Human Gait phases recognition based on multi-source data fusion and BILSTM attention neural network
A human gait recognition algorithm with deep learning based on multi-source data fusion is proposed to assist exoskeleton realizing complex human-exoskeleton cooperative motion. A lightweight gait acquisition device simultaneously acquires three different types of sensor signals, i.e., thigh surface...
Saved in:
Published in | Measurement : journal of the International Measurement Confederation Vol. 238; p. 115396 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A human gait recognition algorithm with deep learning based on multi-source data fusion is proposed to assist exoskeleton realizing complex human-exoskeleton cooperative motion. A lightweight gait acquisition device simultaneously acquires three different types of sensor signals, i.e., thigh surface electromyography (sEMG), ground reaction force (GRF) of human feet and two joints motion information. The sample data is obtained by many multi-scene gait experiments involving stand still, walk up/down stairs, and walk up/down slope, etc. The proposed algorithm recognizes multiple gait phases (27 classes) in different motion patterns by using short-time gait data, which has two typical advantages: (1) Based on multi-source sensor distributed in human body, this wearable device is constructed for ease of use to address several Subjects (different weights and heights) with low cost and light weight. (2) The critical features of gait data are identified by Bi-directional Long Short-Term Memory (BILSTM) attention neural network with higher recognition accuracy than other state-of-art recognition methods, especially in arbitrary gait switching durations.
[Display omitted]
•A new portable gait acquisition device is designed to simultaneously acquire three different types of sensing signals, including human sEMG, lower limb GRF, and knee/hip joint motion, as shown in Fig.1. This wearable device is constructed for ease of use to address several Subjects (different weights and heights) with low cost and light weight.•A multi-source data fusion and BILSTM attention neural network is proposed to identify detailed gait phases in multiple motion patterns with high accuracy.•Consider two indices such that the false detection number and rate are used to verify the effectiveness of the gait recognition in arbitrarily gait switch durations. Furthermore, two different subjects data are used to verify the effectiveness of the proposed algorithm comparing with the other two state-of-art algorithms. |
---|---|
AbstractList | A human gait recognition algorithm with deep learning based on multi-source data fusion is proposed to assist exoskeleton realizing complex human-exoskeleton cooperative motion. A lightweight gait acquisition device simultaneously acquires three different types of sensor signals, i.e., thigh surface electromyography (sEMG), ground reaction force (GRF) of human feet and two joints motion information. The sample data is obtained by many multi-scene gait experiments involving stand still, walk up/down stairs, and walk up/down slope, etc. The proposed algorithm recognizes multiple gait phases (27 classes) in different motion patterns by using short-time gait data, which has two typical advantages: (1) Based on multi-source sensor distributed in human body, this wearable device is constructed for ease of use to address several Subjects (different weights and heights) with low cost and light weight. (2) The critical features of gait data are identified by Bi-directional Long Short-Term Memory (BILSTM) attention neural network with higher recognition accuracy than other state-of-art recognition methods, especially in arbitrary gait switching durations.
[Display omitted]
