Human Gait phases recognition based on multi-source data fusion and BILSTM attention neural network

A human gait recognition algorithm with deep learning based on multi-source data fusion is proposed to assist exoskeleton realizing complex human-exoskeleton cooperative motion. A lightweight gait acquisition device simultaneously acquires three different types of sensor signals, i.e., thigh surface...

Full description

Saved in:
Bibliographic Details
Published inMeasurement : journal of the International Measurement Confederation Vol. 238; p. 115396
Main Authors Zhan, Haoran, Kou, Jiange, Cao, Yuanchao, Guo, Qing, Zhang, Jiyu, Shi, Yan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A human gait recognition algorithm with deep learning based on multi-source data fusion is proposed to assist exoskeleton realizing complex human-exoskeleton cooperative motion. A lightweight gait acquisition device simultaneously acquires three different types of sensor signals, i.e., thigh surface electromyography (sEMG), ground reaction force (GRF) of human feet and two joints motion information. The sample data is obtained by many multi-scene gait experiments involving stand still, walk up/down stairs, and walk up/down slope, etc. The proposed algorithm recognizes multiple gait phases (27 classes) in different motion patterns by using short-time gait data, which has two typical advantages: (1) Based on multi-source sensor distributed in human body, this wearable device is constructed for ease of use to address several Subjects (different weights and heights) with low cost and light weight. (2) The critical features of gait data are identified by Bi-directional Long Short-Term Memory (BILSTM) attention neural network with higher recognition accuracy than other state-of-art recognition methods, especially in arbitrary gait switching durations. [Display omitted] •A new portable gait acquisition device is designed to simultaneously acquire three different types of sensing signals, including human sEMG, lower limb GRF, and knee/hip joint motion, as shown in Fig.1. This wearable device is constructed for ease of use to address several Subjects (different weights and heights) with low cost and light weight.•A multi-source data fusion and BILSTM attention neural network is proposed to identify detailed gait phases in multiple motion patterns with high accuracy.•Consider two indices such that the false detection number and rate are used to verify the effectiveness of the gait recognition in arbitrarily gait switch durations. Furthermore, two different subjects data are used to verify the effectiveness of the proposed algorithm comparing with the other two state-of-art algorithms.
AbstractList A human gait recognition algorithm with deep learning based on multi-source data fusion is proposed to assist exoskeleton realizing complex human-exoskeleton cooperative motion. A lightweight gait acquisition device simultaneously acquires three different types of sensor signals, i.e., thigh surface electromyography (sEMG), ground reaction force (GRF) of human feet and two joints motion information. The sample data is obtained by many multi-scene gait experiments involving stand still, walk up/down stairs, and walk up/down slope, etc. The proposed algorithm recognizes multiple gait phases (27 classes) in different motion patterns by using short-time gait data, which has two typical advantages: (1) Based on multi-source sensor distributed in human body, this wearable device is constructed for ease of use to address several Subjects (different weights and heights) with low cost and light weight. (2) The critical features of gait data are identified by Bi-directional Long Short-Term Memory (BILSTM) attention neural network with higher recognition accuracy than other state-of-art recognition methods, especially in arbitrary gait switching durations. [Display omitted] •A new portable gait acquisition device is designed to simultaneously acquire three different types of sensing signals, including human sEMG, lower limb GRF, and knee/hip joint motion, as shown in Fig.1. This wearable device is constructed for ease of use to address several Subjects (different weights and heights) with low cost and light weight.•A multi-source data fusion and BILSTM attention neural network is proposed to identify detailed gait phases in multiple motion patterns with high accuracy.•Consider two indices such that the false detection number and rate are used to verify the effectiveness of the gait recognition in arbitrarily gait switch durations. Furthermore, two different subjects data are used to verify the effectiveness of the proposed algorithm comparing with the other two state-of-art algorithms.
