Multi-UAV-Assisted MEC Offloading-Optimization Method on Deep Reinforcement Learning
In multi-UAV-assisted mobile edge computing (MEC), insufficient consideration of collaborative computation in inter-UAV communication can significantly reduce computational service capabilities. For this problem, we present a multi-UAV-assisted MEC offloading optimization model that jointly optimize...
Saved in:
Published in | International journal on semantic web and information systems Vol. 21; no. 1; pp. 1 - 31 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hershey
IGI Global
01.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1552-6283 1552-6291 |
DOI | 10.4018/IJSWIS.368839 |
Cover
Abstract | In multi-UAV-assisted mobile edge computing (MEC), insufficient consideration of collaborative computation in inter-UAV communication can significantly reduce computational service capabilities. For this problem, we present a multi-UAV-assisted MEC offloading optimization model that jointly optimizes task offloading decision, UAV resource allocation, UAV trajectories and establish collaborative computation through inter-UAV communication. First, to solve the multi-UAV-assisted MEC offloading optimization issue, we define a weighted utility function that balances delay and energy consumption. Then, to tackle the continuous nature of the computation-offloading problem and the coexistence of discrete and continuous variables, the PPO algorithm is enhanced by integrating an average reward objective function and a hybrid action generation offloading mechanism. Finally, we propose a multi-UAV-assisted MEC computing offloading optimization method to improve the utility function. Experiments show that the proposed method significantly enhances system utility. |
---|---|
AbstractList | In multi-UAV-assisted mobile edge computing (MEC), insufficient consideration of collaborative computation in inter-UAV communication can significantly reduce computational service capabilities. For this problem, we present a multi-UAV-assisted MEC offloading optimization model that jointly optimizes task offloading decision, UAV resource allocation, UAV trajectories and establish collaborative computation through inter-UAV communication. First, to solve the multi-UAV-assisted MEC offloading optimization issue, we define a weighted utility function that balances delay and energy consumption. Then, to tackle the continuous nature of the computation-offloading problem and the coexistence of discrete and continuous variables, the PPO algorithm is enhanced by integrating an average reward objective function and a hybrid action generation offloading mechanism. Finally, we propose a multi-UAV-assisted MEC computing offloading optimization method to improve the utility function. Experiments show that the proposed method significantly enhances system utility. |
Author | Sun, Chao Li, Zhihua |
AuthorAffiliation | Jiangnan University, China |
AuthorAffiliation_xml | – name: Jiangnan University, China |