•A new portable gait acquisition device is designed to simultaneously acquire three different types of sensing signals, including human sEMG, lower limb GRF, and knee/hip joint motion, as shown in Fig.1. This wearable device is constructed for ease of use to address several Subjects (different weights and heights) with low cost and light weight.•A multi-source data fusion and BILSTM attention neural network is proposed to identify detailed gait phases in multiple motion patterns with high accuracy.•Consider two indices such that the false detection number and rate are used to verify the effectiveness of the gait recognition in arbitrarily gait switch durations. Furthermore, two different subjects data are used to verify the effectiveness of the proposed algorithm comparing with the other two state-of-art algorithms. |
ArticleNumber | 115396 |
Author | Guo, Qing Kou, Jiange Zhang, Jiyu Zhan, Haoran Cao, Yuanchao Shi, Yan |
Author_xml | – sequence: 1 givenname: Haoran surname: Zhan fullname: Zhan, Haoran email: hr.zhan@std.uestc.edu.cn organization: School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu, 611731, China – sequence: 2 givenname: Jiange orcidid: 0000-0003-2088-9778 surname: Kou fullname: Kou, Jiange email: koujiange@buaa.edu.cn organization: School of Automation Science and Electrical Engineering, Beihang University (BUAA), Beijing, 100191, China – sequence: 3 givenname: Yuanchao surname: Cao fullname: Cao, Yuanchao email: yc.cao@std.uestc.edu.cn organization: School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu, 611731, China – sequence: 4 givenname: Qing orcidid: 0000-0003-0522-1243 surname: Guo fullname: Guo, Qing email: guoqinguestc@uestc.edu.cn organization: School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu, 611731, China – sequence: 5 givenname: Jiyu orcidid: 0009-0003-6139-0292 surname: Zhang fullname: Zhang, Jiyu email: zhangjiyu@roboct.com organization: 2Hangzhou RoboCT Technology Development Co., Ltd., Hangzhou, 311100, China – sequence: 6 givenname: Yan surname: Shi fullname: Shi, Yan email: shiyan@buaa.edu.cn organization: School of Automation Science and Electrical Engineering, Beihang University (BUAA), Beijing, 100191, China |
BookMark | eNqNkE1OwzAQhb0oEi1wB3OABNtJrGSFoIK2UhELytqaOBNwSZzKdkDcHkdlgVh19Ubz80bvW5CZHSwScs1ZyhmXN_u0R_Cjwx5tSAUTecp5kVVyRuZMyCwRIufnZOH9njEm42BO9HrswdIVmEAP7-DRU4d6eLMmmMHSOnYaGot-7IJJ_DA6jbSBALQd_bQBtqH3m-3L7olCCPHx1LQ4OuiihK_BfVySsxY6j1e_ekFeHx92y3WyfV5tlnfbRGeChyRveSnzSiPIHJsSNVbAmyomaGXVCgallFVZa8nqHOpMZExwXRdlIWOussDsglRHX-0G7x226uBMD-5bcaYmQmqv_hBSEyF1JBRvb__dahNgChMcmO4kh-XRAWPET4NOeW3QamxMJBpUM5gTXH4AoUCQQQ |
CitedBy_id | crossref_primary_10_1038_s44328_024_00021_y crossref_primary_10_61189_673672yizrwd |
Cites_doi | 10.1109/TCYB.2019.2940276 10.32604/cmc.2023.043061 10.1186/s12984-021-00906-3 10.1109/TCSVT.2022.3218735 10.1109/ACCESS.2020.2982225 10.1016/j.jbiomech.2021.110414 10.1109/TVT.2019.2925562 10.1109/TIP.2016.2612823 10.1109/TNSRE.2022.3143094 10.1016/j.measurement.2020.108184 10.1109/TNSRE.2022.3213823 10.1109/TIM.2021.3127641 10.1109/ACCESS.2023.3289986 10.1109/TMI.2020.2976825 10.1109/TNNLS.2022.3152255 10.1109/TIM.2022.3220285 10.1109/TNSRE.2016.2521160 10.1109/TITS.2020.3044943 10.1109/JSEN.2018.2837674 10.1109/TIM.2020.3008988 10.1109/TMI.2022.3151666 10.1016/j.measurement.2022.111603 10.1109/TMM.2019.2942479 10.1016/j.apm.2021.12.007 10.1162/neco_a_01199 10.1109/TIM.2015.2465751 10.1016/j.asoc.2021.107375 10.1109/TBME.2022.3140246 10.1109/TNSRE.2021.3099908 10.3390/s18092743 10.3390/s17061229 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.measurement.2024.115396 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
ExternalDocumentID | 10_1016_j_measurement_2024_115396 S0263224124012818 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 52175046 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Sichuan Science and Technology Program grantid: 24ZDYF0070 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXDB ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEGXH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GS5 HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K WUQ XPP ZMT ~G- AATTM AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c321t-4f18649cea64ed8ece9a1d9153f69f20a86698bc60b4ab323021cb585622485e3 |
IEDL.DBID | .~1 |
ISSN | 0263-2241 |
IngestDate | Tue Jul 01 00:52:31 EDT 2025 Thu Apr 24 23:04:22 EDT 2025 Sat Sep 07 15:51:02 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lower limb exoskeleton Lightweight gait acquisition device Gait recognition BILSTM attention neural network Multi-source data fusion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c321t-4f18649cea64ed8ece9a1d9153f69f20a86698bc60b4ab323021cb585622485e3 |
ORCID | 0000-0003-2088-9778 0009-0003-6139-0292 0000-0003-0522-1243 |
ParticipantIDs | crossref_primary_10_1016_j_measurement_2024_115396 crossref_citationtrail_10_1016_j_measurement_2024_115396 elsevier_sciencedirect_doi_10_1016_j_measurement_2024_115396 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2024 2024-10-00 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: October 2024 |
PublicationDecade | 2020 |
PublicationTitle | Measurement : journal of the International Measurement Confederation |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Verlekar, Soares, Correia (b6) 2018; 18 Epalle, Song, Liu, Lu (b36) 2021; 107 Li, Liu, Tang, Lei (b32) 2020; 39 Ni, Huang (b18) 2021; 71 Slijepcevic, Zeppelzauer, Unglaube, Kranzl, Breiteneder, Horsak (b20) 2023; 11 Tang, Luo, Tjahjadi, Guo (b10) 2016; 26 Yu, He, Li, Xue, Li, Zou, Yang (b13) 2019; 51 Liao, Chen, Xiang, Huang, Xie, Guo (b31) 2021; 23 Zhang, Wang, Liu, Zhao, Tang, Sun (b17) 2021; 70 Zhang, Liu, Wang, Zhao, Bai, Sun (b15) 2022; 71 Yan, Chen, Huang, Chen, Guo (b3) 2022; 104 Xi, Tang, Miran, Luo (b24) 2017; 17 Nguyen, Bui, Truong, Jeong (b12) 2018; 18 de Raadt, Warrens, Bosker, Kiers (b35) 2021 Ye, Yang, Stankovic, Stankovic, Cheng (b9) 2019; 22 Zhang, Duong, Rao, Mazzoni, Agrawal, Guo, Zanotto (b19) 2022; 30 Sardini, Serpelloni, Lancini (b7) 2015; 64 Ma, Liu, Peng, Qiu (b26) 2020; 69 Chen, Guo, Li, Yan, Jiang (b2) 2022; 34 Habib, Mughal, Khan, Hamza, Alturki, Jamel (b4) 2024 Sun, Shi, Yang, Yang, Gui (b27) 2019; 68 Li, Zhang, Cui, Lei, Kuang, Zhang (b34) 2022; 41 Hanif, AliMughal, Khan, Almujally, Kim, Cha (b22) 2024; 78 Yang, Jiao, Liu, Liu, Yang, Li, Chen, Li, Huang (b30) 2022; 33 Yan, Huang, Wu, Yang, Wang, Hasegawa, Fukuda (b21) 2022; 30 Yu, Si, Hu, Zhang (b25) 2019; 31 Li, Guo, Liu, Liu, Meng (b33) 2021; 29 Young, Ferris (b5) 2016; 25 Arumugaraja, Padmapriya, Poornachandra (b11) 2022; 200 Kanko, Laende, Strutzenberger, Brown, Selbie, DePaul, Scott, Deluzio (b8) 2021; 122 Yang, Ge, Li, Wang, Lang, Li (b16) 2022; 71 Su, Cai, Xie, Li, Schultz (b29) 2022; 69 Baud, Manzoori, Ijspeert, Bouri (b1) 2021; 18 Xia, Huang, Wang (b14) 2020; 8 Mei, Ivanov, Zhao, Wu, Liu, Wang (b23) 2020; 165 Jin, Chen, Wu, Wu, Li, Yan (b28) 2022; 71 Kanko (10.1016/j.measurement.2024.115396_b8) 2021; 122 Yang (10.1016/j.measurement.2024.115396_b30) 2022; 33 Li (10.1016/j.measurement.2024.115396_b32) 2020; 39 Yan (10.1016/j.measurement.2024.115396_b21) 2022; 30 Zhang (10.1016/j.measurement.2024.115396_b15) 2022; 71 Xi (10.1016/j.measurement.2024.115396_b24) 2017; 17 Yang (10.1016/j.measurement.2024.115396_b16) 2022; 71 Zhang (10.1016/j.measurement.2024.115396_b19) 2022; 30 Tang (10.1016/j.measurement.2024.115396_b10) 2016; 26 Zhang (10.1016/j.measurement.2024.115396_b17) 2021; 70 Sardini (10.1016/j.measurement.2024.115396_b7) 2015; 64 Chen (10.1016/j.measurement.2024.115396_b2) 2022; 34 Yu (10.1016/j.measurement.2024.115396_b13) 2019; 51 Jin (10.1016/j.measurement.2024.115396_b28) 2022; 71 Su (10.1016/j.measurement.2024.115396_b29) 2022; 69 Li (10.1016/j.measurement.2024.115396_b34) 2022; 41 Verlekar (10.1016/j.measurement.2024.115396_b6) 2018; 18 Habib (10.1016/j.measurement.2024.115396_b4) 2024 Liao (10.1016/j.measurement.2024.115396_b31) 2021; 23 Yan (10.1016/j.measurement.2024.115396_b3) 2022; 104 Ye (10.1016/j.measurement.2024.115396_b9) 2019; 22 de Raadt (10.1016/j.measurement.2024.115396_b35) 2021 Epalle (10.1016/j.measurement.2024.115396_b36) 2021; 107 Nguyen (10.1016/j.measurement.2024.115396_b12) 2018; 18 Arumugaraja (10.1016/j.measurement.2024.115396_b11) 2022; 200 Ni (10.1016/j.measurement.2024.115396_b18) 2021; 71 Ma (10.1016/j.measurement.2024.115396_b26) 2020; 69 Young (10.1016/j.measurement.2024.115396_b5) 2016; 25 Xia (10.1016/j.measurement.2024.115396_b14) 2020; 8 Mei (10.1016/j.measurement.2024.115396_b23) 2020; 165 Hanif (10.1016/j.measurement.2024.115396_b22) 2024; 78 Baud (10.1016/j.measurement.2024.115396_b1) 2021; 18 Sun (10.1016/j.measurement.2024.115396_b27) 2019; 68 Yu (10.1016/j.measurement.2024.115396_b25) 2019; 31 Slijepcevic (10.1016/j.measurement.2024.115396_b20) 2023; 11 Li (10.1016/j.measurement.2024.115396_b33) 2021; 29 |
References_xml | – volume: 68 start-page: 10348 year: 2019 end-page: 10356 ident: b27 article-title: Behavioral modeling and linearization of wideband RF power amplifiers using BiLSTM networks for 5G wireless systems publication-title: IEEE Trans. Veh. Technol. – volume: 71 start-page: 1 year: 2022 end-page: 13 ident: b16 article-title: Multiscenario open-set gait recognition based on radar micro-Doppler signatures publication-title: IEEE Trans. Instrum. Meas. – volume: 70 start-page: 1 year: 2021 end-page: 12 ident: b17 article-title: Real-time gait phase recognition based on time domain features of multi-MEMS inertial sensors publication-title: IEEE Trans. Instrum. Meas. – volume: 23 start-page: 4460 year: 2021 end-page: 4473 ident: b31 article-title: Taxi-passenger’s destination prediction via gps embedding and attention-based bilstm model publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 71 start-page: 1 year: 2022 end-page: 15 ident: b15 article-title: Gait pattern recognition based on plantar pressure signals and acceleration signals publication-title: IEEE Trans. Instrum. Meas. – volume: 200 year: 2022 ident: b11 article-title: Design and development of foot worn piezoresistive sensor for knee pain analysis with supervised machine learning algorithms based on gait pattern publication-title: Measurement – volume: 25 start-page: 171 year: 2016 end-page: 182 ident: b5 article-title: State of the art and future directions for lower limb robotic exoskeletons publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 69 start-page: 5981 year: 2020 end-page: 5983 ident: b26 article-title: Unauthorized broadcasting identification: A deep LSTM recurrent learning approach publication-title: IEEE Trans. Instrum. Meas. – volume: 41 start-page: 1975 year: 2022 end-page: 1989 ident: b34 article-title: Dual encoder-based dynamic-channel graph convolutional network with edge enhancement for retinal vessel segmentation publication-title: IEEE Trans. Med. Imaging – volume: 11 start-page: 65906 year: 2023 end-page: 65923 ident: b20 article-title: Explainable machine learning in human gait analysis: A study on children with cerebral palsy publication-title: IEEE Access – volume: 18 start-page: 1 year: 2021 end-page: 34 ident: b1 article-title: Review of control strategies for lower-limb exoskeletons to assist gait publication-title: J. NeuroEng. Rehabil. – volume: 39 start-page: 2818 year: 2020 end-page: 2830 ident: b32 article-title: Deep spatial-temporal feature fusion from adaptive dynamic functional connectivity for MCI identification publication-title: IEEE Trans. Med. Imaging – volume: 22 start-page: 1113 year: 2019 end-page: 1125 ident: b9 article-title: Distinct feature extraction for video-based gait phase classification publication-title: IEEE Trans. Multimed. – volume: 30 start-page: 2916 year: 2022 end-page: 2926 ident: b21 article-title: Intelligent gait analysis and evaluation system based on cane robot publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 31 start-page: 1235 year: 2019 end-page: 1270 ident: b25 article-title: A review of recurrent neural networks: LSTM cells and network architectures publication-title: Neural Comput. – volume: 17 start-page: 1229 year: 2017 ident: b24 article-title: Evaluation of feature extraction and recognition for activity monitoring and fall detection based on wearable sEMG sensors publication-title: Sensors – volume: 71 start-page: 1 year: 2021 end-page: 14 ident: b18 article-title: Robust person gait identification based on limited radar measurements using set-based discriminative subspaces learning publication-title: IEEE Trans. Instrum. Meas. – volume: 26 start-page: 7 year: 2016 end-page: 22 ident: b10 article-title: Robust arbitrary-view gait recognition based on 3D partial similarity matching publication-title: IEEE Trans. Image Process. – volume: 104 start-page: 439 year: 2022 end-page: 454 ident: b3 article-title: Human-exoskeleton coupling dynamics in the swing of lower limb publication-title: Appl. Math. Model. – start-page: 1 year: 2024 end-page: 22 ident: b4 article-title: A novel deep dual self-attention and Bi-LSTM fusion framework for Parkinson’s disease prediction using freezing of gait: a biometric application publication-title: Multimedia Tools Appl. – volume: 33 start-page: 1899 year: 2022 end-page: 1910 ident: b30 article-title: Dual wavelet attention networks for image classification publication-title: IEEE Trans. Circuits Syst. Video Technol. – volume: 51 start-page: 1822 year: 2019 end-page: 1834 ident: b13 article-title: Bayesian estimation of human impedance and motion intention for human–robot collaboration publication-title: IEEE Trans. Cybern. – volume: 107 year: 2021 ident: b36 article-title: Multi-atlas classification of autism spectrum disorder with hinge loss trained deep architectures: ABIDE I results publication-title: Appl. Soft Comput. – start-page: 1 year: 2021 end-page: 25 ident: b35 article-title: A comparison of reliability coefficients for ordinal rating scales publication-title: J. Classification – volume: 64 start-page: 3369 year: 2015 end-page: 3379 ident: b7 article-title: Wireless instrumented crutches for force and movement measurements for gait monitoring publication-title: IEEE Trans. Instrum. Meas. – volume: 78 start-page: 357 year: 2024 end-page: 374 ident: b22 article-title: Human gait recognition for biometrics application based on deep learning fusion assisted framework publication-title: Comput. Mater. Continua – volume: 8 start-page: 56855 year: 2020 end-page: 56866 ident: b14 article-title: LSTM-CNN architecture for human activity recognition publication-title: IEEE Access – volume: 71 start-page: 1 year: 2022 end-page: 10 ident: b28 article-title: Bi-LSTM-based two-stream network for machine remaining useful life prediction publication-title: IEEE Trans. Instrum. Meas. – volume: 30 start-page: 124 year: 2022 end-page: 134 ident: b19 article-title: Transductive learning models for accurate ambulatory gait analysis in elderly residents of assisted living facilities publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 165 year: 2020 ident: b23 article-title: Foot type classification using sensor-enabled footwear and 1D-CNN publication-title: Measurement – volume: 69 start-page: 2233 year: 2022 end-page: 2242 ident: b29 article-title: STAnet: A spatiotemporal attention network for decoding auditory spatial attention from EEG publication-title: IEEE Trans. Biomed. Eng. – volume: 122 year: 2021 ident: b8 article-title: Assessment of spatiotemporal gait parameters using a deep learning algorithm-based markerless motion capture system publication-title: J. Biomech. – volume: 29 start-page: 1534 year: 2021 end-page: 1545 ident: b33 article-title: A temporal-spectral-based squeeze-and-excitation feature fusion network for motor imagery EEG decoding publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 34 start-page: 8693 year: 2022 end-page: 8706 ident: b2 article-title: Gait prediction and variable admittance control for lower limb exoskeleton with measurement delay and extended-state-observer publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 18 start-page: 5422 year: 2018 end-page: 5428 ident: b12 article-title: Classification of five ambulatory activities regarding stair and incline walking using smart shoes publication-title: IEEE Sens. J. – volume: 18 start-page: 2743 year: 2018 ident: b6 article-title: Automatic classification of gait impairments using a markerless 2D video-based system publication-title: Sensors – volume: 51 start-page: 1822 issue: 4 year: 2019 ident: 10.1016/j.measurement.2024.115396_b13 article-title: Bayesian estimation of human impedance and motion intention for human–robot collaboration publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2940276 – volume: 78 start-page: 357 issue: 1 year: 2024 ident: 10.1016/j.measurement.2024.115396_b22 article-title: Human gait recognition for biometrics application based on deep learning fusion assisted framework publication-title: Comput. Mater. Continua doi: 10.32604/cmc.2023.043061 – volume: 18 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.measurement.2024.115396_b1 article-title: Review of control strategies for lower-limb exoskeletons to assist gait publication-title: J. NeuroEng. Rehabil. doi: 10.1186/s12984-021-00906-3 – volume: 33 start-page: 1899 issue: 4 year: 2022 ident: 10.1016/j.measurement.2024.115396_b30 article-title: Dual wavelet attention networks for image classification publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2022.3218735 – volume: 8 start-page: 56855 year: 2020 ident: 10.1016/j.measurement.2024.115396_b14 article-title: LSTM-CNN architecture for human activity recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2982225 – volume: 122 year: 2021 ident: 10.1016/j.measurement.2024.115396_b8 article-title: Assessment of spatiotemporal gait parameters using a deep learning algorithm-based markerless motion capture system publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2021.110414 – volume: 68 start-page: 10348 issue: 11 year: 2019 ident: 10.1016/j.measurement.2024.115396_b27 article-title: Behavioral modeling and linearization of wideband RF power amplifiers using BiLSTM networks for 5G wireless systems publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2925562 – volume: 26 start-page: 7 issue: 1 year: 2016 ident: 10.1016/j.measurement.2024.115396_b10 article-title: Robust arbitrary-view gait recognition based on 3D partial similarity matching publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2612823 – volume: 30 start-page: 124 year: 2022 ident: 10.1016/j.measurement.2024.115396_b19 article-title: Transductive learning models for accurate ambulatory gait analysis in elderly residents of assisted living facilities publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2022.3143094 – start-page: 1 year: 2021 ident: 10.1016/j.measurement.2024.115396_b35 article-title: A comparison of reliability coefficients for ordinal rating scales publication-title: J. Classification – volume: 165 year: 2020 ident: 10.1016/j.measurement.2024.115396_b23 article-title: Foot type classification using sensor-enabled footwear and 1D-CNN publication-title: Measurement doi: 10.1016/j.measurement.2020.108184 – volume: 30 start-page: 2916 year: 2022 ident: 10.1016/j.measurement.2024.115396_b21 article-title: Intelligent gait analysis and evaluation system based on cane robot publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2022.3213823 – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.measurement.2024.115396_b17 article-title: Real-time gait phase recognition based on time domain features of multi-MEMS inertial sensors publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2021.3127641 – volume: 11 start-page: 65906 year: 2023 ident: 10.1016/j.measurement.2024.115396_b20 article-title: Explainable machine learning in human gait analysis: A study on children with cerebral palsy publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3289986 – volume: 39 start-page: 2818 issue: 9 year: 2020 ident: 10.1016/j.measurement.2024.115396_b32 article-title: Deep spatial-temporal feature fusion from adaptive dynamic functional connectivity for MCI