Characterization of multidirectional carbon-nanotube-yarn/bismaleimide laminates under tensile loading

Unidirectional, cross-ply, and quasi-isotropic composite laminates are made from continuous carbon nanotube (CNT) yarns with bismaleimide (BMI) resin. The laminates are highly graphitic and have low resin content. Elastic modulus and strength of CNT/BMI laminates and IM7/8552 carbon-epoxy laminates...

Full description

Saved in:
Bibliographic Details
Published inComposites. Part B, Engineering Vol. 280; p. 111465
Main Authors Vondrasek, Britannia, Evers, Cecil, Jolowsky, Claire, Odegard, Gregory M., Zhiyong Liang, Czabaj, Michael
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Unidirectional, cross-ply, and quasi-isotropic composite laminates are made from continuous carbon nanotube (CNT) yarns with bismaleimide (BMI) resin. The laminates are highly graphitic and have low resin content. Elastic modulus and strength of CNT/BMI laminates and IM7/8552 carbon-epoxy laminates are measured using a scaled-down tensile test method. For CNT/BMI laminates, the variation in the measured tensile modulus is high and the laminates fail in a more gradual manner than IM7/8552 laminates. Microscopy of the failed specimens indicates that intra-yarn splitting is a common feature in all CNT/BMI laminates tested. The results of this investigation will inform the development of CNT yarn reinforced composites for structural applications. [Display omitted] •Unidirectional, cross-ply, and quasi-isotropic laminates are tested in tension.•A small-scale tensile testing method is developed to measure laminate properties.•IM7 carbon fiber and CNT yarn reinforced laminates are both tested.•CNT yarn laminates fail more gradually than IM7 laminates.•Intra-yarn splitting is a common feature of failed CNT yarn laminates.
AbstractList Unidirectional, cross-ply, and quasi-isotropic composite laminates are made from continuous carbon nanotube (CNT) yarns with bismaleimide (BMI) resin. The laminates are highly graphitic and have low resin content. Elastic modulus and strength of CNT/BMI laminates and IM7/8552 carbon-epoxy laminates are measured using a scaled-down tensile test method. For CNT/BMI laminates, the variation in the measured tensile modulus is high and the laminates fail in a more gradual manner than IM7/8552 laminates. Microscopy of the failed specimens indicates that intra-yarn splitting is a common feature in all CNT/BMI laminates tested. The results of this investigation will inform the development of CNT yarn reinforced composites for structural applications. [Display omitted] •Unidirectional, cross-ply, and quasi-isotropic laminates are tested in tension.•A small-scale tensile testing method is developed to measure laminate properties.•IM7 carbon fiber and CNT yarn reinforced laminates are both tested.•CNT yarn laminates fail more gradually than IM7 laminates.•Intra-yarn splitting is a common feature of failed CNT yarn laminates.
ArticleNumber 111465
Author Evers, Cecil
Vondrasek, Britannia
Odegard, Gregory M.
Jolowsky, Claire
Czabaj, Michael
Zhiyong Liang
Author_xml – sequence: 1
  givenname: Britannia
  orcidid: 0000-0002-9991-7446
  surname: Vondrasek
  fullname: Vondrasek, Britannia
  email: bvon@vt.edu
  organization: Utah Composites Laboratory, Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
– sequence: 2
  givenname: Cecil
  orcidid: 0000-0003-3226-1267
  surname: Evers
  fullname: Evers, Cecil
  organization: High Performance Materials Institute, Department of Industrial and Manufacturing Engineering, Florida State University, Tallahassee, FL, 32310, USA
– sequence: 3
  givenname: Claire
  surname: Jolowsky
  fullname: Jolowsky, Claire
  organization: High Performance Materials Institute, Department of Industrial and Manufacturing Engineering, Florida State University, Tallahassee, FL, 32310, USA
– sequence: 4
  givenname: Gregory M.
  surname: Odegard
  fullname: Odegard, Gregory M.