Author_xml | – sequence: 1 givenname: Zhihua surname: Li fullname: Li, Zhihua organization: Jiangnan University, China – sequence: 2 givenname: Chao surname: Sun fullname: Sun, Chao organization: Jiangnan University, China |
BookMark | eNptkM9PwjAYhhuDiYAevS_xXGz7dd12JICKgZAI6LEp21csgQ3bcdC_3pn54-Lpew_P-37J0yOdsiqRkGvOBpLx9Hb6uHyZLgeg0hSyM9LlcSyoEhnv_OYULkgvhB1jEAPwLlnNT_va0fXwmQ5DcKHGIppPRtHC2n1lCldu6eJYu4P7MLWrymiO9WtVRE0aIx6jJ3SlrXyOByzraIbGl03lkpxbsw949X37ZH03WY0e6GxxPx0NZzQHwWsaQ2atyBLFbM7BgEoYChCFiVNMhUkKwEIWKtkoabiUXGC2kUwJIzeAkmXQJzft7tFXbycMtd5VJ182LzVwpZIU0kw1FG2p3FcheLT66N3B-HfNmf4Sp1txuhXX8OOWd1v3N-h040j_ONKNI906-ndEcPgEog94GA |
Cites_doi | 10.1109/TVT.2023.3331363 10.1109/TCOMM.2024.3361536 10.1109/TMC.2024.3350078 10.1109/TWC.2023.3266497 10.1109/IWCMC48107.2020.9148519 10.1109/TVT.2019.2935877 10.1109/TVT.2022.3140833 10.4018/IJSWIS.344026 10.24963/ijcai.2019/316 10.1016/j.comcom.2023.05.013 10.1109/JIOT.2024.3356725 10.1016/j.aei.2022.101536 10.3390/s24051364 10.1109/JIOT.2020.2971645 10.1109/ACCESS.2020.3006112 10.4018/IJSWIS.328526 10.1016/j.jnca.2022.103341 10.4018/IJSWIS.345935 10.1109/JIOT.2023.3300718 10.1109/JIOT.2020.2965898 10.1016/j.swevo.2022.101163 10.1109/TII.2019.2954944 10.1109/TVT.2019.2960103 10.1016/j.jnca.2022.103366 10.1109/TWC.2022.3153316 10.1109/JIOT.2020.2980035 10.1109/TNSM.2022.3176829 10.1109/WCSP49889.2020.9299784 10.1109/TCE.2023.3338819 10.1109/JIOT.2022.3233667 10.1016/j.cosrev.2023.100615 10.1109/JIOT.2020.2993260 10.1109/TVT.2023.3247431 |
ContentType | Journal Article |
Copyright | 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SC 8FD 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
DOI | 10.4018/IJSWIS.368839 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1552-6291 |
EndPage | 31 |
ExternalDocumentID | 10_4018_IJSWIS_368839 i_UAV_Assisted_MEC_Offloa10_4018_IJSWIS_36883921 |
GroupedDBID | 0R~ 29J 4.4 5GY AAYVP ABBKS ABEPT ABJCF ABPHS ADMLS AENEX AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AXMGO BAWSF BDBYZ BENPR BGLVJ BLRFH BTFVE BYHXH CBWLS CCPQU CDTDJ CIGCI CKMBR CNQXE COVLG CTSEY EBS F5P H13 HCIFZ HZ~ IAO ICD ITC K7- M7S MV1 NEEBM O9- P2P PHGZM PHGZT PQGLB PTHSS RIF XH6 AAYXX CITATION 7SC 8FD 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c321t-539ff29760fc13a3670e232da58e82a7d3ed4d67b64a14412e9b4062a4b3e4093 |
IEDL.DBID | 8FG |
ISSN | 1552-6283 |
IngestDate | Mon Aug 11 15:41:09 EDT 2025 Thu Aug 14 00:12:21 EDT 2025 Tue Aug 12 04:10:33 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://creativecommons.org/licenses/by/3.0/deed.en_US |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c321t-539ff29760fc13a3670e232da58e82a7d3ed4d67b64a14412e9b4062a4b3e4093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0008-3528-9293 0000-0001-7915-9484 |
OpenAccessLink | https://doi.org/10.4018/ijswis.368839 |
PQID | 3166783896 |
PQPubID | 2045800 |
PageCount | 31 |
ParticipantIDs | igi_journals_i_UAV_Assisted_MEC_Offloa10_4018_IJSWIS_36883921 proquest_journals_3166783896 crossref_primary_10_4018_IJSWIS_368839 |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hershey |
