Estimation of Vehicle Mass and Road Slope for Commercial Vehicles Utilizing an Interacting Multiple-Model Filter Method Under Complex Road Conditions

Precise and real-time estimation of vehicle mass and road slope plays a pivotal role in attaining accurate vehicle control. Currently, road slope estimation predominantly emphasizes longitudinal slopes, with limited research on intricate slopes that include both longitudinal roads and continuous tur...

Full description

Saved in:
Bibliographic Details
Published inWorld electric vehicle journal Vol. 16; no. 3; p. 172
Main Author Liu, Gang
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Precise and real-time estimation of vehicle mass and road slope plays a pivotal role in attaining accurate vehicle control. Currently, road slope estimation predominantly emphasizes longitudinal slopes, with limited research on intricate slopes that include both longitudinal roads and continuous turning up-and-down slopes. To address the limitations in existing road slope estimation research, this paper puts forward a novel joint-estimation approach for vehicle mass and road slope. Vehicle mass is initially estimated via M-estimation and recursive least squares with a forgetting factor (FFRLS). A road slope estimate approach, which utilizes interacting multiple models (IMM) and cubature Kalman filtering (CKF), is proposed for complex road slope scenarios. This algorithm integrates kinematic and dynamic vehicle models within the multi-model (MM) ensemble of the IMM filter. The kinematic vehicle model is appropriate for longitudinal road gradients, whereas the dynamic vehicle model is better suited for continuous turning up-and-down slope conditions. The IMM filter employs a stochastic process to weight the appropriate vehicle model according to the driving conditions. Consequently, the weights assigned by the IMM filter enable the algorithm to adaptively select the most suitable vehicle model, leading to more accurate slope estimates under complex conditions compared to single-model-based algorithms. Simulations were carried out using Matlab/Simulink2020-Trucksim2020 to verify the effectiveness of the proposed estimation approach. The results demonstrate that, compared with existing methods, the proposed estimation approach has achieved an improvement in the precision of evaluating vehicle mass and road gradient, thus confirming its superiority.
AbstractList Precise and real-time estimation of vehicle mass and road slope plays a pivotal role in attaining accurate vehicle control. Currently, road slope estimation predominantly emphasizes longitudinal slopes, with limited research on intricate slopes that include both longitudinal roads and continuous turning up-and-down slopes. To address the limitations in existing road slope estimation research, this paper puts forward a novel joint-estimation approach for vehicle mass and road slope. Vehicle mass is initially estimated via M-estimation and recursive least squares with a forgetting factor (FFRLS). A road slope estimate approach, which utilizes interacting multiple models (IMM) and cubature Kalman filtering (CKF), is proposed for complex road slope scenarios. This algorithm integrates kinematic and dynamic vehicle models within the multi-model (MM) ensemble of the IMM filter. The kinematic vehicle model is appropriate for longitudinal road gradients, whereas the dynamic vehicle model is better suited for continuous turning up-and-down slope conditions. The IMM filter employs a stochastic process to weight the appropriate vehicle model according to the driving conditions. Consequently, the weights assigned by the IMM filter enable the algorithm to adaptively select the most suitable vehicle model, leading to more accurate slope estimates under complex conditions compared to single-model-based algorithms. Simulations were carried out using Matlab/Simulink2020-Trucksim2020 to verify the effectiveness of the proposed estimation approach. The results demonstrate that, compared with existing methods, the proposed estimation approach has achieved an improvement in the precision of evaluating vehicle mass and road gradient, thus confirming its superiority.
Author Liu, Gang
Author_xml – sequence: 1
  givenname: Gang
  surname: Liu
  fullname: Liu, Gang
BookMark eNpNUctuEzEUtVCRKKU7PsASWwb8mLE9SxS1EKkREhC2lse-bh05drCd8vgP_peZBlBX93XuOffxHJ2lnAChl5S84Xwkb7_D_Y4KwgmV7Ak6Z4SzToiBnz3yn6HLWneEEEb7kVJ6jn5f1Rb2poWccPb4K9wFGwFvTK3YJIc_ZePw55gPgH0ueJX3eyg2mPgPWvG2hRh-hXQ7N-B1alCMbUu4OcYWDhG6TXYQ8XWIcw1voN1lh7fJwQPfDPhxklnl5MIySX2BnnoTK1z-tRdoe331ZfWhu_n4fr16d9NZzmjrhBwGrmB0FIZp6qUcDCfK9YoQ5cERYigD60DCjBRiklJ4Nynr5Uj8BIpfoPWJ12Wz04cyX6L81NkE_ZDI5Vab0pY1NZsE2H7yblCsJ4YpQanqPR2n-ZJqsDPXqxPXoeRvR6hN7_KxpHl8zamiismBLIqvTyhbcq0F_H9VSvTyR_34j_wPExuTRw
Cites_doi 10.1109/TITS.2007.902642
10.1109/VPPC.2013.6671743
10.1109/9.1299
10.1080/00423119208969994
10.1080/00423110600885772
10.23919/ACC.2004.1383884
10.1016/j.jfranklin.2016.01.005
10.1080/00423114.2002.11666217
10.1109/TITS.2011.2171033
10.1016/j.ifacol.2018.10.139
10.1016/j.eswa.2016.10.003
10.1109/ITSC.2006.1707361
10.1109/TIV.2017.2736246
10.1109/IVS.2007.4290255
10.1109/IVS.2011.5940517
10.1109/TITS.2016.2592699
10.1109/TITS.2016.2600641
10.1109/TVT.2022.3148133
10.1080/00423110500140690
10.3901/JME.2021.20.181
10.1016/j.measurement.2013.11.022
10.1109/TVT.2009.2014385
10.1109/ICUS.2017.8278412
ContentType Journal Article
Copyright 2025 by the author. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 by the author. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/wevj16030172
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2032-6653
ExternalDocumentID oai_doaj_org_article_2b6ec4bfd58240a2861184f19b49185c
10_3390_wevj16030172
GroupedDBID AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
8FE
8FG
ABUWG
AZQEC
DWQXO
L6V
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c321t-675538e9d1e5bb4775a308d48008fed00a12ecde7e67566b776fdb8cf790fbe83
IEDL.DBID BENPR
ISSN 2032-6653
IngestDate Wed Aug 27 01:07:33 EDT 2025
Fri Jul 25 12:00:01 EDT 2025
Tue Aug 05 12:04:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-675538e9d1e5bb4775a308d48008fed00a12ecde7e67566b776fdb8cf790fbe83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3181827508?pq-origsite=%requestingapplication%
PQID 3181827508
PQPubID 5046847
ParticipantIDs doaj_primary_oai_doaj_org_article_2b6ec4bfd58240a2861184f19b49185c
proquest_journals_3181827508
crossref_primary_10_3390_wevj16030172
PublicationCentury 2000
PublicationDate 20250301
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 20250301
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle World electric vehicle journal
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Li (ref_4) 2017; 2
ref_14
Guo (ref_25) 2005; 43
ref_10
Lingman (ref_13) 2002; 37
ref_19
ref_18
ref_17
Pacejka (ref_24) 1992; 21
He (ref_21) 2016; 18
Tsunashima (ref_15) 2006; 44
Lei (ref_12) 2014; 45
McIntyre (ref_11) 2009; 58
Shi (ref_1) 2011; 42
Blom (ref_16) 1988; 33
Jin (ref_5) 2014; 49
(ref_27) 2007; 8
Liu (ref_23) 2016; 353
ref_9
Apriliani (ref_7) 2017; 68
ref_8
Xu (ref_3) 2016; 18
Yin (ref_2) 2018; 51
Zhang (ref_20) 2021; 57
Jo (ref_26) 2011; 13
ref_6
Li (ref_22) 2022; 71
References_xml – volume: 8
  start-page: 491
  year: 2007
  ident: ref_27
  article-title: High-integrity IMM-EKF-based road vehicle navigation with low-cost GPS/SBAS/INS
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2007.902642
– ident: ref_6
  doi: 10.1109/VPPC.2013.6671743
– volume: 33
  start-page: 780
  year: 1988
  ident: ref_16
  article-title: The interacting multiple model algorithm for systems with Markovian switching coefficients
  publication-title: IEEE Trans. Autom. Control.
  doi: 10.1109/9.1299
– volume: 21
  start-page: 1
  year: 1992
  ident: ref_24
  article-title: The magic formula tyre model
  publication-title: Veh. Syst. Dyn.
  doi: 10.1080/00423119208969994
– volume: 44
  start-page: 750
  year: 2006
  ident: ref_15
  article-title: Vehicle and road state estimation using interacting multiple model approach
  publication-title: Veh. Syst. Dyn.
  doi: 10.1080/00423110600885772
– ident: ref_10
  doi: 10.23919/ACC.2004.1383884
– ident: ref_14
– volume: 353
  start-page: 834
  year: 2016
  ident: ref_23
  article-title: Vehicle state estimation based on minimum model error criterion combining with extended Kalman filter
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2016.01.005
– volume: 37
  start-page: 12
  year: 2002
  ident: ref_13
  article-title: Road slope and vehicle mass estimation using Kalman filtering
  publication-title: Veh. Syst. Dyn.
  doi: 10.1080/00423114.2002.11666217
– volume: 13
  start-page: 329
  year: 2011
  ident: ref_26
  article-title: Interacting multiple model filter-based sensor fusion of GPS with in-vehicle sensors for real-time vehicle positioning
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2011.2171033
– volume: 51
  start-page: 72
  year: 2018
  ident: ref_2
  article-title: Estimation road slope and longitudinal velocity for four-wheel drive vehicle
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.10.139
– volume: 68
  start-page: 29
  year: 2017
  ident: ref_7
  article-title: Ensemble and Fuzzy Kalman Filter for position estimation of an autonomous underwater vehicle based on dynamical system of AUV motion
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.10.003
– ident: ref_8
– ident: ref_17
  doi: 10.1109/ITSC.2006.1707361
– volume: 2
  start-page: 150
  year: 2017
  ident: ref_4
  article-title: Performance enhanced predictive control for adaptive cruise control system considering road elevation information
  publication-title: IEEE Trans. Intell. Veh.
  doi: 10.1109/TIV.2017.2736246
– ident: ref_18
  doi: 10.1109/IVS.2007.4290255
– ident: ref_19
  doi: 10.1109/IVS.2011.5940517
– volume: 18
  start-page: 858
  year: 2016
  ident: ref_21
  article-title: A probabilistic prediction model for the safety assessment of HDVs under complex driving environments
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2016.2592699
– volume: 18
  start-page: 1210
  year: 2016
  ident: ref_3
  article-title: Instantaneous feedback control for a fuel-prioritized vehicle cruising system on highways with a varying slope
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2016.2600641
– volume: 71
  start-page: 3704
  year: 2022
  ident: ref_22
  article-title: Model-based embedded road grade estimation using quaternion unscented kalman filter
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2022.3148133
– volume: 45
  start-page: 9
  year: 2014
  ident: ref_12
  article-title: Vehicle Mass and Road Grade Estimation Based on Extended Kalman Filter
  publication-title: Trans. Chin. Soc. Agric. Mach.
– volume: 43
  start-page: 341
  year: 2005
  ident: ref_25
  article-title: The UniTire model: A nonlinear and non-steady-state tyre model for vehicle dynamics simulation
  publication-title: Veh. Syst. Dyn.
  doi: 10.1080/00423110500140690
– volume: 57
  start-page: 181
  year: 2021
  ident: ref_20
  article-title: Research on intelligent vehicle target state tracking based on robust adaptive sckf
  publication-title: J. Mech. Eng.
  doi: 10.3901/JME.2021.20.181
– volume: 42
  start-page: 1
  year: 2011
  ident: ref_1
  article-title: Self-adaptive slope gearshift strategy for automatic transmission vehicles
  publication-title: Trans. Chin. Soc. Agric. Mach.
– volume: 49
  start-page: 196
  year: 2014
  ident: ref_5
  article-title: The adaptive Kalman filter based on fuzzy logic for inertial motion capture system
  publication-title: Measurement
  doi: 10.1016/j.measurement.2013.11.022
– volume: 58
  start-page: 3177
  year: 2009
  ident: ref_11
  article-title: A two-stage Lyapunov-based estimator for estimation of vehicle mass and road grade
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2009.2014385
– ident: ref_9
  doi: 10.1109/ICUS.2017.8278412
SSID ssj0002149111
Score 2.311967
Snippet Precise and real-time estimation of vehicle mass and road slope plays a pivotal role in attaining accurate vehicle control. Currently, road slope estimation...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 172
SubjectTerms Algorithms
Commercial vehicles
cubature Kalman filtering
Design specifications
Driving conditions
IMM
Kalman filters
Kinematics
M estimation
Parameter estimation
Real time
Road conditions
Sensors
Slopes
Stochastic processes
Vehicles
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7QTnBAPMVgoBzgWK1L06Y9wrRpQhoHYGi3Kg9HDE3rxMZD_A_-L3bboSEOXDi2ctMqduzPjeOPsXMbKy9D7QI0JxdIq02AqMgFBpzSwhqhgM4OD2-SwUhej-PxGtUX1YRV7YGriWsLk4CVxrs4xeCjRZogJJa-kxmZYayx5H0x5q0lU-SDBQJ_XMVVpXuEeX37DV6fiFKZcp4fMahs1f_LE5fhpb_DtmtcyC-r79llGzDbY1tr3QL32WcPl2N10pAXnj_AI4nyIcJfrmeO3xba8btpMQeOSJTT0Q-iU8JRa9EFHy0n08kHjoYP8PJnIJ1rwMthXVcYEDfalPcntInOhyW9NC-5kWg8FHivXtMtaKubTPaAjfq9--4gqFkVAhuJzjLADAGdHGSuA7ExUqlYR2HqJCLH1IMLQ90RYB0oQMkkMUol3pnUepWF3kAaHbLGrJjBEeNRCKGPQ50KkFIIq7OYOvh5bUSibZY12cVqnvN51Twjx6SD9JGv66PJrkgJ3zLU8rq8gYaQ14aQ_2UITdZaqTCv1-EiR4-FCRSiovT4P95xwjYF8f-WNWgt1lg-v8ApgpKlOSvt7wv4neG-
  priority: 102
  providerName: Directory of Open Access Journals
Title Estimation of Vehicle Mass and Road Slope for Commercial Vehicles Utilizing an Interacting Multiple-Model Filter Method Under Complex Road Conditions
URI https://www.proquest.com/docview/3181827508
https://doaj.org/article/2b6ec4bfd58240a2861184f19b49185c
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF7R9AIHxFMESrQHOK7qrNfe9QnRKqFCSoUKQb1Z-5iFVFEcmvBQ_0f_LzPrTSlC4mh7vJY8j52ZnZmPsVe-0lEVNggUpyCUt06gVxSEg6Ct9E5qoN7h2Wl9Mlfvz6vznHDb5LLKnU1Mhjp0nnLkhyh76Arj_mberL8JQo2i09UMobHH9tEEGzNg-0eT0w9nN1kWiQEAanNf8V5ifH_4E35cELQyxT5_7UVpZP8_FjltM9MH7H72D_nbnqEP2R1YPWL3bk0NfMyuJ6iWfcch7yL_DF-JlM_QDeZ2FfhZZwP_uOzWwNEj5dQCQrBKuGom3fD5drFcXOFq-AJPSUHqb8DLWa4vFISRtuTTBR2m81mCmeYJI4nWQ4Jf_WeOOzryJtF9wubTyafjE5HRFYQv5XgrMFJAYwdNGEPlnNK6smVhgkIP0kQIRWHHEnwADUhZ107rOgZnfNRNER2Y8ikbrLoVPGO8LKCIVWGNBKWk9LapaJJftE7W1jfNkL3e_ed23Q_RaDH4IH60t_kxZEfEhBsaGn2dbnSXX9qsSa10NXjlYqgMeiNWmhpjJBXHjUNWm8oP2cGOhW3Wx037R3qe___xC3ZXEsJvqjI7YIPt5Xd4iW7H1o3Ynpm-G2UJG6Xg_TctjN0l
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKOQAHxK_YUsAHeozqdZzEOSAEpcuWNj1AF_UW_DOGrVabpbtQ4D14DZ6RGScpRUjcekw8cSTPePyNPeOPsacuK4ISxidoTj5RztgEUZFPLPjCSGdlAVQ7XB3m44l6c5wdr7FffS0MpVX2PjE6at842iPfRttDKIzrm36--JwQaxSdrvYUGq1Z7MP3MwzZls_2XqF-t6Qc7R7tjJOOVSBxqRyuEkTIOMmh9EPIrFVFkZlUaK8QOekAXggzlOA8FICSeW6LIg_eaheKUgQLOsV-r7CrKsWVnCrTR6_P93QkhhvoO9r8emwX22fw9YSInCnS-mvliwQB__j_uKiNbrGbHRrlL1rzuc3WYH6H3bhwR-Fd9nMXnUBb38ibwN_DJxLlFYJubuaev22M5-9mzQI44l9OBSdE4oS9dqJLPllNZ9Mf2Bt-wOMWJFVT4GPVZTMmxMg246MpHd3zKpJa88jIRP2hwLf2NzsNHbDTRLnHJpcy6vfZ-ryZwwPGUwEiZMJoCUpJ6UyZ0b2BwViZG1eWA7bVj3O9aK_sqDHUIX3UF_UxYC9JCecydNF2fNGcfqy7eVtLm4NTNvhMI_YxUucYkakwLC2qWmduwDZ7Fdbd7F_Wf2x14__NT9i18VF1UB_sHe4_ZNclcQvH_LZNtr46_QKPEPCs7ONoZZx9uGyz_g27GBcx
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQOWlBgrsgR6tOOvH2gdU0TZRS0lUFYJ6M_uYhaAoDk1ogf_Bn-mvY8aPUoTErUfb47XkmZ39ZndmPoCXNlE-DrULyJxcEFttAkJFLjDolJbWSIVcOzwapweT-M1pcroGl20tDKdVtj6xctSutLxH3iPbIyhM61vW801axPH-cGfxNWAGKT5pbek0ahM5wh8XFL4tXx3uk663pRwO3u8dBA3DQGAj2V8FhJZpwmPu-pgYEyuV6CjMXEwoKvPowlD3JVqHCkkyTY1SqXcms17loTeYRTTuLVhXHBV1YH13MD4-udrhkRR8kCeps-2jKA97F3j-hWmdOe76ax2s6AL-WQ2qJW64AfcabCpe18Z0H9Zw_gDuXutY-BB-Dcgl1NWOovTiA35mUTEiCC703ImTUjvxblYuUBAaFlx-wpRONGojuhST1XQ2_Umj0Qui2pDk2gq6HDW5jQHzs83EcMoH-WJUUVyLip-JxyOB7_Vn9ko-budp8wgmN_LfH0NnXs5xE0QUYuiTUGcS41hKq_OEuwh6bWSqbZ53Ybv9z8WibuBRUODD-iiu66MLu6yEKxluu13dKM8-Fc0sLqRJ0cbGuyQjJKRlllJ8Fvt-bkjVWWK7sNWqsGh8wbL4Y7lP_v_4Bdwmky7eHo6PnsIdyUTDVbLbFnRWZ9_wGaGflXnemJmAjzdt2b8BDtkcww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+Vehicle+Mass+and+Road+Slope+for+Commercial+Vehicles+Utilizing+an+Interacting+Multiple-Model+Filter+Method+Under+Complex+Road+Conditions&rft.jtitle=World+electric+vehicle+journal&rft.au=Liu%2C+Gang&rft.date=2025-03-01&rft.issn=2032-6653&rft.eissn=2032-6653&rft.volume=16&rft.issue=3&rft.spage=172&rft_id=info:doi/10.3390%2Fwevj16030172&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_wevj16030172
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2032-6653&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2032-6653&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2032-6653&client=summon