ArticleNumber 115396
Author Guo, Qing
Kou, Jiange
Zhang, Jiyu
Zhan, Haoran
Cao, Yuanchao
Shi, Yan
Author_xml – sequence: 1
  givenname: Haoran
  surname: Zhan
  fullname: Zhan, Haoran
  email: hr.zhan@std.uestc.edu.cn
  organization: School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu, 611731, China
– sequence: 2
  givenname: Jiange
  orcidid: 0000-0003-2088-9778
  surname: Kou
  fullname: Kou, Jiange
  email: koujiange@buaa.edu.cn
  organization: School of Automation Science and Electrical Engineering, Beihang University (BUAA), Beijing, 100191, China
– sequence: 3
  givenname: Yuanchao
  surname: Cao
  fullname: Cao, Yuanchao
  email: yc.cao@std.uestc.edu.cn
  organization: School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu, 611731, China
– sequence: 4
  givenname: Qing
  orcidid: 0000-0003-0522-1243
  surname: Guo
  fullname: Guo, Qing
  email: guoqinguestc@uestc.edu.cn
  organization: School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu, 611731, China
– sequence: 5
  givenname: Jiyu
  orcidid: 0009-0003-6139-0292
  surname: Zhang
  fullname: Zhang, Jiyu
  email: zhangjiyu@roboct.com
  organization: 2Hangzhou RoboCT Technology Development Co., Ltd., Hangzhou, 311100, China
– sequence: 6
  givenname: Yan
  surname: Shi
  fullname: Shi, Yan
  email: shiyan@buaa.edu.cn
  organization: School of Automation Science and Electrical Engineering, Beihang University (BUAA), Beijing, 100191, China
BookMark eNqNkE1OwzAQhb0oEi1wB3OABNtJrGSFoIK2UhELytqaOBNwSZzKdkDcHkdlgVh19Ubz80bvW5CZHSwScs1ZyhmXN_u0R_Cjwx5tSAUTecp5kVVyRuZMyCwRIufnZOH9njEm42BO9HrswdIVmEAP7-DRU4d6eLMmmMHSOnYaGot-7IJJ_DA6jbSBALQd_bQBtqH3m-3L7olCCPHx1LQ4OuiihK_BfVySsxY6j1e_ekFeHx92y3WyfV5tlnfbRGeChyRveSnzSiPIHJsSNVbAmyomaGXVCgallFVZa8nqHOpMZExwXRdlIWOussDsglRHX-0G7x226uBMD-5bcaYmQmqv_hBSEyF1JBRvb__dahNgChMcmO4kh-XRAWPET4NOeW3QamxMJBpUM5gTXH4AoUCQQQ
CitedBy_id crossref_primary_10_1038_s44328_024_00021_y
crossref_primary_10_61189_673672yizrwd
Cites_doi 10.1109/TCYB.2019.2940276
10.32604/cmc.2023.043061
10.1186/s12984-021-00906-3
10.1109/TCSVT.2022.3218735
10.1109/ACCESS.2020.2982225
10.1016/j.jbiomech.2021.110414
10.1109/TVT.2019.2925562
10.1109/TIP.2016.2612823
10.1109/TNSRE.2022.3143094
10.1016/j.measurement.2020.108184
10.1109/TNSRE.2022.3213823
10.1109/TIM.2021.3127641
10.1109/ACCESS.2023.3289986
10.1109/TMI.2020.2976825
10.1109/TNNLS.2022.3152255
10.1109/TIM.2022.3220285
10.1109/TNSRE.2016.2521160
10.1109/TITS.2020.3044943
10.1109/JSEN.2018.2837674
10.1109/TIM.2020.3008988
10.1109/TMI.2022.3151666
10.1016/j.measurement.2022.111603
10.1109/TMM.2019.2942479
10.1016/j.apm.2021.12.007
10.1162/neco_a_01199
10.1109/TIM.2015.2465751
10.1016/j.asoc.2021.107375
10.1109/TBME.2022.3140246
10.1109/TNSRE.2021.3099908
10.3390/s18092743
10.3390/s17061229
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2024.115396
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
ExternalDocumentID 10_1016_j_measurement_2024_115396
S0263224124012818
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 52175046
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Sichuan Science and Technology Program
  grantid: 24ZDYF0070
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GS5
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
WUQ
XPP
ZMT
~G-
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c321t-4f18649cea64ed8ece9a1d9153f69f20a86698bc60b4ab323021cb585622485e3
IEDL.DBID .~1