PublicationPlace_xml | – name: Hershey |
PublicationTitle | International journal on semantic web and information systems |
PublicationYear | 2025 |
Publisher | IGI Global |
Publisher_xml | – name: IGI Global |
References | IJSWIS.368839-18 IJSWIS.368839-19 IJSWIS.368839-14 IJSWIS.368839-15 IJSWIS.368839-16 IJSWIS.368839-17 IJSWIS.368839-0 IJSWIS.368839-10 IJSWIS.368839-11 IJSWIS.368839-33 IJSWIS.368839-12 IJSWIS.368839-34 IJSWIS.368839-13 IJSWIS.368839-35 IJSWIS.368839-4 IJSWIS.368839-3 IJSWIS.368839-2 IJSWIS.368839-30 IJSWIS.368839-31 IJSWIS.368839-8 IJSWIS.368839-7 IJSWIS.368839-6 Y.Zhang (IJSWIS.368839-32) 2021 IJSWIS.368839-5 IJSWIS.368839-9 IJSWIS.368839-29 Y.Cang (IJSWIS.368839-1) 2023 IJSWIS.368839-25 IJSWIS.368839-26 IJSWIS.368839-27 IJSWIS.368839-28 IJSWIS.368839-21 IJSWIS.368839-22 IJSWIS.368839-23 IJSWIS.368839-24 IJSWIS.368839-20 |
References_xml | – ident: IJSWIS.368839-26 doi: 10.1109/TVT.2023.3331363 – ident: IJSWIS.368839-25 doi: 10.1109/TCOMM.2024.3361536 – ident: IJSWIS.368839-11 doi: 10.1109/TMC.2024.3350078 – ident: IJSWIS.368839-18 doi: 10.1109/TWC.2023.3266497 – ident: IJSWIS.368839-24 doi: 10.1109/IWCMC48107.2020.9148519 – year: 2023 ident: IJSWIS.368839-1 article-title: Online resource allocation for semantic-aware edge computing systems. publication-title: IEEE Internet of Things Journal – ident: IJSWIS.368839-6 doi: 10.1109/TVT.2019.2935877 – ident: IJSWIS.368839-19 doi: 10.1109/TVT.2022.3140833 – ident: IJSWIS.368839-4 doi: 10.4018/IJSWIS.344026 – ident: IJSWIS.368839-7 doi: 10.24963/ijcai.2019/316 – ident: IJSWIS.368839-9 doi: 10.1016/j.comcom.2023.05.013 – ident: IJSWIS.368839-17 doi: 10.1109/JIOT.2024.3356725 – ident: IJSWIS.368839-12 doi: 10.1016/j.aei.2022.101536 – ident: IJSWIS.368839-35 doi: 10.3390/s24051364 – ident: IJSWIS.368839-27 doi: 10.1109/JIOT.2020.2971645 – ident: IJSWIS.368839-5 doi: 10.1109/ACCESS.2020.3006112 – ident: IJSWIS.368839-2 doi: 10.4018/IJSWIS.328526 – ident: IJSWIS.368839-13 doi: 10.1016/j.jnca.2022.103341 – ident: IJSWIS.368839-14 doi: 10.4018/IJSWIS.345935 – ident: IJSWIS.368839-15 doi: 10.1109/JIOT.2023.3300718 – ident: IJSWIS.368839-28 doi: 10.1109/JIOT.2020.2965898 – ident: IJSWIS.368839-16 doi: 10.1016/j.swevo.2022.101163 – start-page: 12535 year: 2021 ident: IJSWIS.368839-32 article-title: On-policy deep reinforcement learning for the average-reward criterion. publication-title: International Conference on Machine Learning – ident: IJSWIS.368839-10 doi: 10.1109/TII.2019.2954944 – ident: IJSWIS.368839-30 doi: 10.1109/TVT.2019.2960103 – ident: IJSWIS.368839-8 doi: 10.1016/j.jnca.2022.103366 – ident: IJSWIS.368839-21 – ident: IJSWIS.368839-33 doi: 10.1109/TWC.2022.3153316 – ident: IJSWIS.368839-31 doi: 10.1109/JIOT.2020.2980035 – ident: IJSWIS.368839-3 doi: 10.1109/TNSM.2022.3176829 – ident: IJSWIS.368839-22 doi: 10.1109/WCSP49889.2020.9299784 – ident: IJSWIS.368839-23 doi: 10.1109/TCE.2023.3338819 – ident: IJSWIS.368839-20 doi: 10.1109/JIOT.2022.3233667 – ident: IJSWIS.368839-0 doi: 10.1016/j.cosrev.2023.100615 – ident: IJSWIS.368839-29 doi: 10.1109/JIOT.2020.2993260 – ident: IJSWIS.368839-34 doi: 10.1109/TVT.2023.3247431 |
SSID | ssj0035331 |
Score | 2.343885 |
Snippet | In multi-UAV-assisted mobile edge computing (MEC), insufficient consideration of collaborative computation in inter-UAV communication can significantly reduce... |
SourceID | proquest crossref igi |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Collaboration Communication Computation offloading Continuity (mathematics) Decision making Deep learning Edge computing Energy consumption Energy efficiency Heuristic Information systems Mobile computing Optimization algorithms Optimization models Pareto optimum Resource allocation Scheduling Semantic web Semantics Unmanned aerial vehicles Utility functions |
Title | Multi-UAV-Assisted MEC Offloading-Optimization Method on Deep Reinforcement Learning |
URI | http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSWIS.368839 https://www.proquest.com/docview/3166783896 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LTsMwEFwBvcAB8RTlUeWAuBmI7TjJASEeLS1SKWopcLOc2EaVoC1Q_p-1k6hIIG5RouQwtnd2N_YMwGFsXJ5sKVERs4RjwUGcBjQxlolUCW6p1yno3on2kN8-R89lw-2z3FZZxUQfqPUkdz3yExYKjKtIr-J8-k6ca5T7u1paaCxCLUSmcfM8ad1UkZhFhR-hUxkjAnm00NjEiiI56dwOnjqDYyaSxPmE_-CkxdHL6Fdg9mzTWoPVMk0MLopxXYcFM96AlR_igZvw4M_OkuHFI0GM3WjpoNu8CnrWvk78znjSw3jwVh60DLreKzrAq2tjpkHfeM3U3LcHg1Jm9WULhq3mw1WblB4JJGc0nJGIpdbhKU5tHjLl5NgMJklaRYlJqIo1M5prEWeCK1c7UZNmyOFU8YwZrO3YNiyNJ2OzA4FOhU05JjQmtzyOhIoU1Qneik2mY87rcFShJKeFFIbEEsLBKQs4ZQFnHc4QQ1kuhk85kgiFrKCQCIUsoPjzbRrWYb9Cf_6R-fjv_v94D5ap8-j1bZJ9WJp9fJkDTBxmWcPPjgbULpt39_1vJC7A_A |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9swFH5i5bBxQAOGKD-GD8DNg9qOkxzQxKCoBVomaDduxoltVAnaAkVo_xR_456dRCCBuHGLEiWKPr-8X_H7PoCN2Po82TGqI-6owIKDeg5oah2XqZbCscBT0OnKVl8cXUQXU_BUzcL4bZWVTwyO2oxy3yPf5g2JfhXDq_w5vqVeNcr_Xa0kNAqzOLb_HrFku99tH-D6bjJ22Oztt2ipKkBzzhoTGvHU-TeQOy5vcO0JzCymFUZHiU2Yjg23RhgZZ1JoX20wm2YY9ZgWGbcikC-hy58WfqK1BtO_mt3fZ5Xv51GhgOh5zajEyF2wemINk2y3j87_ts9_cJkkXpn8RRT8NLgavAoFIb4dfoXZMjEle4UlzcGUHc7DzAu6wgXohWld2t_7Q3FVvX0Y0mnuk1PnrkdhLz49RQ90U452kk5QpyZ4dGDtmJzZwNKah4YkKYldr75B_0PwW4TacDS0S0BMKl0qMIWyuRNxJHWkmUnwVGwzEwtRh60KJTUuyDcUFi0eTlXAqQo467CLGKry87tXA4VQqAoKhVCoAoo372aNOqxW6D8_5Nnilt-_vA6fW73OiTppd49X4AvzCsGhSbMKtcndg13DtGWSfS9thcDlR5vnfyEi_EE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-UAV-Assisted+MEC+Offloading-Optimization+Method+on+Deep+Reinforcement+Learning&rft.jtitle=International+journal+on+semantic+web+and+information+systems&rft.au=Li%2C+Zhihua&rft.au=Sun%2C+Chao&rft.date=2025-01-01&rft.issn=1552-6283&rft.volume=21&rft.issue=1&rft.spage=1&rft.epage=31&rft_id=info:doi/10.4018%2FIJSWIS.368839&rft.externalDocID=i_UAV_Assisted_MEC_Offloa10_4018_IJSWIS_36883921 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-6283&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-6283&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-6283&client=summon |