The effects of a powered ankle exoskeleton for plantarflexion torque assistance for the elderly

It is necessary to develop a rehabilitation robot for the assistance of movement of the ankle joint and the enhancement of ankle muscular activities during walking for the elderly. A powered ankle exoskeleton with an artificial pneumatic muscle has been designed to provide powered assistance in the...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of precision engineering and manufacturing Vol. 14; no. 2; pp. 307 - 315
Main Authors Kim, Kyung, Yu, Chang-Ho, Yu, Mi, Jeong, Gu-Young, Ko, Deung-Young, Kwon, Tae-Kyu
Format Journal Article
LanguageEnglish
Published Springer Korean Society for Precision Engineering 01.02.2013
Subjects
Online AccessGet full text
ISSN2234-7593
2005-4602
DOI10.1007/s12541-013-0042-x

Cover

Abstract It is necessary to develop a rehabilitation robot for the assistance of movement of the ankle joint and the enhancement of ankle muscular activities during walking for the elderly. A powered ankle exoskeleton with an artificial pneumatic muscle has been designed to provide powered assistance in the plantarflexion motion of the ankle joint. The objective of this study was to confirm the effectiveness of the powered ankle exoskeleton for the plantarflexion torque of the ankle joint. Fifteen healthy and fifteen elderly people used a wearable ankle exoskeleton during the plantarflexion motion of the ankle joint. Participants were assessed with three parameters to confirm the effectiveness of the system: a) maximal voluntary isokinetic plantarflexion torque using a Biodexdynamometer, b) muscular activities of the lower limbs, c) correlation of the agonist muscle and plantar torque during plantarflexion motion of the ankle joint. The assistance of the plantarflexion motion of the ankle joint is determined by the plantarflexion torque of the artificial pneumatic muscle of the powered ankle exoskeleton, and the assistant timing was decided the detection of subject’s movement intention that they did plantarflexion motion of the ankle joint. We developed a muscular stiffness force sensor to detect the activation of the soleus muscle for feed-forward control of the ankle exoskeleton. The experimental results show that the muscular stiffness force of the soleus muscle with feed-forward control was decreased, and the plantarflexion torque of the ankle joint while only wearing the ankle exoskeleton was decreased, but the plantarflexion torque with feed-forward control was increased. The amount of increasing with feed-forward control is higher than that of decreasing only wearing the exoskeleton. Based on the effectiveness of the system with the healthy participants, the elderly may have benefited from the plantarflexion motion augmented by the powered ankle exoskeleton.
AbstractList It is necessary to develop a rehabilitation robot for the assistance of movement of the ankle joint and the enhancement of ankle muscular activities during walking for the elderly. A powered ankle exoskeleton with an artificial pneumatic muscle has been designed to provide powered assistance in the plantarflexion motion of the ankle joint. The objective of this study was to confirm the effectiveness of the powered ankle exoskeleton for the plantarflexion torque of the ankle joint. Fifteen healthy and fifteen elderly people used a wearable ankle exoskeleton during the plantarflexion motion of the ankle joint. Participants were assessed with three parameters to confirm the effectiveness of the system: a) maximal voluntary isokinetic plantarflexion torque using a Biodexdynamometer, b) muscular activities of the lower limbs, c) correlation of the agonist muscle and plantar torque during plantarflexion motion of the ankle joint. The assistance of the plantarflexion motion of the ankle joint is determined by the plantarflexion torque of the artificial pneumatic muscle of the powered ankle exoskeleton, and the assistant timing was decided the detection of subject’s movement intention that they did plantarflexion motion of the ankle joint. We developed a muscular stiffness force sensor to detect the activation of the soleus muscle for feed-forward control of the ankle exoskeleton. The experimental results show that the muscular stiffness force of the soleus muscle with feed-forward control was decreased, and the plantarflexion torque of the ankle joint while only wearing the ankle exoskeleton was decreased, but the plantarflexion torque with feed-forward control was increased. The amount of increasing with feed-forward control is higher than that of decreasing only wearing the exoskeleton. Based on the effectiveness of the system with the healthy participants, the elderly may have benefited from the plantarflexion motion augmented by the powered ankle exoskeleton.
