Reaction kinetics and kinetics models of alkali activated phosphorus slag

•The hydration reaction kinetics of PS activated by a combination of water glass and sodium hydroxide was studied.•The hydration reaction of alkali activated phosphorus slag (AAPS) was facilitated by higher temperature and lower silicate Modulus (Ms).•The differences in the hydration reaction kineti...

Full description

Saved in:
Bibliographic Details
Published inConstruction & building materials Vol. 237; p. 117728
Main Authors Xie, Fuzhu, Liu, Ze, Zhang, Dawang, Wang, Jixiang, Huang, Tianyong, Wang, Dongmin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 20.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The hydration reaction kinetics of PS activated by a combination of water glass and sodium hydroxide was studied.•The hydration reaction of alkali activated phosphorus slag (AAPS) was facilitated by higher temperature and lower silicate Modulus (Ms).•The differences in the hydration reaction kinetics of AAPS as varying the Ms and curing temperatures were quantified by the kinetic models.•The rate controlling processes of AAPS have shifted with changes in the Ms and curing temperatures discussed. The kinetics of alkali activation of phosphorus slag (PS) is highly related to silicate modulus of the activator and reaction temperature. In present study, it was probed into the hydration reaction kinetics of PS activated by a combination of water glass and sodium hydroxide. The influence of reaction temperatures (from 25 ℃ to 60 ℃) and the activator silicate modulus (Ms, SiO2/Na2O ratio by mass, from 1 to 2) on the hydration reaction kinetics of AAPS were explored by isothermal calorimetric test. The three kinetic models (the exponential mode, the Knudsen linear dispersion mode and the Jander mode) were selected to extract the correlation parameters and quantitatively analyze the acting mechanism on the hydration reaction kinetics of AAPS. The results showed that the effect of different reaction temperatures and Ms on the hydration reaction kinetics of AAPS were prominent. The exponential method was able to satisfactorily model the hydration reaction kinetics of AAPS pastes. However, higher reaction temperatures and lower Ms were required to abstract the desired kinetic parameters when the Knudsen linear dispersion model was used. With the varied curing temperatures and Ms, the variation trends of the time parameters τ and τo (from the exponential mode and the Knudsen linear dispersion mode, respectively) were in line with those trends that the time to acceleration peak and the ending time of induction stage, respectively. According to the Jander model, the rate controlling processes of AAPS shifted from phase boundary reaction controlling process (the N values less than 1) to diffusion controlling process (the N values more than 1) with decreasing Ms and increasing curing temperatures in the case of higher temperature and lower Ms, respectively. On the contrary, phase boundary reaction controlling process kept unchanged at lower temperature (25 °C) and higher Ms (2). Therefore, the conversion of the rate controlling processes of AAPS was responsible for the differences in the hydration reaction kinetics of AAPS.
AbstractList •The hydration reaction kinetics of PS activated by a combination of water glass and sodium hydroxide was studied.•The hydration reaction of alkali activated phosphorus slag (AAPS) was facilitated by higher temperature and lower silicate Modulus (Ms).•The differences in the hydration reaction kinetics of AAPS as varying the Ms and curing temperatures were quantified by the kinetic models.•The rate controlling processes of AAPS have shifted with changes in the Ms and curing temperatures discussed. The kinetics of alkali activation of phosphorus slag (PS) is highly related to silicate modulus of the activator and reaction temperature. In present study, it was probed into the hydration reaction kinetics of PS activated by a combination of water glass and sodium hydroxide. The influence of reaction temperatures (from 25 ℃ to 60 ℃) and the activator silicate modulus (Ms, SiO2/Na2O ratio by mass, from 1 to 2) on the hydration reaction kinetics of AAPS were explored by isothermal calorimetric test. The three kinetic models (the exponential mode, the Knudsen linear dispersion mode and the Jander mode) were selected to extract the correlation parameters and quantitatively analyze the acting mechanism on the hydration reaction kinetics of AAPS. The results showed that the effect of different reaction temperatures and Ms on the hydration reaction kinetics of AAPS were prominent. The exponential method was able to satisfactorily model the hydration reaction kinetics of AAPS pastes. However, higher reaction temperatures and lower Ms were required to abstract the desired kinetic parameters when the Knudsen linear dispersion model was used. With the varied curing temperatures and Ms, the variation trends of the time parameters τ and τo (from the exponential mode and the Knudsen linear dispersion mode, respectively) were in line with those trends that the time to acceleration peak and the ending time of induction stage, respectively. According to the Jander model, the rate controlling processes of AAPS shifted from phase boundary reaction controlling process (the N values less than 1) to diffusion controlling process (the N values more than 1) with decreasing Ms and increasing curing temperatures in the case of higher temperature and lower Ms, respectively. On the contrary, phase boundary reaction controlling process kept unchanged at lower temperature (25 °C) and higher Ms (2). Therefore, the conversion of the rate controlling processes of AAPS was responsible for the differences in the hydration reaction kinetics of AAPS.