  organization: Mechanical Engineering – Engineering Mechanics, Michigan Technological University, Houghton, MI, 49931, USA
– sequence: 5
  surname: Zhiyong Liang
  fullname: Zhiyong Liang
  organization: High Performance Materials Institute, Department of Industrial and Manufacturing Engineering, Florida State University, Tallahassee, FL, 32310, USA
– sequence: 6
  givenname: Michael
  surname: Czabaj
  fullname: Czabaj, Michael
  organization: Utah Composites Laboratory, Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
BookMark eNqNkMFqGzEQhkVxoImTd9g-wDrSSruWTqWYtgkYcmnPYiTNpmN2JSPJhfTpu657CDnlNMMP_8fMd8NWMUVk7JPgG8HFcH_Y-DQfU6GKxW063qmNEEIN_Qd2LfTWtIIPZrXssjetloP-yG5KOXDOVS-7azbufkEGXzHTH6iUYpPGZj5NlQJl9OcEpsZDdim2EWKqJ4ftC-R476jMMCHNFLCZYKYIyxHNKQbMTcVYaFryBIHi8y27GmEqePd_rtnPb19_7B7a_dP3x92XfetlJ2qrcKtdUAGd11xLPijV6SGgkp73HI12xoNBJ73rvRwGBeC7sB0918aBMXLNPl-4PqdSMo7WU_33V81AkxXcnrXZg32lzZ612Yu2hWDeEI6ZZsgv7-ruLl1cXvxNmG3xhNHjxaUNid5B-QvlU5YU
CitedBy_id crossref_primary_10_1016_j_compscitech_2025_111137
crossref_primary_10_1016_j_tws_2025_113189
crossref_primary_10_1186_s11671_024_04087_5
Cites_doi 10.1002/adma.201902028
10.1002/pen.25917
10.1002/adfm.202005499
10.1016/j.carbon.2020.11.055
10.1016/j.cartre.2022.100206
10.1016/j.carbon.2019.05.036
10.1016/j.compscitech.2018.02.010
10.1021/acsnano.8b06511
10.1021/acsanm.2c01280
10.1021/nn202685x
10.1016/j.compositesa.2014.05.013
10.1021/nn102925a
10.1016/j.carbon.2006.02.038
10.1016/j.carbon.2019.04.113
10.1021/acsnano.0c10662
10.1039/D0NR05469K
10.1002/smll.200901957
10.1016/j.compscitech.2018.04.003
10.1007/s10853-016-0228-6
10.1038/419801a
10.1021/nn5045504
10.1016/j.carbon.2020.07.058
10.1016/j.commatsci.2020.109970
10.1016/j.carbon.2019.05.024
10.1021/acsanm.3c01266
10.1021/nn1017318
10.1016/j.compositesb.2021.108672
10.1016/j.carbon.2019.09.070
10.1016/j.compscitech.2018.07.013
10.1021/acs.jpcc.0c03509
10.1126/science.1094982
10.1016/j.compscitech.2022.109501
10.1016/j.compositesa.2016.02.003
10.1016/j.compscitech.2020.108627
10.1016/j.compositesa.2014.03.011
10.1021/acs.langmuir.1c01800
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compositesb.2024.111465
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1069
ExternalDocumentID 10_1016_j_compositesb_2024_111465
S1359836824002762
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JJJVA
KOM
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSM
SST
SSZ
T5K
ZMT
~02
~G-
29F
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIIUN
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FGOYB
HZ~
M41
R2-
SSH
VH1
ID FETCH-LOGICAL-c321t-4e78bd4debc80830644286de43c050e98b9ca9eb3cb5c3664aac2d7fc089ba993
IEDL.DBID .~1
ISSN 1359-8368
IngestDate Tue Jul 01 02:03:23 EDT 2025
Thu Apr 24 23:09:33 EDT 2025
Sat Apr 27 15:44:34 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords D. Mechanical testing
A. nano-structures
A. Yarn
A. Laminates
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-4e78bd4debc80830644286de43c050e98b9ca9eb3cb5c3664aac2d7fc089ba993
ORCID 0000-0002-9991-7446
0000-0003-3226-1267
ParticipantIDs crossref_citationtrail_10_1016_j_compositesb_2024_111465
crossref_primary_10_1016_j_compositesb_2024_111465
elsevier_sciencedirect_doi_10_1016_j_compositesb_2024_111465
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
2024-07-00
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Composites. Part B, Engineering
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gaikwad, Kowalik, Jensen, van Duin, Odegard (bib29) Apr. 2022; 5
Odegard, Liang, Wise (bib37) Sep. 2018; 166
Kim J.-W., et al. Undirectional carbon nanotube yarn/polymer composites. NASA/TM-2018-220081 Jul. 2018. Document ID 20180006317. [Online]. Available
Smail, Boies, Windle (bib8) Nov. 2019; 152
Coleman, Khan, Blau, Gun’ko (bib41) Aug. 2006; 44
Evers (bib6) Jul. 2023; 6
Wu, Zhao, Shang, Chang, Dai, Cao (bib13) May 2021; 15
Fernández-Toribio, Mikhalchan, Santos, Ridruejo, Vilatela (bib15) Jan. 2020; 156
Mikhalchan, Vilatela (bib36) Sep. 2019; 150
(bib39) Dec. 27, 2016
(bib40) Dec. 11, 2017
Kim (bib34) Apr. 2023; 167
Boncel, Sundaram, Windle, Koziol (bib17) Dec. 2011; 5
Kim (bib25) May 2016; 84
Pisani, Radue, Patil, Odegard (bib45) Apr. 2021; 211
Rahman (bib28) May 2021; 207
Vondrasek, Kessler, Czabaj (bib46) 2023
.
Drozdov, Xu, Frauenheim, Dumitrică (bib26) Nov. 2019; 152
Marlett (bib47) 2011; vol. 22
Mikhalchan, Gspann, Windle (bib51) Nov. 2016; 51
Damirchi, Radue, Kanhaiya, Heinz, Odegard, Van Duin (bib27) Sep. 2020; 124
Rao (bib14) Dec. 2018; 12
Jiang, Li, Fan (bib1) Oct. 2002; 419
Randjbaran, Zahari, Majid, Sultan, Mazlan (bib11) 2017; 21
Chazot, Jons, Hart (bib30) 2020; 30
Schulz (bib7) 2014
Li, Kinloch, Windle (bib3) Apr. 2004; 304
Schulz (bib10) 2019
Zhang, Lu, Zhou, Li (bib12) 2020; 32
Nam (bib38) Sep. 2014; 64
Vilatela, Elliott, Windle (bib21) Mar. 2011; 5
Deshpande (bib43) Oct. 2021; 37
Shimamura (bib9) Jul. 2014; 62
Kaiser (bib31) Jan. 2021; 13
Kim (bib32) Mar. 2021; 173
Natarajan (bib16) Jul. 2022; 225
Patil (bib44) Dec. 2020; 185
Watson, Hall, Guven (bib49) 2023-2032
Duong, Tran, Kopp, Myint, Peng (bib4) 2019
Jolowsky, Sweat, Park, Hao, Liang (bib19) Sep. 2018; 166
Cheng, Wang, Zhang, Liang (bib42) 2010; 6
Liu (bib20) Oct. 2010; 4
Jung, Cho, Lee, Oh, Park (bib24) Sep. 2018; 166
Kirmani, Ramachandran, Arias-Monje, Gulgunje, Kumar (bib33) 2022; 62
Lovejoy, Scotti, Miller, Heimann, Miller (bib48) Jan. 2019
Filleter, Beese, Roenbeck, Wei, Espinosa (bib18) 2014
Beese (bib23) Nov. 2014; 8
Taylor (bib2) Jan. 2021; 171
Lee (bib5) Jul. 2019; 10
Durso, Hart (bib50) Oct. 2022; 9
Randjbaran (10.1016/j.compositesb.2024.111465_bib11) 2017; 21
Zhang (10.1016/j.compositesb.2024.111465_bib12) 2020; 32
Taylor (10.1016/j.compositesb.2024.111465_bib2) 2021; 171
Liu (10.1016/j.compositesb.2024.111465_bib20) 2010; 4
Duong (10.1016/j.compositesb.2024.111465_bib4) 2019
Li (10.1016/j.compositesb.2024.111465_bib3) 2004; 304
Kim (10.1016/j.compositesb.2024.111465_bib34) 2023; 167
Natarajan (10.1016/j.compositesb.2024.111465_bib16) 2022; 225
Gaikwad (10.1016/j.compositesb.2024.111465_bib29) 2022; 5
Odegard (10.1016/j.compositesb.2024.111465_bib37) 2018; 166
Lee (10.1016/j.compositesb.2024.111465_bib5) 2019; 10
Rao (10.1016/j.compositesb.2024.111465_bib14) 2018; 12
10.1016/j.compositesb.2024.111465_bib35
Marlett (10.1016/j.compositesb.2024.111465_bib47) 2011; vol. 22
Lovejoy (10.1016/j.compositesb.2024.111465_bib48) 2019
Durso (10.1016/j.compositesb.2024.111465_bib50) 2022; 9
Fernández-Toribio (10.1016/j.compositesb.2024.111465_bib15) 2020; 156
Filleter (10.1016/j.compositesb.2024.111465_bib18) 2014
Wu (10.1016/j.compositesb.2024.111465_bib13) 2021; 15
Kim (10.1016/j.compositesb.2024.111465_bib32) 2021; 173
Jung (10.1016/j.compositesb.2024.111465_bib24) 2018; 166
Rahman (10.1016/j.compositesb.2024.111465_bib28) 2021; 207
Schulz (10.1016/j.compositesb.2024.111465_bib10) 2019
Mikhalchan (10.1016/j.compositesb.2024.111465_bib51) 2016; 51
Kirmani (10.1016/j.compositesb.2024.111465_bib33) 2022; 62
Jiang (10.1016/j.compositesb.2024.111465_bib1) 2002; 419
(10.1016/j.compositesb.2024.111465_bib40) 2017
Shimamura (10.1016/j.compositesb.2024.111465_bib9) 2014; 62
Coleman (10.1016/j.compositesb.2024.111465_bib41) 2006; 44
Chazot (10.1016/j.compositesb.2024.111465_bib30) 2020; 30
Vilatela (10.1016/j.compositesb.2024.111465_bib21) 2011; 5
Boncel (10.1016/j.compositesb.2024.111465_bib17) 2011; 5
Vondrasek (10.1016/j.compositesb.2024.111465_bib46) 2023
Watson (10.1016/j.compositesb.2024.111465_bib49) 2023
Smail (10.1016/j.compositesb.2024.111465_bib8) 2019; 152
Beese (10.1016/j.compositesb.2024.111465_bib23) 2014; 8
Nam (10.1016/j.compositesb.2024.111465_bib38) 2014; 64
Patil (10.1016/j.compositesb.2024.111465_bib44) 2020; 185
Pisani (10.1016/j.compositesb.2024.111465_bib45) 2021; 211
Drozdov (10.1016/j.compositesb.2024.111465_bib26) 2019; 152
Mikhalchan (10.1016/j.compositesb.2024.111465_bib36) 2019; 150
Schulz (10.1016/j.compositesb.2024.111465_bib7) 2014
Jolowsky (10.1016/j.compositesb.2024.111465_bib19) 2018; 166
Kim (10.1016/j.compositesb.2024.111465_bib25) 2016; 84
Deshpande (10.1016/j.compositesb.2024.111465_bib43) 2021; 37
(10.1016/j.compositesb.2024.111465_bib39) 2016
Evers (10.1016/j.compositesb.2024.111465_bib6) 2023; 6
Cheng (10.1016/j.compositesb.2024.111465_bib42) 2010; 6
Damirchi (10.1016/j.compositesb.2024.111465_bib27) 2020; 124
Kaiser (10.1016/j.compositesb.2024.111465_bib31) 2021; 13
References_xml – volume: 62
  start-page: 1187
  year: 2022
  end-page: 1196
  ident: bib33
  article-title: The effects of processing and carbon nanotube type on the impact strength of aerospace-grade bismaleimide based nanocomposites
  publication-title: Polym Eng Sci
– volume: 32
  year: 2020
  ident: bib12
  article-title: Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics
  publication-title: Adv Mater
– volume: 152
  start-page: 218
  year: Nov. 2019
  end-page: 232
  ident: bib8
  article-title: Direct spinning of CNT fibres: past, present and future scale up
  publication-title: Carbon
– volume: 6
  start-page: 11260
  year: Jul. 2023
  end-page: 11268
  ident: bib6
  article-title: Scalable high tensile modulus composite laminates using continuous carbon nanotube yarns for aerospace applications
  publication-title: ACS Appl Nano Mater
– volume: 84
  start-page: 256
  year: May 2016
  end-page: 265
  ident: bib25
  article-title: Assessment of carbon nanotube yarns as reinforcement for composite overwrapped pressure vessels
  publication-title: Composer Part Appl Sci Manuf
– volume: 211
  year: Apr. 2021
  ident: bib45
  article-title: Interfacial modeling of flattened CNT composites with cyanate ester and PEEK polymers
  publication-title: Composites Part B
– year: Dec. 11, 2017
  ident: bib40
  publication-title: ASTM D3039 standard test method for tensile properties of polymer matrix composite materials
– volume: 166
  start-page: 95
  year: Sep. 2018
  end-page: 108
  ident: bib24
  article-title: How can we make carbon nanotube yarn stronger?
  publication-title: Compos Sci Technol
– volume: 225
  year: Jul. 2022
  ident: bib16
  article-title: Processing-structure-mechanical property relationships in direct formed carbon nanotube articles and their composites: a review
  publication-title: Compos Sci Technol
– start-page: 573
  year: 2019
  end-page: 601
  ident: bib10
  article-title: Chapter 23 - industrializing nanotube superfiber materials
  publication-title: Nanotube superfiber materials
– year: Dec. 27, 2016
  ident: bib39
  publication-title: ASTM D5026 standard test method for plastics: dynamic mechanical properties: in tension
– volume: 44
  start-page: 1624
  year: Aug. 2006
  end-page: 1652
  ident: bib41
  article-title: Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites
  publication-title: Carbon
– volume: vol. 22
  year: 2011
  ident: bib47
  publication-title: Hexcel 8552 IM7 unidirectional prepreg 190 gsm & 35%RC qualification material property data report
– start-page: 33
  year: 2014
  end-page: 59
  ident: bib7
  article-title: Chapter 2 - new applications and techniques for nanotube superfiber development
  publication-title: Nanotube superfiber materials
– volume: 5
  start-page: 1921
  year: Mar. 2011
  end-page: 1927
  ident: bib21
  article-title: A model for the strength of yarn-like carbon nanotube fibers
  publication-title: ACS Nano
– start-page: 2329
  year: 2023
  end-page: 2343
  ident: bib46
  article-title: Sources of variability in small-scale tensile testing of carbon fiber reinforced resins
  publication-title: Proceedings of the American Society for Composites
– start-page: 3
  year: 2019
  end-page: 29
  ident: bib4
  article-title: Chapter 1 - direct spinning of horizontally aligned carbon nanotube fibers and films from the floating catalyst method
  publication-title: Nanotube superfiber materials
– volume: 13
  start-page: 261
  year: Jan. 2021
  end-page: 271
  ident: bib31
  article-title: Substrate adhesion evolves non-monotonically with processing time in millimeter-scale aligned carbon nanotube arrays
  publication-title: Nanoscale
– volume: 419
  year: Oct. 2002
  ident: bib1
  article-title: Spinning continuous carbon nanotube yarns
  publication-title: Nature
– volume: 124
  start-page: 20488
  year: Sep. 2020
  end-page: 20497
  ident: bib27
  article-title: ReaxFF reactive force field study of polymerization of a polymer matrix in a carbon nanotube-composite system
  publication-title: J Phys Chem C
– volume: 4
  start-page: 5827
  year: Oct. 2010
  end-page: 5834
  ident: bib20
  article-title: Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns
  publication-title: ACS Nano
– year: 2023-2032
  ident: bib49
  article-title: Multiscale peridynamic modeling of carbon nanotube-based composites
  publication-title: AIAA SCITECH 2023 forum
– volume: 173
  start-page: 857
  year: Mar. 2021
  end-page: 869
  ident: bib32
  article-title: Modifying carbon nanotube fibers: a study relating apparent interfacial shear strength and failure mode
  publication-title: Carbon
– volume: 167
  year: Apr. 2023
  ident: bib34
  article-title: Multi-scale hierarchical carbon nanotube fiber reinforced composites towards enhancement of axial/transverse strength and fracture toughness
  publication-title: Composer Part Appl Sci Manuf
– volume: 9
  year: Oct. 2022
  ident: bib50
  article-title: Purification of dense carbon nanotube networks by subcritical hydrothermal processing
  publication-title: Carbon Trends
– volume: 304
  start-page: 276
  year: Apr. 2004
  end-page: 278
  ident: bib3
  article-title: Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis
  publication-title: Science
– volume: 62
  start-page: 32
  year: Jul. 2014
  end-page: 38
  ident: bib9
  article-title: Tensile mechanical properties of carbon nanotube/epoxy composite fabricated by pultrusion of carbon nanotube spun yarn preform
  publication-title: Composer Part Appl Sci Manuf
– volume: 37
  start-page: 11526
  year: Oct. 2021
  end-page: 11534
  ident: bib43
  article-title: Prediction of the interfacial properties of high-performance polymers and flattened CNT-reinforced composites using molecular dynamics
  publication-title: Langmuir
– volume: 51
  start-page: 10005
  year: Nov. 2016
  end-page: 10025
  ident: bib51
  article-title: Aligned carbon nanotube–epoxy composites: the effect of nanotube organization on strength, stiffness, and toughness
  publication-title: J Mater Sci
– volume: 166
  start-page: 1
  year: Sep. 2018
  end-page: 2
  ident: bib37
  article-title: Special issue on carbon nanotube composites
  publication-title: Compos Sci Technol
– volume: 166
  start-page: 125
  year: Sep. 2018
  end-page: 130
  ident: bib19
  article-title: Microstructure evolution and self-assembling of CNT networks during mechanical stretching and mechanical properties of highly aligned CNT composites
  publication-title: Compos Sci Technol
– start-page: 61
  year: 2014
  end-page: 85
  ident: bib18
  article-title: Chapter 3 - tailoring the mechanical properties of carbon nanotube fibers
  publication-title: Nanotube superfiber materials
– volume: 12
  start-page: 11756
  year: Dec. 2018
  end-page: 11784
  ident: bib14
  article-title: Carbon nanotubes and related nanomaterials: critical advances and challenges for synthesis toward mainstream commercial applications
  publication-title: ACS Nano
– volume: 207
  year: May 2021
  ident: bib28
  article-title: A machine learning framework for predicting the shear strength of carbon nanotube-polymer interfaces based on molecular dynamics simulation data
  publication-title: Compos Sci Technol
– volume: 152
  start-page: 198
  year: Nov. 2019
  end-page: 205
  ident: bib26
  article-title: Densely-packed bundles of collapsed carbon nanotubes: atomistic and mesoscopic distinct element method modeling
  publication-title: Carbon
– year: Jan. 2019
  ident: bib48
  article-title: Characterization of IM7/8552 thin-ply and hybrid thin-ply composites
  publication-title: AIAA scitech 2019 forum
– volume: 5
  start-page: 5915
  year: Apr. 2022
  end-page: 5924
  ident: bib29
  article-title: Molecular dynamics modeling of interfacial interactions between flattened carbon nanotubes and amorphous carbon: implications for ultra-lightweight composites
  publication-title: ACS Appl Nano Mater
– volume: 64
  start-page: 194
  year: Sep. 2014
  end-page: 202
  ident: bib38
  article-title: Effects of stretching on mechanical properties of aligned multi-walled carbon nanotube/epoxy composites
  publication-title: Composer Part Appl Sci Manuf
– volume: 8
  start-page: 11454
  year: Nov. 2014
  end-page: 11466
  ident: bib23
  article-title: Key factors limiting carbon nanotube yarn strength: exploring processing-structure-property relationships
  publication-title: ACS Nano
– volume: 156
  start-page: 430
  year: Jan. 2020
  end-page: 437
  ident: bib15
  article-title: Understanding cooperative loading in carbon nanotube fibres through in-situ structural studies during stretching
  publication-title: Carbon
– volume: 6
  start-page: 763
  year: 2010
  end-page: 767
  ident: bib42
  article-title: Functionalized carbon-nanotube sheet/bismaleimide nanocomposites: mechanical and electrical performance beyond carbon-fiber composites
  publication-title: Small
– volume: 150
  start-page: 191
  year: Sep. 2019
  end-page: 215
  ident: bib36
  article-title: A perspective on high-performance CNT fibres for structural composites
  publication-title: Carbon
– volume: 21
  year: 2017
  ident: bib11
  article-title: Reasons of adding carbon nanotubes into composite systems - review paper
  publication-title: Mech. Mech. Eng.
– volume: 15
  start-page: 7946
  year: May 2021
  end-page: 7974
  ident: bib13
  article-title: Application-driven carbon nanotube functional materials
  publication-title: ACS Nano
– reference: .