Author Yu, Mi
Kim, Kyung
Ko, Deung-Young
Jeong, Gu-Young
Kwon, Tae-Kyu
Yu, Chang-Ho
Author_xml – sequence: 1
  givenname: Kyung
  surname: Kim
  fullname: Kim, Kyung
  organization: R&D Division, Chonbuk National University Automobile-parts & Mold Technology Innovation Center
– sequence: 2
  givenname: Chang-Ho
  surname: Yu
  fullname: Yu, Chang-Ho
  organization: Division of Biomedical Engineering, College of Engineering, Chonbuk National University
– sequence: 3
  givenname: Mi
  surname: Yu
  fullname: Yu, Mi
  organization: Center for R&D Strategy, Chonbuk National University
– sequence: 4
  givenname: Gu-Young
  surname: Jeong
  fullname: Jeong, Gu-Young
  organization: Center for Healthcare Technology Development, Chonbuk National University
– sequence: 5
  givenname: Deung-Young
  surname: Ko
  fullname: Ko, Deung-Young
  organization: Department of Junior Secondary School Education, Kangnam University
– sequence: 6
  givenname: Tae-Kyu
  surname: Kwon
  fullname: Kwon, Tae-Kyu
  email: kwon10@jbnu.ac.kr
  organization: Division of Biomedical Engineering, College of Engineering, Chonbuk National University, Bioengineering Research Center for the Aged, Chonbuk National University
BookMark eNp9kMtOAzEMRSNUJErpB7DLDwTynMcSVbykSmzKOsqkDgwNk5KkYvr3pJQVi65s2T7X9r1EkyEMgNA1ozeM0vo2Ma4kI5QJQqnkZDxDU06pIrKifFJyLiSpVSsu0DylvqOC8UqoppoivXoHDM6BzQkHhw3ehm-IsMZm2PjSGkPagIccBuxCxFtvhmyi8zD2pZRD_NoBNkU1ZTNY-B3KB02_huj3V-jcGZ9g_hdn6PXhfrV4IsuXx-fF3ZJYwVkmquO0qSUtV62byjJQtQDh2la0BholDbdOCeNaa20jGsbqdSet5Z2opDHKihliR10bQ0oRnN7G_tPEvWZUH0zSR5N0MUkfTNJjYep_jO2zyeWvHE3vT5L8SKayZXiDqD_CLg7lwRPQD3cYf8M
CitedBy_id crossref_primary_10_1007_s12541_015_0329_1
crossref_primary_10_1007_s12206_013_0837_9
crossref_primary_10_1007_s12541_013_0320_7
crossref_primary_10_1007_s12541_013_0108_9
crossref_primary_10_1155_2018_2858294
Cites_doi 10.1080/02699050801941771
10.1097/00008526-199901120-00003
10.1109/ICORR.2005.1501094
10.5143/JESK.2007.26.2.131
10.1007/s12541-012-0197-x
10.1109/HAPTIC.2010.5444627
10.1097/00003086-197407000-00004
10.1016/j.gaitpost.2005.05.004
10.1016/j.gaitpost.2006.07.002
10.1016/j.jbiomech.2009.09.030
10.1016/j.jbiomech.2005.05.018
10.1016/j.jbiomech.2006.12.006
10.1016/j.apmr.2003.11.026
10.1007/3-540-45491-8_43
10.1002/14651858.CD006075.pub2
10.1123/jab.21.2.189
10.20965/jrm.2005.p0568
10.1109/ICORR.2007.4428450
10.1007/s12541-012-0248-3
10.1109/TNSRE.2003.823266
10.1007/s10015-004-0286-8
ContentType Journal Article
Copyright Korean Society for Precision Engineering and Springer-Verlag Berlin Heidelberg 2013
Copyright_xml – notice: Korean Society for Precision Engineering and Springer-Verlag Berlin Heidelberg 2013
DBID AAYXX
CITATION
DOI 10.1007/s12541-013-0042-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2005-4602
EndPage 315
ExternalDocumentID 10_1007_s12541_013_0042_x
GroupedDBID -EM
.UV
06D
0R~
0VY
203
29J
29~
2JY
2KG
2VQ
30V
4.4
406
408
5GY
5VS
67Z
8TC
96X
9ZL
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
BA0
BGNMA
CAG
COF
CSCUP
DBRKI
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GW5
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
I0C
IKXTQ
IWAJR
IXC
IXD
I~X
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P2P
P9P
PT4
R9I
RLLFE
ROL
RSV
S1Z
S27
S3B
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TDB
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7R
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c321t-5b208740635d86c1e573e3f9939ae854a2cf53af9ccc838117db4cc2b364aa5c3
IEDL.DBID AGYKE
ISSN 2234-7593
IngestDate Wed Sep 10 04:22:41 EDT 2025
Thu Apr 24 23:00:09 EDT 2025
Fri Feb 21 02:35:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Plantarflexion torque
MSF feed-forward control
Powered ankle exoskeleton