ArticleNumber 117728
Author Wang, Jixiang
Liu, Ze
Xie, Fuzhu
Zhang, Dawang
Wang, Dongmin
Huang, Tianyong
Author_xml – sequence: 1
  givenname: Fuzhu
  surname: Xie
  fullname: Xie, Fuzhu
  organization: School of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing 100083, China
– sequence: 2
  givenname: Ze
  surname: Liu
  fullname: Liu, Ze
  email: lzk1227@sina.com
  organization: School of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing 100083, China
– sequence: 3
  givenname: Dawang
  surname: Zhang
  fullname: Zhang, Dawang
  email: zhangdawang1314@163.com
  organization: College of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
– sequence: 4
  givenname: Jixiang
  surname: Wang
  fullname: Wang, Jixiang
  organization: School of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing 100083, China
– sequence: 5
  givenname: Tianyong
  surname: Huang
  fullname: Huang, Tianyong
  organization: State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing 100041, China
– sequence: 6
  givenname: Dongmin
  surname: Wang
  fullname: Wang, Dongmin
  organization: School of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing 100083, China
BookMark eNqNkN1KAzEQRoMo2FbfYX2AXZN0k91ciRR_CgVB9DpMk4mm3W5KkhZ8e7tUULzqxTAMfN-BOWNy3oceCblhtGKUydtVZUK_3PnObiBXnDJVMdY0vD0jI9Y2qqSCy3MyokrQkkrWXpJxSitKqeSSj8j8FcFkH_pi7XvM3qQCevt7bILFLhXBFdCtofPFkN5DRltsP0M6TNylInXwcUUuHHQJr3_2hLw_PrzNnsvFy9N8dr8ozZSzXDZMYM2QKaBOTF27VI5zaRy1wghHwbYcTCNqqJVwopVMgkC0Nda8NsbBdELujlwTQ0oRnTY-w_BCjuA7zagezOiV_mNGD2b00cyBoP4RttFvIH6d1J0duwcruPcYdTIee4PWRzRZ2-BPoHwDcZ6J0A
CitedBy_id crossref_primary_10_1016_j_conbuildmat_2021_123287
crossref_primary_10_1016_j_conbuildmat_2022_129028
crossref_primary_10_1016_j_conbuildmat_2022_129248
crossref_primary_10_3390_ma14082080
crossref_primary_10_1007_s43615_021_00029_w
crossref_primary_10_1016_j_conbuildmat_2023_133500
crossref_primary_10_1016_j_cscm_2024_e04071
crossref_primary_10_1680_jmacr_24_00194
crossref_primary_10_1016_j_conbuildmat_2022_129100
crossref_primary_10_1016_j_dibe_2024_100541
crossref_primary_10_17533_udea_redin_20230624
crossref_primary_10_1016_j_conbuildmat_2020_119788
crossref_primary_10_1016_j_conbuildmat_2023_132384
crossref_primary_10_3390_ma13102390
crossref_primary_10_1016_j_conbuildmat_2020_119488
crossref_primary_10_3390_ma13214796
crossref_primary_10_1016_j_cemconres_2023_107139
crossref_primary_10_1016_j_conbuildmat_2021_123737
crossref_primary_10_1016_j_jnoncrysol_2023_122195
crossref_primary_10_3390_ma15155395
crossref_primary_10_1016_j_conbuildmat_2023_134602
crossref_primary_10_1016_j_conbuildmat_2023_133117
crossref_primary_10_1061_JMCEE7_MTENG_16608
crossref_primary_10_1016_j_jobe_2023_107293
crossref_primary_10_1016_j_cemconcomp_2022_104649
crossref_primary_10_3390_app11167191
crossref_primary_10_1016_j_conbuildmat_2024_137688
crossref_primary_10_1016_j_cemconcomp_2025_105963
crossref_primary_10_1016_j_conbuildmat_2024_136036
crossref_primary_10_1016_j_jenvman_2022_116942
crossref_primary_10_1007_s41779_024_01038_2
crossref_primary_10_1016_j_conbuildmat_2020_119132
crossref_primary_10_1016_j_psep_2025_106839
crossref_primary_10_1061__ASCE_MT_1943_5533_0003997
Cites_doi 10.1016/S0008-8846(02)00855-4
10.1061/(ASCE)MT.1943-5533.0000195
10.1016/S0008-8846(02)00717-2
10.1016/j.tca.2012.03.021
10.1016/j.cemconres.2009.01.014
10.1016/S0043-1354(01)00474-2
10.1016/j.tca.2012.07.010
10.1016/j.cemconres.2010.11.016
10.1016/j.conbuildmat.2015.01.065
10.1016/j.cemconcomp.2011.07.007
10.1007/BF00638034
10.1016/j.cemconcomp.2010.09.004
10.1016/j.cemconres.2010.10.004
10.1016/S0008-8846(00)00293-3
10.1007/BF01133772
10.1016/S0008-8846(00)00356-2
10.1016/0008-8846(93)90062-E
10.1111/j.1151-2916.2003.tb03481.x
10.1016/j.seppur.2012.01.039
10.3151/jact.6.397
10.1016/j.cemconres.2018.07.010
10.1016/0008-8846(95)00126-W
10.1016/j.cemconres.2007.08.017
10.1680/adcr.1995.7.27.93
10.1016/j.jcis.2011.06.067
10.1016/S0008-8846(98)00212-9
10.1016/S0008-8846(00)00456-7
10.1016/j.powtec.2015.10.053
10.1016/S0008-8846(97)00040-9
10.1007/s10973-017-6576-x
10.1016/j.molliq.2018.05.029
10.1016/j.conbuildmat.2013.03.061
10.1111/j.1151-2916.2003.tb03623.x
10.1021/la4000473
10.1680/adcr.2007.19.2.81
10.1016/S0008-8846(00)00291-X
10.1016/0008-8846(84)90024-3
10.1007/s10853-006-0873-2
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.conbuildmat.2019.117728
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0526
ExternalDocumentID 10_1016_j_conbuildmat_2019_117728
S0950061819331812
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFRF
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADHUB
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BAAKF
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IAO
IEA
IGG
IHE
IHM
IOF
ISM
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N95
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PV9
Q38
ROL
RPZ
RZL
SDF
SDG
SES
SPC
SPCBC
SSM
SST
SSZ
T5K
UNMZH
XI7
~G-
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHDLI
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
ITC
R2-
RIG
RNS
SET
SEW
SMS
SSH
VH1
WUQ
ZMT
ID FETCH-LOGICAL-c321t-715e41e19a0f53f8b9f226cf0d5c5f0ad82ac754a495f58616a5eed4e424ccfa3
IEDL.DBID .~1
ISSN 0950-0618
IngestDate Tue Jul 01 04:34:10 EDT 2025
Thu Apr 24 23:11:57 EDT 2025
Fri Feb 23 02:49:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Isothermal calorimetry
Alkali activation
Kinetic models
Phosphorus slag
Reaction kinetics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-715e41e19a0f53f8b9f226cf0d5c5f0ad82ac754a495f58616a5eed4e424ccfa3
ParticipantIDs crossref_citationtrail_10_1016_j_conbuildmat_2019_117728
crossref_primary_10_1016_j_conbuildmat_2019_117728
elsevier_sciencedirect_doi_10_1016_j_conbuildmat_2019_117728
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-20
PublicationDateYYYYMMDD 2020-03-20
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-20
  day: 20
PublicationDecade 2020
PublicationTitle Construction & building materials
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Pu, Scrivener, Pratt (b0065) 1995; 7
Brough, Atkinson (b0125) 2002; 32
Lothenbach, Matschei, Moschner, Glasser (b0175) 2008; 38
Chen, Brouwers (b0110) 2007; 42
MaghsoodlooRad, Allahverdi (b0010) 2015; 59
Omar (b0030) 2018; 263
Brough, Holloway, Sykes, Atkinson (b0120) 2000; 30
Mehdizadeh, Kani, Sanchez (b0035) 2018; 113
Zhang, Wang, Provis, Bullen, Reid, Zhu (b0190) 2012; 539
Shi, Krivenko, Roy (b0235) 2006
Singh, Bhattacharjee (b0020) 1996; 3
Brough, Atkinson (b0085) 2002; 32
Shi, Day (b0170) 1995; 25
Vinod, Gupta (b0215) 2002; 36
Song, Jennings (b0130) 1999; 29
Neithalath (b0195) 2008; 6
Allahverd, Pilehva, Mahinroosta (b0050) 2016; 288
ASTM, C 1679-09, Standard practice for measuring hydration kinetics of hydraulic cement mixtures using isothermal calorimetry. ASTM, international; 2009. p. 014.
Ali Allahverdi, MohammadMahdi Bahri Rasht Abadi, KhandakerM. AnwarHossain, Mohamed Lachemi. Resistance of chemically-activated high phosphorous slag content cement against freeze–thaw cycles. Cold Regions Sci. Technol. 2014; 103:107–114.
Thomas, Biernacki, Bullard, Bishnoi, Dolado, Scherer (b0180) 2011; 41
Cabrera, Rojas (b0230) 2001; 31
Richardson, Groves (b0090) 1992; 27
L. John, Provis, S.J. Jannie, van Deventer, Alkali Activated Materials.
Knudsen (b0200) 1984; 14
Zhou, Wu, Xu, Tang (b0070) 1993; 23
Chithiraputhiran, Neithalath (b0055) 2013; 45
Gao, Yu, Brouwers (b0150) 2015; 80
Fernández-Jiménez, Puertas (b0220) 1997; 27
Baert, De Belie, De Schutter (b0210) 2011; 23
Ben Haha, Le Saout, Winnefeld, Lothenbach (b0115) 2011; 41
Li, Shen, Mao, Wu (b0045) 2000; 30
Bernal, Provis, Rose, Gutierrez (b0165) 2011; 33
Zhang, Yang, Zhang (b0025) 2013; 423–426
Rothstein, Thomas, Christensen, Jennings (b0135) 2002; 32
Dabic, Krstulovic, Ruˇsicˇı (b0205) 2000; 30
Myers, Bernal, San Nicolas, Provis (b0095) 2013; 29
Rajaokarivony-Andriambololona, Thomassin, Baillif, Touray (b0145) 1990; 25
Ravikumar, Neithalath (b0155) 2012; 546
Escalante-Garcia, Fuentes, Gorokhovsky, Fraire-Luna, Mendoza-Suarez (b0075) 2003; 86
Lin, Meyer (b0185) 2009; 39
Mohammadi, Khani (b0160) 2011; 362
Fernández-Jiménez, Puertas, Sobrados, Sanz (b0080) 2003; 86
Saleh, Gupta (b0140) 2012; 89
Gartner, Young, Damidot, Jawed, Bensted, Barnes (b0225) 2002
Wang, Huang, Wang (b0040) 2018; 131
Najafi Kani, Allahverdi, Provis (b0005) 2012; 34
Lothenbach, Gruskovnjak (b0105) 2007; 19
Omar (10.1016/j.conbuildmat.2019.117728_b0030) 2018; 263
Fernández-Jiménez (10.1016/j.conbuildmat.2019.117728_b0220) 1997; 27
Bernal (10.1016/j.conbuildmat.2019.117728_b0165) 2011; 33
Vinod (10.1016/j.conbuildmat.2019.117728_b0215) 2002; 36
Brough (10.1016/j.conbuildmat.2019.117728_b0125) 2002; 32
10.1016/j.conbuildmat.2019.117728_b0100
Shi (10.1016/j.conbuildmat.2019.117728_b0170) 1995; 25
Wang (10.1016/j.conbuildmat.2019.117728_b0065) 1995; 7
Zhang (10.1016/j.conbuildmat.2019.117728_b0190) 2012; 539
Knudsen (10.1016/j.conbuildmat.2019.117728_b0200) 1984; 14
Richardson (10.1016/j.conbuildmat.2019.117728_b0090) 1992; 27
Saleh (10.1016/j.conbuildmat.2019.117728_b0140) 2012; 89
10.1016/j.conbuildmat.2019.117728_b0060
Chen (10.1016/j.conbuildmat.2019.117728_b0110) 2007; 42