– volume: 171
  start-page: 689
  year: Jan. 2021
  end-page: 694
  ident: bib2
  article-title: Improved properties, increased production, and the path to broad adoption of carbon nanotube fibers
  publication-title: Carbon
– volume: 30
  year: 2020
  ident: bib30
  article-title: In situ interfacial polymerization: a technique for rapid formation of highly loaded carbon nanotube-polymer composites
  publication-title: Adv Funct Mater
– reference: Kim J.-W., et al. Undirectional carbon nanotube yarn/polymer composites. NASA/TM-2018-220081 Jul. 2018. Document ID 20180006317. [Online]. Available:
– volume: 185
  year: Dec. 2020
  ident: bib44
  article-title: Interfacial characteristics between flattened CNT stacks and polyimides: a molecular dynamics study
  publication-title: Comput Mater Sci
– volume: 5
  start-page: 9339
  year: Dec. 2011
  end-page: 9344
  ident: bib17
  article-title: Enhancement of the mechanical properties of directly spun CNT fibers by chemical treatment
  publication-title: ACS Nano
– volume: 10
  year: Jul. 2019
  ident: bib5
  article-title: Direct spinning and densification method for high-performance carbon nanotube fibers
  publication-title: Nat Commun
– volume: 167
  year: 2023
  ident: 10.1016/j.compositesb.2024.111465_bib34
  article-title: Multi-scale hierarchical carbon nanotube fiber reinforced composites towards enhancement of axial/transverse strength and fracture toughness
  publication-title: Composer Part Appl Sci Manuf
– ident: 10.1016/j.compositesb.2024.111465_bib35
– start-page: 573
  year: 2019
  ident: 10.1016/j.compositesb.2024.111465_bib10
  article-title: Chapter 23 - industrializing nanotube superfiber materials
– volume: 32
  issue: 5
  year: 2020
  ident: 10.1016/j.compositesb.2024.111465_bib12
  article-title: Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics
  publication-title: Adv Mater
  doi: 10.1002/adma.201902028
– volume: 62
  start-page: 1187
  issue: 4
  year: 2022
  ident: 10.1016/j.compositesb.2024.111465_bib33
  article-title: The effects of processing and carbon nanotube type on the impact strength of aerospace-grade bismaleimide based nanocomposites
  publication-title: Polym Eng Sci
  doi: 10.1002/pen.25917
– volume: 30
  issue: 52
  year: 2020
  ident: 10.1016/j.compositesb.2024.111465_bib30
  article-title: In situ interfacial polymerization: a technique for rapid formation of highly loaded carbon nanotube-polymer composites
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202005499
– volume: 173
  start-page: 857
  year: 2021
  ident: 10.1016/j.compositesb.2024.111465_bib32
  article-title: Modifying carbon nanotube fibers: a study relating apparent interfacial shear strength and failure mode
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.11.055
– volume: 9
  year: 2022
  ident: 10.1016/j.compositesb.2024.111465_bib50
  article-title: Purification of dense carbon nanotube networks by subcritical hydrothermal processing
  publication-title: Carbon Trends
  doi: 10.1016/j.cartre.2022.100206
– volume: 152
  start-page: 198
  year: 2019
  ident: 10.1016/j.compositesb.2024.111465_bib26
  article-title: Densely-packed bundles of collapsed carbon nanotubes: atomistic and mesoscopic distinct element method modeling
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.05.036
– volume: 166
  start-page: 95
  year: 2018
  ident: 10.1016/j.compositesb.2024.111465_bib24
  article-title: How can we make carbon nanotube yarn stronger?
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2018.02.010
– volume: 12
  start-page: 11756
  issue: 12
  year: 2018
  ident: 10.1016/j.compositesb.2024.111465_bib14
  article-title: Carbon nanotubes and related nanomaterials: critical advances and challenges for synthesis toward mainstream commercial applications
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b06511
– start-page: 3
  year: 2019
  ident: 10.1016/j.compositesb.2024.111465_bib4
  article-title: Chapter 1 - direct spinning of horizontally aligned carbon nanotube fibers and films from the floating catalyst method
– volume: 21
  issue: 3
  year: 2017
  ident: 10.1016/j.compositesb.2024.111465_bib11
  article-title: Reasons of adding carbon nanotubes into composite systems - review paper
  publication-title: Mech. Mech. Eng.
– start-page: 2329
  year: 2023
  ident: 10.1016/j.compositesb.2024.111465_bib46
  article-title: Sources of variability in small-scale tensile testing of carbon fiber reinforced resins
  publication-title: Proceedings of the American Society for Composites
– volume: 5
  start-page: 5915
  issue: 4
  year: 2022
  ident: 10.1016/j.compositesb.2024.111465_bib29
  article-title: Molecular dynamics modeling of interfacial interactions between flattened carbon nanotubes and amorphous carbon: implications for ultra-lightweight composites
  publication-title: ACS Appl Nano Mater
  doi: 10.1021/acsanm.2c01280
– volume: 5
  start-page: 9339
  issue: 12
  year: 2011
  ident: 10.1016/j.compositesb.2024.111465_bib17
  article-title: Enhancement of the mechanical properties of directly spun CNT fibers by chemical treatment
  publication-title: ACS Nano
  doi: 10.1021/nn202685x
– volume: 64
  start-page: 194
  year: 2014
  ident: 10.1016/j.compositesb.2024.111465_bib38
  article-title: Effects of stretching on mechanical properties of aligned multi-walled carbon nanotube/epoxy composites
  publication-title: Composer Part Appl Sci Manuf
  doi: 10.1016/j.compositesa.2014.05.013
– volume: 10
  issue: 1
  year: 2019
  ident: 10.1016/j.compositesb.2024.111465_bib5
  article-title: Direct spinning and densification method for high-performance carbon nanotube fibers
  publication-title: Nat Commun
– volume: 5
  start-page: 1921
  issue: 3
  year: 2011
  ident: 10.1016/j.compositesb.2024.111465_bib21
  article-title: A model for the strength of yarn-like carbon nanotube fibers
  publication-title: ACS Nano
  doi: 10.1021/nn102925a
– volume: 44
  start-page: 1624
  issue: 9
  year: 2006
  ident: 10.1016/j.compositesb.2024.111465_bib41
  article-title: Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites
  publication-title: Carbon
  doi: 10.1016/j.carbon.2006.02.038
– volume: vol. 22
  year: 2011
  ident: 10.1016/j.compositesb.2024.111465_bib47
– volume: 150
  start-page: 191
  year: 2019
  ident: 10.1016/j.compositesb.2024.111465_bib36
  article-title: A perspective on high-performance CNT fibres for structural composites
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.04.113
– year: 2023
  ident: 10.1016/j.compositesb.2024.111465_bib49
  article-title: Multiscale peridynamic modeling of carbon nanotube-based composites
– volume: 15
  start-page: 7946
  issue: 5
  year: 2021
  ident: 10.1016/j.compositesb.2024.111465_bib13
  article-title: Application-driven carbon nanotube functional materials
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c10662
– volume: 13
  start-page: 261
  issue: 1
  year: 2021
  ident: 10.1016/j.compositesb.2024.111465_bib31
  article-title: Substrate adhesion evolves non-monotonically with processing time in millimeter-scale aligned carbon nanotube arrays
  publication-title: Nanoscale
  doi: 10.1039/D0NR05469K
– volume: 6
  start-page: 763
  issue: 6
  year: 2010
  ident: 10.1016/j.compositesb.2024.111465_bib42
  article-title: Functionalized carbon-nanotube sheet/bismaleimide nanocomposites: mechanical and electrical performance beyond carbon-fiber composites
  publication-title: Small
  doi: 10.1002/smll.200901957
– volume: 166
  start-page: 125
  year: 2018
  ident: 10.1016/j.compositesb.2024.111465_bib19
  article-title: Microstructure evolution and self-assembling of CNT networks during mechanical stretching and mechanical properties of highly aligned CNT composites
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2018.04.003
– volume: 51
  start-page: 10005
  issue: 22
  year: 2016
  ident: 10.1016/j.compositesb.2024.111465_bib51
  article-title: Aligned carbon nanotube–epoxy composites: the effect of nanotube organization on strength, stiffness, and toughness
  publication-title: J Mater Sci
  doi: 10.1007/s10853-016-0228-6
– volume: 419
  issue: 6909
  year: 2002
  ident: 10.1016/j.compositesb.2024.111465_bib1
  article-title: Spinning continuous carbon nanotube yarns
  publication-title: Nature
  doi: 10.1038/419801a
– volume: 8
  start-page: 11454
  issue: 11
  year: 2014
  ident: 10.1016/j.compositesb.2024.111465_bib23
  article-title: Key factors limiting carbon nanotube yarn strength: exploring processing-structure-property relationships
  publication-title: ACS Nano
  doi: 10.1021/nn5045504
– volume: 171
  start-page: 689
  year: 2021
  ident: 10.1016/j.compositesb.2024.111465_bib2
  article-title: Improved properties, increased production, and the path to broad adoption of carbon nanotube fibers
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.07.058
– volume: 185
  year: 2020
  ident: 10.1016/j.compositesb.2024.111465_bib44
  article-title: Interfacial characteristics between flattened CNT stacks and polyimides: a molecular dynamics study
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2020.109970
– start-page: 61
  year: 2014
  ident: 10.1016/j.compositesb.2024.111465_bib18
  article-title: Chapter 3 - tailoring the mechanical properties of carbon nanotube fibers
– volume: 152
  start-page: 218
  year: 2019
  ident: 10.1016/j.compositesb.2024.111465_bib8
  article-title: Direct spinning of CNT fibres: past, present and future scale up
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.05.024
– year: 2017
  ident: 10.1016/j.compositesb.2024.111465_bib40
– volume: 6
  start-page: 11260
  issue: 13
  year: 2023
  ident: 10.1016/j.compositesb.2024.111465_bib6
  article-title: Scalable high tensile modulus composite laminates using continuous carbon nanotube yarns for aerospace applications
  publication-title: ACS Appl Nano Mater
  doi: 10.1021/acsanm.3c01266
– volume: 4
  start-page: 5827
  issue: 10
  year: 2010
  ident: 10.1016/j.compositesb.2024.111465_bib20
  article-title: Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns
  publication-title: ACS Nano
  doi: 10.1021/nn1017318
– year: 2019
  ident: 10.1016/j.compositesb.2024.111465_bib48
  article-title: Characterization of IM7/8552 thin-ply and hybrid thin-ply composites
– volume: 211
  year: 2021
  ident: 10.1016/j.compositesb.2024.111465_bib45
  article-title: Interfacial modeling of flattened CNT composites with cyanate ester and PEEK polymers
  publication-title: Composites Part B
  doi: 10.1016/j.compositesb.2021.108672
– volume: 156
  start-page: 430
  year: 2020
  ident: 10.1016/j.compositesb.2024.111465_bib15
  article-title: Understanding cooperative loading in carbon nanotube fibres through in-situ structural studies during stretching
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.09.070
– volume: 166
  start-page: 1
  year: 2018
  ident: 10.1016/j.compositesb.2024.111465_bib37
  article-title: Special issue on carbon nanotube composites
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2018.07.013
– volume: 124
  start-page: 20488
  issue: 37
  year: 2020
  ident: 10.1016/j.compositesb.2024.111465_bib27
  article-title: ReaxFF reactive force field study of polymerization of a polymer matrix in a carbon nanotube-composite system
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.0c03509
– volume: 304
  start-page: 276
  issue: 5668
  year: 2004
  ident: 10.1016/j.compositesb.2024.111465_bib3
  article-title: Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis
  publication-title: Science
  doi: 10.1126/science.1094982
– volume: 225
  year: 2022
  ident: 10.1016/j.compositesb.2024.111465_bib16
  article-title: Processing-structure-mechanical property relationships in direct formed carbon nanotube articles and their composites: a review
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2022.109501
– volume: 84
  start-page: 256
  year: 2016
  ident: 10.1016/j.compositesb.2024.111465_bib25
  article-title: Assessment of carbon nanotube yarns as reinforcement for composite overwrapped pressure vessels
  publication-title: Composer Part Appl Sci Manuf
  doi: 10.1016/j.compositesa.2016.02.003
– start-page: 33
  year: 2014
  ident: 10.1016/j.compositesb.2024.111465_bib7
  article-title: Chapter 2 - new applications and techniques for nanotube superfiber development
– year: 2016
  ident: 10.1016/j.compositesb.2024.111465_bib39
– volume: 207
  year: 2021
  ident: 10.1016/j.compositesb.2024.111465_bib28
  article-title: A machine learning framework for predicting the shear strength of carbon nanotube-polymer interfaces based on molecular dynamics simulation data
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2020.108627
– volume: 62
  start-page: 32
  year: 2014
  ident: 10.1016/j.compositesb.2024.111465_bib9
  article-title: Tensile mechanical properties of carbon nanotube/epoxy composite fabricated by pultrusion of carbon nanotube spun yarn preform
  publication-title: Composer Part Appl Sci Manuf
  doi: 10.1016/j.compositesa.2014.03.011
– volume: 37
  start-page: 11526
  issue: 39
  year: 2021
  ident: 10.1016/j.compositesb.2024.111465_bib43
  article-title: Prediction of the interfacial properties of high-performance polymers and flattened CNT-reinforced composites using molecular dynamics
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.1c01800
SSID ssj0004532
Score 2.433533
Snippet Unidirectional, cross-ply, and quasi-isotropic composite laminates are made from continuous carbon nanotube (CNT) yarns with bismaleimide (BMI) resin. The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111465
SubjectTerms A. Laminates
A. nano-structures
A. Yarn
D. Mechanical testing
Title Characterization of multidirectional carbon-nanotube-yarn/bismaleimide laminates under tensile loading
URI https://dx.doi.org/10.1016/j.compositesb.2024.111465
Volume 280
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jguhB_MT5MSJ4jW3T9Au8jOGYirvoYLeSpClUZju67eDFv928tJ0VBAWPDXnQvjze-yX9vV8QunbcFAQwKXF8kRAmpUs4d20iPRoJGsGaw4H-08QfT9nDzJt10LDphQFaZZ37q5xusnU9YtXetBZZZj07ID7n-iGwIGlg8jBjAUT5zYfTUgw3l5TBZAKzt9HVF8cLaNvAjVJLobeKlEECYVBnfqpRrboz2kd7NWDEg-qdDlBH5YdotyUjeITS4UZ1uWqqxEWKDVOw-jhz2oclL0WRk5znxWotFHnnZW6JbPmmS0T2liUK6-DIcsCeGDrLSmzI7XM9Xhii_TGaju5ehmNS359ApEudFWEqCEXCEiVkqJGWBh96r-EnirnS9mwVhSKSPNK7aSk86fo-41zSJEilHUaCa-Bygrp5katThBMOPwg1fOC2YC53BE01dJNplKTabY7sobDxWCxrcXG442IeNyyy17jl7BicHVfO7iG6MV1UCht_MbptliX-Fi6xrgS_m5_9z_wc7cBTxdq9QN1VuVaXGpusRN8EXx9tDe4fx5NP1cXocw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB5EwcdBfOL6jKDHuG2arS3oQXywPnYvKnirSZpCZbeV3RXx4p_yDzrTdnUFQUG8pgyEL5OZSfrlG4Ad10tIAFNw19cxl8Z4XCnP4aYhQi1CWnO60G-1_eatvLhr3I3B2_AtDNEqq9hfxvQiWlcj9QrN-mOa1q9dEp_z_IBYkAL3dMWsvLQvz3hu6x-en-Ai7wpxdnpz3ORVawFuPOEOuLT7gY5lbLUJsAjBvIxluB9b6Rmn4dgw0KFRIR40jW4Yz_elUkbE-4lxglCrkBSYMO5PSAwX1DZh79UdkSgvuqLR7DhNbxK2P0llxBMnMpbtazybCkkRS1Ji-y4pjiS6szmYrSpUdlSCMA9jNluAmRHdwkVIjj9knstXnCxPWEFNLNEsrheZUT2dZzxTWT540pa_qF5W12m_izkp7aaxZeiNaUbFLqOnbD1WsOk7OJ4XzP4luP0XVJdhPMszuwIsVvRHEusV5WjpKVeLBGtFk4RxgrC5pgbBELHIVGrm1FSjEw1paw_RCNgRgR2VYNdAfJg-lpIevzE6GC5L9MU_I0w9P5uv_s18C6aaN62r6Oq8fbkG0_SlpAyvw_ig92Q3sDAa6M3CERnc_7fnvwOoNCUW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+multidirectional+carbon-nanotube-yarn%2Fbismaleimide+laminates+under+tensile+loading&rft.jtitle=Composites.+Part+B%2C+Engineering&rft.au=Vondrasek%2C+Britannia&rft.au=Evers%2C+Cecil&rft.au=Jolowsky%2C+Claire&rft.au=Odegard%2C+Gregory+M.&rft.date=2024-07-01&rft.issn=1359-8368&rft.volume=280&rft.spage=111465&rft_id=info:doi/10.1016%2Fj.compositesb.2024.111465&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compositesb_2024_111465
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-8368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-8368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-8368&client=summon