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-5b208740635d86c1e573e3f9939ae854a2cf53af9ccc838117db4cc2b364aa5c3
PageCount 9
ParticipantIDs crossref_primary_10_1007_s12541_013_0042_x
crossref_citationtrail_10_1007_s12541_013_0042_x
springer_journals_10_1007_s12541_013_0042_x
PublicationCentury 2000
PublicationDate 20130200
2013-2-00
PublicationDateYYYYMMDD 2013-02-01
PublicationDate_xml – month: 2
  year: 2013
  text: 20130200
PublicationDecade 2010
PublicationPlace Springer
PublicationPlace_xml – name: Springer
PublicationTitle International journal of precision engineering and manufacturing
PublicationTitleAbbrev Int. J. Precis. Eng. Manuf
PublicationYear 2013
Publisher Korean Society for Precision Engineering
Publisher_xml – name: Korean Society for Precision Engineering
References FreivogelS.MehrholzJ.Husak-SotomayorT.SchmalohrD.Gait Training with the Newly Developed ‘LokoHelp’-System is Feasible for Non-ambulatory Patients after Stroke, Spinal Cord and Brain Injury. A Feasibility StudyBrain Injury2008227–862563210.1080/02699050801941771
NorrisJ. A.GranataK. P.MitrosM. R.ByrneE. M.MarshA. P.Effect of augmented plantarflexion power on preferred walking speed and economy in young and older adultsGait & Posture20072562062710.1016/j.gaitpost.2006.07.002
ColomboG.JoergM.SchreierR.DietzV.Treadmill Training of Paraplegic Patients Using a Robotic OrthosisJournal of Rehabilitation Research and Development2000376693700
SasakiD.NoritsuguT.TakaiwaM.Development of Pneumatic Power Assist Splint “ASSIST” Operated by Human IntentionJournal of Robotics and Mechatronics2005175568574
HesseS.UhlenbrockD.A Mechanized Gait Trainer for Restoration of GaitJournal of Rehabilitation Research and Development2000376701708
States, R. A., Pappas, E., and Salem, Y., “Overground Physical Therapy Gait Training for Chronic Stroke Patients with Mobility Deficits,” Cochrane Database Syst. Rev., Vol. 8, No. 3, 2009.
ChoiY. C.RheeK. M.ChoiH. S.The Stress Distribution Property on the Customized Ankle Foot Orthoses During the Gait PeriodJ. KSPE2008253165175
LeeH. D.KimW. S.HanJ. S.HanC. S.The Technical Trend of the Exoskeleton Robot System for Human Power AssistanceInt. J. Precis. Eng. Manuf.20121381491149710.1007/s12541-012-0197-x
GordenK. E.FerrisD. P.Learning to walk with a robotic ankle exoskeletonJournal of Biomechanics200740122636264410.1016/j.jbiomech.2006.12.006
MoromugiS.KoujinaY.ArikiS.OkamotoA.TakayukiT.FengM.IshimatsuT.Muscle stiffness sensor to control an assistance device for the disabledArtificial Life and Robotics200481424510.1007/s10015-004-0286-8
Kawamoto, H. and Sankai, Y., “Power Assist System HAL-3 for Gait Disorder Person,” Proc. of the 8th International Conference on Computers Helping People with Special Needs, pp. 196–203, 2002.
WongC. K.BishopL.SteinJ.A Wearable Robotic Knee Orthosis for Gait Training: A Case-Series of Hemiparetic Stroke SurvivorsProsthetics and Orthotics International2011301113120
Díaz, I., Gil, J. J., and Sánchez, E., “Lower-Limb Robotic Rehabilitation: Literature Review and Challenges,” Journal of Robotics, Vol. 2011, Article ID 759764, 2011.
Perry, J., “Kinesiology of lower extremity bracing,” Clinical Orthopaedics and Related Research, Vol. 102, No. 18–31, 1974.
BlayaJ. A.HerrH.Adaptive Control of a Variable-Impedance Ankle-Foot Orthosis to Assist Drop-Foot GaitIEEE Transactions on Neural Systems and Rehabilitation Engineering2004121243110.1109/TNSRE.2003.823266
YokoyamaO.SashikaH.HakiwaraA.YamamotoS.YasuiT.Kinematic Effects on Gait of a Newly Designed Ankle-Foot Orthosis with Oil Damper Resistance: A case Series of 2 patients With HemiplegiaArchives of Physical Medicine and Rehabilitation20058616216610.1016/j.apmr.2003.11.026
Perry, J., “Gait Analysis-Normal and pathological Function,” SLACK, Inc., pp. 54–62, 1992.