Ben Haha (10.1016/j.conbuildmat.2019.117728_b0115) 2011; 41
Najafi Kani (10.1016/j.conbuildmat.2019.117728_b0005) 2012; 34
Gao (10.1016/j.conbuildmat.2019.117728_b0150) 2015; 80
Wang (10.1016/j.conbuildmat.2019.117728_b0040) 2018; 131
Chithiraputhiran (10.1016/j.conbuildmat.2019.117728_b0055) 2013; 45
Fernández-Jiménez (10.1016/j.conbuildmat.2019.117728_b0080) 2003; 86
Rothstein (10.1016/j.conbuildmat.2019.117728_b0135) 2002; 32
Ravikumar (10.1016/j.conbuildmat.2019.117728_b0155) 2012; 546
Zhang (10.1016/j.conbuildmat.2019.117728_b0025) 2013; 423–426
Singh (10.1016/j.conbuildmat.2019.117728_b0020) 1996; 3
Lothenbach (10.1016/j.conbuildmat.2019.117728_b0105) 2007; 19
Mehdizadeh (10.1016/j.conbuildmat.2019.117728_b0035) 2018; 113
Lothenbach (10.1016/j.conbuildmat.2019.117728_b0175) 2008; 38
Gartner (10.1016/j.conbuildmat.2019.117728_b0225) 2002
Allahverd (10.1016/j.conbuildmat.2019.117728_b0050) 2016; 288
Neithalath (10.1016/j.conbuildmat.2019.117728_b0195) 2008; 6
10.1016/j.conbuildmat.2019.117728_b0015
Myers (10.1016/j.conbuildmat.2019.117728_b0095) 2013; 29
Rajaokarivony-Andriambololona (10.1016/j.conbuildmat.2019.117728_b0145) 1990; 25
Mohammadi (10.1016/j.conbuildmat.2019.117728_b0160) 2011; 362
MaghsoodlooRad (10.1016/j.conbuildmat.2019.117728_b0010) 2015; 59
Zhou (10.1016/j.conbuildmat.2019.117728_b0070) 1993; 23
Brough (10.1016/j.conbuildmat.2019.117728_b0085) 2002; 32
Song (10.1016/j.conbuildmat.2019.117728_b0130) 1999; 29
Shi (10.1016/j.conbuildmat.2019.117728_b0235) 2006
Li (10.1016/j.conbuildmat.2019.117728_b0045) 2000; 30
Brough (10.1016/j.conbuildmat.2019.117728_b0120) 2000; 30
Lin (10.1016/j.conbuildmat.2019.117728_b0185) 2009; 39
Baert (10.1016/j.conbuildmat.2019.117728_b0210) 2011; 23
Dabic (10.1016/j.conbuildmat.2019.117728_b0205) 2000; 30
Cabrera (10.1016/j.conbuildmat.2019.117728_b0230) 2001; 31
Escalante-Garcia (10.1016/j.conbuildmat.2019.117728_b0075) 2003; 86
Thomas (10.1016/j.conbuildmat.2019.117728_b0180) 2011; 41
References_xml – volume: 32
  start-page: 1663
  year: 2002
  end-page: 1671
  ident: b0135
  article-title: Solubility behavior of Ca-, S-, Al-, and Si-bearing solid phases in Portland cement pore solutions as a function of hydration time
  publication-title: Cem. Concr. Res.
– reference: ASTM, C 1679-09, Standard practice for measuring hydration kinetics of hydraulic cement mixtures using isothermal calorimetry. ASTM, international; 2009. p. 014.
– volume: 30
  start-page: 1375
  year: 2000
  end-page: 1379
  ident: b0120
  article-title: Sodium silicate-based alkali activated slag mortars: Part II. The retarding effect of additions of sodium chloride or malic acid
  publication-title: Cem. Concr. Res.
– volume: 23
  start-page: 761
  year: 2011
  ident: b0210
  article-title: Multicompound model for the hydration of Portland cement–fly ash binders
  publication-title: J. Mater. Civil Eng.
– volume: 30
  start-page: 1169
  year: 2000
  end-page: 1173
  ident: b0045
  article-title: The influence of admixtures on the properties of phosphorous slag cement
  publication-title: Cement Concr. Res.
– volume: 86
  start-page: 1389
  year: 2003
  end-page: 1394
  ident: b0080
  article-title: Structure of calcium silicate hydrates formed in alkaline-activated slag: influence of the type of alkaline activator
  publication-title: J. Am. Ceram. Soc.
– volume: 25
  start-page: 1333
  year: 1995
  end-page: 1346
  ident: b0170
  article-title: A calorimetric study of early hydration of alkali-slag cements
  publication-title: Cem. Concr. Res.
– volume: 30
  start-page: 1017
  year: 2000
  end-page: 1021
  ident: b0205
  article-title: A new approach in mathematical modelling of cement hydration development
  publication-title: Cement Concr. Res.
– volume: 263
  start-page: 442
  year: 2018
  end-page: 453
  ident: b0030
  article-title: Alharbi, Al Arsh Basheer, Health and environmental effects of persistent organic pollutants
  publication-title: J. Mol. Liq.
– volume: 29
  start-page: 5294
  year: 2013
  end-page: 5306
  ident: b0095
  article-title: Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the cross linked substituted tobermorite model
  publication-title: Langmuir
– volume: 32
  start-page: 865
  year: 2002
  end-page: 879
  ident: b0125
  article-title: Sodium silicate-based alkali-activated slag mortars: Part I. Strength, hydration and microstructure
  publication-title: Cem. Concr. Res.
– volume: 19
  start-page: 81
  year: 2007
  end-page: 92
  ident: b0105
  article-title: Hydration of alkali-activated slag: thermodynamic modelling
  publication-title: Adv. Cem. Res.
– volume: 29
  start-page: 159
  year: 1999
  end-page: 170
  ident: b0130
  article-title: Pore solution chemistry of alkali-activated ground granulated blast-furnace slag
  publication-title: Cem. Concr. Res.
– volume: 34
  start-page: 25
  year: 2012
  end-page: 33
  ident: b0005
  article-title: Efflorescence control in geopolymer binder based on natural pozzolan
  publication-title: Cem. Concr. Compos.
– reference: L. John, Provis, S.J. Jannie, van Deventer, Alkali Activated Materials.
– volume: 25
  start-page: 2399
  year: 1990
  end-page: 2410
  ident: b0145
  article-title: Experimental hydration of two synthetic glassy blast furnace slags in water and alkaline solutions (NaOH and KOH 0.1 N) at 40 C: structure, composition and origin of the hydrated layer
  publication-title: J. Mater. Sci.
– volume: 14
  start-page: 622
  year: 1984
  end-page: 630
  ident: b0200
  article-title: The dispersion model for hydration of Portland cement I. General concepts
  publication-title: Cem. Concr. Res.
– volume: 45
  start-page: 233
  year: 2013
  end-page: 242
  ident: b0055
  article-title: Isothermal reaction kinetics and temperature dependence of alkali activation of slag, fly ash and their blends
  publication-title: Constr. Build. Mater.
– reference: Ali Allahverdi, MohammadMahdi Bahri Rasht Abadi, KhandakerM. AnwarHossain, Mohamed Lachemi. Resistance of chemically-activated high phosphorous slag content cement against freeze–thaw cycles. Cold Regions Sci. Technol. 2014; 103:107–114.
– volume: 7
  start-page: 93
  year: 1995
  end-page: 102
  ident: b0065
  article-title: Alkali-activated slag cement and concrete: a review of properties and problems
  publication-title: Adv. Cem. Res.
– volume: 23
  start-page: 1253
  year: 1993
  end-page: 1258
  ident: b0070
  article-title: Kinetic study on hydration of alkali-activated slag
  publication-title: Cem. Concr. Res.
– volume: 86
  start-page: 2148
  year: 2003
  end-page: 2153
  ident: b0075
  article-title: Hydration products and reactivity of blast-furnace slag activated by various alkalis
  publication-title: J. Am. Ceram. Soc.
– volume: 27
  start-page: 6204
  year: 1992
  end-page: 6212
  ident: b0090
  article-title: Microstructure and microanalysis of hardened cement pastes involving ground granulated blast-furnace slag
  publication-title: J. Mater. Sci.
– volume: 36
  start-page: 2483
  year: 2002
  end-page: 2490
  ident: b0215
  article-title: Jain, Imran Ali, Removal of lindane and malathion from wastewater using bagasse fly ash-a sugar industry waste
  publication-title: Water Res.
– volume: 423–426
  start-page: 987
  year: 2013
  end-page: 992
  ident: b0025
  article-title: Utilization of phosphorus slag and fly ash for the preparation of ready-mixed mortar
  publication-title: Appl. Mech. Mater.
– volume: 288
  start-page: 132
  year: 2016
  end-page: 139
  ident: b0050
  article-title: Influence of curing conditions on the mechanical and physical properties of chemically-activated phosphorous slag cement
  publication-title: Powder Technol.
– year: 2006
  ident: b0235
  article-title: Alkali-Activated Cements and Concretes
– volume: 42
  start-page: 428
  year: 2007
  end-page: 443
  ident: b0110
  article-title: The hydration of slag, part 1: reaction models for alkali-activated slag
  publication-title: J. Mater. Sci.
– volume: 32
  start-page: 865
  year: 2002
  end-page: 879
  ident: b0085
  article-title: Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure
  publication-title: Cem. Concr. Res.
– volume: 41
  start-page: 301
  year: 2011
  end-page: 310
  ident: b0115
  article-title: Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags
  publication-title: Cem. Concr. Res.
– volume: 113
  start-page: 121
  year: 2018
  end-page: 129
  ident: b0035
  article-title: Ana Fernandez-Jimenez. Rheology of activated phosphorus slag with lime and alkaline salts
  publication-title: Cem. Concr. Res.
– volume: 80
  start-page: 105
  year: 2015
  end-page: 115
  ident: b0150
  article-title: Reaction kinetics, gel character and strength of ambient temperature cured alkali activated slag–fly ash blends
  publication-title: Constr. Build. Mater.
– volume: 27
  start-page: 359
  year: 1997
  end-page: 368
  ident: b0220
  article-title: Alkali-activated slag cements: kinetic studies
  publication-title: Cement Concr. Res.
– volume: 59
  start-page: 250
  year: 2015
  end-page: 260
  ident: b0010
  article-title: Alkali-activation kinettics of phosphorus slag cement using compressive strength data
  publication-title: Cem. Silik
– volume: 546
  start-page: 32
  year: 2012
  end-page: 43
  ident: b0155
  article-title: Reaction kinetics in sodium silicate powder and liquid activated slag binders evaluated using isothermal calorimetry
  publication-title: Therm Acta
– volume: 38
  start-page: 1
  year: 2008
  end-page: 18
  ident: b0175
  article-title: Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement
  publication-title: Cem. Concr. Res.
– volume: 6
  start-page: 397
  year: 2008
  end-page: 408
  ident: b0195
  article-title: Quantifying the effects of hydration enhancement and dilution in cement pastes containing coarse glass powder
  publication-title: J. Adv. Concr. Technol.
– volume: 362
  start-page: 457
  year: 2011
  end-page: 462
  ident: b0160
  article-title: Adsorption process of methyl orange dye onto mesoporous carbon material–kinetic and thermodynamic studies
  publication-title: J. Colloid Interface Sci.
– volume: 31
  start-page: 177
  year: 2001
  end-page: 182
  ident: b0230
  article-title: Mechanism of hydration of the metakaolin–lime–water system
  publication-title: Cement Concr. Res.
– volume: 131
  start-page: 873
  year: 2018
  end-page: 885
  ident: b0040
  article-title: Influence of high-volume electric furnace nickel slag and phosphorous slag on the properties of massive concrete
  publication-title: J. Therm. Anal. Calorim.
– volume: 39
  start-page: 255
  year: 2009
  end-page: 265
  ident: b0185
  article-title: Hydration kinetics modeling of Portland cement considering the effects of curing temperature and applied pressure
  publication-title: Cem. Concr. Res.
– volume: 33
  start-page: 46
  year: 2011
  end-page: 54
  ident: b0165
  article-title: Evolution of binder structure in sodium silicate-activated slag-metakaolin blends
  publication-title: Cem. Concr. Compos.
– volume: 3
  start-page: 41
  year: 1996
  end-page: 44
  ident: b0020
  article-title: Phosphorous furnace slag—a potential waste material for the manufacture of cements
  publication-title: Indian J. Eng. Mater. S
– volume: 41
  start-page: 1257
  year: 2011
  end-page: 1278
  ident: b0180
  article-title: Modeling and simulation of cement hydration kinetics and microstructure development
  publication-title: Cem. Concr. Res.
– start-page: 57
  year: 2002
  end-page: 113
  ident: b0225
  article-title: (Eds.). Hydration of Portland cement, in: Structure and Performance of Cements
– volume: 539
  start-page: 23
  year: 2012
  end-page: 33
  ident: b0190
  article-title: Quantitative kinetic and structural analysis of geopolymers part 1: the activation of metakaolin with sodium hydroxide
  publication-title: Thermochim Acta
– volume: 89
  start-page: 245
  year: 2012
  end-page: 251
  ident: b0140
  article-title: Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance
  publication-title: Sep. Purif. Technol.
– volume: 32
  start-page: 1663
  year: 2002
  ident: 10.1016/j.conbuildmat.2019.117728_b0135
  article-title: Solubility behavior of Ca-, S-, Al-, and Si-bearing solid phases in Portland cement pore solutions as a function of hydration time
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(02)00855-4
– volume: 23
  start-page: 761
  year: 2011
  ident: 10.1016/j.conbuildmat.2019.117728_b0210
  article-title: Multicompound model for the hydration of Portland cement–fly ash binders
  publication-title: J. Mater. Civil Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0000195
– volume: 32
  start-page: 865
  issue: 6
  year: 2002
  ident: 10.1016/j.conbuildmat.2019.117728_b0085
  article-title: Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(02)00717-2
– volume: 539
  start-page: 23
  year: 2012
  ident: 10.1016/j.conbuildmat.2019.117728_b0190
  article-title: Quantitative kinetic and structural analysis of geopolymers part 1: the activation of metakaolin with sodium hydroxide
  publication-title: Thermochim Acta
  doi: 10.1016/j.tca.2012.03.021
– volume: 39
  start-page: 255
  year: 2009
  ident: 10.1016/j.conbuildmat.2019.117728_b0185
  article-title: Hydration kinetics modeling of Portland cement considering the effects of curing temperature and applied pressure
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2009.01.014
– volume: 36
  start-page: 2483
  year: 2002
  ident: 10.1016/j.conbuildmat.2019.117728_b0215
  article-title: Jain, Imran Ali, Removal of lindane and malathion from wastewater using bagasse fly ash-a sugar industry waste
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(01)00474-2
– volume: 546
  start-page: 32
  year: 2012
  ident: 10.1016/j.conbuildmat.2019.117728_b0155
  article-title: Reaction kinetics in sodium silicate powder and liquid activated slag binders evaluated using isothermal calorimetry
  publication-title: Therm Acta
  doi: 10.1016/j.tca.2012.07.010
– volume: 41
  start-page: 301
  issue: 3
  year: 2011
  ident: 10.1016/j.conbuildmat.2019.117728_b0115
  article-title: Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2010.11.016
– volume: 80
  start-page: 105
  year: 2015
  ident: 10.1016/j.conbuildmat.2019.117728_b0150
  article-title: Reaction kinetics, gel character and strength of ambient temperature cured alkali activated slag–fly ash blends
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.01.065
– ident: 10.1016/j.conbuildmat.2019.117728_b0100
– volume: 3
  start-page: 41
  year: 1996
  ident: 10.1016/j.conbuildmat.2019.117728_b0020
  article-title: Phosphorous furnace slag—a potential waste material for the manufacture of cements
  publication-title: Indian J. Eng. Mater. S
– volume: 34
  start-page: 25
  year: 2012
  ident: 10.1016/j.conbuildmat.2019.117728_b0005
  article-title: Efflorescence control in geopolymer binder based on natural pozzolan
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2011.07.007
– volume: 25
  start-page: 2399
  year: 1990
  ident: 10.1016/j.conbuildmat.2019.117728_b0145
  article-title: Experimental hydration of two synthetic glassy blast furnace slags in water and alkaline solutions (NaOH and KOH 0.1 N) at 40 C: structure, composition and origin of the hydrated layer
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF00638034
– volume: 33
  start-page: 46
  year: 2011
  ident: 10.1016/j.conbuildmat.2019.117728_b0165
  article-title: Evolution of binder structure in sodium silicate-activated slag-metakaolin blends
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2010.09.004
– volume: 41
  start-page: 1257
  year: 2011
  ident: 10.1016/j.conbuildmat.2019.117728_b0180
  article-title: Modeling and simulation of cement hydration kinetics and microstructure development
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2010.10.004
– volume: 30
  start-page: 1017
  year: 2000
  ident: 10.1016/j.conbuildmat.2019.117728_b0205
  article-title: A new approach in mathematical modelling of cement hydration development
  publication-title: Cement Concr. Res.
