Estimation of Vehicle Mass and Road Slope for Commercial Vehicles Utilizing an Interacting Multiple-Model Filter Method Under Complex Road Conditions
Precise and real-time estimation of vehicle mass and road slope plays a pivotal role in attaining accurate vehicle control. Currently, road slope estimation predominantly emphasizes longitudinal slopes, with limited research on intricate slopes that include both longitudinal roads and continuous tur...
Saved in:
Published in | World electric vehicle journal Vol. 16; no. 3; p. 172 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Precise and real-time estimation of vehicle mass and road slope plays a pivotal role in attaining accurate vehicle control. Currently, road slope estimation predominantly emphasizes longitudinal slopes, with limited research on intricate slopes that include both longitudinal roads and continuous turning up-and-down slopes. To address the limitations in existing road slope estimation research, this paper puts forward a novel joint-estimation approach for vehicle mass and road slope. Vehicle mass is initially estimated via M-estimation and recursive least squares with a forgetting factor (FFRLS). A road slope estimate approach, which utilizes interacting multiple models (IMM) and cubature Kalman filtering (CKF), is proposed for complex road slope scenarios. This algorithm integrates kinematic and dynamic vehicle models within the multi-model (MM) ensemble of the IMM filter. The kinematic vehicle model is appropriate for longitudinal road gradients, whereas the dynamic vehicle model is better suited for continuous turning up-and-down slope conditions. The IMM filter employs a stochastic process to weight the appropriate vehicle model according to the driving conditions. Consequently, the weights assigned by the IMM filter enable the algorithm to adaptively select the most suitable vehicle model, leading to more accurate slope estimates under complex conditions compared to single-model-based algorithms. Simulations were carried out using Matlab/Simulink2020-Trucksim2020 to verify the effectiveness of the proposed estimation approach. The results demonstrate that, compared with existing methods, the proposed estimation approach has achieved an improvement in the precision of evaluating vehicle mass and road gradient, thus confirming its superiority. |
---|---|
AbstractList | Precise and real-time estimation of vehicle mass and road slope plays a pivotal role in attaining accurate vehicle control. Currently, road slope estimation predominantly emphasizes longitudinal slopes, with limited research on intricate slopes that include both longitudinal roads and continuous turning up-and-down slopes. To address the limitations in existing road slope estimation research, this paper puts forward a novel joint-estimation approach for vehicle mass and road slope. Vehicle mass is initially estimated via M-estimation and recursive least squares with a forgetting factor (FFRLS). A road slope estimate approach, which utilizes interacting multiple models (IMM) and cubature Kalman filtering (CKF), is proposed for complex road slope scenarios. This algorithm integrates kinematic and dynamic vehicle models within the multi-model (MM) ensemble of the IMM filter. The kinematic vehicle model is appropriate for longitudinal road gradients, whereas the dynamic vehicle model is better suited for continuous turning up-and-down slope conditions. The IMM filter employs a stochastic process to weight the appropriate vehicle model according to the driving conditions. Consequently, the weights assigned by the IMM filter enable the algorithm to adaptively select the most suitable vehicle model, leading to more accurate slope estimates under complex conditions compared to single-model-based algorithms. Simulations were carried out using Matlab/Simulink2020-Trucksim2020 to verify the effectiveness of the proposed estimation approach. The results demonstrate that, compared with existing methods, the proposed estimation approach has achieved an improvement in the precision of evaluating vehicle mass and road gradient, thus confirming its superiority. |
Author | Liu, Gang |
Author_xml | – sequence: 1 givenname: Gang surname: Liu fullname: Liu, Gang |
BookMark | eNpNUctuEzEUtVCRKKU7PsASWwb8mLE9SxS1EKkREhC2lse-bh05drCd8vgP_peZBlBX93XuOffxHJ2lnAChl5S84Xwkb7_D_Y4KwgmV7Ak6Z4SzToiBnz3yn6HLWneEEEb7kVJ6jn5f1Rb2poWccPb4K9wFGwFvTK3YJIc_ZePw55gPgH0ueJX3eyg2mPgPWvG2hRh-hXQ7N-B1alCMbUu4OcYWDhG6TXYQ8XWIcw1voN1lh7fJwQPfDPhxklnl5MIySX2BnnoTK1z-tRdoe331ZfWhu_n4fr16d9NZzmjrhBwGrmB0FIZp6qUcDCfK9YoQ5cERYigD60DCjBRiklJ4Nynr5Uj8BIpfoPWJ12Wz04cyX6L81NkE_ZDI5Vab0pY1NZsE2H7yblCsJ4YpQanqPR2n-ZJqsDPXqxPXoeRvR6hN7_KxpHl8zamiismBLIqvTyhbcq0F_H9VSvTyR_34j_wPExuTRw |
Cites_doi | 10.1109/TITS.2007.902642 10.1109/VPPC.2013.6671743 10.1109/9.1299 10.1080/00423119208969994 10.1080/00423110600885772 10.23919/ACC.2004.1383884 10.1016/j.jfranklin.2016.01.005 10.1080/00423114.2002.11666217 10.1109/TITS.2011.2171033 10.1016/j.ifacol.2018.10.139 10.1016/j.eswa.2016.10.003 10.1109/ITSC.2006.1707361 10.1109/TIV.2017.2736246 10.1109/IVS.2007.4290255 10.1109/IVS.2011.5940517 10.1109/TITS.2016.2592699 10.1109/TITS.2016.2600641 10.1109/TVT.2022.3148133 10.1080/00423110500140690 10.3901/JME.2021.20.181 10.1016/j.measurement.2013.11.022 10.1109/TVT.2009.2014385 10.1109/ICUS.2017.8278412 |
ContentType | Journal Article |
Copyright | 2025 by the author. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025 by the author. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/wevj16030172 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2032-6653 |
ExternalDocumentID | oai_doaj_org_article_2b6ec4bfd58240a2861184f19b49185c 10_3390_wevj16030172 |
GroupedDBID | AADQD AAFWJ AAYXX ABJCF ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ICD ITC M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PTHSS 8FE 8FG ABUWG AZQEC DWQXO L6V PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c321t-675538e9d1e5bb4775a308d48008fed00a12ecde7e67566b776fdb8cf790fbe83 |
IEDL.DBID | BENPR |
ISSN | 2032-6653 |
IngestDate | Wed Aug 27 01:07:33 EDT 2025 Fri Jul 25 12:00:01 EDT 2025 Tue Aug 05 12:04:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c321t-675538e9d1e5bb4775a308d48008fed00a12ecde7e67566b776fdb8cf790fbe83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3181827508?pq-origsite=%requestingapplication% |
PQID | 3181827508 |
PQPubID | 5046847 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2b6ec4bfd58240a2861184f19b49185c proquest_journals_3181827508 crossref_primary_10_3390_wevj16030172 |
PublicationCentury | 2000 |
PublicationDate | 20250301 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 20250301 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | World electric vehicle journal |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Li (ref_4) 2017; 2 ref_14 Guo (ref_25) 2005; 43 ref_10 Lingman (ref_13) 2002; 37 ref_19 ref_18 ref_17 Pacejka (ref_24) 1992; 21 He (ref_21) 2016; 18 Tsunashima (ref_15) 2006; 44 Lei (ref_12) 2014; 45 McIntyre (ref_11) 2009; 58 Shi (ref_1) 2011; 42 Blom (ref_16) 1988; 33 Jin (ref_5) 2014; 49 (ref_27) 2007; 8 Liu (ref_23) 2016; 353 ref_9 Apriliani (ref_7) 2017; 68 ref_8 Xu (ref_3) 2016; 18 Yin (ref_2) 2018; 51 Zhang (ref_20) 2021; 57 Jo (ref_26) 2011; 13 ref_6 Li (ref_22) 2022; 71 |
References_xml | – volume: 8 start-page: 491 year: 2007 ident: ref_27 article-title: High-integrity IMM-EKF-based road vehicle navigation with low-cost GPS/SBAS/INS publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2007.902642 – ident: ref_6 doi: 10.1109/VPPC.2013.6671743 – volume: 33 start-page: 780 year: 1988 ident: ref_16 article-title: The interacting multiple model algorithm for systems with Markovian switching coefficients publication-title: IEEE Trans. Autom. Control. doi: 10.1109/9.1299 – volume: 21 start-page: 1 year: 1992 ident: ref_24 article-title: The magic formula tyre model publication-title: Veh. Syst. Dyn. doi: 10.1080/00423119208969994 – volume: 44 start-page: 750 year: 2006 ident: ref_15 article-title: Vehicle and road state estimation using interacting multiple model approach publication-title: Veh. Syst. Dyn. doi: 10.1080/00423110600885772 – ident: ref_10 doi: 10.23919/ACC.2004.1383884 – ident: ref_14 – volume: 353 start-page: 834 year: 2016 ident: ref_23 article-title: Vehicle state estimation based on minimum model error criterion combining with extended Kalman filter publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2016.01.005 – volume: 37 start-page: 12 year: 2002 ident: ref_13 article-title: Road slope and vehicle mass estimation using Kalman filtering publication-title: Veh. Syst. Dyn. doi: 10.1080/00423114.2002.11666217 – volume: 13 start-page: 329 year: 2011 ident: ref_26 article-title: Interacting multiple model filter-based sensor fusion of GPS with in-vehicle sensors for real-time vehicle positioning publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2011.2171033 – volume: 51 start-page: 72 year: 2018 ident: ref_2 article-title: Estimation road slope and longitudinal velocity for four-wheel drive vehicle publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.10.139 – volume: 68 start-page: 29 year: 2017 ident: ref_7 article-title: Ensemble and Fuzzy Kalman Filter for position estimation of an autonomous underwater vehicle based on dynamical system of AUV motion publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.10.003 – ident: ref_8 – ident: ref_17 doi: 10.1109/ITSC.2006.1707361 – volume: 2 start-page: 150 year: 2017 ident: ref_4 article-title: Performance enhanced predictive control for adaptive cruise control system considering road elevation information publication-title: IEEE Trans. Intell. Veh. doi: 10.1109/TIV.2017.2736246 – ident: ref_18 doi: 10.1109/IVS.2007.4290255 – ident: ref_19 doi: 10.1109/IVS.2011.5940517 – volume: 18 start-page: 858 year: 2016 ident: ref_21 article-title: A probabilistic prediction model for the safety assessment of HDVs under complex driving environments publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2016.2592699 – volume: 18 start-page: 1210 year: 2016 ident: ref_3 article-title: Instantaneous feedback control for a fuel-prioritized vehicle cruising system on highways with a varying slope publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2016.2600641 – volume: 71 start-page: 3704 year: 2022 ident: ref_22 article-title: Model-based embedded road grade estimation using quaternion unscented kalman filter publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2022.3148133 – volume: 45 start-page: 9 year: 2014 ident: ref_12 article-title: Vehicle Mass and Road Grade Estimation Based on Extended Kalman Filter publication-title: Trans. Chin. Soc. Agric. Mach. – volume: 43 start-page: 341 year: 2005 ident: ref_25 article-title: The UniTire model: A nonlinear and non-steady-state tyre model for vehicle dynamics simulation publication-title: Veh. Syst. Dyn. doi: 10.1080/00423110500140690 – volume: 57 start-page: 181 year: 2021 ident: ref_20 article-title: Research on intelligent vehicle target state tracking based on robust adaptive sckf publication-title: J. Mech. Eng. doi: 10.3901/JME.2021.20.181 – volume: 42 start-page: 1 year: 2011 ident: ref_1 article-title: Self-adaptive slope gearshift strategy for automatic transmission vehicles publication-title: Trans. Chin. Soc. Agric. Mach. – volume: 49 start-page: 196 year: 2014 ident: ref_5 article-title: The adaptive Kalman filter based on fuzzy logic for inertial motion capture system publication-title: Measurement doi: 10.1016/j.measurement.2013.11.022 – volume: 58 start-page: 3177 year: 2009 ident: ref_11 article-title: A two-stage Lyapunov-based estimator for estimation of vehicle mass and road grade publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2009.2014385 – ident: ref_9 doi: 10.1109/ICUS.2017.8278412 |
SSID | ssj0002149111 |
Score | 2.311967 |
Snippet | Precise and real-time estimation of vehicle mass and road slope plays a pivotal role in attaining accurate vehicle control. Currently, road slope estimation... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 172 |
SubjectTerms | Algorithms Commercial vehicles cubature Kalman filtering Design specifications Driving conditions IMM Kalman filters Kinematics M estimation Parameter estimation Real time Road conditions Sensors Slopes Stochastic processes Vehicles |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7QTnBAPMVgoBzgWK1L06Y9wrRpQhoHYGi3Kg9HDE3rxMZD_A_-L3bboSEOXDi2ctMqduzPjeOPsXMbKy9D7QI0JxdIq02AqMgFBpzSwhqhgM4OD2-SwUhej-PxGtUX1YRV7YGriWsLk4CVxrs4xeCjRZogJJa-kxmZYayx5H0x5q0lU-SDBQJ_XMVVpXuEeX37DV6fiFKZcp4fMahs1f_LE5fhpb_DtmtcyC-r79llGzDbY1tr3QL32WcPl2N10pAXnj_AI4nyIcJfrmeO3xba8btpMQeOSJTT0Q-iU8JRa9EFHy0n08kHjoYP8PJnIJ1rwMthXVcYEDfalPcntInOhyW9NC-5kWg8FHivXtMtaKubTPaAjfq9--4gqFkVAhuJzjLADAGdHGSuA7ExUqlYR2HqJCLH1IMLQ90RYB0oQMkkMUol3pnUepWF3kAaHbLGrJjBEeNRCKGPQ50KkFIIq7OYOvh5bUSibZY12cVqnvN51Twjx6SD9JGv66PJrkgJ3zLU8rq8gYaQ14aQ_2UITdZaqTCv1-EiR4-FCRSiovT4P95xwjYF8f-WNWgt1lg-v8ApgpKlOSvt7wv4neG- priority: 102 providerName: Directory of Open Access Journals |
Title | Estimation of Vehicle Mass and Road Slope for Commercial Vehicles Utilizing an Interacting Multiple-Model Filter Method Under Complex Road Conditions |
URI | https://www.proquest.com/docview/3181827508 https://doaj.org/article/2b6ec4bfd58240a2861184f19b49185c |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF7R9AIHxFMESrQHOK7qrNfe9QnRKqFCSoUKQb1Z-5iFVFEcmvBQ_0f_LzPrTSlC4mh7vJY8j52ZnZmPsVe-0lEVNggUpyCUt06gVxSEg6Ct9E5qoN7h2Wl9Mlfvz6vznHDb5LLKnU1Mhjp0nnLkhyh76Arj_mberL8JQo2i09UMobHH9tEEGzNg-0eT0w9nN1kWiQEAanNf8V5ifH_4E35cELQyxT5_7UVpZP8_FjltM9MH7H72D_nbnqEP2R1YPWL3bk0NfMyuJ6iWfcch7yL_DF-JlM_QDeZ2FfhZZwP_uOzWwNEj5dQCQrBKuGom3fD5drFcXOFq-AJPSUHqb8DLWa4vFISRtuTTBR2m81mCmeYJI4nWQ4Jf_WeOOzryJtF9wubTyafjE5HRFYQv5XgrMFJAYwdNGEPlnNK6smVhgkIP0kQIRWHHEnwADUhZ107rOgZnfNRNER2Y8ikbrLoVPGO8LKCIVWGNBKWk9LapaJJftE7W1jfNkL3e_ed23Q_RaDH4IH60t_kxZEfEhBsaGn2dbnSXX9qsSa10NXjlYqgMeiNWmhpjJBXHjUNWm8oP2cGOhW3Wx037R3qe___xC3ZXEsJvqjI7YIPt5Xd4iW7H1o3Ynpm-G2UJG6Xg_TctjN0l |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKOQAHxK_YUsAHeozqdZzEOSAEpcuWNj1AF_UW_DOGrVabpbtQ4D14DZ6RGScpRUjcekw8cSTPePyNPeOPsacuK4ISxidoTj5RztgEUZFPLPjCSGdlAVQ7XB3m44l6c5wdr7FffS0MpVX2PjE6at842iPfRttDKIzrm36--JwQaxSdrvYUGq1Z7MP3MwzZls_2XqF-t6Qc7R7tjJOOVSBxqRyuEkTIOMmh9EPIrFVFkZlUaK8QOekAXggzlOA8FICSeW6LIg_eaheKUgQLOsV-r7CrKsWVnCrTR6_P93QkhhvoO9r8emwX22fw9YSInCnS-mvliwQB__j_uKiNbrGbHRrlL1rzuc3WYH6H3bhwR-Fd9nMXnUBb38ibwN_DJxLlFYJubuaev22M5-9mzQI44l9OBSdE4oS9dqJLPllNZ9Mf2Bt-wOMWJFVT4GPVZTMmxMg246MpHd3zKpJa88jIRP2hwLf2NzsNHbDTRLnHJpcy6vfZ-ryZwwPGUwEiZMJoCUpJ6UyZ0b2BwViZG1eWA7bVj3O9aK_sqDHUIX3UF_UxYC9JCecydNF2fNGcfqy7eVtLm4NTNvhMI_YxUucYkakwLC2qWmduwDZ7Fdbd7F_Wf2x14__NT9i18VF1UB_sHe4_ZNclcQvH_LZNtr46_QKPEPCs7ONoZZx9uGyz_g27GBcx |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQOWlBgrsgR6tOOvH2gdU0TZRS0lUFYJ6M_uYhaAoDk1ogf_Bn-mvY8aPUoTErUfb47XkmZ39ZndmPoCXNlE-DrULyJxcEFttAkJFLjDolJbWSIVcOzwapweT-M1pcroGl20tDKdVtj6xctSutLxH3iPbIyhM61vW801axPH-cGfxNWAGKT5pbek0ahM5wh8XFL4tXx3uk663pRwO3u8dBA3DQGAj2V8FhJZpwmPu-pgYEyuV6CjMXEwoKvPowlD3JVqHCkkyTY1SqXcms17loTeYRTTuLVhXHBV1YH13MD4-udrhkRR8kCeps-2jKA97F3j-hWmdOe76ax2s6AL-WQ2qJW64AfcabCpe18Z0H9Zw_gDuXutY-BB-Dcgl1NWOovTiA35mUTEiCC703ImTUjvxblYuUBAaFlx-wpRONGojuhST1XQ2_Umj0Qui2pDk2gq6HDW5jQHzs83EcMoH-WJUUVyLip-JxyOB7_Vn9ko-budp8wgmN_LfH0NnXs5xE0QUYuiTUGcS41hKq_OEuwh6bWSqbZ53Ybv9z8WibuBRUODD-iiu66MLu6yEKxluu13dKM8-Fc0sLqRJ0cbGuyQjJKRlllJ8Fvt-bkjVWWK7sNWqsGh8wbL4Y7lP_v_4Bdwmky7eHo6PnsIdyUTDVbLbFnRWZ9_wGaGflXnemJmAjzdt2b8BDtkcww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+Vehicle+Mass+and+Road+Slope+for+Commercial+Vehicles+Utilizing+an+Interacting+Multiple-Model+Filter+Method+Under+Complex+Road+Conditions&rft.jtitle=World+electric+vehicle+journal&rft.au=Liu%2C+Gang&rft.date=2025-03-01&rft.issn=2032-6653&rft.eissn=2032-6653&rft.volume=16&rft.issue=3&rft.spage=172&rft_id=info:doi/10.3390%2Fwevj16030172&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_wevj16030172 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2032-6653&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2032-6653&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2032-6653&client=summon |