ISSN 0263-2241
IngestDate Tue Jul 01 00:52:31 EDT 2025
Thu Apr 24 23:04:22 EDT 2025
Sat Sep 07 15:51:02 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Lower limb exoskeleton
Lightweight gait acquisition device
Gait recognition
BILSTM attention neural network
Multi-source data fusion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-4f18649cea64ed8ece9a1d9153f69f20a86698bc60b4ab323021cb585622485e3
ORCID 0000-0003-2088-9778
0009-0003-6139-0292
0000-0003-0522-1243
ParticipantIDs crossref_primary_10_1016_j_measurement_2024_115396
crossref_citationtrail_10_1016_j_measurement_2024_115396
elsevier_sciencedirect_doi_10_1016_j_measurement_2024_115396
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Verlekar, Soares, Correia (b6) 2018; 18
Epalle, Song, Liu, Lu (b36) 2021; 107
Li, Liu, Tang, Lei (b32) 2020; 39
Ni, Huang (b18) 2021; 71
Slijepcevic, Zeppelzauer, Unglaube, Kranzl, Breiteneder, Horsak (b20) 2023; 11
Tang, Luo, Tjahjadi, Guo (b10) 2016; 26
Yu, He, Li, Xue, Li, Zou, Yang (b13) 2019; 51
Liao, Chen, Xiang, Huang, Xie, Guo (b31) 2021; 23
Zhang, Wang, Liu, Zhao, Tang, Sun (b17) 2021; 70
Zhang, Liu, Wang, Zhao, Bai, Sun (b15) 2022; 71
Yan, Chen, Huang, Chen, Guo (b3) 2022; 104
Xi, Tang, Miran, Luo (b24) 2017; 17
Nguyen, Bui, Truong, Jeong (b12) 2018; 18
de Raadt, Warrens, Bosker, Kiers (b35) 2021
Ye, Yang, Stankovic, Stankovic, Cheng (b9) 2019; 22
Zhang, Duong, Rao, Mazzoni, Agrawal, Guo, Zanotto (b19) 2022; 30
Sardini, Serpelloni, Lancini (b7) 2015; 64
Ma, Liu, Peng, Qiu (b26) 2020; 69
Chen, Guo, Li, Yan, Jiang (b2) 2022; 34
Habib, Mughal, Khan, Hamza, Alturki, Jamel (b4) 2024
Sun, Shi, Yang, Yang, Gui (b27) 2019; 68
Li, Zhang, Cui, Lei, Kuang, Zhang (b34) 2022; 41
Hanif, AliMughal, Khan, Almujally, Kim, Cha (b22) 2024; 78
Yang, Jiao, Liu, Liu, Yang, Li, Chen, Li, Huang (b30) 2022; 33
Yan, Huang, Wu, Yang, Wang, Hasegawa, Fukuda (b21) 2022; 30
Yu, Si, Hu, Zhang (b25) 2019; 31
Li, Guo, Liu, Liu, Meng (b33) 2021; 29
Young, Ferris (b5) 2016; 25
Arumugaraja, Padmapriya, Poornachandra (b11) 2022; 200
Kanko, Laende, Strutzenberger, Brown, Selbie, DePaul, Scott, Deluzio (b8) 2021; 122
Yang, Ge, Li, Wang, Lang, Li (b16) 2022; 71
Su, Cai, Xie, Li, Schultz (b29) 2022; 69
Baud, Manzoori, Ijspeert, Bouri (b1) 2021; 18
Xia, Huang, Wang (b14) 2020; 8
Mei, Ivanov, Zhao, Wu, Liu, Wang (b23) 2020; 165
Jin, Chen, Wu, Wu, Li, Yan (b28) 2022; 71
Kanko (10.1016/j.measurement.2024.115396_b8) 2021; 122
Yang (10.1016/j.measurement.2024.115396_b30) 2022; 33
Li (10.1016/j.measurement.2024.115396_b32) 2020; 39
Yan (10.1016/j.measurement.2024.115396_b21) 2022; 30
Zhang (10.1016/j.measurement.2024.115396_b15) 2022; 71
Xi (10.1016/j.measurement.2024.115396_b24) 2017; 17
Yang (10.1016/j.measurement.2024.115396_b16) 2022; 71
Zhang (10.1016/j.measurement.2024.115396_b19) 2022; 30
Tang (10.1016/j.measurement.2024.115396_b10) 2016; 26
Zhang (10.1016/j.measurement.2024.115396_b17) 2021; 70
Sardini (10.1016/j.measurement.2024.115396_b7) 2015; 64
Chen (10.1016/j.measurement.2024.115396_b2) 2022; 34
Yu (10.1016/j.measurement.2024.115396_b13) 2019; 51
Jin (10.1016/j.measurement.2024.115396_b28) 2022; 71
Su (10.1016/j.measurement.2024.115396_b29) 2022; 69
Li (10.1016/j.measurement.2024.115396_b34) 2022; 41
Verlekar (10.1016/j.measurement.2024.115396_b6) 2018; 18
Habib (10.1016/j.measurement.2024.115396_b4) 2024
Liao (10.1016/j.measurement.2024.115396_b31) 2021; 23
Yan (10.1016/j.measurement.2024.115396_b3) 2022; 104
Ye (10.1016/j.measurement.2024.115396_b9) 2019; 22
de Raadt (10.1016/j.measurement.2024.115396_b35) 2021
Epalle (10.1016/j.measurement.2024.115396_b36) 2021; 107
Nguyen (10.1016/j.measurement.2024.115396_b12) 2018; 18
Arumugaraja (10.1016/j.measurement.2024.115396_b11) 2022; 200
Ni (10.1016/j.measurement.2024.115396_b18) 2021; 71
Ma (10.1016/j.measurement.2024.115396_b26) 2020; 69
Young (10.1016/j.measurement.2024.115396_b5) 2016; 25
Xia (10.1016/j.measurement.2024.115396_b14) 2020; 8
Mei (10.1016/j.measurement.2024.115396_b23) 2020; 165
Hanif (10.1016/j.measurement.2024.115396_b22) 2024; 78
Baud (10.1016/j.measurement.2024.115396_b1) 2021; 18
Sun (10.1016/j.measurement.2024.115396_b27) 2019; 68
Yu (10.1016/j.measurement.2024.115396_b25) 2019; 31
Slijepcevic (10.1016/j.measurement.2024.115396_b20) 2023; 11
Li (10.1016/j.measurement.2024.115396_b33) 2021; 29
References_xml – volume: 68
  start-page: 10348
  year: 2019
  end-page: 10356
  ident: b27
  article-title: Behavioral modeling and linearization of wideband RF power amplifiers using BiLSTM networks for 5G wireless systems
  publication-title: IEEE Trans. Veh. Technol.
– volume: 71
  start-page: 1
  year: 2022
  end-page: 13
  ident: b16
  article-title: Multiscenario open-set gait recognition based on radar micro-Doppler signatures
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 70
  start-page: 1
  year: 2021
  end-page: 12
  ident: b17
  article-title: Real-time gait phase recognition based on time domain features of multi-MEMS inertial sensors
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 23
  start-page: 4460
  year: 2021
  end-page: 4473
  ident: b31
  article-title: Taxi-passenger’s destination prediction via gps embedding and attention-based bilstm model
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 71
  start-page: 1
  year: 2022
  end-page: 15
  ident: b15
  article-title: Gait pattern recognition based on plantar pressure signals and acceleration signals
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 200
  year: 2022
  ident: b11
  article-title: Design and development of foot worn piezoresistive sensor for knee pain analysis with supervised machine learning algorithms based on gait pattern
  publication-title: Measurement
– volume: 25
  start-page: 171
  year: 2016
  end-page: 182
  ident: b5
  article-title: State of the art and future directions for lower limb robotic exoskeletons
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 69
  start-page: 5981
  year: 2020
  end-page: 5983
  ident: b26
  article-title: Unauthorized broadcasting identification: A deep LSTM recurrent learning approach
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 41
  start-page: 1975
  year: 2022
  end-page: 1989
  ident: b34
  article-title: Dual encoder-based dynamic-channel graph convolutional network with edge enhancement for retinal vessel segmentation
  publication-title: IEEE Trans. Med. Imaging
– volume: 11
  start-page: 65906
  year: 2023
  end-page: 65923
  ident: b20
  article-title: Explainable machine learning in human gait analysis: A study on children with cerebral palsy
  publication-title: IEEE Access
– volume: 18
  start-page: 1
  year: 2021
  end-page: 34
  ident: b1
  article-title: Review of control strategies for lower-limb exoskeletons to assist gait
  publication-title: J. NeuroEng. Rehabil.
– volume: 39
  start-page: 2818
  year: 2020
  end-page: 2830
  ident: b32
  article-title: Deep spatial-temporal feature fusion from adaptive dynamic functional connectivity for MCI identification
  publication-title: IEEE Trans. Med. Imaging
– volume: 22
  start-page: 1113
  year: 2019
  end-page: 1125
  ident: b9
  article-title: Distinct feature extraction for video-based gait phase classification
  publication-title: IEEE Trans. Multimed.
– volume: 30
  start-page: 2916
  year: 2022
  end-page: 2926
  ident: b21
  article-title: Intelligent gait analysis and evaluation system based on cane robot
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 31
  start-page: 1235
  year: 2019
  end-page: 1270
  ident: b25
  article-title: A review of recurrent neural networks: LSTM cells and network architectures
  publication-title: Neural Comput.
– volume: 17
  start-page: 1229
  year: 2017
  ident: b24
  article-title: Evaluation of feature extraction and recognition for activity monitoring and fall detection based on wearable sEMG sensors
  publication-title: Sensors
– volume: 71
  start-page: 1
  year: 2021
  end-page: 14
  ident: b18
  article-title: Robust person gait identification based on limited radar measurements using set-based discriminative subspaces learning
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 26
  start-page: 7
  year: 2016
  end-page: 22
  ident: b10
  article-title: Robust arbitrary-view gait recognition based on 3D partial similarity matching
  publication-title: IEEE Trans. Image Process.
– volume: 104
  start-page: 439
  year: 2022
  end-page: 454
  ident: b3
  article-title: Human-exoskeleton coupling dynamics in the swing of lower limb
  publication-title: Appl. Math. Model.
– start-page: 1
  year: 2024
  end-page: 22
  ident: b4
  article-title: A novel deep dual self-attention and Bi-LSTM fusion framework for Parkinson’s disease prediction using freezing of gait: a biometric application
  publication-title: Multimedia Tools Appl.
– volume: 33
  start-page: 1899
  year: 2022
  end-page: 1910
  ident: b30
  article-title: Dual wavelet attention networks for image classification
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 51
  start-page: 1822
  year: 2019
  end-page: 1834
  ident: b13
  article-title: Bayesian estimation of human impedance and motion intention for human–robot collaboration
  publication-title: IEEE Trans. Cybern.
– volume: 107
  year: 2021
  ident: b36
  article-title: Multi-atlas classification of autism spectrum disorder with hinge loss trained deep architectures: ABIDE I results
  publication-title: Appl. Soft Comput.
– start-page: 1
  year: 2021
  end-page: 25
  ident: b35
  article-title: A comparison of reliability coefficients for ordinal rating scales
  publication-title: J. Classification
– volume: 64
  start-page: 3369
  year: 2015
  end-page: 3379
  ident: b7
  article-title: Wireless instrumented crutches for force and movement measurements for gait monitoring
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 78
  start-page: 357
  year: 2024
  end-page: 374
  ident: b22
  article-title: Human gait recognition for biometrics application based on deep learning fusion assisted framework
  publication-title: Comput. Mater. Continua
– volume: 8
  start-page: 56855
  year: 2020
  end-page: 56866
  ident: b14
  article-title: LSTM-CNN architecture for human activity recognition
  publication-title: IEEE Access
– volume: 71
  start-page: 1
  year: 2022
  end-page: 10
  ident: b28
  article-title: Bi-LSTM-based two-stream network for machine remaining useful life prediction
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 30
  start-page: 124
  year: 2022
  end-page: 134
  ident: b19
  article-title: Transductive learning models for accurate ambulatory gait analysis in elderly residents of assisted living facilities
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 165
  year: 2020
  ident: b23
  article-title: Foot type classification using sensor-enabled footwear and 1D-CNN
  publication-title: Measurement
– volume: 69
  start-page: 2233
  year: 2022
  end-page: 2242
  ident: b29
  article-title: STAnet: A spatiotemporal attention network for decoding auditory spatial attention from EEG
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 122
  year: 2021
  ident: b8
  article-title: Assessment of spatiotemporal gait parameters using a deep learning algorithm-based markerless motion capture system
  publication-title: J. Biomech.
