Personalization of Energy Expenditure Estimation in Free Living Using Topic Models
We introduce an approach to personalize energy expenditure (EE) estimates in free living. First, we use topic models to discover activity composites from recognized activity primitives and stay regions in daily living data. Subsequently, we determine activity composites that are relevant to contextu...
Saved in:
Published in | IEEE journal of biomedical and health informatics Vol. 19; no. 5; pp. 1577 - 1586 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We introduce an approach to personalize energy expenditure (EE) estimates in free living. First, we use topic models to discover activity composites from recognized activity primitives and stay regions in daily living data. Subsequently, we determine activity composites that are relevant to contextualize heart rate (HR). Activity composites were ranked and analyzed to optimize the correlation to HR normalization parameters. Finally, individual-specific HR normalization parameters were used to normalize HR. Normalized HR was then included in activity-specific regression models to estimate EE. Our HR normalization minimizes the effect of individual fitness differences from entering in EE regression models. By estimating HR normalization parameters in free living, our approach avoids dedicated individual calibration or laboratory tests. In a combined free-living and laboratory study dataset, including 34 healthy volunteers, we show that HR normalization in 14-day free-living data improves accuracy compared to no normalization and normalization based on activity primitives only (29.4% and 19.8 % error reduction against lab reference). Based on acceleration and HR, both recorded from a necklace, and GPS acquired from a smartphone, EE estimation error was reduced by 10.7% in a leave-one-participant-out analysis. |
---|---|
AbstractList | We introduce an approach to personalize energy expenditure (EE) estimates in free living. First, we use topic models to discover activity composites from recognized activity primitives and stay regions in daily living data. Subsequently, we determine activity composites that are relevant to contextualize heart rate (HR). Activity composites were ranked and analyzed to optimize the correlation to HR normalization parameters. Finally, individual-specific HR normalization parameters were used to normalize HR. Normalized HR was then included in activity-specific regression models to estimate EE. Our HR normalization minimizes the effect of individual fitness differences from entering in EE regression models. By estimating HR normalization parameters in free living, our approach avoids dedicated individual calibration or laboratory tests. In a combined free-living and laboratory study dataset, including 34 healthy volunteers, we show that HR normalization in 14-day free-living data improves accuracy compared to no normalization and normalization based on activity primitives only (29.4% and 19.8 % error reduction against lab reference). Based on acceleration and HR, both recorded from a necklace, and GPS acquired from a smartphone, EE estimation error was reduced by 10.7% in a leave-one-participant-out analysis. |
Author | Amft, Oliver Casale, Pierluigi Altini, Marco Penders, Julien F. |
Author_xml | – sequence: 1 givenname: Marco surname: Altini fullname: Altini, Marco email: altini.marco@gmail.com organization: Bloom Technol., Diepenbeek, Belgium – sequence: 2 givenname: Pierluigi surname: Casale fullname: Casale, Pierluigi email: piecurus@gmail.com organization: IMEC-NL, Eindhoven, Netherlands – sequence: 3 givenname: Julien F. surname: Penders fullname: Penders, Julien F. email: Julien.Penders@imec-nl.nl organization: IMEC-NL, Eindhoven, Netherlands – sequence: 4 givenname: Oliver surname: Amft fullname: Amft, Oliver email: amft@fim.uni-passau.de organization: Univ. of Passau, Passau, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25838531$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kF9PwjAUxRuDEUQ-gDExe_Rl2D9b1z0qGYLBaAw8L2O7IzWjne1mxE9vlwF9uG16f_fcnHONBkorQOiW4CkhOH58fV4spxSTcEoDImjIL9CIEi58SrEYnN4kDoZoYu0Xdke4r5hfoSENBRMhIyP0-QHGapVV8i9rpFaeLr1EgdkdvOS3BlXIpjXgJbaR-x6QypsbAG8lf6TaeRvb1bWuZe696QIqe4Muy6yyMDneY7SZJ-vZwl-9vyxnTys_Z5Q0vluP44hFJMszHnIWFcK5cFaKQGyDMiy3rIhpEQWc4BCXOceYZYRRXOIYeB6yMXrodWujv1uwTbqXNoeqyhTo1qYkcvo4CkTkUNKjudHWGijT2jg_5pASnHZppl2aaZdmekzTzdwf5dvtHorzxCk7B9z1gASAc9ttZDwQ7B-7hXic |
CODEN | IJBHA9 |
CitedBy_id | crossref_primary_10_1145_3404482 crossref_primary_10_1109_TBME_2022_3163429 crossref_primary_10_3389_fpubh_2019_00167 crossref_primary_10_1109_JSEN_2021_3075109 crossref_primary_10_1152_japplphysiol_00714_2018 crossref_primary_10_1016_j_artmed_2016_02_002 |
Cites_doi | 10.1109/TBME.2007.896591 10.1038/oby.2005.103 10.1088/0967-3334/35/9/1797 10.1109/JBHI.2014.2313039 10.1152/japplphysiol.00128.2003 10.1161/01.RES.24.5.711 10.1145/1526709.1526816 10.1113/jphysiol.1949.sp004363 10.1123/jpah.2013-0190 10.1152/jappl.1954.7.2.218 10.1109/TBME.2011.2159840 10.1177/1089313X0400800301 10.1152/japplphysiol.00703.2003 10.1145/2534088.2534092 10.1055/s-2008-1025839 10.1249/MSS.0b013e3181c37458 10.4108/icst.pervasivehealth.2013.252069 10.1145/1409635.1409638 10.1079/BJN19890107 10.1152/japplphysiol.00150.2009 10.1109/TBME.2013.2284069 10.1016/j.pmcj.2014.05.007 10.1002/j.1550-8528.1995.tb00007.x |
ContentType | Journal Article |
DBID | 97E RIA RIE CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1109/JBHI.2015.2418256 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library Online Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2168-2208 |
EndPage | 1586 |
ExternalDocumentID | 10_1109_JBHI_2015_2418256 25838531 7073648 |
Genre | orig-research Journal Article |
GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 6IL 97E AAJGR AASAJ ABQJQ ABVLG ACIWK ACPRK ADZIZ AENEX AFRAH AKJIK ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RIG RNS CGR CUY CVF ECM EIF NPM AAYXX AGSQL CITATION 7X8 |
ID | FETCH-LOGICAL-c321t-531097371aca65637d8825418d48b4f5fb3d92d7461050fc6003a1320f09e6c53 |
IEDL.DBID | RIE |
ISSN | 2168-2194 |
IngestDate | Tue Dec 03 23:32:12 EST 2024 Fri Dec 06 04:18:20 EST 2024 Sat Sep 28 07:56:02 EDT 2024 Wed Jun 26 19:22:05 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Context topic models heart rate energy expenditure |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c321t-531097371aca65637d8825418d48b4f5fb3d92d7461050fc6003a1320f09e6c53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25838531 |
PQID | 1709707487 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1709707487 ieee_primary_7073648 crossref_primary_10_1109_JBHI_2015_2418256 pubmed_primary_25838531 |
PublicationCentury | 2000 |
PublicationDate | 2015-Sept. 2015-Sep 2015-9-00 20150901 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: 2015-Sept. |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE journal of biomedical and health informatics |
PublicationTitleAbbrev | JBHI |
PublicationTitleAlternate | IEEE J Biomed Health Inform |
PublicationYear | 2015 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 ref15 ref10 altini (ref19) 0 ref2 ref1 blei (ref14) 2003; 3 ref17 ref16 ref18 redding (ref23) 2004; 8 ref24 åstrand (ref11) 1954; 7 ref26 ref25 ref20 ref22 ref21 ref8 ref7 ref9 ref4 tapia (ref6) 2008 ref3 ref5 |
References_xml | – volume: 3 start-page: 993 year: 2003 ident: ref14 article-title: Latent Dirichlet allocation publication-title: J Mach Learn Res contributor: fullname: blei – ident: ref1 doi: 10.1109/TBME.2007.896591 – ident: ref20 doi: 10.1038/oby.2005.103 – ident: ref12 doi: 10.1088/0967-3334/35/9/1797 – start-page: 1:1 year: 0 ident: ref19 publication-title: Proc of Conference on Wireless Health contributor: fullname: altini – ident: ref7 doi: 10.1109/JBHI.2014.2313039 – ident: ref21 doi: 10.1152/japplphysiol.00128.2003 – ident: ref10 doi: 10.1161/01.RES.24.5.711 – ident: ref22 doi: 10.1145/1526709.1526816 – ident: ref16 doi: 10.1113/jphysiol.1949.sp004363 – ident: ref25 doi: 10.1123/jpah.2013-0190 – volume: 7 start-page: 218 year: 1954 ident: ref11 article-title: A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during submaximal work publication-title: J Appl Physiol doi: 10.1152/jappl.1954.7.2.218 contributor: fullname: åstrand – ident: ref2 doi: 10.1109/TBME.2011.2159840 – volume: 8 start-page: 69 year: 2004 ident: ref23 article-title: Validity of using heart rate as a predictor of oxygen consumption in dance publication-title: J Dance Med Sci doi: 10.1177/1089313X0400800301 contributor: fullname: redding – ident: ref9 doi: 10.1152/japplphysiol.00703.2003 – ident: ref26 doi: 10.1145/2534088.2534092 – ident: ref17 doi: 10.1055/s-2008-1025839 – ident: ref4 doi: 10.1249/MSS.0b013e3181c37458 – year: 2008 ident: ref6 article-title: Using machine learning for real-time activity recognition and estimation of energy expenditure contributor: fullname: tapia – ident: ref8 doi: 10.4108/icst.pervasivehealth.2013.252069 – ident: ref13 doi: 10.1145/1409635.1409638 – ident: ref3 doi: 10.1079/BJN19890107 – ident: ref5 doi: 10.1152/japplphysiol.00150.2009 – ident: ref24 doi: 10.1109/TBME.2013.2284069 – ident: ref15 doi: 10.1016/j.pmcj.2014.05.007 – ident: ref18 doi: 10.1002/j.1550-8528.1995.tb00007.x |
SSID | ssj0000816896 |
Score | 2.225262 |
Snippet | We introduce an approach to personalize energy expenditure (EE) estimates in free living. First, we use topic models to discover activity composites from... |
SourceID | proquest crossref pubmed ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1577 |
SubjectTerms | Accelerometers Accelerometry Adult Algorithms Context Databases, Factual Energy Expenditure Energy Metabolism - physiology Estimation Female Heart rate Heart Rate - physiology Hidden Markov models Humans Laboratories Legged locomotion Male Models, Biological Monitoring, Ambulatory - methods Protocols Signal Processing, Computer-Assisted Topic Models Young Adult |
Title | Personalization of Energy Expenditure Estimation in Free Living Using Topic Models |
URI | https://ieeexplore.ieee.org/document/7073648 https://www.ncbi.nlm.nih.gov/pubmed/25838531 https://search.proquest.com/docview/1709707487 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Li9swEB6yOSy9tPvoI-1uUaGnUjuRZVnWcVsS0qUppSSQm5FtCcIWOyTxZX99Z-QHtLTQi9HBL83Ink_z-gDeG66dLhMXuCjPg1iZMjCKR3hIiSdJlLkj18DqW7LcxPdbuR3Bx6EWxlrrk89sSEMfyy_roiFX2VThekzi9AzOlE7aWq3Bn-IJJDwdV4SDAD_EuAti8pme3n9afqE8LhmixcJNETEXRRQxlIL_ZpE8xcq_0aa3OotnsOrft002eQibUx4Wj3-0cvzfCV3A0w5-srt2vVzCyFZXcL7qAuzX8ON7D87b8kxWOzb35YGMmiJTfLs5WDbHH0Nb88h2FVscrGVfd-SaYD4Fga3r_a5gxLP28_gcNov5-vMy6GgXgkJE_BRIahaqhOKmMIj2hCpT2kbytIzTPHbS5aLUUamoU7ucuQIhkzBUie1m2iaFFC9gXNWVfQUM0ZoVKVq8yKC1lLGJZJHwVKPgDXeaT-BDL_ps33bXyPyuZKYzUllGKss6lU3gmiQ4nNgJbwLvemVl-GlQvMNUtm6OGVc4D4RIqZrAy1aLw8W98l___aZv4Ak9uk0mu4Hx6dDYW0Qfp_ytX3a_AFUf0QY |
link.rule.ids | 314,780,784,796,27924,27925,54758 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH5iIDEubNAB3RgYaaeJtHUcx8lxQ60KtAihVuIWOYktVaCkKs2Fv573nKTS0CbtEvmQRM57dt7n9-sD-KF5bOM8tJ7109QLlM49rbiPl4h4kkSeWnINTO_C8Ty4eZSPW3C5qYUxxrjkM9OjoYvl52VWkausr3A9hkH0AXZkgDi3rtbaeFQchYQj5PJx4OFWDJowJh_E_Zvf42vK5JI9tFl4LCLuIp9ihlLwP2ySI1n5N950dmf0CabtjOt0k6detU572eu7Zo7_-0mfYb8BoOxXvWIOYMsUh7A7bULsHXi4b-F5XaDJSsuGrkCQUVtkinBXK8OG-Guoqx7ZomCjlTFssiDnBHNJCGxWLhcZI6a155cvMB8NZ1djryFe8DLh87UnqV2oEorrTCPeEyqP6CDJozyI0sBKm4o89nNFvdrlwGYImoSmWmw7iE2YSXEE20VZmBNgiNeMiNDm-RrtpQy0L7OQRzEKXnMb8y78bEWfLOv-Gok7lwzihFSWkMqSRmVd6JAENzc2wuvCRausBDcHRTx0YcrqJeEKvwNBUqS6cFxrcfNwq_yvf3_pOXwcz6aTZHJ9d_sN9mgadWrZKWyvV5X5jlhknZ65JfgGh5LUWQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Personalization+of+Energy+Expenditure+Estimation+in+Free+Living+Using+Topic+Models&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Altini%2C+Marco&rft.au=Casale%2C+Pierluigi&rft.au=Penders%2C+Julien+F.&rft.au=Amft%2C+Oliver&rft.date=2015-09-01&rft.pub=IEEE&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=19&rft.issue=5&rft.spage=1577&rft.epage=1586&rft_id=info:doi/10.1109%2FJBHI.2015.2418256&rft_id=info%3Apmid%2F25838531&rft.externalDocID=7073648 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |