Characterization of multidirectional carbon-nanotube-yarn/bismaleimide laminates under tensile loading
Unidirectional, cross-ply, and quasi-isotropic composite laminates are made from continuous carbon nanotube (CNT) yarns with bismaleimide (BMI) resin. The laminates are highly graphitic and have low resin content. Elastic modulus and strength of CNT/BMI laminates and IM7/8552 carbon-epoxy laminates...
Saved in:
Published in | Composites. Part B, Engineering Vol. 280; p. 111465 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Unidirectional, cross-ply, and quasi-isotropic composite laminates are made from continuous carbon nanotube (CNT) yarns with bismaleimide (BMI) resin. The laminates are highly graphitic and have low resin content. Elastic modulus and strength of CNT/BMI laminates and IM7/8552 carbon-epoxy laminates are measured using a scaled-down tensile test method. For CNT/BMI laminates, the variation in the measured tensile modulus is high and the laminates fail in a more gradual manner than IM7/8552 laminates. Microscopy of the failed specimens indicates that intra-yarn splitting is a common feature in all CNT/BMI laminates tested. The results of this investigation will inform the development of CNT yarn reinforced composites for structural applications.
[Display omitted]
•Unidirectional, cross-ply, and quasi-isotropic laminates are tested in tension.•A small-scale tensile testing method is developed to measure laminate properties.•IM7 carbon fiber and CNT yarn reinforced laminates are both tested.•CNT yarn laminates fail more gradually than IM7 laminates.•Intra-yarn splitting is a common feature of failed CNT yarn laminates. |
---|---|
AbstractList | Unidirectional, cross-ply, and quasi-isotropic composite laminates are made from continuous carbon nanotube (CNT) yarns with bismaleimide (BMI) resin. The laminates are highly graphitic and have low resin content. Elastic modulus and strength of CNT/BMI laminates and IM7/8552 carbon-epoxy laminates are measured using a scaled-down tensile test method. For CNT/BMI laminates, the variation in the measured tensile modulus is high and the laminates fail in a more gradual manner than IM7/8552 laminates. Microscopy of the failed specimens indicates that intra-yarn splitting is a common feature in all CNT/BMI laminates tested. The results of this investigation will inform the development of CNT yarn reinforced composites for structural applications.
[Display omitted]
•Unidirectional, cross-ply, and quasi-isotropic laminates are tested in tension.•A small-scale tensile testing method is developed to measure laminate properties.•IM7 carbon fiber and CNT yarn reinforced laminates are both tested.•CNT yarn laminates fail more gradually than IM7 laminates.•Intra-yarn splitting is a common feature of failed CNT yarn laminates. |
ArticleNumber | 111465 |
Author | Evers, Cecil Vondrasek, Britannia Odegard, Gregory M. Jolowsky, Claire Czabaj, Michael Zhiyong Liang |
Author_xml | – sequence: 1 givenname: Britannia orcidid: 0000-0002-9991-7446 surname: Vondrasek fullname: Vondrasek, Britannia email: bvon@vt.edu organization: Utah Composites Laboratory, Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA – sequence: 2 givenname: Cecil orcidid: 0000-0003-3226-1267 surname: Evers fullname: Evers, Cecil organization: High Performance Materials Institute, Department of Industrial and Manufacturing Engineering, Florida State University, Tallahassee, FL, 32310, USA – sequence: 3 givenname: Claire surname: Jolowsky fullname: Jolowsky, Claire organization: High Performance Materials Institute, Department of Industrial and Manufacturing Engineering, Florida State University, Tallahassee, FL, 32310, USA – sequence: 4 givenname: Gregory M. surname: Odegard fullname: Odegard, Gregory M. organization: Mechanical Engineering – Engineering Mechanics, Michigan Technological University, Houghton, MI, 49931, USA – sequence: 5 surname: Zhiyong Liang fullname: Zhiyong Liang organization: High Performance Materials Institute, Department of Industrial and Manufacturing Engineering, Florida State University, Tallahassee, FL, 32310, USA – sequence: 6 givenname: Michael surname: Czabaj fullname: Czabaj, Michael organization: Utah Composites Laboratory, Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA |
BookMark | eNqNkMFqGzEQhkVxoImTd9g-wDrSSruWTqWYtgkYcmnPYiTNpmN2JSPJhfTpu657CDnlNMMP_8fMd8NWMUVk7JPgG8HFcH_Y-DQfU6GKxW063qmNEEIN_Qd2LfTWtIIPZrXssjetloP-yG5KOXDOVS-7azbufkEGXzHTH6iUYpPGZj5NlQJl9OcEpsZDdim2EWKqJ4ftC-R476jMMCHNFLCZYKYIyxHNKQbMTcVYaFryBIHi8y27GmEqePd_rtnPb19_7B7a_dP3x92XfetlJ2qrcKtdUAGd11xLPijV6SGgkp73HI12xoNBJ73rvRwGBeC7sB0918aBMXLNPl-4PqdSMo7WU_33V81AkxXcnrXZg32lzZ612Yu2hWDeEI6ZZsgv7-ruLl1cXvxNmG3xhNHjxaUNid5B-QvlU5YU |