– volume: 29
  start-page: 1534
  year: 2021
  end-page: 1545
  ident: b33
  article-title: A temporal-spectral-based squeeze-and-excitation feature fusion network for motor imagery EEG decoding
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 34
  start-page: 8693
  year: 2022
  end-page: 8706
  ident: b2
  article-title: Gait prediction and variable admittance control for lower limb exoskeleton with measurement delay and extended-state-observer
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 18
  start-page: 5422
  year: 2018
  end-page: 5428
  ident: b12
  article-title: Classification of five ambulatory activities regarding stair and incline walking using smart shoes
  publication-title: IEEE Sens. J.
– volume: 18
  start-page: 2743
  year: 2018
  ident: b6
  article-title: Automatic classification of gait impairments using a markerless 2D video-based system
  publication-title: Sensors
– volume: 51
  start-page: 1822
  issue: 4
  year: 2019
  ident: 10.1016/j.measurement.2024.115396_b13
  article-title: Bayesian estimation of human impedance and motion intention for human–robot collaboration
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2940276
– volume: 78
  start-page: 357
  issue: 1
  year: 2024
  ident: 10.1016/j.measurement.2024.115396_b22
  article-title: Human gait recognition for biometrics application based on deep learning fusion assisted framework
  publication-title: Comput. Mater. Continua
  doi: 10.32604/cmc.2023.043061
– volume: 18
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.measurement.2024.115396_b1
  article-title: Review of control strategies for lower-limb exoskeletons to assist gait
  publication-title: J. NeuroEng. Rehabil.
  doi: 10.1186/s12984-021-00906-3
– volume: 33
  start-page: 1899
  issue: 4
  year: 2022
  ident: 10.1016/j.measurement.2024.115396_b30
  article-title: Dual wavelet attention networks for image classification
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2022.3218735
– volume: 8
  start-page: 56855
  year: 2020
  ident: 10.1016/j.measurement.2024.115396_b14
  article-title: LSTM-CNN architecture for human activity recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2982225
– volume: 122
  year: 2021
  ident: 10.1016/j.measurement.2024.115396_b8
  article-title: Assessment of spatiotemporal gait parameters using a deep learning algorithm-based markerless motion capture system
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2021.110414
– volume: 68
  start-page: 10348
  issue: 11
  year: 2019
  ident: 10.1016/j.measurement.2024.115396_b27
  article-title: Behavioral modeling and linearization of wideband RF power amplifiers using BiLSTM networks for 5G wireless systems
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2925562
– volume: 26
  start-page: 7
  issue: 1
  year: 2016
  ident: 10.1016/j.measurement.2024.115396_b10
  article-title: Robust arbitrary-view gait recognition based on 3D partial similarity matching
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2612823
– volume: 30
  start-page: 124
  year: 2022
  ident: 10.1016/j.measurement.2024.115396_b19
  article-title: Transductive learning models for accurate ambulatory gait analysis in elderly residents of assisted living facilities
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3143094
– start-page: 1
  year: 2021
  ident: 10.1016/j.measurement.2024.115396_b35
  article-title: A comparison of reliability coefficients for ordinal rating scales
  publication-title: J. Classification
– volume: 165
  year: 2020
  ident: 10.1016/j.measurement.2024.115396_b23
  article-title: Foot type classification using sensor-enabled footwear and 1D-CNN
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108184
– volume: 30
  start-page: 2916
  year: 2022
  ident: 10.1016/j.measurement.2024.115396_b21
  article-title: Intelligent gait analysis and evaluation system based on cane robot
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3213823
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.measurement.2024.115396_b17
  article-title: Real-time gait phase recognition based on time domain features of multi-MEMS inertial sensors
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2021.3127641
– volume: 11
  start-page: 65906
  year: 2023
  ident: 10.1016/j.measurement.2024.115396_b20
  article-title: Explainable machine learning in human gait analysis: A study on children with cerebral palsy
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3289986
– volume: 39
  start-page: 2818
  issue: 9
  year: 2020
  ident: 10.1016/j.measurement.2024.115396_b32
  article-title: Deep spatial-temporal feature fusion from adaptive dynamic functional connectivity for MCI identification
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.2976825
– volume: 34
  start-page: 8693
  issue: 11
  year: 2022
  ident: 10.1016/j.measurement.2024.115396_b2
  article-title: Gait prediction and variable admittance control for lower limb exoskeleton with measurement delay and extended-state-observer
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2022.3152255
– volume: 71
  start-page: 1
  year: 2022
  ident: 10.1016/j.measurement.2024.115396_b16
  article-title: Multiscenario open-set gait recognition based on radar micro-Doppler signatures
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2022.3220285
– volume: 25
  start-page: 171
  issue: 2
  year: 2016
  ident: 10.1016/j.measurement.2024.115396_b5
  article-title: State of the art and future directions for lower limb robotic exoskeletons
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2521160
– volume: 71
  start-page: 1
  year: 2022
  ident: 10.1016/j.measurement.2024.115396_b15
  article-title: Gait pattern recognition based on plantar pressure signals and acceleration signals
  publication-title: IEEE Trans. Instrum. Meas.