  doi: 10.1016/S0008-8846(00)00293-3
– volume: 27
  start-page: 6204
  issue: 22
  year: 1992
  ident: 10.1016/j.conbuildmat.2019.117728_b0090
  article-title: Microstructure and microanalysis of hardened cement pastes involving ground granulated blast-furnace slag
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF01133772
– volume: 30
  start-page: 1375
  year: 2000
  ident: 10.1016/j.conbuildmat.2019.117728_b0120
  article-title: Sodium silicate-based alkali activated slag mortars: Part II. The retarding effect of additions of sodium chloride or malic acid
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(00)00356-2
– volume: 23
  start-page: 1253
  issue: 6
  year: 1993
  ident: 10.1016/j.conbuildmat.2019.117728_b0070
  article-title: Kinetic study on hydration of alkali-activated slag
  publication-title: Cem. Concr. Res.
  doi: 10.1016/0008-8846(93)90062-E
– volume: 32
  start-page: 865
  year: 2002
  ident: 10.1016/j.conbuildmat.2019.117728_b0125
  article-title: Sodium silicate-based alkali-activated slag mortars: Part I. Strength, hydration and microstructure
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(02)00717-2
– volume: 86
  start-page: 1389
  issue: 8
  year: 2003
  ident: 10.1016/j.conbuildmat.2019.117728_b0080
  article-title: Structure of calcium silicate hydrates formed in alkaline-activated slag: influence of the type of alkaline activator
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.2003.tb03481.x
– volume: 89
  start-page: 245
  year: 2012
  ident: 10.1016/j.conbuildmat.2019.117728_b0140
  article-title: Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2012.01.039
– volume: 6
  start-page: 397
  year: 2008
  ident: 10.1016/j.conbuildmat.2019.117728_b0195
  article-title: Quantifying the effects of hydration enhancement and dilution in cement pastes containing coarse glass powder
  publication-title: J. Adv. Concr. Technol.
  doi: 10.3151/jact.6.397
– volume: 59
  start-page: 250
  year: 2015
  ident: 10.1016/j.conbuildmat.2019.117728_b0010
  article-title: Alkali-activation kinettics of phosphorus slag cement using compressive strength data
  publication-title: Cem. Silik
– volume: 113
  start-page: 121
  year: 2018
  ident: 10.1016/j.conbuildmat.2019.117728_b0035
  article-title: Ana Fernandez-Jimenez. Rheology of activated phosphorus slag with lime and alkaline salts
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2018.07.010
– volume: 25
  start-page: 1333
  year: 1995
  ident: 10.1016/j.conbuildmat.2019.117728_b0170
  article-title: A calorimetric study of early hydration of alkali-slag cements
  publication-title: Cem. Concr. Res.
  doi: 10.1016/0008-8846(95)00126-W
– volume: 38
  start-page: 1
  year: 2008
  ident: 10.1016/j.conbuildmat.2019.117728_b0175
  article-title: Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2007.08.017
– volume: 423–426
  start-page: 987
  year: 2013
  ident: 10.1016/j.conbuildmat.2019.117728_b0025
  article-title: Utilization of phosphorus slag and fly ash for the preparation of ready-mixed mortar
  publication-title: Appl. Mech. Mater.
– volume: 7
  start-page: 93
  issue: 27
  year: 1995
  ident: 10.1016/j.conbuildmat.2019.117728_b0065
  article-title: Alkali-activated slag cement and concrete: a review of properties and problems
  publication-title: Adv. Cem. Res.
  doi: 10.1680/adcr.1995.7.27.93
– volume: 362
  start-page: 457
  year: 2011
  ident: 10.1016/j.conbuildmat.2019.117728_b0160
  article-title: Adsorption process of methyl orange dye onto mesoporous carbon material–kinetic and thermodynamic studies
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2011.06.067
– ident: 10.1016/j.conbuildmat.2019.117728_b0060
– volume: 29
  start-page: 159
  year: 1999
  ident: 10.1016/j.conbuildmat.2019.117728_b0130
  article-title: Pore solution chemistry of alkali-activated ground granulated blast-furnace slag
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(98)00212-9
– volume: 31
  start-page: 177
  year: 2001
  ident: 10.1016/j.conbuildmat.2019.117728_b0230
  article-title: Mechanism of hydration of the metakaolin–lime–water system
  publication-title: Cement Concr. Res.
  doi: 10.1016/S0008-8846(00)00456-7
– volume: 288
  start-page: 132
  year: 2016
  ident: 10.1016/j.conbuildmat.2019.117728_b0050
  article-title: Influence of curing conditions on the mechanical and physical properties of chemically-activated phosphorous slag cement
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2015.10.053
– volume: 27
  start-page: 359
  year: 1997
  ident: 10.1016/j.conbuildmat.2019.117728_b0220
  article-title: Alkali-activated slag cements: kinetic studies
  publication-title: Cement Concr. Res.
  doi: 10.1016/S0008-8846(97)00040-9
– volume: 131
  start-page: 873
  year: 2018
  ident: 10.1016/j.conbuildmat.2019.117728_b0040
  article-title: Influence of high-volume electric furnace nickel slag and phosphorous slag on the properties of massive concrete
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-017-6576-x
– volume: 263
  start-page: 442
  year: 2018
  ident: 10.1016/j.conbuildmat.2019.117728_b0030
  article-title: Alharbi, Al Arsh Basheer, Health and environmental effects of persistent organic pollutants
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2018.05.029
– volume: 45
  start-page: 233
  year: 2013
  ident: 10.1016/j.conbuildmat.2019.117728_b0055
  article-title: Isothermal reaction kinetics and temperature dependence of alkali activation of slag, fly ash and their blends
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.03.061
– volume: 86
  start-page: 2148
  issue: 12
  year: 2003
  ident: 10.1016/j.conbuildmat.2019.117728_b0075
  article-title: Hydration products and reactivity of blast-furnace slag activated by various alkalis
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.2003.tb03623.x
– start-page: 57
  year: 2002
  ident: 10.1016/j.conbuildmat.2019.117728_b0225
– volume: 29
  start-page: 5294
  issue: 17
  year: 2013
  ident: 10.1016/j.conbuildmat.2019.117728_b0095
  article-title: Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the cross linked substituted tobermorite model
  publication-title: Langmuir
  doi: 10.1021/la4000473
– volume: 19
  start-page: 81
  issue: 2
  year: 2007
  ident: 10.1016/j.conbuildmat.2019.117728_b0105
  article-title: Hydration of alkali-activated slag: thermodynamic modelling
  publication-title: Adv. Cem. Res.
  doi: 10.1680/adcr.2007.19.2.81
– year: 2006
  ident: 10.1016/j.conbuildmat.2019.117728_b0235
– volume: 30
  start-page: 1169
  issue: 7
  year: 2000
  ident: 10.1016/j.conbuildmat.2019.117728_b0045
  article-title: The influence of admixtures on the properties of phosphorous slag cement
  publication-title: Cement Concr. Res.
  doi: 10.1016/S0008-8846(00)00291-X
– volume: 14
  start-page: 622
  year: 1984
  ident: 10.1016/j.conbuildmat.2019.117728_b0200
  article-title: The dispersion model for hydration of Portland cement I. General concepts
  publication-title: Cem. Concr. Res.
  doi: 10.1016/0008-8846(84)90024-3
– ident: 10.1016/j.conbuildmat.2019.117728_b0015
– volume: 42
  start-page: 428
  issue: 2
  year: 2007
  ident: 10.1016/j.conbuildmat.2019.117728_b0110
  article-title: The hydration of slag, part 1: reaction models for alkali-activated slag
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-006-0873-2
SSID ssj0006262
Score 2.4656098
Snippet •The hydration reaction kinetics of PS activated by a combination of water glass and sodium hydroxide was studied.•The hydration reaction of alkali activated...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 117728
SubjectTerms Alkali activation
Isothermal calorimetry
Kinetic models
Phosphorus slag
Reaction kinetics
Title Reaction kinetics and kinetics models of alkali activated phosphorus slag
URI https://dx.doi.org/10.1016/j.conbuildmat.2019.117728
Volume 237
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KBdGD-MT6KCt4jW2yu-kGvJRiaS32UC32FrabXa0taenDo7_dmTxsBUHBQwhZMhA-hplvyMw3hFx7SkpXGeEIFQkoUAQOK0eRY4y2gnEWCYHDyQ9dv9Xn9wMxKJBGPguDbZVZ7E9jehKts5NKhmZlNhpVHoEcYAKGlMYY5imcYOc19PKbj3WbBxB2L9XbwwUrrtwmV-seLyg5h7h9GsghdnkFyS9MXMz-U47ayDvNfbKXEUZaT7_pgBRMfEh2N2QEj0i7Z9LxBDqGQ9RdpiqO1g_JtpsFnVqqJmPg3RTffgeSGdHZ63QB13y1oOAbL8ek37x7arScbEWCo5nnLp2aKwx3jRuoKkBr5TCwwKe0rUZCC1tVkfSUrgmuoA6yQvqurwRkRW64x7W2ip2QYjyNzSmhgGIgLdRXKNcSQByURgk_KRBx3JWViMxBCXWmH45rLCZh3ij2Fm7gGSKeYYpniXhfprNUROMvRrc58uE3jwgh2P9ufvY_83Oy42FlXWUQRy5IcTlfmUugH8thOfGvMtmqtzutLt47vefOJ5n-3P0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qBR8H8Yn1uYLX2Lw23YAXKZZW2x60hd7CNtnV2pKWPjz6253Jw1YQFDzkkCUD4WMy8w2ZmQ_g2pZCWFJxg8uIY4HCaVg5igylQs0d14k4p-HkVturd92HHu8VoJrPwlBbZRb705ieROvspJyhWZ4MBuVnJAeUgDGlOQ7lqTVYd_HzJRmDm49lnwcydjtduEcKK5bYgKtlkxfWnH2Sn0Z2SG1efvIPk5TZf0pSK4mntgs7GWNkd-lL7UFBxfuwvbJH8AAaTyqdT2BDPKTFy0zG0fImkbuZsbFmcjRE4s3o6XdkmRGbvI5neE0XM4bO8XII3dp9p1o3Mo0EI3Rsa25ULK5cS1m-NBFbLfq-RkIVajPiIdemjIQtwwp3JRZCmgvP8iTHtOgq13bDUEvnCIrxOFbHwBBGX2gssGhfi49ICiW5l1SINO_qlEDkoARhtkCcdCxGQd4p9has4BkQnkGKZwnsL9NJukXjL0a3OfLBN5cIMNr_bn7yP_NL2Kx3Ws2g2Wg_nsKWTWW26WBQOYPifLpQ58hF5v2LxNc-AdtJ3Og
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reaction+kinetics+and+kinetics+models+of+alkali+activated+phosphorus+slag&rft.jtitle=Construction+%26+building+materials&rft.au=Xie%2C+Fuzhu&rft.au=Liu%2C+Ze&rft.au=Zhang%2C+Dawang&rft.au=Wang%2C+Jixiang&rft.date=2020-03-20&rft.issn=0950-0618&rft.volume=237&rft.spage=117728&rft_id=info:doi/10.1016%2Fj.conbuildmat.2019.117728&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_conbuildmat_2019_117728
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-0618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-0618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-0618&client=summon