CitedBy_id | crossref_primary_10_1016_j_compscitech_2025_111137 crossref_primary_10_1016_j_tws_2025_113189 crossref_primary_10_1186_s11671_024_04087_5 |
Cites_doi | 10.1002/adma.201902028 10.1002/pen.25917 10.1002/adfm.202005499 10.1016/j.carbon.2020.11.055 10.1016/j.cartre.2022.100206 10.1016/j.carbon.2019.05.036 10.1016/j.compscitech.2018.02.010 10.1021/acsnano.8b06511 10.1021/acsanm.2c01280 10.1021/nn202685x 10.1016/j.compositesa.2014.05.013 10.1021/nn102925a 10.1016/j.carbon.2006.02.038 10.1016/j.carbon.2019.04.113 10.1021/acsnano.0c10662 10.1039/D0NR05469K 10.1002/smll.200901957 10.1016/j.compscitech.2018.04.003 10.1007/s10853-016-0228-6 10.1038/419801a 10.1021/nn5045504 10.1016/j.carbon.2020.07.058 10.1016/j.commatsci.2020.109970 10.1016/j.carbon.2019.05.024 10.1021/acsanm.3c01266 10.1021/nn1017318 10.1016/j.compositesb.2021.108672 10.1016/j.carbon.2019.09.070 10.1016/j.compscitech.2018.07.013 10.1021/acs.jpcc.0c03509 10.1126/science.1094982 10.1016/j.compscitech.2022.109501 10.1016/j.compositesa.2016.02.003 10.1016/j.compscitech.2020.108627 10.1016/j.compositesa.2014.03.011 10.1021/acs.langmuir.1c01800 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.compositesb.2024.111465 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-1069 |
ExternalDocumentID | 10_1016_j_compositesb_2024_111465 S1359836824002762 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JJJVA KOM MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSM SST SSZ T5K ZMT ~02 ~G- 29F 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AI. AIIUN ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB HZ~ M41 R2- SSH VH1 |
ID | FETCH-LOGICAL-c321t-4e78bd4debc80830644286de43c050e98b9ca9eb3cb5c3664aac2d7fc089ba993 |
IEDL.DBID | .~1 |
ISSN | 1359-8368 |
IngestDate | Tue Jul 01 02:03:23 EDT 2025 Thu Apr 24 23:09:33 EDT 2025 Sat Apr 27 15:44:34 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | D. Mechanical testing A. nano-structures A. Yarn A. Laminates |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c321t-4e78bd4debc80830644286de43c050e98b9ca9eb3cb5c3664aac2d7fc089ba993 |
ORCID | 0000-0002-9991-7446 0000-0003-3226-1267 |
ParticipantIDs | crossref_citationtrail_10_1016_j_compositesb_2024_111465 crossref_primary_10_1016_j_compositesb_2024_111465 elsevier_sciencedirect_doi_10_1016_j_compositesb_2024_111465 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 2024-07-00 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Composites. Part B, Engineering |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Gaikwad, Kowalik, Jensen, van Duin, Odegard (bib29) Apr. 2022; 5 Odegard, Liang, Wise (bib37) Sep. 2018; 166 Kim J.-W., et al. Undirectional carbon nanotube yarn/polymer composites. NASA/TM-2018-220081 Jul. 2018. Document ID 20180006317. [Online]. Available Smail, Boies, Windle (bib8) Nov. 2019; 152 Coleman, Khan, Blau, Gun’ko (bib41) Aug. 2006; 44 Evers (bib6) Jul. 2023; 6 Wu, Zhao, Shang, Chang, Dai, Cao (bib13) May 2021; 15 Fernández-Toribio, Mikhalchan, Santos, Ridruejo, Vilatela (bib15) Jan. 2020; 156 Mikhalchan, Vilatela (bib36) Sep. 2019; 150 (bib39) Dec. 27, 2016 (bib40) Dec. 11, 2017 Kim (bib34) Apr. 2023; 167 Boncel, Sundaram, Windle, Koziol (bib17) Dec. 2011; 5 Kim (bib25) May 2016; 84 Pisani, Radue, Patil, Odegard (bib45) Apr. 2021; 211 Rahman (bib28) May 2021; 207 Vondrasek, Kessler, Czabaj (bib46) 2023 . Drozdov, Xu, Frauenheim, Dumitrică (bib26) Nov. 2019; 152 Marlett (bib47) 2011; vol. 22 Mikhalchan, Gspann, Windle (bib51) Nov. 2016; 51 Damirchi, Radue, Kanhaiya, Heinz, Odegard, Van Duin (bib27) Sep. 2020; 124 Rao (bib14) Dec. 2018; 12 Jiang, Li, Fan (bib1) Oct. 2002; 419 Randjbaran, Zahari, Majid, Sultan, Mazlan (bib11) 2017; 21 Chazot, Jons, Hart (bib30) 2020; 30 Schulz (bib7) 2014 Li, Kinloch, Windle (bib3) Apr. 2004; 304 Schulz (bib10) 2019 Zhang, Lu, Zhou, Li (bib12) 2020; 32 Nam (bib38) Sep. 2014; 64 Vilatela, Elliott, Windle (bib21) Mar. 2011; 5 Deshpande (bib43) Oct. 2021; 37 Shimamura (bib9) Jul. 2014; 62 Kaiser (bib31) Jan. 2021; 13 Kim (bib32) Mar. 2021; 173 Natarajan (bib16) Jul. 2022; 225 Patil (bib44) Dec. 2020; 185 Watson, Hall, Guven (bib49) 2023-2032 Duong, Tran, Kopp, Myint, Peng (bib4) 2019 Jolowsky, Sweat, Park, Hao, Liang (bib19) Sep. 2018; 166 Cheng, Wang, Zhang, Liang (bib42) 2010; 6 Liu (bib20) Oct. 2010; 4 Jung, Cho, Lee, Oh, Park (bib24) Sep. 2018; 166 Kirmani, Ramachandran, Arias-Monje, Gulgunje, Kumar (bib33) 2022; 62 Lovejoy, Scotti, Miller, Heimann, Miller (bib48) Jan. 2019 Filleter, Beese, Roenbeck, Wei, Espinosa (bib18) 2014 Beese (bib23) Nov. 2014; 8 Taylor (bib2) Jan. 2021; 171 Lee (bib5) Jul. 2019; 10 Durso, Hart (bib50) Oct. 2022; 9 Randjbaran (10.1016/j.compositesb.2024.111465_bib11) 2017; 21 Zhang (10.1016/j.compositesb.2024.111465_bib12) 2020; 32 Taylor (10.1016/j.compositesb.2024.111465_bib2) 2021; 171 Liu (10.1016/j.compositesb.2024.111465_bib20) 2010; 4 Duong (10.1016/j.compositesb.2024.111465_bib4) 2019 Li (10.1016/j.compositesb.2024.111465_bib3) 2004; 304 Kim (10.1016/j.compositesb.2024.111465_bib34) 2023; 167 Natarajan (10.1016/j.compositesb.2024.111465_bib16) 2022; 225 Gaikwad (10.1016/j.compositesb.2024.111465_bib29) 2022; 5 Odegard (10.1016/j.compositesb.2024.111465_bib37) 2018; 166 Lee (10.1016/j.compositesb.2024.111465_bib5) 2019; 10 Rao (10.1016/j.compositesb.2024.111465_bib14) 2018; 12 10.1016/j.compositesb.2024.111465_bib35 Marlett (10.1016/j.compositesb.2024.111465_bib47) 2011; vol. 22 Lovejoy (10.1016/j.compositesb.2024.111465_bib48) 2019 Durso (10.1016/j.compositesb.2024.111465_bib50) 2022; 9 Fernández-Toribio (10.1016/j.compositesb.2024.111465_bib15) 2020; 156 Filleter (10.1016/j.compositesb.2024.111465_bib18) 2014 Wu (10.1016/j.compositesb.2024.111465_bib13) 2021; 15 Kim (10.1016/j.compositesb.2024.111465_bib32) 2021; 173 Jung (10.1016/j.compositesb.2024.111465_bib24) 2018; 166 Rahman (10.1016/j.compositesb.2024.111465_bib28) 2021; 207 Schulz (10.1016/j.compositesb.2024.111465_bib10) 2019 Mikhalchan (10.1016/j.compositesb.2024.111465_bib51) 2016; 51 Kirmani (10.1016/j.compositesb.2024.111465_bib33) 2022; 62 Jiang (10.1016/j.compositesb.2024.111465_bib1) 2002; 419 (10.1016/j.compositesb.2024.111465_bib40) 2017 Shimamura (10.1016/j.compositesb.2024.111465_bib9) 2014; 62 Coleman (10.1016/j.compositesb.2024.111465_bib41) 2006; 44 Chazot (10.1016/j.compositesb.2024.111465_bib30) 2020; 30 Vilatela (10.1016/j.compositesb.2024.111465_bib21) 2011; 5 Boncel (10.1016/j.compositesb.2024.111465_bib17) 2011; 5 Vondrasek (10.1016/j.compositesb.2024.111465_bib46) 2023 Watson (10.1016/j.compositesb.2024.111465_bib49) 2023 Smail (10.1016/j.compositesb.2024.111465_bib8) 2019; 152 Beese (10.1016/j.compositesb.2024.111465_bib23) 2014; 8 Nam (10.1016/j.compositesb.2024.111465_bib38) 2014; 64 Patil (10.1016/j.compositesb.2024.111465_bib44) 2020; 185 Pisani (10.1016/j.compositesb.2024.111465_bib45) 2021; 211 Drozdov (10.1016/j.compositesb.2024.111465_bib26) 2019; 152 Mikhalchan (10.1016/j.compositesb.2024.111465_bib36) 2019; 150 Schulz (10.1016/j.compositesb.2024.111465_bib7) 2014 Jolowsky (10.1016/j.compositesb.2024.111465_bib19) 2018; 166 Kim (10.1016/j.compositesb.2024.111465_bib25) 2016; 84 Deshpande (10.1016/j.compositesb.2024.111465_bib43) 2021; 37 (10.1016/j.compositesb.2024.111465_bib39) 2016 Evers (10.1016/j.compositesb.2024.111465_bib6) 2023; 6 Cheng (10.1016/j.compositesb.2024.111465_bib42) 2010; 6 Damirchi (10.1016/j.compositesb.2024.111465_bib27) 2020; 124 Kaiser (10.1016/j.compositesb.2024.111465_bib31) 2021; 13 |
References_xml | – volume: 62 start-page: 1187 year: 2022 end-page: 1196 ident: bib33 article-title: The effects of processing and carbon nanotube type on the impact strength of aerospace-grade bismaleimide based nanocomposites publication-title: Polym Eng Sci – volume: 32 year: 2020 ident: bib12 article-title: Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics publication-title: Adv Mater – volume: 152 start-page: 218 year: Nov. 2019 end-page: 232 ident: bib8 article-title: Direct spinning of CNT fibres: past, present and future scale up publication-title: Carbon – volume: 6 start-page: 11260 year: Jul. 2023 end-page: 11268 ident: bib6 article-title: Scalable high tensile modulus composite laminates using continuous carbon nanotube yarns for aerospace applications publication-title: ACS Appl Nano Mater – volume: 84 start-page: 256 year: May 2016 end-page: 265 ident: bib25 article-title: Assessment of carbon nanotube yarns as reinforcement for composite overwrapped pressure vessels publication-title: Composer Part Appl Sci Manuf – volume: 211 year: Apr. 2021 ident: bib45 article-title: Interfacial modeling of flattened CNT composites with cyanate ester and PEEK polymers publication-title: Composites Part B – year: Dec. 11, 2017 ident: bib40 publication-title: ASTM D3039 standard test method for tensile properties of polymer matrix composite materials – volume: 166 start-page: 95 year: Sep. 2018 end-page: 108 ident: bib24 article-title: How can we make