identification publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.2976825 – volume: 34 start-page: 8693 issue: 11 year: 2022 ident: 10.1016/j.measurement.2024.115396_b2 article-title: Gait prediction and variable admittance control for lower limb exoskeleton with measurement delay and extended-state-observer publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2022.3152255 – volume: 71 start-page: 1 year: 2022 ident: 10.1016/j.measurement.2024.115396_b16 article-title: Multiscenario open-set gait recognition based on radar micro-Doppler signatures publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2022.3220285 – volume: 25 start-page: 171 issue: 2 year: 2016 ident: 10.1016/j.measurement.2024.115396_b5 article-title: State of the art and future directions for lower limb robotic exoskeletons publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2521160 – volume: 71 start-page: 1 year: 2022 ident: 10.1016/j.measurement.2024.115396_b15 article-title: Gait pattern recognition based on plantar pressure signals and acceleration signals publication-title: IEEE Trans. Instrum. Meas. – start-page: 1 year: 2024 ident: 10.1016/j.measurement.2024.115396_b4 article-title: A novel deep dual self-attention and Bi-LSTM fusion framework for Parkinson’s disease prediction using freezing of gait: a biometric application publication-title: Multimedia Tools Appl. – volume: 71 start-page: 1 year: 2022 ident: 10.1016/j.measurement.2024.115396_b28 article-title: Bi-LSTM-based two-stream network for machine remaining useful life prediction publication-title: IEEE Trans. Instrum. Meas. – volume: 23 start-page: 4460 issue: 5 year: 2021 ident: 10.1016/j.measurement.2024.115396_b31 article-title: Taxi-passenger’s destination prediction via gps embedding and attention-based bilstm model publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.3044943 – volume: 18 start-page: 5422 issue: 13 year: 2018 ident: 10.1016/j.measurement.2024.115396_b12 article-title: Classification of five ambulatory activities regarding stair and incline walking using smart shoes publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2837674 – volume: 69 start-page: 5981 issue: 9 year: 2020 ident: 10.1016/j.measurement.2024.115396_b26 article-title: Unauthorized broadcasting identification: A deep LSTM recurrent learning approach publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2020.3008988 – volume: 41 start-page: 1975 issue: 8 year: 2022 ident: 10.1016/j.measurement.2024.115396_b34 article-title: Dual encoder-based dynamic-channel graph convolutional network with edge enhancement for retinal vessel segmentation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2022.3151666 – volume: 200 year: 2022 ident: 10.1016/j.measurement.2024.115396_b11 article-title: Design and development of foot worn piezoresistive sensor for knee pain analysis with supervised machine learning algorithms based on gait pattern publication-title: Measurement doi: 10.1016/j.measurement.2022.111603 – volume: 71 start-page: 1 year: 2021 ident: 10.1016/j.measurement.2024.115396_b18 article-title: Robust person gait identification based on limited radar measurements using set-based discriminative subspaces learning publication-title: IEEE Trans. Instrum. Meas. – volume: 22 start-page: 1113 issue: 5 year: 2019 ident: 10.1016/j.measurement.2024.115396_b9 article-title: Distinct feature extraction for video-based gait phase classification publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2019.2942479 – volume: 104 start-page: 439 year: 2022 ident: 10.1016/j.measurement.2024.115396_b3 article-title: Human-exoskeleton coupling dynamics in the swing of lower limb publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2021.12.007 – volume: 31 start-page: 1235 issue: 7 year: 2019 ident: 10.1016/j.measurement.2024.115396_b25 article-title: A review of recurrent neural networks: LSTM cells and network architectures publication-title: Neural Comput. doi: 10.1162/neco_a_01199 – volume: 64 start-page: 3369 issue: 12 year: 2015 ident: 10.1016/j.measurement.2024.115396_b7 article-title: Wireless instrumented crutches for force and movement measurements for gait monitoring publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2015.2465751 – volume: 107 year: 2021 ident: 10.1016/j.measurement.2024.115396_b36 article-title: Multi-atlas classification of autism spectrum disorder with hinge loss trained deep architectures: ABIDE I results publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107375 – volume: 69 start-page: 2233 issue: 7 year: 2022 ident: 10.1016/j.measurement.2024.115396_b29 article-title: STAnet: A spatiotemporal attention network for decoding auditory spatial attention from EEG publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2022.3140246 – volume: 29 start-page: 1534 year: 2021 ident: 10.1016/j.measurement.2024.115396_b33 article-title: A temporal-spectral-based squeeze-and-excitation feature fusion network for motor imagery EEG decoding publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2021.3099908 – volume: 18 start-page: 2743 issue: 9 year: 2018 ident: 10.1016/j.measurement.2024.115396_b6 article-title: Automatic classification of gait impairments using a markerless 2D video-based system publication-title: Sensors doi: 10.3390/s18092743 – volume: 17 start-page: 1229 issue: 6 year: 2017 ident: 10.1016/j.measurement.2024.115396_b24 article-title: Evaluation of feature extraction and recognition for activity monitoring and fall detection based on wearable sEMG sensors publication-title: Sensors doi: 10.3390/s17061229 |
SSID | ssj0006396 |
Score | 2.4069061 |
Snippet | A human gait recognition algorithm with deep learning based on multi-source data fusion is proposed to assist exoskeleton realizing complex human-exoskeleton... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 115396 |
SubjectTerms | BILSTM attention neural network Gait recognition Lightweight gait acquisition device Lower limb exoskeleton Multi-source data fusion |
Title | Human Gait phases recognition based on multi-source data fusion and BILSTM attention neural network |
URI | https://dx.doi.org/10.1016/j.measurement.2024.115396 |
Volume | 238 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5KRdGDaFWsL1bwurbZbLYJeKnF2vropS30FrKPYEXTYtOrv92dJH0IgoK3JGRgMzvMNzv59luAK1TycQLJqQU3TrnhgvqSN6j2DO4UjWUsM7ZFT3SG_GHkjUrQWuyFQVplkfvznJ5l6-JJrfBmbToe1_p1lBpneHpy9jsIN_xy3sAov_5c0TwsAou8z-JSfHsLLlccr_dVH84uFRm3CcRzUb__J4xaw532HuwWBSNp5mPah5JJKrCzJiNYgc2MxqlmB6Cynjy5j8Ypmb5YgJqRJUNokhCELE3sRUYjpHnjniBJlMRzbJuRKNHktvvUHzwTFN7MqJAENS_tEJKcMX4Iw_bdoNWhxTEKVLnMSSmPHV_wQJlIcKN9o0wQOTqwXxqLIGb1yBci8KUSdckj6do1CXOUtMsIwVDvzLhHUE4miTkGojzlMNTME9pWIrIRaTu5xtOMKzfiPq-Cv3BcqAqNcTzq4i1ckMlewzWfh-jzMPd5FdjSdJoLbfzF6GYxO-G3qAktIPxufvI_81PYxruc2ncG5fRjbs5tiZLKiywGL2Cj2X3s9L4AeynnVw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB584OsgPvFtBD3G3aZpbEEPvnd19eIK3mqTprii3cVdES_-Kf-gM23XXUFQEG-lZUqYJPNNki_fAGySko8TaMkR3CSXVirua7nDY8_STdFEJzpjW1yqyrU8u_FuBuC9exeGaJVF7M9jehatizelwpulVqNRuiqT1Lig6snZcZBfMCvP7esLrtvae9Uj7OQtIU6O64cVXpQW4MYVTofLxPGVDIyNlLSxb40NIicOcPonKkhEOfKVCnxtVFnLSLuYpwvHaEytlSANMOvifwdhWGK4oLIJ2289XglCvso3dlxOzRuFjR6p7LG38YdrUyExYnkuFQz4DhT7gO5kCiaLDJXt506YhgGbzsBEn27hDIxkvFHTngWTHQKw06jRYa07RMQ2-6QkNVNGGBkzfMh4izw_KWDESmXJM-3TsSiN2UG1dlW_YKT0mXEvGYlsYhPSnKI-B9f_4tx5GEqbqV0AZjzjCBLpUzGmPnoninE0WS8W0riR9OUi-F3HhaYQNafaGg9hl712H_b5PCSfh7nPF0F8mrZyZY_fGO12eyf8MkxDRKCfzZf-Zr4OY5X6RS2sVS_Pl2GcvuS8whUY6jw921XMjzp6LRuPDG7_ewJ8ANkWIhg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+Gait+phases+recognition+based+on+multi-source+data+fusion+and+BILSTM+attention+neural+network&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Zhan%2C+Haoran&rft.au=Kou%2C+Jiange&rft.au=Cao%2C+Yuanchao&rft.au=Guo%2C+Qing&rft.date=2024-10-01&rft.pub=Elsevier+Ltd&rft.issn=0263-2241&rft.volume=238&rft_id=info:doi/10.1016%2Fj.measurement.2024.115396&rft.externalDocID=S0263224124012818 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon |