The effects of a powered ankle exoskeleton for plantarflexion torque assistance for the elderly
It is necessary to develop a rehabilitation robot for the assistance of movement of the ankle joint and the enhancement of ankle muscular activities during walking for the elderly. A powered ankle exoskeleton with an artificial pneumatic muscle has been designed to provide powered assistance in the...
Saved in:
Published in | International journal of precision engineering and manufacturing Vol. 14; no. 2; pp. 307 - 315 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Springer
Korean Society for Precision Engineering
01.02.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 2234-7593 2005-4602 |
DOI | 10.1007/s12541-013-0042-x |
Cover
Abstract | It is necessary to develop a rehabilitation robot for the assistance of movement of the ankle joint and the enhancement of ankle muscular activities during walking for the elderly. A powered ankle exoskeleton with an artificial pneumatic muscle has been designed to provide powered assistance in the plantarflexion motion of the ankle joint. The objective of this study was to confirm the effectiveness of the powered ankle exoskeleton for the plantarflexion torque of the ankle joint. Fifteen healthy and fifteen elderly people used a wearable ankle exoskeleton during the plantarflexion motion of the ankle joint. Participants were assessed with three parameters to confirm the effectiveness of the system: a) maximal voluntary isokinetic plantarflexion torque using a Biodexdynamometer, b) muscular activities of the lower limbs, c) correlation of the agonist muscle and plantar torque during plantarflexion motion of the ankle joint. The assistance of the plantarflexion motion of the ankle joint is determined by the plantarflexion torque of the artificial pneumatic muscle of the powered ankle exoskeleton, and the assistant timing was decided the detection of subject’s movement intention that they did plantarflexion motion of the ankle joint. We developed a muscular stiffness force sensor to detect the activation of the soleus muscle for feed-forward control of the ankle exoskeleton. The experimental results show that the muscular stiffness force of the soleus muscle with feed-forward control was decreased, and the plantarflexion torque of the ankle joint while only wearing the ankle exoskeleton was decreased, but the plantarflexion torque with feed-forward control was increased. The amount of increasing with feed-forward control is higher than that of decreasing only wearing the exoskeleton. Based on the effectiveness of the system with the healthy participants, the elderly may have benefited from the plantarflexion motion augmented by the powered ankle exoskeleton. |
---|---|
AbstractList | It is necessary to develop a rehabilitation robot for the assistance of movement of the ankle joint and the enhancement of ankle muscular activities during walking for the elderly. A powered ankle exoskeleton with an artificial pneumatic muscle has been designed to provide powered assistance in the plantarflexion motion of the ankle joint. The objective of this study was to confirm the effectiveness of the powered ankle exoskeleton for the plantarflexion torque of the ankle joint. Fifteen healthy and fifteen elderly people used a wearable ankle exoskeleton during the plantarflexion motion of the ankle joint. Participants were assessed with three parameters to confirm the effectiveness of the system: a) maximal voluntary isokinetic plantarflexion torque using a Biodexdynamometer, b) muscular activities of the lower limbs, c) correlation of the agonist muscle and plantar torque during plantarflexion motion of the ankle joint. The assistance of the plantarflexion motion of the ankle joint is determined by the plantarflexion torque of the artificial pneumatic muscle of the powered ankle exoskeleton, and the assistant timing was decided the detection of subject’s movement intention that they did plantarflexion motion of the ankle joint. We developed a muscular stiffness force sensor to detect the activation of the soleus muscle for feed-forward control of the ankle exoskeleton. The experimental results show that the muscular stiffness force of the soleus muscle with feed-forward control was decreased, and the plantarflexion torque of the ankle joint while only wearing the ankle exoskeleton was decreased, but the plantarflexion torque with feed-forward control was increased. The amount of increasing with feed-forward control is higher than that of decreasing only wearing the exoskeleton. Based on the effectiveness of the system with the healthy participants, the elderly may have benefited from the plantarflexion motion augmented by the powered ankle exoskeleton. |
Author | Yu, Mi Kim, Kyung Ko, Deung-Young Jeong, Gu-Young Kwon, Tae-Kyu Yu, Chang-Ho |
Author_xml | – sequence: 1 givenname: Kyung surname: Kim fullname: Kim, Kyung organization: R&D Division, Chonbuk National University Automobile-parts & Mold Technology Innovation Center – sequence: 2 givenname: Chang-Ho surname: Yu fullname: Yu, Chang-Ho organization: Division of Biomedical Engineering, College of Engineering, Chonbuk National University – sequence: 3 givenname: Mi surname: Yu fullname: Yu, Mi organization: Center for R&D Strategy, Chonbuk National University – sequence: 4 givenname: Gu-Young surname: Jeong fullname: Jeong, Gu-Young organization: Center for Healthcare Technology Development, Chonbuk National University – sequence: 5 givenname: Deung-Young surname: Ko fullname: Ko, Deung-Young organization: Department of Junior Secondary School Education, Kangnam University – sequence: 6 givenname: Tae-Kyu surname: Kwon fullname: Kwon, Tae-Kyu email: kwon10@jbnu.ac.kr organization: Division of Biomedical Engineering, College of Engineering, Chonbuk National University, Bioengineering Research Center for the Aged, Chonbuk National University |
BookMark | eNp9kMtOAzEMRSNUJErpB7DLDwTynMcSVbykSmzKOsqkDgwNk5KkYvr3pJQVi65s2T7X9r1EkyEMgNA1ozeM0vo2Ma4kI5QJQqnkZDxDU06pIrKifFJyLiSpVSsu0DylvqOC8UqoppoivXoHDM6BzQkHhw3ehm-IsMZm2PjSGkPagIccBuxCxFtvhmyi8zD2pZRD_NoBNkU1ZTNY-B3KB02_huj3V-jcGZ9g_hdn6PXhfrV4IsuXx-fF3ZJYwVkmquO0qSUtV62byjJQtQDh2la0BholDbdOCeNaa20jGsbqdSet5Z2opDHKihliR10bQ0oRnN7G_tPEvWZUH0zSR5N0MUkfTNJjYep_jO2zyeWvHE3vT5L8SKayZXiDqD_CLg7lwRPQD3cYf8M |
CitedBy_id | crossref_primary_10_1007_s12541_015_0329_1 crossref_primary_10_1007_s12206_013_0837_9 crossref_primary_10_1007_s12541_013_0320_7 crossref_primary_10_1007_s12541_013_0108_9 crossref_primary_10_1155_2018_2858294 |
Cites_doi | 10.1080/02699050801941771 10.1097/00008526-199901120-00003 10.1109/ICORR.2005.1501094 10.5143/JESK.2007.26.2.131 10.1007/s12541-012-0197-x 10.1109/HAPTIC.2010.5444627 10.1097/00003086-197407000-00004 10.1016/j.gaitpost.2005.05.004 10.1016/j.gaitpost.2006.07.002 10.1016/j.jbiomech.2009.09.030 10.1016/j.jbiomech.2005.05.018 10.1016/j.jbiomech.2006.12.006 10.1016/j.apmr.2003.11.026 10.1007/3-540-45491-8_43 10.1002/14651858.CD006075.pub2 10.1123/jab.21.2.189 10.20965/jrm.2005.p0568 10.1109/ICORR.2007.4428450 10.1007/s12541-012-0248-3 10.1109/TNSRE.2003.823266 10.1007/s10015-004-0286-8 |
ContentType | Journal Article |
Copyright | Korean Society for Precision Engineering and Springer-Verlag Berlin Heidelberg 2013 |
Copyright_xml | – notice: Korean Society for Precision Engineering and Springer-Verlag Berlin Heidelberg 2013 |
DBID | AAYXX CITATION |
DOI | 10.1007/s12541-013-0042-x |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2005-4602 |
EndPage | 315 |
ExternalDocumentID | 10_1007_s12541_013_0042_x |
GroupedDBID | -EM .UV 06D 0R~ 0VY 203 29J 29~ 2JY 2KG 2VQ 30V 4.4 406 408 5GY 5VS 67Z 8TC 96X 9ZL AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABHLI ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACREN ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG AVWKF AXYYD AYJHY AZFZN BA0 BGNMA CAG COF CSCUP DBRKI DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GW5 H13 HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ I0C IKXTQ IWAJR IXC IXD I~X J-C J0Z JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O9J P2P P9P PT4 R9I RLLFE ROL RSV S1Z S27 S3B SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TDB TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7R Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
ID | FETCH-LOGICAL-c321t-5b208740635d86c1e573e3f9939ae854a2cf53af9ccc838117db4cc2b364aa5c3 |
IEDL.DBID | AGYKE |
ISSN | 2234-7593 |
IngestDate | Wed Sep 10 04:22:41 EDT 2025 Thu Apr 24 23:00:09 EDT 2025 Fri Feb 21 02:35:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Plantarflexion torque MSF feed-forward control Powered ankle exoskeleton |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c321t-5b208740635d86c1e573e3f9939ae854a2cf53af9ccc838117db4cc2b364aa5c3 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1007_s12541_013_0042_x crossref_citationtrail_10_1007_s12541_013_0042_x springer_journals_10_1007_s12541_013_0042_x |
PublicationCentury | 2000 |
PublicationDate | 20130200 2013-2-00 |
PublicationDateYYYYMMDD | 2013-02-01 |
PublicationDate_xml | – month: 2 year: 2013 text: 20130200 |
PublicationDecade | 2010 |
PublicationPlace | Springer |
PublicationPlace_xml | – name: Springer |
PublicationTitle | International journal of precision engineering and manufacturing |
PublicationTitleAbbrev | Int. J. Precis. Eng. Manuf |
PublicationYear | 2013 |
Publisher | Korean Society for Precision Engineering |
Publisher_xml | – name: Korean Society for Precision Engineering |
References | FreivogelS.MehrholzJ.Husak-SotomayorT.SchmalohrD.Gait Training with the Newly Developed ‘LokoHelp’-System is Feasible for Non-ambulatory Patients after Stroke, Spinal Cord and Brain Injury. A Feasibility StudyBrain Injury2008227–862563210.1080/02699050801941771 NorrisJ. A.GranataK. P.MitrosM. R.ByrneE. M.MarshA. P.Effect of augmented plantarflexion power on preferred walking speed and economy in young and older adultsGait & Posture20072562062710.1016/j.gaitpost.2006.07.002 ColomboG.JoergM.SchreierR.DietzV.Treadmill Training of Paraplegic Patients Using a Robotic OrthosisJournal of Rehabilitation Research and Development2000376693700 SasakiD.NoritsuguT.TakaiwaM.Development of Pneumatic Power Assist Splint “ASSIST” Operated by Human IntentionJournal of Robotics and Mechatronics2005175568574 HesseS.UhlenbrockD.A Mechanized Gait Trainer for Restoration of GaitJournal of Rehabilitation Research and Development2000376701708 States, R. A., Pappas, E., and Salem, Y., “Overground Physical Therapy Gait Training for Chronic Stroke Patients with Mobility Deficits,” Cochrane Database Syst. Rev., Vol. 8, No. 3, 2009. ChoiY. C.RheeK. M.ChoiH. S.The Stress Distribution Property on the Customized Ankle Foot Orthoses During the Gait PeriodJ. KSPE2008253165175 LeeH. D.KimW. S.HanJ. S.HanC. S.The Technical Trend of the Exoskeleton Robot System for Human Power AssistanceInt. J. Precis. Eng. Manuf.20121381491149710.1007/s12541-012-0197-x GordenK. E.FerrisD. P.Learning to walk with a robotic ankle exoskeletonJournal of Biomechanics200740122636264410.1016/j.jbiomech.2006.12.006 MoromugiS.KoujinaY.ArikiS.OkamotoA.TakayukiT.FengM.IshimatsuT.Muscle stiffness sensor to control an assistance device for the disabledArtificial Life and Robotics200481424510.1007/s10015-004-0286-8 Kawamoto, H. and Sankai, Y., “Power Assist System HAL-3 for Gait Disorder Person,” Proc. of the 8th International Conference on Computers Helping People with Special Needs, pp. 196–203, 2002. WongC. K.BishopL.SteinJ.A Wearable Robotic Knee Orthosis for Gait Training: A Case-Series of Hemiparetic Stroke SurvivorsProsthetics and Orthotics International2011301113120 Díaz, I., Gil, J. J., and Sánchez, E., “Lower-Limb Robotic Rehabilitation: Literature Review and Challenges,” Journal of Robotics, Vol. 2011, Article ID 759764, 2011. Perry, J., “Kinesiology of lower extremity bracing,” Clinical Orthopaedics and Related Research, Vol. 102, No. 18–31, 1974. BlayaJ. A.HerrH.Adaptive Control of a Variable-Impedance Ankle-Foot Orthosis to Assist Drop-Foot GaitIEEE Transactions on Neural Systems and Rehabilitation Engineering2004121243110.1109/TNSRE.2003.823266 YokoyamaO.SashikaH.HakiwaraA.YamamotoS.YasuiT.Kinematic Effects on Gait of a Newly Designed Ankle-Foot Orthosis with Oil Damper Resistance: A case Series of 2 patients With HemiplegiaArchives of Physical Medicine and Rehabilitation20058616216610.1016/j.apmr.2003.11.026 Perry, J., “Gait Analysis-Normal and pathological Function,” SLACK, Inc., pp. 54–62, 1992. West, G. R., “Powered Gait Orthosis and Method of Utilizing Same,” US Patent, No. 6689075, 2004. FerrisD. P.CzernieckiJ. M.HannafordB.An Ankle exoskeleton Powered by Artificial Pneumatic MusclesJournal of Applied Biomechanics2005212189197 KimK. J.KangM. S.ChoiY. S.JangH. Y.HanJ. S.HanC. S.Development of the Exoskeleton Knee Rehabilitation Robot Using the Linear ActuatorInt. J. Precis. Eng. Manuf.201213101889189510.1007/s12541-012-0248-3 KimK.KwonT. K.KangS. R.PiaoY. J.JeongG. Y.Evaluation of Plantarflexion Torque of the Ankle exoskeleton Using the Artificial Pneumatic MuscleJ. KSPE20102768289 HwangS. J.KimJ. Y.HwangS. H.ParkS. W.YiJ. B.KimY. H.Development of the Active Ankle Foot Orthosis to Induce the Normal Gait for the Paralysis patientsJournal of the Ergonomics Society of Korea200726213113610.5143/JESK.2007.26.2.131 Peshkin, M., Brown, D. A., Santos-Munne, J. J., Makhlin, A., Lewis, E., Colgate, J. E., Patton, J., and Schwandt, D., “KineAssist: A Robotic Overground Gait and Balance Training Device,” Proc. of the 9th IEEE International Conference on Rehabilitation Robotics, (ICORR’ 05), pp. 241–246, 2005. Hwang, S. J., Kim, J. Y., and Kim, Y. H., “Development of an Active Ankle-Foot-Orthosis to Prevent Dragging and Dropping Foot,” Proc. of KSPE Autumn Conference, pp. 557–558, 2006. YamamotoS.EbinaM.KuboS.HayashiT.AkitaY.HayakawaY.Development of an ankle-foot orthosis with dorsiflexion assist. Part 2: structure and evaluationJ. Prosthet. Orthot.1999112428 Roy, A., Krebs, H. I., Patterson S. L., Judkins, T. N., Khanna, I., Forrester, L. W., Macko, R. M., and Hogan, N., “Measurement of Human Ankle Stiffness Using the Anklebot,” Proc. of the 10th IEEE International Conference on Rehabilitation Robotics, (ICORR’07), pp. 356–363, 2007. GordenK. E.SawickiG. S.FerrisD. P.Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosisJournal of Biomechanics2006391832184110.1016/j.jbiomech.2005.05.018 KimK.KangS. R.PiaoY. G.JeongG. Y.KwonT. K.Analysis of the Assist Characteristics for Torque of the Ankle Plantarflexion in Elderly Adults Wearing the Ankle exoskeletonThe Journal of Korea Robotics Society2010514854 Goffer, A., “Gait-locomotor Apparatus,” US Patent, No. 7153242, 2006. Yano, H., Tamefusa, S., Tanaka, N., Saitou, H., and Iwata, H., “Gait Rehabilitation System for Stair Climbing and Descending,” Proc. of the IEEE Haptics Symposium (HAPTICS’10), pp. 393–400, 2010. FerrisD. P.GordonK. E.SawickiG. S.PeethambaranA.An improved powered ankle-foot orthosis using proportional myoelectric controlGait and Posture200623442542610.1016/j.gaitpost.2005.05.004 Sakaguchi, M. and Furusho, J., “Force Display System Using Particle-Type Electrorheological Fluids,” Proc. of the 1998 IEEE International Conference on Robotics and Automation, pp. 2586–2590, 1998. CaoP. C.LewisC. L.FerrisD. P.Invariant ankle moment patterns when walking with and without a robotic ankle exoskeletonJournal of Biomechanics201043220320910.1016/j.jbiomech.2009.09.030 42_CR8 42_CR11 42_CR9 S. Hesse (42_CR6) 2000; 37 C. K. Wong (42_CR13) 2011; 30 42_CR14 42_CR15 S. Yamamoto (42_CR21) 1999; 11 K. Kim (42_CR30) 2010; 5 42_CR1 42_CR2 J. A. Norris (42_CR25) 2007; 25 S. Moromugi (42_CR29) 2004; 8 D. P. Ferris (42_CR17) 2005; 21 42_CR5 G. Colombo (42_CR3) 2000; 37 42_CR7 K. J. Kim (42_CR32) 2012; 13 D. P. Ferris (42_CR18) 2006; 23 42_CR10 Y. C. Choi (42_CR28) 2008; 25 42_CR23 42_CR27 D. Sasaki (42_CR24) 2005; 17 K. E. Gorden (42_CR20) 2007; 40 O. Yokoyama (42_CR22) 2005; 86 K. Kim (42_CR31) 2010; 27 K. E. Gorden (42_CR19) 2006; 39 S. Freivogel (42_CR4) 2008; 22 P. C. Cao (42_CR26) 2010; 43 H. D. Lee (42_CR33) 2012; 13 J. A. Blaya (42_CR12) 2004; 12 S. J. Hwang (42_CR16) 2007; 26 |
References_xml | – reference: Kawamoto, H. and Sankai, Y., “Power Assist System HAL-3 for Gait Disorder Person,” Proc. of the 8th International Conference on Computers Helping People with Special Needs, pp. 196–203, 2002. – reference: Perry, J., “Kinesiology of lower extremity bracing,” Clinical Orthopaedics and Related Research, Vol. 102, No. 18–31, 1974. – reference: Sakaguchi, M. and Furusho, J., “Force Display System Using Particle-Type Electrorheological Fluids,” Proc. of the 1998 IEEE International Conference on Robotics and Automation, pp. 2586–2590, 1998. – reference: Roy, A., Krebs, H. I., Patterson S. L., Judkins, T. N., Khanna, I., Forrester, L. W., Macko, R. M., and Hogan, N., “Measurement of Human Ankle Stiffness Using the Anklebot,” Proc. of the 10th IEEE International Conference on Rehabilitation Robotics, (ICORR’07), pp. 356–363, 2007. – reference: States, R. A., Pappas, E., and Salem, Y., “Overground Physical Therapy Gait Training for Chronic Stroke Patients with Mobility Deficits,” Cochrane Database Syst. Rev., Vol. 8, No. 3, 2009. – reference: KimK.KangS. R.PiaoY. G.JeongG. Y.KwonT. K.Analysis of the Assist Characteristics for Torque of the Ankle Plantarflexion in Elderly Adults Wearing the Ankle exoskeletonThe Journal of Korea Robotics Society2010514854 – reference: ChoiY. C.RheeK. M.ChoiH. S.The Stress Distribution Property on the Customized Ankle Foot Orthoses During the Gait PeriodJ. KSPE2008253165175 – reference: KimK.KwonT. K.KangS. R.PiaoY. J.JeongG. Y.Evaluation of Plantarflexion Torque of the Ankle exoskeleton Using the Artificial Pneumatic MuscleJ. KSPE20102768289 – reference: KimK. J.KangM. S.ChoiY. S.JangH. Y.HanJ. S.HanC. S.Development of the Exoskeleton Knee Rehabilitation Robot Using the Linear ActuatorInt. J. Precis. Eng. Manuf.201213101889189510.1007/s12541-012-0248-3 – reference: Goffer, A., “Gait-locomotor Apparatus,” US Patent, No. 7153242, 2006. – reference: WongC. K.BishopL.SteinJ.A Wearable Robotic Knee Orthosis for Gait Training: A Case-Series of Hemiparetic Stroke SurvivorsProsthetics and Orthotics International2011301113120 – reference: Perry, J., “Gait Analysis-Normal and pathological Function,” SLACK, Inc., pp. 54–62, 1992. – reference: HesseS.UhlenbrockD.A Mechanized Gait Trainer for Restoration of GaitJournal of Rehabilitation Research and Development2000376701708 – reference: LeeH. D.KimW. S.HanJ. S.HanC. S.The Technical Trend of the Exoskeleton Robot System for Human Power AssistanceInt. J. Precis. Eng. Manuf.20121381491149710.1007/s12541-012-0197-x – reference: GordenK. E.SawickiG. S.FerrisD. P.Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosisJournal of Biomechanics2006391832184110.1016/j.jbiomech.2005.05.018 – reference: ColomboG.JoergM.SchreierR.DietzV.Treadmill Training of Paraplegic Patients Using a Robotic OrthosisJournal of Rehabilitation Research and Development2000376693700 – reference: SasakiD.NoritsuguT.TakaiwaM.Development of Pneumatic Power Assist Splint “ASSIST” Operated by Human IntentionJournal of Robotics and Mechatronics2005175568574 – reference: Díaz, I., Gil, J. J., and Sánchez, E., “Lower-Limb Robotic Rehabilitation: Literature Review and Challenges,” Journal of Robotics, Vol. 2011, Article ID 759764, 2011. – reference: West, G. R., “Powered Gait Orthosis and Method of Utilizing Same,” US Patent, No. 6689075, 2004. – reference: Hwang, S. J., Kim, J. Y., and Kim, Y. H., “Development of an Active Ankle-Foot-Orthosis to Prevent Dragging and Dropping Foot,” Proc. of KSPE Autumn Conference, pp. 557–558, 2006. – reference: YamamotoS.EbinaM.KuboS.HayashiT.AkitaY.HayakawaY.Development of an ankle-foot orthosis with dorsiflexion assist. Part 2: structure and evaluationJ. Prosthet. Orthot.1999112428 – reference: YokoyamaO.SashikaH.HakiwaraA.YamamotoS.YasuiT.Kinematic Effects on Gait of a Newly Designed Ankle-Foot Orthosis with Oil Damper Resistance: A case Series of 2 patients With HemiplegiaArchives of Physical Medicine and Rehabilitation20058616216610.1016/j.apmr.2003.11.026 – reference: HwangS. J.KimJ. Y.HwangS. H.ParkS. W.YiJ. B.KimY. H.Development of the Active Ankle Foot Orthosis to Induce the Normal Gait for the Paralysis patientsJournal of the Ergonomics Society of Korea200726213113610.5143/JESK.2007.26.2.131 – reference: FerrisD. P.GordonK. E.SawickiG. S.PeethambaranA.An improved powered ankle-foot orthosis using proportional myoelectric controlGait and Posture200623442542610.1016/j.gaitpost.2005.05.004 – reference: FreivogelS.MehrholzJ.Husak-SotomayorT.SchmalohrD.Gait Training with the Newly Developed ‘LokoHelp’-System is Feasible for Non-ambulatory Patients after Stroke, Spinal Cord and Brain Injury. A Feasibility StudyBrain Injury2008227–862563210.1080/02699050801941771 – reference: Peshkin, M., Brown, D. A., Santos-Munne, J. J., Makhlin, A., Lewis, E., Colgate, J. E., Patton, J., and Schwandt, D., “KineAssist: A Robotic Overground Gait and Balance Training Device,” Proc. of the 9th IEEE International Conference on Rehabilitation Robotics, (ICORR’ 05), pp. 241–246, 2005. – reference: GordenK. E.FerrisD. P.Learning to walk with a robotic ankle exoskeletonJournal of Biomechanics200740122636264410.1016/j.jbiomech.2006.12.006 – reference: Yano, H., Tamefusa, S., Tanaka, N., Saitou, H., and Iwata, H., “Gait Rehabilitation System for Stair Climbing and Descending,” Proc. of the IEEE Haptics Symposium (HAPTICS’10), pp. 393–400, 2010. – reference: FerrisD. P.CzernieckiJ. M.HannafordB.An Ankle exoskeleton Powered by Artificial Pneumatic MusclesJournal of Applied Biomechanics2005212189197 – reference: CaoP. C.LewisC. L.FerrisD. P.Invariant ankle moment patterns when walking with and without a robotic ankle exoskeletonJournal of Biomechanics201043220320910.1016/j.jbiomech.2009.09.030 – reference: NorrisJ. A.GranataK. P.MitrosM. R.ByrneE. M.MarshA. P.Effect of augmented plantarflexion power on preferred walking speed and economy in young and older adultsGait & Posture20072562062710.1016/j.gaitpost.2006.07.002 – reference: MoromugiS.KoujinaY.ArikiS.OkamotoA.TakayukiT.FengM.IshimatsuT.Muscle stiffness sensor to control an assistance device for the disabledArtificial Life and Robotics200481424510.1007/s10015-004-0286-8 – reference: BlayaJ. A.HerrH.Adaptive Control of a Variable-Impedance Ankle-Foot Orthosis to Assist Drop-Foot GaitIEEE Transactions on Neural Systems and Rehabilitation Engineering2004121243110.1109/TNSRE.2003.823266 – ident: 42_CR23 – volume: 22 start-page: 625 issue: 7–8 year: 2008 ident: 42_CR4 publication-title: Brain Injury doi: 10.1080/02699050801941771 – volume: 11 start-page: 24 year: 1999 ident: 42_CR21 publication-title: J. Prosthet. Orthot. doi: 10.1097/00008526-199901120-00003 – ident: 42_CR27 – volume: 30 start-page: 113 issue: 1 year: 2011 ident: 42_CR13 publication-title: Prosthetics and Orthotics International – ident: 42_CR8 doi: 10.1109/ICORR.2005.1501094 – volume: 26 start-page: 131 issue: 2 year: 2007 ident: 42_CR16 publication-title: Journal of the Ergonomics Society of Korea doi: 10.5143/JESK.2007.26.2.131 – volume: 13 start-page: 1491 issue: 8 year: 2012 ident: 42_CR33 publication-title: Int. J. Precis. Eng. Manuf. doi: 10.1007/s12541-012-0197-x – ident: 42_CR7 doi: 10.1109/HAPTIC.2010.5444627 – ident: 42_CR5 – ident: 42_CR1 doi: 10.1097/00003086-197407000-00004 – volume: 23 start-page: 425 issue: 4 year: 2006 ident: 42_CR18 publication-title: Gait and Posture doi: 10.1016/j.gaitpost.2005.05.004 – volume: 5 start-page: 48 issue: 1 year: 2010 ident: 42_CR30 publication-title: The Journal of Korea Robotics Society – volume: 25 start-page: 620 year: 2007 ident: 42_CR25 publication-title: Gait & Posture doi: 10.1016/j.gaitpost.2006.07.002 – volume: 43 start-page: 203 issue: 2 year: 2010 ident: 42_CR26 publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2009.09.030 – ident: 42_CR9 – volume: 39 start-page: 1832 year: 2006 ident: 42_CR19 publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2005.05.018 – volume: 40 start-page: 2636 issue: 12 year: 2007 ident: 42_CR20 publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2006.12.006 – volume: 27 start-page: 82 issue: 6 year: 2010 ident: 42_CR31 publication-title: J. KSPE – volume: 86 start-page: 162 year: 2005 ident: 42_CR22 publication-title: Archives of Physical Medicine and Rehabilitation doi: 10.1016/j.apmr.2003.11.026 – ident: 42_CR10 doi: 10.1007/3-540-45491-8_43 – ident: 42_CR14 doi: 10.1002/14651858.CD006075.pub2 – volume: 21 start-page: 189 issue: 2 year: 2005 ident: 42_CR17 publication-title: Journal of Applied Biomechanics doi: 10.1123/jab.21.2.189 – ident: 42_CR2 – volume: 37 start-page: 693 issue: 6 year: 2000 ident: 42_CR3 publication-title: Journal of Rehabilitation Research and Development – volume: 17 start-page: 568 issue: 5 year: 2005 ident: 42_CR24 publication-title: Journal of Robotics and Mechatronics doi: 10.20965/jrm.2005.p0568 – ident: 42_CR15 – ident: 42_CR11 doi: 10.1109/ICORR.2007.4428450 – volume: 13 start-page: 1889 issue: 10 year: 2012 ident: 42_CR32 publication-title: Int. J. Precis. Eng. Manuf. doi: 10.1007/s12541-012-0248-3 – volume: 12 start-page: 24 issue: 1 year: 2004 ident: 42_CR12 publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2003.823266 – volume: 25 start-page: 165 issue: 3 year: 2008 ident: 42_CR28 publication-title: J. KSPE – volume: 8 start-page: 42 issue: 1 year: 2004 ident: 42_CR29 publication-title: Artificial Life and Robotics doi: 10.1007/s10015-004-0286-8 – volume: 37 start-page: 701 issue: 6 year: 2000 ident: 42_CR6 publication-title: Journal of Rehabilitation Research and Development |
SSID | ssib031263586 ssib036278122 ssib053376809 ssj0068040 |
Score | 1.9399678 |
Snippet | It is necessary to develop a rehabilitation robot for the assistance of movement of the ankle joint and the enhancement of ankle muscular activities during... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 307 |
SubjectTerms | Engineering Industrial and Production Engineering Materials Science |
Title | The effects of a powered ankle exoskeleton for plantarflexion torque assistance for the elderly |
URI | https://link.springer.com/article/10.1007/s12541-013-0042-x |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oXPTg24gPsgdPmpJ2H30cwYBEE06Q4KnZbncvEiBQEvTXO1NaEKMm3Jp22qYz051vsjPfEHIPMdDyxAjH893QESnYQgXKd7QnU2NdpBDLqy16fncgXoZyWPRxz8tq93JLMl-pN81ukMtg6sudvKcEgGNVemEUVki1-fz22i7diHtIsLJhRYMlOoAwto7iAHAAYyNr1WrBhuO8bxICpXACGfFy8_O3l26Hr-290zwkdY5Jv_yYVSXKe2ORJQ39-YPnccevPSFHBUSlzZVPnZI9Mz4jh9-IC89JDN5Fi1IQOrFU0SlOWzMpxRHwcGk5mb9DQANgSQEV0-kIDKhmFtk34RTk-RCOKOB2RK_gdrlQhs_EoeGjjwsy6LT7T12nGNXgaM68zJEJc3G4Hyg-DX3tGRlwwy2An0iZUArFtJVc2UhrHXJsbk0ToTVLuC-Ukppfksp4MjZXhPrMMjdJtGu9FJJbFokAG2JtFLDUANyqEbe0QKwLHnMcpzGKNwzMqLsYdBej7uJljTysb5muSDz-E34sLRIX__P8b-nrnaRvyAHLTYrlMLekks0W5g5ATZbUwYk7rVavXjhznewPWPMLuLjq6w |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4YOKgH30Z87sGTpqTd3b6OxIAoyAkSPDXb7e4FAgRKgv56Z0oLYtSEW9NO23RmuvNNduYbQu4hBhoea2E5nh1YIgFbSF96lnLcRBsbKcSyaouO1-yJ177bz_u4Z0W1e7Elma3U62Y3yGUw9eVW1lMCwLEsIAW3S6Rce35v1Qs34g4SrKxZ0WCJ9iGMraI4ABzA2MhatVyw4Tjrm4RAKSzfDXmx-fnbSzfD1-beaRaSGoekW3zMshJlUJ2ncVV9_uB53PJrj8hBDlFpbelTx2RHj07I_jfiwlMSgXfRvBSEjg2VdILT1nRCcQQ8XFqMZwMIaAAsKaBiOhmCAeXUIPsmnII8H8IRBdyO6BXcLhNK8Zk4NHz4cUZ6jXr3qWnloxosxZmTWm7MbBzuB4pPAk852vW55gbATyh14ArJlHG5NKFSKuDY3JrEQikWc09I6Sp-Tkqj8UhfEOoxw-w4VrZxEkhuWSh8bIg1oc8SDXCrQuzCApHKecxxnMYwWjMwo-4i0F2EuosWFfKwumWyJPH4T_ixsEiU_8-zv6Uvt5K-I7vN7ls7ar90Wldkj2XmxdKYa1JKp3N9AwAnjW9zh_4C0szrYw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kguhBfGJ97sGTEprsI49jUUt9UDxY6G3ZbHYvlja0Eeq_dyaP1oIK3kIySWAy2e8bduYbQq4BAx1PrfCC0I89kcG30JEOPRPIzDofJcTKaotB2B-Kp5Ec1XNO5021e7MlWfU0oErTpOjkmeusGt8gr8E0mHtlfwmQyE1YjQMM9CHrNgHFA5RaWemjwWIdAaAt8RyoDrBt1K-qlm44LjsoATKFF8mEN9ugP71yHcjWd1FLcOrtkd2aVdJuFQb7ZMNODsjON63BQ6IgIGhdvUGnjmqa44A0m1Gc2g6XFtP5O2AQcEEKRJbmY_C5njkUzIRTkJoDglCg2kg4IVJKowKfiXO-x59HZNh7eLvre_V0Bc9wFhSeTJmP8_jAQ1kcmsDKiFvugK8k2sZSaGac5NolxpiYYz9qlgpjWMpDobU0_Ji0JtOJPSE0ZI75aWp8F2SQj7JERNjD6pKIZRYYUpv4jauUqaXHcQLGWK1Ek9G7Cryr0Ltq0SY3y1vySnfjL-Pbxv-q_gXnv1uf_sv6imy93vfUy-Pg-Yxss_L7YzHLOWkVsw97AZSkSC_LsPsC3ArSqQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effects+of+a+powered+ankle+exoskeleton+for+plantarflexion+torque+assistance+for+the+elderly&rft.jtitle=International+journal+of+precision+engineering+and+manufacturing&rft.au=Kim%2C+Kyung&rft.au=Yu%2C+Chang-Ho&rft.au=Yu%2C+Mi&rft.au=Jeong%2C+Gu-Young&rft.date=2013-02-01&rft.issn=2234-7593&rft.eissn=2005-4602&rft.volume=14&rft.issue=2&rft.spage=307&rft.epage=315&rft_id=info:doi/10.1007%2Fs12541-013-0042-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12541_013_0042_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-7593&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-7593&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-7593&client=summon |