carbon nanotube yarn stronger? publication-title: Compos Sci Technol – volume: 225 year: Jul. 2022 ident: bib16 article-title: Processing-structure-mechanical property relationships in direct formed carbon nanotube articles and their composites: a review publication-title: Compos Sci Technol – start-page: 573 year: 2019 end-page: 601 ident: bib10 article-title: Chapter 23 - industrializing nanotube superfiber materials publication-title: Nanotube superfiber materials – year: Dec. 27, 2016 ident: bib39 publication-title: ASTM D5026 standard test method for plastics: dynamic mechanical properties: in tension – volume: 44 start-page: 1624 year: Aug. 2006 end-page: 1652 ident: bib41 article-title: Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites publication-title: Carbon – volume: vol. 22 year: 2011 ident: bib47 publication-title: Hexcel 8552 IM7 unidirectional prepreg 190 gsm & 35%RC qualification material property data report – start-page: 33 year: 2014 end-page: 59 ident: bib7 article-title: Chapter 2 - new applications and techniques for nanotube superfiber development publication-title: Nanotube superfiber materials – volume: 5 start-page: 1921 year: Mar. 2011 end-page: 1927 ident: bib21 article-title: A model for the strength of yarn-like carbon nanotube fibers publication-title: ACS Nano – start-page: 2329 year: 2023 end-page: 2343 ident: bib46 article-title: Sources of variability in small-scale tensile testing of carbon fiber reinforced resins publication-title: Proceedings of the American Society for Composites – start-page: 3 year: 2019 end-page: 29 ident: bib4 article-title: Chapter 1 - direct spinning of horizontally aligned carbon nanotube fibers and films from the floating catalyst method publication-title: Nanotube superfiber materials – volume: 13 start-page: 261 year: Jan. 2021 end-page: 271 ident: bib31 article-title: Substrate adhesion evolves non-monotonically with processing time in millimeter-scale aligned carbon nanotube arrays publication-title: Nanoscale – volume: 419 year: Oct. 2002 ident: bib1 article-title: Spinning continuous carbon nanotube yarns publication-title: Nature – volume: 124 start-page: 20488 year: Sep. 2020 end-page: 20497 ident: bib27 article-title: ReaxFF reactive force field study of polymerization of a polymer matrix in a carbon nanotube-composite system publication-title: J Phys Chem C – volume: 4 start-page: 5827 year: Oct. 2010 end-page: 5834 ident: bib20 article-title: Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns publication-title: ACS Nano – year: 2023-2032 ident: bib49 article-title: Multiscale peridynamic modeling of carbon nanotube-based composites publication-title: AIAA SCITECH 2023 forum – volume: 173 start-page: 857 year: Mar. 2021 end-page: 869 ident: bib32 article-title: Modifying carbon nanotube fibers: a study relating apparent interfacial shear strength and failure mode publication-title: Carbon – volume: 167 year: Apr. 2023 ident: bib34 article-title: Multi-scale hierarchical carbon nanotube fiber reinforced composites towards enhancement of axial/transverse strength and fracture toughness publication-title: Composer Part Appl Sci Manuf – volume: 9 year: Oct. 2022 ident: bib50 article-title: Purification of dense carbon nanotube networks by subcritical hydrothermal processing publication-title: Carbon Trends – volume: 304 start-page: 276 year: Apr. 2004 end-page: 278 ident: bib3 article-title: Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis publication-title: Science – volume: 62 start-page: 32 year: Jul. 2014 end-page: 38 ident: bib9 article-title: Tensile mechanical properties of carbon nanotube/epoxy composite fabricated by pultrusion of carbon nanotube spun yarn preform publication-title: Composer Part Appl Sci Manuf – volume: 37 start-page: 11526 year: Oct. 2021 end-page: 11534 ident: bib43 article-title: Prediction of the interfacial properties of high-performance polymers and flattened CNT-reinforced composites using molecular dynamics publication-title: Langmuir – volume: 51 start-page: 10005 year: Nov. 2016 end-page: 10025 ident: bib51 article-title: Aligned carbon nanotube–epoxy composites: the effect of nanotube organization on strength, stiffness, and toughness publication-title: J Mater Sci – volume: 166 start-page: 1 year: Sep. 2018 end-page: 2 ident: bib37 article-title: Special issue on carbon nanotube composites publication-title: Compos Sci Technol – volume: 166 start-page: 125 year: Sep. 2018 end-page: 130 ident: bib19 article-title: Microstructure evolution and self-assembling of CNT networks during mechanical stretching and mechanical properties of highly aligned CNT composites publication-title: Compos Sci Technol – start-page: 61 year: 2014 end-page: 85 ident: bib18 article-title: Chapter 3 - tailoring the mechanical properties of carbon nanotube fibers publication-title: Nanotube superfiber materials – volume: 12 start-page: 11756 year: Dec. 2018 end-page: 11784 ident: bib14 article-title: Carbon nanotubes and related nanomaterials: critical advances and challenges for synthesis toward mainstream commercial applications publication-title: ACS Nano – volume: 207 year: May 2021 ident: bib28 article-title: A machine learning framework for predicting the shear strength of carbon nanotube-polymer interfaces based on molecular dynamics simulation data publication-title: Compos Sci Technol – volume: 152 start-page: 198 year: Nov. 2019 end-page: 205 ident: bib26 article-title: Densely-packed bundles of collapsed carbon nanotubes: atomistic and mesoscopic distinct element method modeling publication-title: Carbon – year: Jan. 2019 ident: bib48 article-title: Characterization of IM7/8552 thin-ply and hybrid thin-ply composites publication-title: AIAA scitech 2019 forum – volume: 5 start-page: 5915 year: Apr. 2022 end-page: 5924 ident: bib29 article-title: Molecular dynamics modeling of interfacial interactions between flattened carbon nanotubes and amorphous carbon: implications for ultra-lightweight composites publication-title: ACS Appl Nano Mater – volume: 64 start-page: 194 year: Sep. 2014 end-page: 202 ident: bib38 article-title: Effects of stretching on mechanical properties of aligned multi-walled carbon nanotube/epoxy composites publication-title: Composer Part Appl Sci Manuf – volume: 8 start-page: 11454 year: Nov. 2014 end-page: 11466 ident: bib23 article-title: Key factors limiting carbon nanotube yarn strength: exploring processing-structure-property relationships publication-title: ACS Nano – volume: 156 start-page: 430 year: Jan. 2020 end-page: 437 ident: bib15 article-title: Understanding cooperative loading in carbon nanotube fibres through in-situ structural studies during stretching publication-title: Carbon – volume: 6 start-page: 763 year: 2010 end-page: 767 ident: bib42 article-title: Functionalized carbon-nanotube sheet/bismaleimide nanocomposites: mechanical and electrical performance beyond carbon-fiber composites publication-title: Small – volume: 150 start-page: 191 year: Sep. 2019 end-page: 215 ident: bib36 article-title: A perspective on high-performance CNT fibres for structural composites publication-title: Carbon – volume: 21 year: 2017 ident: bib11 article-title: Reasons of adding carbon nanotubes into composite systems - review paper publication-title: Mech. Mech. Eng. – volume: 15 start-page: 7946 year: May 2021 end-page: 7974 ident: bib13 article-title: Application-driven carbon nanotube functional materials publication-title: ACS Nano – reference: . – volume: 171 start-page: 689 year: Jan. 2021 end-page: 694 ident: bib2 article-title: Improved properties, increased production, and the path to broad adoption of carbon nanotube fibers publication-title: Carbon – volume: 30 year: 2020 ident: bib30 article-title: In situ interfacial polymerization: a technique for rapid formation of highly loaded carbon nanotube-polymer composites publication-title: Adv Funct Mater – reference: Kim J.-W., et al. Undirectional carbon nanotube yarn/polymer composites. NASA/TM-2018-220081 Jul. 2018. Document ID 20180006317. [Online]. Available: – volume: 185 year: Dec. 2020 ident: bib44 article-title: Interfacial characteristics between flattened CNT stacks and polyimides: a molecular dynamics study publication-title: Comput Mater Sci – volume: 5 start-page: 9339 year: Dec. 2011 end-page: 9344 ident: bib17 article-title: Enhancement of the mechanical properties of directly spun CNT fibers by chemical treatment publication-title: ACS Nano – volume: 10 year: Jul. 2019 ident: bib5 article-title: Direct spinning and densification method for high-performance carbon nanotube fibers publication-title: Nat Commun – volume: 167 year: 2023 ident: 10.1016/j.compositesb.2024.111465_bib34 article-title: Multi-scale hierarchical carbon nanotube fiber reinforced composites towards enhancement of axial/transverse strength and fracture toughness publication-title: Composer Part Appl Sci Manuf – ident: 10.1016/j.compositesb.2024.111465_bib35 – start-page: 573 year: 2019 ident: 10.1016/j.compositesb.2024.111465_bib10 article-title: Chapter 23 - industrializing nanotube superfiber materials – volume: 32 issue: 5 year: 2020 ident: 10.1016/j.compositesb.2024.111465_bib12 article-title: Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics publication-title: Adv Mater doi: 10.1002/adma.201902028 – volume: 62 start-page: 1187 issue: 4 year: 2022 ident: 10.1016/j.compositesb.2024.111465_bib33 article-title: The effects of processing and carbon nanotube type on the impact strength of aerospace-grade bismaleimide based nanocomposites publication-title: Polym Eng Sci doi: 10.1002/pen.25917 – volume: 30 issue: 52 year: 2020 ident: 10.1016/j.compositesb.2024.111465_bib30 article-title: In situ interfacial polymerization: a technique for rapid formation of highly loaded carbon nanotube-polymer composites publication-title: Adv Funct Mater doi: 10.1002/adfm.202005499 – volume: 173 start-page: 857 year: 2021 ident: 10.1016/j.compositesb.2024.111465_bib32 article-title: Modifying carbon nanotube fibers: a study relating apparent interfacial shear strength and failure mode publication-title: Carbon doi: 10.1016/j.carbon.2020.11.055 – volume: 9 year: 2022 ident: 10.1016/j.compositesb.2024.111465_bib50 article-title: Purification of dense carbon nanotube networks by subcritical hydrothermal processing publication-title: Carbon Trends doi: 10.1016/j.cartre.2022.100206 – volume: 152 start-page: 198 year: 2019 ident: 10.1016/j.compositesb.2024.111465_bib26 article-title: Densely-packed bundles of collapsed carbon nanotubes: atomistic and mesoscopic distinct element method modeling publication-title: Carbon doi: 10.1016/j.carbon.2019.05.036 – volume: 166 start-page: 95 year: 2018 ident: 10.1016/j.compositesb.2024.111465_bib24 article-title: How can we make carbon nanotube yarn stronger? publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2018.02.010 – volume: 12 start-page: 11756 issue: 12 year: 2018 ident: 10.1016/j.compositesb.2024.111465_bib14 article-title: Carbon nanotubes and related nanomaterials: critical advances and challenges for synthesis toward mainstream commercial applications publication-title: ACS Nano doi: 10.1021/acsnano.8b06511 – start-page: 3 year: 2019 ident: 10.1016/j.compositesb.2024.111465_bib4 article-title: Chapter 1 - direct spinning of horizontally aligned carbon nanotube fibers and films from the floating catalyst method – volume: 21 issue: 3 year: 2017 ident: 10.1016/j.compositesb.2024.111465_bib11 article-title: Reasons of adding carbon nanotubes into composite systems - review paper publication-title: Mech. Mech. Eng. – start-page: 2329 year: 2023 ident: 10.1016/j.compositesb.2024.111465_bib46 article-title: Sources of variability in small-scale tensile testing of carbon fiber reinforced resins publication-title: Proceedings of the American Society for Composites – volume: 5 start-page: 5915 issue: 4 year: 2022 ident: 10.1016/j.compositesb.2024.111465_bib29 article-title: Molecular dynamics modeling of interfacial interactions between flattened carbon nanotubes and amorphous carbon: implications for ultra-lightweight composites publication-title: ACS Appl Nano Mater doi: 10.1021/acsanm.2c01280 – volume: 5 start-page: 9339 issue: 12 year: 2011 ident: 10.1016/j.compositesb.2024.111465_bib17 article-title: Enhancement of the mechanical properties of directly spun CNT fibers by chemical treatment publication-title: ACS Nano doi: 10.1021/nn202685x – volume: 64 start-page: 194 year: 2014 ident: 10.1016/j.compositesb.2024.111465_bib38 article-title: Effects of stretching on mechanical properties of aligned multi-walled carbon nanotube/epoxy composites publication-title: Composer Part Appl Sci Manuf doi: 10.1016/j.compositesa.2014.05.013 – volume: 10 issue: 1 year: 2019 ident: 10.1016/j.compositesb.2024.111465_bib5 article-title: Direct spinning and densification method for high-performance carbon nanotube fibers publication-title: Nat Commun – volume: 5 start-page: 1921 issue: 3 year: 2011 ident: 10.1016/j.compositesb.2024.111465_bib21 article-title: A model for the strength of yarn-like carbon nanotube fibers publication-title: ACS Nano doi: 10.1021/nn102925a – volume: 44 start-page: 1624 issue: 9 year: 2006 ident: 10.1016/j.compositesb.2024.111465_bib41 article-title: Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites publication-title: Carbon doi: 10.1016/j.carbon.2006.02.038 – volume: vol. 22 year: 2011 ident: 10.1016/j.compositesb.2024.111465_bib47 – volume: 150 start-page: 191 year: 2019 ident: 10.1016/j.compositesb.2024.111465_bib36 article-title: A perspective on high-performance CNT fibres for structural composites publication-title: Carbon doi: 10.1016/j.carbon.2019.04.113 – year: 2023 ident: 10.1016/j.compositesb.2024.111465_bib49 article-title: Multiscale peridynamic modeling of carbon nanotube-based composites – volume: 15 start-page: 7946 issue: 5 year: 2021 ident: 10.1016/j.compositesb.2024.111465_bib13 article-title: Application-driven carbon nanotube functional materials publication-title: ACS Nano doi: 10.1021/acsnano.0c10662 – volume: 13 start-page: 261 issue: 1 year: 2021 ident: 10.1016/j.compositesb.2024.111465_bib31 article-title: Substrate adhesion evolves non-monotonically with processing time in millimeter-scale aligned carbon nanotube arrays publication-title: Nanoscale doi: 10.1039/D0NR05469K – volume: 6 start-page: 763 issue: 6 year: 2010 ident: 10.1016/j.compositesb.2024.111465_bib42 article-title: Functionalized carbon-nanotube sheet/bismaleimide nanocomposites: mechanical and electrical performance beyond carbon-fiber composites publication-title: Small doi: 10.1002/smll.200901957 – volume: 166 start-page: 125 year: 2018 ident: 10.1016/j.compositesb.2024.111465_bib19 article-title: Microstructure evolution and self-assembling of CNT networks during mechanical stretching and mechanical properties of highly aligned CNT composites publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2018.04.003 – volume: 51 start-page: 10005 issue: 22 year: 2016 ident: 10.1016/j.compositesb.2024.111465_bib51 article-title: Aligned carbon nanotube–epoxy composites: the effect of nanotube organization on strength, stiffness, and toughness publication-title: J Mater Sci doi: 10.1007/s10853-016-0228-6 – volume: 419 issue: 6909 year: 2002 ident: 10.1016/j.compositesb.2024.111465_bib1 article-title: Spinning continuous carbon nanotube yarns publication-title: Nature doi: 10.1038/419801a – volume: 8 start-page: 11454 issue: 11 year: 2014 ident: 10.1016/j.compositesb.2024.111465_bib23 article-title: Key factors limiting carbon nanotube yarn strength: exploring processing-structure-property relationships publication-title: ACS Nano doi: 10.1021/nn5045504 – volume: 171 start-page: 689 year: 2021 ident: 10.1016/j.compositesb.2024.111465_bib2 article-title: Improved properties, increased production, and the path to broad adoption of carbon nanotube fibers publication-title: Carbon doi: 10.1016/j.carbon.2020.07.058 – volume: 185 year: 2020 ident: 10.1016/j.compositesb.2024.111465_bib44 article-title: Interfacial characteristics between flattened CNT stacks and polyimides: a molecular dynamics study publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2020.109970 – start-page: 61 year: 2014 ident: 10.1016/j.compositesb.2024.111465_bib18 article-title: Chapter 3 - tailoring the mechanical properties of carbon nanotube fibers – volume: 152 start-page: 218 year: 2019 ident: 10.1016/j.compositesb.2024.111465_bib8 article-title: Direct spinning of CNT fibres: past, present and future scale up publication-title: Carbon doi: 10.1016/j.carbon.2019.05.024 – year: 2017 ident: 10.1016/j.compositesb.2024.111465_bib40 – volume: 6 start-page: 11260 issue: 13 year: 2023 ident: 10.1016/j.compositesb.2024.111465_bib6 article-title: Scalable high tensile modulus composite laminates using continuous carbon nanotube yarns for aerospace applications publication-title: ACS Appl Nano Mater doi: 10.1021/acsanm.3c01266 – volume: 4 start-page: 5827 issue: 10 year: 2010 ident: 10.1016/j.compositesb.2024.111465_bib20 article-title: Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns publication-title: ACS Nano doi: 10.1021/nn1017318 – year: 2019 ident: 10.1016/j.compositesb.2024.111465_bib48 article-title: Characterization of IM7/8552 thin-ply and hybrid thin-ply composites – volume: 211 year: 2021 ident: 10.1016/j.compositesb.2024.111465_bib45 article-title: Interfacial modeling of flattened CNT composites with cyanate ester and PEEK polymers publication-title: Composites Part B doi: 10.1016/j.compositesb.2021.108672 – volume: 156 start-page: 430 year: 2020 ident: 10.1016/j.compositesb.2024.111465_bib15 article-title: Understanding cooperative loading in carbon nanotube fibres through in-situ structural studies during stretching publication-title: Carbon doi: 10.1016/j.carbon.2019.09.070 – volume: 166 start-page: 1 year: 2018 ident: 10.1016/j.compositesb.2024.111465_bib37 article-title: Special issue on carbon nanotube composites publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2018.07.013 – volume: 124 start-page: 20488 issue: 37 year: 2020 ident: 10.1016/j.compositesb.2024.111465_bib27 article-title: ReaxFF reactive force field study of polymerization of a polymer matrix in a carbon nanotube-composite system publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.0c03509 – volume: 304 start-page: 276 issue: 5668 year: 2004 ident: 10.1016/j.compositesb.2024.111465_bib3 article-title: Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis publication-title: Science doi: 10.1126/science.1094982 – volume: 225 year: 2022 ident: 10.1016/j.compositesb.2024.111465_bib16 article-title: Processing-structure-mechanical property relationships in direct formed carbon nanotube articles and their composites: a review publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2022.109501 – volume: 84 start-page: 256 year: 2016 ident: 10.1016/j.compositesb.2024.111465_bib25 article-title: Assessment of carbon nanotube yarns as reinforcement for composite overwrapped pressure vessels publication-title: Composer Part Appl Sci Manuf doi: 10.1016/j.compositesa.2016.02.003 – start-page: 33 year: 2014 ident: 10.1016/j.compositesb.2024.111465_bib7 article-title: Chapter 2 - new applications and techniques for nanotube superfiber development – year: 2016 ident: 10.1016/j.compositesb.2024.111465_bib39 – volume: 207 year: 2021 ident: 10.1016/j.compositesb.2024.111465_bib28 article-title: A machine learning framework for predicting the shear strength of carbon nanotube-polymer interfaces based on molecular dynamics simulation data publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2020.108627 – volume: 62 start-page: 32 year: 2014 ident: 10.1016/j.compositesb.2024.111465_bib9 article-title: Tensile mechanical properties of carbon nanotube/epoxy composite fabricated by pultrusion of carbon nanotube spun yarn preform publication-title: Composer Part Appl Sci Manuf doi: 10.1016/j.compositesa.2014.03.011 – volume: 37 start-page: 11526 issue: 39 year: 2021 ident: 10.1016/j.compositesb.2024.111465_bib43 article-title: Prediction of the interfacial properties of high-performance polymers and flattened CNT-reinforced composites using molecular dynamics publication-title: Langmuir doi: 10.1021/acs.langmuir.1c01800 |
SSID | ssj0004532 |
Score | 2.433533 |
Snippet | Unidirectional, cross-ply, and quasi-isotropic composite laminates are made from continuous carbon nanotube (CNT) yarns with bismaleimide (BMI) resin. The... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 111465 |
SubjectTerms | A. Laminates A. nano-structures A. Yarn D. Mechanical testing |
Title | Characterization of multidirectional carbon-nanotube-yarn/bismaleimide laminates under tensile loading |
URI | https://dx.doi.org/10.1016/j.compositesb.2024.111465 |
Volume | 280 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jguhB_MT5MSJ4jW3T9Au8jOGYirvoYLeSpClUZju67eDFv928tJ0VBAWPDXnQvjze-yX9vV8QunbcFAQwKXF8kRAmpUs4d20iPRoJGsGaw4H-08QfT9nDzJt10LDphQFaZZ37q5xusnU9YtXetBZZZj07ID7n-iGwIGlg8jBjAUT5zYfTUgw3l5TBZAKzt9HVF8cLaNvAjVJLobeKlEECYVBnfqpRrboz2kd7NWDEg-qdDlBH5YdotyUjeITS4UZ1uWqqxEWKDVOw-jhz2oclL0WRk5znxWotFHnnZW6JbPmmS0T2liUK6-DIcsCeGDrLSmzI7XM9Xhii_TGaju5ehmNS359ApEudFWEqCEXCEiVkqJGWBh96r-EnirnS9mwVhSKSPNK7aSk86fo-41zSJEilHUaCa-Bygrp5katThBMOPwg1fOC2YC53BE01dJNplKTabY7sobDxWCxrcXG442IeNyyy17jl7BicHVfO7iG6MV1UCht_MbptliX-Fi6xrgS_m5_9z_wc7cBTxdq9QN1VuVaXGpusRN8EXx9tDe4fx5NP1cXocw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB5EwcdBfOL6jKDHuG2arS3oQXywPnYvKnirSZpCZbeV3RXx4p_yDzrTdnUFQUG8pgyEL5OZSfrlG4Ad10tIAFNw19cxl8Z4XCnP4aYhQi1CWnO60G-1_eatvLhr3I3B2_AtDNEqq9hfxvQiWlcj9QrN-mOa1q9dEp_z_IBYkAL3dMWsvLQvz3hu6x-en-Ai7wpxdnpz3ORVawFuPOEOuLT7gY5lbLUJsAjBvIxluB9b6Rmn4dgw0KFRIR40jW4Yz_elUkbE-4lxglCrkBSYMO5PSAwX1DZh79UdkSgvuqLR7DhNbxK2P0llxBMnMpbtazybCkkRS1Ji-y4pjiS6szmYrSpUdlSCMA9jNluAmRHdwkVIjj9knstXnCxPWEFNLNEsrheZUT2dZzxTWT540pa_qF5W12m_izkp7aaxZeiNaUbFLqOnbD1WsOk7OJ4XzP4luP0XVJdhPMszuwIsVvRHEusV5WjpKVeLBGtFk4RxgrC5pgbBELHIVGrm1FSjEw1paw_RCNgRgR2VYNdAfJg-lpIevzE6GC5L9MU_I0w9P5uv_s18C6aaN62r6Oq8fbkG0_SlpAyvw_ig92Q3sDAa6M3CERnc_7fnvwOoNCUW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+multidirectional+carbon-nanotube-yarn%2Fbismaleimide+laminates+under+tensile+loading&rft.jtitle=Composites.+Part+B%2C+Engineering&rft.au=Vondrasek%2C+Britannia&rft.au=Evers%2C+Cecil&rft.au=Jolowsky%2C+Claire&rft.au=Odegard%2C+Gregory+M.&rft.date=2024-07-01&rft.issn=1359-8368&rft.volume=280&rft.spage=111465&rft_id=info:doi/10.1016%2Fj.compositesb.2024.111465&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compositesb_2024_111465 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-8368&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-8368&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-8368&client=summon |