– start-page: 1
  year: 2024
  ident: 10.1016/j.measurement.2024.115396_b4
  article-title: A novel deep dual self-attention and Bi-LSTM fusion framework for Parkinson’s disease prediction using freezing of gait: a biometric application
  publication-title: Multimedia Tools Appl.
– volume: 71
  start-page: 1
  year: 2022
  ident: 10.1016/j.measurement.2024.115396_b28
  article-title: Bi-LSTM-based two-stream network for machine remaining useful life prediction
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 23
  start-page: 4460
  issue: 5
  year: 2021
  ident: 10.1016/j.measurement.2024.115396_b31
  article-title: Taxi-passenger’s destination prediction via gps embedding and attention-based bilstm model
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.3044943
– volume: 18
  start-page: 5422
  issue: 13
  year: 2018
  ident: 10.1016/j.measurement.2024.115396_b12
  article-title: Classification of five ambulatory activities regarding stair and incline walking using smart shoes
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2837674
– volume: 69
  start-page: 5981
  issue: 9
  year: 2020
  ident: 10.1016/j.measurement.2024.115396_b26
  article-title: Unauthorized broadcasting identification: A deep LSTM recurrent learning approach
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2020.3008988
– volume: 41
  start-page: 1975
  issue: 8
  year: 2022
  ident: 10.1016/j.measurement.2024.115396_b34
  article-title: Dual encoder-based dynamic-channel graph convolutional network with edge enhancement for retinal vessel segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2022.3151666
– volume: 200
  year: 2022
  ident: 10.1016/j.measurement.2024.115396_b11
  article-title: Design and development of foot worn piezoresistive sensor for knee pain analysis with supervised machine learning algorithms based on gait pattern
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111603
– volume: 71
  start-page: 1
  year: 2021
  ident: 10.1016/j.measurement.2024.115396_b18
  article-title: Robust person gait identification based on limited radar measurements using set-based discriminative subspaces learning
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 22
  start-page: 1113
  issue: 5
  year: 2019
  ident: 10.1016/j.measurement.2024.115396_b9
  article-title: Distinct feature extraction for video-based gait phase classification
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2019.2942479
– volume: 104
  start-page: 439
  year: 2022
  ident: 10.1016/j.measurement.2024.115396_b3
  article-title: Human-exoskeleton coupling dynamics in the swing of lower limb
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2021.12.007
– volume: 31
  start-page: 1235
  issue: 7
  year: 2019
  ident: 10.1016/j.measurement.2024.115396_b25
  article-title: A review of recurrent neural networks: LSTM cells and network architectures
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01199
– volume: 64
  start-page: 3369
  issue: 12
  year: 2015
  ident: 10.1016/j.measurement.2024.115396_b7
  article-title: Wireless instrumented crutches for force and movement measurements for gait monitoring
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2015.2465751
– volume: 107
  year: 2021
  ident: 10.1016/j.measurement.2024.115396_b36
  article-title: Multi-atlas classification of autism spectrum disorder with hinge loss trained deep architectures: ABIDE I results
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107375
