid Interface Sci. – volume: 31 start-page: 177 year: 2001 end-page: 182 ident: b0230 article-title: Mechanism of hydration of the metakaolin–lime–water system publication-title: Cement Concr. Res. – volume: 131 start-page: 873 year: 2018 end-page: 885 ident: b0040 article-title: Influence of high-volume electric furnace nickel slag and phosphorous slag on the properties of massive concrete publication-title: J. Therm. Anal. Calorim. – volume: 39 start-page: 255 year: 2009 end-page: 265 ident: b0185 article-title: Hydration kinetics modeling of Portland cement considering the effects of curing temperature and applied pressure publication-title: Cem. Concr. Res. – volume: 33 start-page: 46 year: 2011 end-page: 54 ident: b0165 article-title: Evolution of binder structure in sodium silicate-activated slag-metakaolin blends publication-title: Cem. Concr. Compos. – volume: 3 start-page: 41 year: 1996 end-page: 44 ident: b0020 article-title: Phosphorous furnace slag—a potential waste material for the manufacture of cements publication-title: Indian J. Eng. Mater. S – volume: 41 start-page: 1257 year: 2011 end-page: 1278 ident: b0180 article-title: Modeling and simulation of cement hydration kinetics and microstructure development publication-title: Cem. Concr. Res. – start-page: 57 year: 2002 end-page: 113 ident: b0225 article-title: (Eds.). Hydration of Portland cement, in: Structure and Performance of Cements – volume: 539 start-page: 23 year: 2012 end-page: 33 ident: b0190 article-title: Quantitative kinetic and structural analysis of geopolymers part 1: the activation of metakaolin with sodium hydroxide publication-title: Thermochim Acta – volume: 89 start-page: 245 year: 2012 end-page: 251 ident: b0140 article-title: Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance publication-title: Sep. Purif. Technol. – volume: 32 start-page: 1663 year: 2002 ident: 10.1016/j.conbuildmat.2019.117728_b0135 article-title: Solubility behavior of Ca-, S-, Al-, and Si-bearing solid phases in Portland cement pore solutions as a function of hydration time publication-title: Cem. Concr. Res. doi: 10.1016/S0008-8846(02)00855-4 – volume: 23 start-page: 761 year: 2011 ident: 10.1016/j.conbuildmat.2019.117728_b0210 article-title: Multicompound model for the hydration of Portland cement–fly ash binders publication-title: J. Mater. Civil Eng. doi: 10.1061/(ASCE)MT.1943-5533.0000195 – volume: 32 start-page: 865 issue: 6 year: 2002 ident: 10.1016/j.conbuildmat.2019.117728_b0085 article-title: Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure publication-title: Cem. Concr. Res. doi: 10.1016/S0008-8846(02)00717-2 – volume: 539 start-page: 23 year: 2012 ident: 10.1016/j.conbuildmat.2019.117728_b0190 article-title: Quantitative kinetic and structural analysis of geopolymers part 1: the activation of metakaolin with sodium hydroxide publication-title: Thermochim Acta doi: 10.1016/j.tca.2012.03.021 – volume: 39 start-page: 255 year: 2009 ident: 10.1016/j.conbuildmat.2019.117728_b0185 article-title: Hydration kinetics modeling of Portland cement considering the effects of curing temperature and applied pressure publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2009.01.014 – volume: 36 start-page: 2483 year: 2002 ident: 10.1016/j.conbuildmat.2019.117728_b0215 article-title: Jain, Imran Ali, Removal of lindane and malathion from wastewater using bagasse fly ash-a sugar industry waste publication-title: Water Res. doi: 10.1016/S0043-1354(01)00474-2 – volume: 546 start-page: 32 year: 2012 ident: 10.1016/j.conbuildmat.2019.117728_b0155 article-title: Reaction kinetics in sodium silicate powder and liquid activated slag binders evaluated using isothermal calorimetry publication-title: Therm Acta doi: 10.1016/j.tca.2012.07.010 – volume: 41 start-page: 301 issue: 3 year: 2011 ident: 10.1016/j.conbuildmat.2019.117728_b0115 article-title: Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2010.11.016 – volume: 80 start-page: 105 year: 2015 ident: 10.1016/j.conbuildmat.2019.117728_b0150 article-title: Reaction kinetics, gel character and strength of ambient temperature cured alkali activated slag–fly ash blends publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2015.01.065 – ident: 10.1016/j.conbuildmat.2019.117728_b0100 – volume: 3 start-page: 41 year: 1996 ident: 10.1016/j.conbuildmat.2019.117728_b0020 article-title: Phosphorous furnace slag—a potential waste material for the manufacture of cements publication-title: Indian J. Eng. Mater. S – volume: 34 start-page: 25 year: 2012 ident: 10.1016/j.conbuildmat.2019.117728_b0005 article-title: Efflorescence control in geopolymer binder based on natural pozzolan publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2011.07.007 – volume: 25 start-page: 2399 year: 1990 ident: 10.1016/j.conbuildmat.2019.117728_b0145 article-title: Experimental hydration of two synthetic glassy blast furnace slags in water and alkaline solutions (NaOH and KOH 0.1 N) at 40 C: structure, composition and origin of the hydrated layer publication-title: J. Mater. Sci. doi: 10.1007/BF00638034 – volume: 33 start-page: 46 year: 2011 ident: 10.1016/j.conbuildmat.2019.117728_b0165 article-title: Evolution of binder structure in sodium silicate-activated slag-metakaolin blends publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2010.09.004 – volume: 41 start-page: 1257 year: 2011 ident: 10.1016/j.conbuildmat.2019.117728_b0180 article-title: Modeling and simulation of cement hydration kinetics and microstructure development publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2010.10.004 – volume: 30 start-page: 1017 year: 2000 ident: 10.1016/j.conbuildmat.2019.117728_b0205 article-title: A new approach in mathematical modelling of cement hydration development publication-title: Cement Concr. Res. doi: 10.1016/S0008-8846(00)00293-3 – volume: 27 start-page: 6204 issue: 22 year: 1992 ident: 10.1016/j.conbuildmat.2019.117728_b0090 article-title: Microstructure and microanalysis of hardened cement pastes involving ground granulated blast-furnace slag publication-title: J. Mater. Sci. doi: 10.1007/BF01133772 – volume: 30 start-page: 1375 year: 2000 ident: 10.1016/j.conbuildmat.2019.117728_b0120 article-title: Sodium silicate-based alkali activated slag mortars: Part II. The retarding effect of additions of sodium chloride or malic acid publication-title: Cem. Concr. Res. doi: 10.1016/S0008-8846(00)00356-2 – volume: 23 start-page: 1253 issue: 6 year: 1993 ident: 10.1016/j.conbuildmat.2019.117728_b0070 article-title: Kinetic study on hydration of alkali-activated slag publication-title: Cem. Concr. Res. doi: 10.1016/0008-8846(93)90062-E – volume: 32 start-page: 865 year: 2002 ident: 10.1016/j.conbuildmat.2019.117728_b0125 article-title: Sodium silicate-based alkali-activated slag mortars: Part I. Strength, hydration and microstructure publication-title: Cem. Concr. Res. doi: 10.1016/S0008-8846(02)00717-2 – volume: 86 start-page: 1389 issue: 8 year: 2003 ident: 10.1016/j.conbuildmat.2019.117728_b0080 article-title: Structure of calcium silicate hydrates formed in alkaline-activated slag: influence of the type of alkaline activator publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.2003.tb03481.x – volume: 89 start-page: 245 year: 2012 ident: 10.1016/j.conbuildmat.2019.117728_b0140 article-title: Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2012.01.039 – volume: 6 start-page: 397 year: 2008 ident: 10.1016/j.conbuildmat.2019.117728_b0195 article-title: Quantifying the effects of hydration enhancement and dilution in cement pastes containing coarse glass powder publication-title: J. Adv. Concr. Technol. doi: 10.3151/jact.6.397 – volume: 59 start-page: 250 year: 2015 ident: 10.1016/j.conbuildmat.2019.117728_b0010 article-title: Alkali-activation kinettics of phosphorus slag cement using compressive strength data publication-title: Cem. Silik – volume: 113 start-page: 121 year: 2018 ident: 10.1016/j.conbuildmat.2019.117728_b0035 article-title: Ana Fernandez-Jimenez. Rheology of activated phosphorus slag with lime and alkaline salts publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2018.07.010 – volume: 25 start-page: 1333 year: 1995 ident: 10.1016/j.conbuildmat.2019.117728_b0170 article-title: A calorimetric study of early hydration of alkali-slag cements publication-title: Cem. Concr. Res. doi: 10.1016/0008-8846(95)00126-W – volume: 38 start-page: 1 year: 2008 ident: 10.1016/j.conbuildmat.2019.117728_b0175 article-title: Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2007.08.017 – volume: 423–426 start-page: 987 year: 2013 ident: 10.1016/j.conbuildmat.2019.117728_b0025 article-title: Utilization of phosphorus slag and fly ash for the preparation of ready-mixed mortar publication-title: Appl. Mech. Mater. – volume: 7 start-page: 93 issue: 27 year: 1995 ident: 10.1016/j.conbuildmat.2019.117728_b0065 article-title: Alkali-activated slag cement and concrete: a review of properties and problems publication-title: Adv. Cem. Res. doi: 10.1680/adcr.1995.7.27.93 – volume: 362 start-page: 457 year: 2011 ident: 10.1016/j.conbuildmat.2019.117728_b0160 article-title: Adsorption process of methyl orange dye onto mesoporous carbon material–kinetic and thermodynamic studies publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2011.06.067 – ident: 10.1016/j.conbuildmat.2019.117728_b0060 – volume: 29 start-page: 159 year: 1999 ident: 10.1016/j.conbuildmat.2019.117728_b0130 article-title: Pore solution chemistry of alkali-activated ground granulated blast-furnace slag publication-title: Cem. Concr. Res. doi: 10.1016/S0008-8846(98)00212-9 – volume: 31 start-page: 177 year: 2001 ident: 10.1016/j.conbuildmat.2019.117728_b0230 article-title: Mechanism of hydration of the metakaolin–lime–water system publication-title: Cement Concr. Res. doi: 10.1016/S0008-8846(00)00456-7 – volume: 288 start-page: 132 year: 2016 ident: 10.1016/j.conbuildmat.2019.117728_b0050 article-title: Influence of curing conditions on the mechanical and physical properties of chemically-activated phosphorous slag cement publication-title: Powder Technol. doi: 10.1016/j.powtec.2015.10.053 – volume: 27 start-page: 359 year: 1997 ident: 10.1016/j.conbuildmat.2019.117728_b0220 article-title: Alkali-activated slag cements: kinetic studies publication-title: Cement Concr. Res. doi: 10.1016/S0008-8846(97)00040-9 – volume: 131 start-page: 873 year: 2018 ident: 10.1016/j.conbuildmat.2019.117728_b0040 article-title: Influence of high-volume electric furnace nickel slag and phosphorous slag on the properties of massive concrete publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-017-6576-x – volume: 263 start-page: 442 year: 2018 ident: 10.1016/j.conbuildmat.2019.117728_b0030 article-title: Alharbi, Al Arsh Basheer, Health and environmental effects of persistent organic pollutants publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2018.05.029 – volume: 45 start-page: 233 year: 2013 ident: 10.1016/j.conbuildmat.2019.117728_b0055 article-title: Isothermal reaction kinetics and temperature dependence of alkali activation of slag, fly ash and their blends publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2013.03.061 – volume: 86 start-page: 2148 issue: 12 year: 2003 ident: 10.1016/j.conbuildmat.2019.117728_b0075 article-title: Hydration products and reactivity of blast-furnace slag activated by various alkalis publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.2003.tb03623.x – start-page: 57 year: 2002 ident: 10.1016/j.conbuildmat.2019.117728_b0225 – volume: 29 start-page: 5294 issue: 17 year: 2013 ident: 10.1016/j.conbuildmat.2019.117728_b0095 article-title: Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the cross linked substituted tobermorite model publication-title: Langmuir doi: 10.1021/la4000473 – volume: 19 start-page: 81 issue: 2 year: 2007 ident: 10.1016/j.conbuildmat.2019.117728_b0105 article-title: Hydration of alkali-activated slag: thermodynamic modelling publication-title: Adv. Cem. Res. doi: 10.1680/adcr.2007.19.2.81 – year: 2006 ident: 10.1016/j.conbuildmat.2019.117728_b0235 – volume: 30 start-page: 1169 issue: 7 year: 2000 ident: 10.1016/j.conbuildmat.2019.117728_b0045 article-title: The influence of admixtures on the properties of phosphorous slag cement publication-title: Cement Concr. Res. doi: 10.1016/S0008-8846(00)00291-X – volume: 14 start-page: 622 year: 1984 ident: 10.1016/j.conbuildmat.2019.117728_b0200 article-title: The dispersion model for hydration of Portland cement I. General concepts publication-title: Cem. Concr. Res. doi: 10.1016/0008-8846(84)90024-3 – ident: 10.1016/j.conbuildmat.2019.117728_b0015 – volume: 42 start-page: 428 issue: 2 year: 2007 ident: 10.1016/j.conbuildmat.2019.117728_b0110 article-title: The hydration of slag, part 1: reaction models for alkali-activated slag publication-title: J. Mater. Sci. doi: 10.1007/s10853-006-0873-2 |
SSID | ssj0006262 |
Score | 2.4656098 |
Snippet | •The hydration reaction kinetics of PS activated by a combination of water glass and sodium hydroxide was studied.•The hydration reaction of alkali activated... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 117728 |
SubjectTerms | Alkali activation Isothermal calorimetry Kinetic models Phosphorus slag Reaction kinetics |
Title | Reaction kinetics and kinetics models of alkali activated phosphorus slag |
URI | https://dx.doi.org/10.1016/j.conbuildmat.2019.117728 |
Volume | 237 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KBdGD-MT6KCt4jW2yu-kGvJRiaS32UC32FrabXa0taenDo7_dmTxsBUHBQwhZMhA-hplvyMw3hFx7SkpXGeEIFQkoUAQOK0eRY4y2gnEWCYHDyQ9dv9Xn9wMxKJBGPguDbZVZ7E9jehKts5NKhmZlNhpVHoEcYAKGlMYY5imcYOc19PKbj3WbBxB2L9XbwwUrrtwmV-seLyg5h7h9GsghdnkFyS9MXMz-U47ayDvNfbKXEUZaT7_pgBRMfEh2N2QEj0i7Z9LxBDqGQ9RdpiqO1g_JtpsFnVqqJmPg3RTffgeSGdHZ63QB13y1oOAbL8ek37x7arScbEWCo5nnLp2aKwx3jRuoKkBr5TCwwKe0rUZCC1tVkfSUrgmuoA6yQvqurwRkRW64x7W2ip2QYjyNzSmhgGIgLdRXKNcSQByURgk_KRBx3JWViMxBCXWmH45rLCZh3ij2Fm7gGSKeYYpniXhfprNUROMvRrc58uE3jwgh2P9ufvY_83Oy42FlXWUQRy5IcTlfmUugH8thOfGvMtmqtzutLt47vefOJ5n-3P0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qBR8H8Yn1uYLX2Lw23YAXKZZW2x60hd7CNtnV2pKWPjz6253Jw1YQFDzkkCUD4WMy8w2ZmQ_g2pZCWFJxg8uIY4HCaVg5igylQs0d14k4p-HkVturd92HHu8VoJrPwlBbZRb705ieROvspJyhWZ4MBuVnJAeUgDGlOQ7lqTVYd_HzJRmDm49lnwcydjtduEcKK5bYgKtlkxfWnH2Sn0Z2SG1efvIPk5TZf0pSK4mntgs7GWNkd-lL7UFBxfuwvbJH8AAaTyqdT2BDPKTFy0zG0fImkbuZsbFmcjRE4s3o6XdkmRGbvI5neE0XM4bO8XII3dp9p1o3Mo0EI3Rsa25ULK5cS1m-NBFbLfq-RkIVajPiIdemjIQtwwp3JRZCmgvP8iTHtOgq13bDUEvnCIrxOFbHwBBGX2gssGhfi49ICiW5l1SINO_qlEDkoARhtkCcdCxGQd4p9has4BkQnkGKZwnsL9NJukXjL0a3OfLBN5cIMNr_bn7yP_NL2Kx3Ws2g2Wg_nsKWTWW26WBQOYPifLpQ58hF5v2LxNc-AdtJ3Og |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reaction+kinetics+and+kinetics+models+of+alkali+activated+phosphorus+slag&rft.jtitle=Construction+%26+building+materials&rft.au=Xie%2C+Fuzhu&rft.au=Liu%2C+Ze&rft.au=Zhang%2C+Dawang&rft.au=Wang%2C+Jixiang&rft.date=2020-03-20&rft.issn=0950-0618&rft.volume=237&rft.spage=117728&rft_id=info:doi/10.1016%2Fj.conbuildmat.2019.117728&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_conbuildmat_2019_117728 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-0618&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-0618&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-0618&client=summon |