West, G. R., “Powered Gait Orthosis and Method of Utilizing Same,” US Patent, No. 6689075, 2004.
FerrisD. P.CzernieckiJ. M.HannafordB.An Ankle exoskeleton Powered by Artificial Pneumatic MusclesJournal of Applied Biomechanics2005212189197
KimK. J.KangM. S.ChoiY. S.JangH. Y.HanJ. S.HanC. S.Development of the Exoskeleton Knee Rehabilitation Robot Using the Linear ActuatorInt. J. Precis. Eng. Manuf.201213101889189510.1007/s12541-012-0248-3
KimK.KwonT. K.KangS. R.PiaoY. J.JeongG. Y.Evaluation of Plantarflexion Torque of the Ankle exoskeleton Using the Artificial Pneumatic MuscleJ. KSPE20102768289
HwangS. J.KimJ. Y.HwangS. H.ParkS. W.YiJ. B.KimY. H.Development of the Active Ankle Foot Orthosis to Induce the Normal Gait for the Paralysis patientsJournal of the Ergonomics Society of Korea200726213113610.5143/JESK.2007.26.2.131
Peshkin, M., Brown, D. A., Santos-Munne, J. J., Makhlin, A., Lewis, E., Colgate, J. E., Patton, J., and Schwandt, D., “KineAssist: A Robotic Overground Gait and Balance Training Device,” Proc. of the 9th IEEE International Conference on Rehabilitation Robotics, (ICORR’ 05), pp. 241–246, 2005.
Hwang, S. J., Kim, J. Y., and Kim, Y. H., “Development of an Active Ankle-Foot-Orthosis to Prevent Dragging and Dropping Foot,” Proc. of KSPE Autumn Conference, pp. 557–558, 2006.
YamamotoS.EbinaM.KuboS.HayashiT.AkitaY.HayakawaY.Development of an ankle-foot orthosis with dorsiflexion assist. Part 2: structure and evaluationJ. Prosthet. Orthot.1999112428
Roy, A., Krebs, H. I., Patterson S. L., Judkins, T. N., Khanna, I., Forrester, L. W., Macko, R. M., and Hogan, N., “Measurement of Human Ankle Stiffness Using the Anklebot,” Proc. of the 10th IEEE International Conference on Rehabilitation Robotics, (ICORR’07), pp. 356–363, 2007.
GordenK. E.SawickiG. S.FerrisD. P.Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosisJournal of Biomechanics2006391832184110.1016/j.jbiomech.2005.05.018
KimK.KangS. R.PiaoY. G.JeongG. Y.KwonT. K.Analysis of the Assist Characteristics for Torque of the Ankle Plantarflexion in Elderly Adults Wearing the Ankle exoskeletonThe Journal of Korea Robotics Society2010514854
Goffer, A., “Gait-locomotor Apparatus,” US Patent, No. 7153242, 2006.
Yano, H., Tamefusa, S., Tanaka, N., Saitou, H., and Iwata, H., “Gait Rehabilitation System for Stair Climbing and Descending,” Proc. of the IEEE Haptics Symposium (HAPTICS’10), pp. 393–400, 2010.
FerrisD. P.GordonK. E.SawickiG. S.PeethambaranA.An improved powered ankle-foot orthosis using proportional myoelectric controlGait and Posture200623442542610.1016/j.gaitpost.2005.05.004
Sakaguchi, M. and Furusho, J., “Force Display System Using Particle-Type Electrorheological Fluids,” Proc. of the 1998 IEEE International Conference on Robotics and Automation, pp. 2586–2590, 1998.
CaoP. C.LewisC. L.FerrisD. P.Invariant ankle moment patterns when walking with and without a robotic ankle exoskeletonJournal of Biomechanics201043220320910.1016/j.jbiomech.2009.09.030
42_CR8
42_CR11
42_CR9
S. Hesse (42_CR6) 2000; 37
C. K. Wong (42_CR13) 2011; 30
42_CR14
42_CR15
S. Yamamoto (42_CR21) 1999; 11
K. Kim (42_CR30) 2010; 5
42_CR1
42_CR2
J. A. Norris (42_CR25) 2007; 25
S. Moromugi (42_CR29) 2004; 8
D. P. Ferris (42_CR17) 2005; 21
42_CR5
G. Colombo (42_CR3) 2000; 37
42_CR7
K. J. Kim (42_CR32) 2012; 13
D. P. Ferris (42_CR18) 2006; 23
42_CR10
Y. C. Choi (42_CR28) 2008; 25
42_CR23
42_CR27
D. Sasaki (42_CR24) 2005; 17
K. E. Gorden (42_CR20) 2007; 40
O. Yokoyama (42_CR22) 2005; 86
K. Kim (42_CR31) 2010; 27
K. E. Gorden (42_CR19) 2006; 39
S. Freivogel (42_CR4) 2008; 22
P. C. Cao (42_CR26) 2010; 43
H. D. Lee (42_CR33) 2012; 13
J. A. Blaya (42_CR12) 2004; 12
S. J. Hwang (42_CR16) 2007; 26
References_xml – reference: Kawamoto, H. and Sankai, Y., “Power Assist System HAL-3 for Gait Disorder Person,” Proc. of the 8th International Conference on Computers Helping People with Special Needs, pp. 196–203, 2002.
– reference: Perry, J., “Kinesiology of lower extremity bracing,” Clinical Orthopaedics and Related Research, Vol. 102, No. 18–31, 1974.
– reference: Sakaguchi, M. and Furusho, J., “Force Display System Using Particle-Type Electrorheological Fluids,” Proc. of the 1998 IEEE International Conference on Robotics and Automation, pp. 2586–2590, 1998.
– reference: Roy, A., Krebs, H. I., Patterson S. L., Judkins, T. N., Khanna, I., Forrester, L. W., Macko, R. M., and Hogan, N., “Measurement of Human Ankle Stiffness Using the Anklebot,” Proc. of the 10th IEEE International Conference on Rehabilitation Robotics, (ICORR’07), pp. 356–363, 2007.
– reference: States, R. A., Pappas, E., and Salem, Y., “Overground Physical Therapy Gait Training for Chronic Stroke Patients with Mobility Deficits,” Cochrane Database Syst. Rev., Vol. 8, No. 3, 2009.
– reference: KimK.KangS. R.PiaoY. G.JeongG. Y.KwonT. K.Analysis of the Assist Characteristics for Torque of the Ankle Plantarflexion in Elderly Adults Wearing the Ankle exoskeletonThe Journal of Korea Robotics Society2010514854
– reference: ChoiY. C.RheeK. M.ChoiH. S.The Stress Distribution Property on the Customized Ankle Foot Orthoses During the Gait PeriodJ. KSPE2008253165175
– reference: KimK.KwonT. K.KangS. R.PiaoY. J.JeongG. Y.Evaluation of Plantarflexion Torque of the Ankle exoskeleton Using the Artificial Pneumatic MuscleJ. KSPE20102768289
– reference: KimK. J.KangM. S.ChoiY. S.JangH. Y.HanJ. S.HanC. S.Development of the Exoskeleton Knee Rehabilitation Robot Using the Linear ActuatorInt. J. Precis. Eng. Manuf.201213101889189510.1007/s12541-012-0248-3
– reference: Goffer, A., “Gait-locomotor Apparatus,” US Patent, No. 7153242, 2006.
– reference: WongC. K.BishopL.SteinJ.A Wearable Robotic Knee Orthosis for Gait Training: A Case-Series of Hemiparetic Stroke SurvivorsProsthetics and Orthotics International2011301113120
– reference: Perry, J., “Gait Analysis-Normal and pathological Function,” SLACK, Inc., pp. 54–62, 1992.
– reference: HesseS.UhlenbrockD.A Mechanized Gait Trainer for Restoration of GaitJournal of Rehabilitation Research and Development2000376701708
– reference: LeeH. D.KimW. S.HanJ. S.HanC. S.The Technical Trend of the Exoskeleton Robot System for Human Power AssistanceInt. J. Precis. Eng. Manuf.20121381491149710.1007/s12541-012-0197-x
– reference: GordenK. E.SawickiG. S.FerrisD. P.Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosisJournal of Biomechanics2006391832184110.1016/j.jbiomech.2005.05.018
– reference: ColomboG.JoergM.SchreierR.DietzV.Treadmill Training of Paraplegic Patients Using a Robotic OrthosisJournal of Rehabilitation Research and Development2000376693700
– reference: SasakiD.NoritsuguT.TakaiwaM.Development of Pneumatic Power Assist Splint “ASSIST” Operated by Human IntentionJournal of Robotics and Mechatronics2005175568574
– reference: Díaz, I., Gil, J. J., and Sánchez, E., “Lower-Limb Robotic Rehabilitation: Literature Review and Challenges,” Journal of Robotics, Vol. 2011, Article ID 759764, 2011.
– reference: West, G. R., “Powered Gait Orthosis and Method of Utilizing Same,” US Patent, No. 6689075, 2004.
– reference: Hwang, S. J., Kim, J. Y., and Kim, Y. H., “Development of an Active Ankle-Foot-Orthosis to Prevent Dragging and Dropping Foot,” Proc. of KSPE Autumn Conference, pp. 557–558, 2006.
– reference: YamamotoS.EbinaM.KuboS.HayashiT.AkitaY.HayakawaY.Development of an ankle-foot orthosis with dorsiflexion assist. Part 2: structure and evaluationJ. Prosthet. Orthot.1999112428
– reference: YokoyamaO.SashikaH.HakiwaraA.YamamotoS.YasuiT.Kinematic Effects on Gait of a Newly Designed Ankle-Foot Orthosis with Oil Damper Resistance: A case Series of 2 patients With HemiplegiaArchives of Physical Medicine and Rehabilitation20058616216610.1016/j.apmr.2003.11.026
– reference: HwangS. J.KimJ. Y.HwangS. H.ParkS. W.YiJ. B.KimY. H.Development of the Active Ankle Foot Orthosis to Induce the Normal Gait for the Paralysis patientsJournal of the Ergonomics Society of Korea200726213113610.5143/JESK.2007.26.2.131
– reference: FerrisD. P.GordonK. E.SawickiG. S.PeethambaranA.An improved powered ankle-foot orthosis using proportional myoelectric controlGait and Posture200623442542610.1016/j.gaitpost.2005.05.004
– reference: FreivogelS.MehrholzJ.Husak-SotomayorT.SchmalohrD.Gait Training with the Newly Developed ‘LokoHelp’-System is Feasible for Non-ambulatory Patients after Stroke, Spinal Cord and Brain Injury. A Feasibility StudyBrain Injury2008227–862563210.1080/02699050801941771
– reference: Peshkin, M., Brown, D. A., Santos-Munne, J. J., Makhlin, A., Lewis, E., Colgate, J. E., Patton, J., and Schwandt, D., “KineAssist: A Robotic Overground Gait and Balance Training Device,” Proc. of the 9th IEEE International Conference on Rehabilitation Robotics, (ICORR’ 05), pp. 241–246, 2005.
– reference: GordenK. E.FerrisD. P.Learning to walk with a robotic ankle exoskeletonJournal of Biomechanics200740122636264410.1016/j.jbiomech.2006.12.006
– reference: Yano, H., Tamefusa, S., Tanaka, N., Saitou, H., and Iwata, H., “Gait Rehabilitation System for Stair Climbing and Descending,” Proc. of the IEEE Haptics Symposium (HAPTICS’10), pp. 393–400, 2010.
– reference: FerrisD. P.CzernieckiJ. M.HannafordB.An Ankle exoskeleton Powered by Artificial Pneumatic MusclesJournal of Applied Biomechanics2005212189197
– reference: CaoP. C.LewisC. L.FerrisD. P.Invariant ankle moment patterns when walking with and without a robotic ankle exoskeletonJournal of Biomechanics201043220320910.1016/j.jbiomech.2009.09.030
– reference: NorrisJ. A.GranataK. P.MitrosM. R.ByrneE. M.MarshA. P.Effect of augmented plantarflexion power on preferred walking speed and economy in young and older adultsGait & Posture20072562062710.1016/j.gaitpost.2006.07.002
– reference: MoromugiS.KoujinaY.ArikiS.OkamotoA.TakayukiT.FengM.IshimatsuT.Muscle stiffness sensor to control an assistance device for the disabledArtificial Life and Robotics200481424510.1007/s10015-004-0286-8
– reference: BlayaJ. A.HerrH.Adaptive Control of a Variable-Impedance Ankle-Foot Orthosis to Assist Drop-Foot GaitIEEE Transactions on Neural Systems and Rehabilitation Engineering2004121243110.1109/TNSRE.2003.823266
– ident: 42_CR23
– volume: 22
  start-page: 625
  issue: 7–8
  year: 2008
  ident: 42_CR4
  publication-title: Brain Injury
  doi: 10.1080/02699050801941771
– volume: 11
  start-page: 24
  year: 1999
  ident: 42_CR21
  publication-title: J. Prosthet. Orthot.
  doi: 10.1097/00008526-199901120-00003
– ident: 42_CR27
– volume: 30
  start-page: 113
  issue: 1
  year: 2011
  ident: 42_CR13
  publication-title: Prosthetics and Orthotics International
– ident: 42_CR8
  doi: 10.1109/ICORR.2005.1501094
– volume: 26
  start-page: 131
  issue: 2
  year: 2007
  ident: 42_CR16
  publication-title: Journal of the Ergonomics Society of Korea
  doi: 10.5143/JESK.2007.26.2.131
– volume: 13
  start-page: 1491
  issue: 8
  year: 2012
  ident: 42_CR33
  publication-title: Int. J. Precis. Eng. Manuf.
  doi: 10.1007/s12541-012-0197-x
– ident: 42_CR7
  doi: 10.1109/HAPTIC.2010.5444627
– ident: 42_CR5
– ident: 42_CR1
  doi: 10.1097/00003086-197407000-00004
– volume: 23
  start-page: 425
  issue: 4
  year: 2006
  ident: 42_CR18
  publication-title: Gait and Posture
  doi: 10.1016/j.gaitpost.2005.05.004
– volume: 5
  start-page: 48
  issue: 1
  year: 2010
  ident: 42_CR30
  publication-title: The Journal of Korea Robotics Society
– volume: 25
  start-page: 620
  year: 2007
  ident: 42_CR25
  publication-title: Gait & Posture
  doi: 10.1016/j.gaitpost.2006.07.002
– volume: 43
  start-page: 203
  issue: 2
  year: 2010
  ident: 42_CR26
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2009.09.030
– ident: 42_CR9
– volume: 39
  start-page: 1832
  year: 2006
  ident: 42_CR19
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2005.05.018
– volume: 40
  start-page: 2636
  issue: 12
  year: 2007
  ident: 42_CR20
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2006.12.006
– volume: 27
  start-page: 82
  issue: 6
  year: 2010
  ident: 42_CR31
  publication-title: J. KSPE
– volume: 86
  start-page: 162
  year: 2005
  ident: 42_CR22
  publication-title: Archives of Physical Medicine and Rehabilitation
  doi: 10.1016/j.apmr.2003.11.026
– ident: 42_CR10
  doi: 10.1007/3-540-45491-8_43
– ident: 42_CR14
  doi: 10.1002/14651858.CD006075.pub2
– volume: 21
  start-page: 189
  issue: 2
  year: 2005
  ident: 42_CR17
  publication-title: Journal of Applied Biomechanics
  doi: 10.1123/jab.21.2.189
– ident: 42_CR2
– volume: 37
  start-page: 693
  issue: 6
  year: 2000
  ident: 42_CR3
  publication-title: Journal of Rehabilitation Research and Development
– volume: 17
  start-page: 568
  issue: 5
  year: 2005
  ident: 42_CR24
  publication-title: Journal of Robotics and Mechatronics
  doi: 10.20965/jrm.2005.p0568
– ident: 42_CR15
– ident: 42_CR11
  doi: 10.1109/ICORR.2007.4428450
– volume: 13
  start-page: 1889
  issue: 10
  year: 2012
  ident: 42_CR32
  publication-title: Int. J. Precis. Eng. Manuf.
  doi: 10.1007/s12541-012-0248-3
– volume: 12
  start-page: 24
  issue: 1
  year: 2004
  ident: 42_CR12
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2003.823266
– volume: 25
  start-page: 165
  issue: 3
  year: 2008
  ident: 42_CR28
  publication-title: J. KSPE
– volume: 8
  start-page: 42
  issue: 1
  year: 2004
  ident: 42_CR29
  publication-title: Artificial Life and Robotics
  doi: 10.1007/s10015-004-0286-8
– volume: 37
  start-page: 701
  issue: 6
  year: 2000
  ident: 42_CR6
  publication-title: Journal of Rehabilitation Research and Development
SSID ssib031263586
ssib036278122
ssib053376809
ssj0068040
Score 1.9399678
Snippet It is necessary to develop a rehabilitation robot for the assistance of movement of the ankle joint and the enhancement of ankle muscular activities during...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 307
SubjectTerms Engineering
Industrial and Production Engineering
Materials Science
Title The effects of a powered ankle exoskeleton for plantarflexion torque assistance for the elderly
URI https://link.springer.com/article/10.1007/s12541-013-0042-x
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oXPTg24gPsgdPmpJ2H30cwYBEE06Q4KnZbncvEiBQEvTXO1NaEKMm3Jp22qYz051vsjPfEHIPMdDyxAjH893QESnYQgXKd7QnU2NdpBDLqy16fncgXoZyWPRxz8tq93JLMl-pN81ukMtg6sudvKcEgGNVemEUVki1-fz22i7diHtIsLJhRYMlOoAwto7iAHAAYyNr1WrBhuO8bxICpXACGfFy8_O3l26Hr-290zwkdY5Jv_yYVSXKe2ORJQ39-YPnccevPSFHBUSlzZVPnZI9Mz4jh9-IC89JDN5Fi1IQOrFU0SlOWzMpxRHwcGk5mb9DQANgSQEV0-kIDKhmFtk34RTk-RCOKOB2RK_gdrlQhs_EoeGjjwsy6LT7T12nGNXgaM68zJEJc3G4Hyg-DX3tGRlwwy2An0iZUArFtJVc2UhrHXJsbk0ToTVLuC-Ukppfksp4MjZXhPrMMjdJtGu9FJJbFokAG2JtFLDUANyqEbe0QKwLHnMcpzGKNwzMqLsYdBej7uJljTysb5muSDz-E34sLRIX__P8b-nrnaRvyAHLTYrlMLekks0W5g5ATZbUwYk7rVavXjhznewPWPMLuLjq6w
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4YOKgH30Z87sGTpqTd3b6OxIAoyAkSPDXb7e4FAgRKgv56Z0oLYtSEW9NO23RmuvNNduYbQu4hBhoea2E5nh1YIgFbSF96lnLcRBsbKcSyaouO1-yJ177bz_u4Z0W1e7Elma3U62Y3yGUw9eVW1lMCwLEsIAW3S6Rce35v1Qs34g4SrKxZ0WCJ9iGMraI4ABzA2MhatVyw4Tjrm4RAKSzfDXmx-fnbSzfD1-beaRaSGoekW3zMshJlUJ2ncVV9_uB53PJrj8hBDlFpbelTx2RHj07I_jfiwlMSgXfRvBSEjg2VdILT1nRCcQQ8XFqMZwMIaAAsKaBiOhmCAeXUIPsmnII8H8IRBdyO6BXcLhNK8Zk4NHz4cUZ6jXr3qWnloxosxZmTWm7MbBzuB4pPAk852vW55gbATyh14ArJlHG5NKFSKuDY3JrEQikWc09I6Sp-Tkqj8UhfEOoxw-w4VrZxEkhuWSh8bIg1oc8SDXCrQuzCApHKecxxnMYwWjMwo-4i0F2EuosWFfKwumWyJPH4T_ixsEiU_8-zv6Uvt5K-I7vN7ls7ar90Wldkj2XmxdKYa1JKp3N9AwAnjW9zh_4C0szrYw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kguhBfGJ97sGTEprsI49jUUt9UDxY6G3ZbHYvlja0Eeq_dyaP1oIK3kIySWAy2e8bduYbQq4BAx1PrfCC0I89kcG30JEOPRPIzDofJcTKaotB2B-Kp5Ec1XNO5021e7MlWfU0oErTpOjkmeusGt8gr8E0mHtlfwmQyE1YjQMM9CHrNgHFA5RaWemjwWIdAaAt8RyoDrBt1K-qlm44LjsoATKFF8mEN9ugP71yHcjWd1FLcOrtkd2aVdJuFQb7ZMNODsjON63BQ6IgIGhdvUGnjmqa44A0m1Gc2g6XFtP5O2AQcEEKRJbmY_C5njkUzIRTkJoDglCg2kg4IVJKowKfiXO-x59HZNh7eLvre_V0Bc9wFhSeTJmP8_jAQ1kcmsDKiFvugK8k2sZSaGac5NolxpiYYz9qlgpjWMpDobU0_Ji0JtOJPSE0ZI75aWp8F2SQj7JERNjD6pKIZRYYUpv4jauUqaXHcQLGWK1Ek9G7Cryr0Ltq0SY3y1vySnfjL-Pbxv-q_gXnv1uf_sv6imy93vfUy-Pg-Yxss_L7YzHLOWkVsw97AZSkSC_LsPsC3ArSqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effects+of+a+powered+ankle+exoskeleton+for+plantarflexion+torque+assistance+for+the+elderly&rft.jtitle=International+journal+of+precision+engineering+and+manufacturing&rft.au=Kim%2C+Kyung&rft.au=Yu%2C+Chang-Ho&rft.au=Yu%2C+Mi&rft.au=Jeong%2C+Gu-Young&rft.date=2013-02-01&rft.issn=2234-7593&rft.eissn=2005-4602&rft.volume=14&rft.issue=2&rft.spage=307&rft.epage=315&rft_id=info:doi/10.1007%2Fs12541-013-0042-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12541_013_0042_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-7593&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-7593&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-7593&client=summon