– volume: 69
  start-page: 2233
  issue: 7
  year: 2022
  ident: 10.1016/j.measurement.2024.115396_b29
  article-title: STAnet: A spatiotemporal attention network for decoding auditory spatial attention from EEG
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2022.3140246
– volume: 29
  start-page: 1534
  year: 2021
  ident: 10.1016/j.measurement.2024.115396_b33
  article-title: A temporal-spectral-based squeeze-and-excitation feature fusion network for motor imagery EEG decoding
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2021.3099908
– volume: 18
  start-page: 2743
  issue: 9
  year: 2018
  ident: 10.1016/j.measurement.2024.115396_b6
  article-title: Automatic classification of gait impairments using a markerless 2D video-based system
  publication-title: Sensors
  doi: 10.3390/s18092743
– volume: 17
  start-page: 1229
  issue: 6
  year: 2017
  ident: 10.1016/j.measurement.2024.115396_b24
  article-title: Evaluation of feature extraction and recognition for activity monitoring and fall detection based on wearable sEMG sensors
  publication-title: Sensors
  doi: 10.3390/s17061229
SSID ssj0006396
Score 2.4069061
Snippet A human gait recognition algorithm with deep learning based on multi-source data fusion is proposed to assist exoskeleton realizing complex human-exoskeleton...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 115396
SubjectTerms BILSTM attention neural network
Gait recognition
Lightweight gait acquisition device
Lower limb exoskeleton
Multi-source data fusion
Title Human Gait phases recognition based on multi-source data fusion and BILSTM attention neural network
URI https://dx.doi.org/10.1016/j.measurement.2024.115396
Volume 238
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5KRdGDaFWsL1bwurbZbLYJeKnF2vropS30FrKPYEXTYtOrv92dJH0IgoK3JGRgMzvMNzv59luAK1TycQLJqQU3TrnhgvqSN6j2DO4UjWUsM7ZFT3SG_GHkjUrQWuyFQVplkfvznJ5l6-JJrfBmbToe1_p1lBpneHpy9jsIN_xy3sAov_5c0TwsAou8z-JSfHsLLlccr_dVH84uFRm3CcRzUb__J4xaw532HuwWBSNp5mPah5JJKrCzJiNYgc2MxqlmB6Cynjy5j8Ypmb5YgJqRJUNokhCELE3sRUYjpHnjniBJlMRzbJuRKNHktvvUHzwTFN7MqJAENS_tEJKcMX4Iw_bdoNWhxTEKVLnMSSmPHV_wQJlIcKN9o0wQOTqwXxqLIGb1yBci8KUSdckj6do1CXOUtMsIwVDvzLhHUE4miTkGojzlMNTME9pWIrIRaTu5xtOMKzfiPq-Cv3BcqAqNcTzq4i1ckMlewzWfh-jzMPd5FdjSdJoLbfzF6GYxO-G3qAktIPxufvI_81PYxruc2ncG5fRjbs5tiZLKiywGL2Cj2X3s9L4AeynnVw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB584OsgPvFtBD3G3aZpbEEPvnd19eIK3mqTprii3cVdES_-Kf-gM23XXUFQEG-lZUqYJPNNki_fAGySko8TaMkR3CSXVirua7nDY8_STdFEJzpjW1yqyrU8u_FuBuC9exeGaJVF7M9jehatizelwpulVqNRuiqT1Lig6snZcZBfMCvP7esLrtvae9Uj7OQtIU6O64cVXpQW4MYVTofLxPGVDIyNlLSxb40NIicOcPonKkhEOfKVCnxtVFnLSLuYpwvHaEytlSANMOvifwdhWGK4oLIJ2289XglCvso3dlxOzRuFjR6p7LG38YdrUyExYnkuFQz4DhT7gO5kCiaLDJXt506YhgGbzsBEn27hDIxkvFHTngWTHQKw06jRYa07RMQ2-6QkNVNGGBkzfMh4izw_KWDESmXJM-3TsSiN2UG1dlW_YKT0mXEvGYlsYhPSnKI-B9f_4tx5GEqbqV0AZjzjCBLpUzGmPnoninE0WS8W0riR9OUi-F3HhaYQNafaGg9hl712H_b5PCSfh7nPF0F8mrZyZY_fGO12eyf8MkxDRKCfzZf-Zr4OY5X6RS2sVS_Pl2GcvuS8whUY6jw921XMjzp6LRuPDG7_ewJ8ANkWIhg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+Gait+phases+recognition+based+on+multi-source+data+fusion+and+BILSTM+attention+neural+network&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Zhan%2C+Haoran&rft.au=Kou%2C+Jiange&rft.au=Cao%2C+Yuanchao&rft.au=Guo%2C+Qing&rft.date=2024-10-01&rft.pub=Elsevier+Ltd&rft.issn=0263-2241&rft.volume=238&rft_id=info:doi/10.1016%2Fj.measurement.2024.115396&rft.externalDocID=S0263224124012818
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon