MIPA-ResGCN: a multi-input part attention enhanced residual graph convolutional framework for sign language recognition

Sign language (SL) is used as primary mode of communication by individuals who experience deafness and speech disorders. However, SL creates an inordinate communication barrier as most people are not acquainted with it. To solve this problem, many technological solutions using wearable devices, vide...

Full description

Saved in:
Bibliographic Details
Published inComputers & electrical engineering Vol. 112; p. 109009
Main Authors Naz, Neelma, Sajid, Hasan, Ali, Sara, Hasan, Osman, Ehsan, Muhammad Khurram
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sign language (SL) is used as primary mode of communication by individuals who experience deafness and speech disorders. However, SL creates an inordinate communication barrier as most people are not acquainted with it. To solve this problem, many technological solutions using wearable devices, video, and depth cameras have been put forth. The ubiquitous nature of cameras in contemporary devices has resulted in the emergence of sign language recognition (SLR) using video sequence as a viable and unobtrusive substitute. Nonetheless, the utilization of SLR methods based on visual features, commonly known as appearance-based methods, presents notable computational complexities. In response to these challenges, this study introduces an accurate and computationally efficient pose-based approach for SLR. Our proposed approach comprises three key stages: pose extraction, handcrafted feature generation, and feature space mapping and recognition. Initially, an efficient off-the-shelf pose extraction algorithm is employed to extract pose information of various body parts of a subject captured in a video. Then, a multi-input stream has been generated using handcrafted features, i.e., joints, bone lengths, and bone angles. Finally, an efficient and lightweight residual graph convolutional network (ResGCN) along with a novel part attention mechanism, is proposed to encode body's spatial and temporal information in a compact feature space and recognize the signs performed. In addition to enabling effective learning during model training and offering cutting-edge accuracy, the proposed model significantly reduces computational complexity. Our proposed method is assessed on five challenging SL datasets, WLASL-100, WLASL-300, WLASL-1000, LSA-64, and MINDS-Libras, achieving state-of-the-art (SOTA) accuracies of 83.33 %, 72.90 %, 64.92 %, 100± 0 %, and 96.70± 1.07 %, respectively. Compared to previous approaches, we achieve superior performance while incurring a lower computational cost.
AbstractList Sign language (SL) is used as primary mode of communication by individuals who experience deafness and speech disorders. However, SL creates an inordinate communication barrier as most people are not acquainted with it. To solve this problem, many technological solutions using wearable devices, video, and depth cameras have been put forth. The ubiquitous nature of cameras in contemporary devices has resulted in the emergence of sign language recognition (SLR) using video sequence as a viable and unobtrusive substitute. Nonetheless, the utilization of SLR methods based on visual features, commonly known as appearance-based methods, presents notable computational complexities. In response to these challenges, this study introduces an accurate and computationally efficient pose-based approach for SLR. Our proposed approach comprises three key stages: pose extraction, handcrafted feature generation, and feature space mapping and recognition. Initially, an efficient off-the-shelf pose extraction algorithm is employed to extract pose information of various body parts of a subject captured in a video. Then, a multi-input stream has been generated using handcrafted features, i.e., joints, bone lengths, and bone angles. Finally, an efficient and lightweight residual graph convolutional network (ResGCN) along with a novel part attention mechanism, is proposed to encode body's spatial and temporal information in a compact feature space and recognize the signs performed. In addition to enabling effective learning during model training and offering cutting-edge accuracy, the proposed model significantly reduces computational complexity. Our proposed method is assessed on five challenging SL datasets, WLASL-100, WLASL-300, WLASL-1000, LSA-64, and MINDS-Libras, achieving state-of-the-art (SOTA) accuracies of 83.33 %, 72.90 %, 64.92 %, 100± 0 %, and 96.70± 1.07 %, respectively. Compared to previous approaches, we achieve superior performance while incurring a lower computational cost.
ArticleNumber 109009
Author Ali, Sara
Hasan, Osman
Sajid, Hasan
Ehsan, Muhammad Khurram
Naz, Neelma
Author_xml – sequence: 1
  givenname: Neelma
  orcidid: 0000-0002-5274-8913
  surname: Naz
  fullname: Naz, Neelma
  email: neelma.naz@seecs.edu.pk
  organization: National University of Sciences and Technology, Islamabad 44000, Pakistan
– sequence: 2
  givenname: Hasan
  surname: Sajid
  fullname: Sajid, Hasan
  organization: National University of Sciences and Technology, Islamabad 44000, Pakistan
– sequence: 3
  givenname: Sara
  orcidid: 0000-0002-5100-9430
  surname: Ali
  fullname: Ali, Sara
  organization: National University of Sciences and Technology, Islamabad 44000, Pakistan
– sequence: 4
  givenname: Osman
  orcidid: 0000-0003-2562-2669
  surname: Hasan
  fullname: Hasan, Osman
  organization: National University of Sciences and Technology, Islamabad 44000, Pakistan
– sequence: 5
  givenname: Muhammad Khurram
  surname: Ehsan
  fullname: Ehsan, Muhammad Khurram
  organization: Faculty of Engineering Sciences, Bahria University Islamabad Campus, Islamabad 44000, Pakistan
BookMark eNqNkN1q3DAQhUXYQjY_76A8gLeSvbas3pRladNA2oSSXIuJNHK0tSUjyQl5-9hsL0qvcjXM4ZzDzHdGVj54JOSKsw1nvPl82OgwjNijRt9tSlZWsy4ZkydkzVshCybqekXWjG3rQkjWnJKzlA5s3hversnrz5v7XfEb0_X-1xcKdJj67ArnxynTEWKmkDP67IKn6J_BazQ0YnJmgp52EcZnqoN_Cf20eGbNRhjwNcQ_1IZIk-s87cF3E3Q4B3XovFucF-SThT7h5d95Th6_f3vY_yhu765v9rvbQlclz8UWtKlEq60GyUAwi_JJNCWH0tTCNLYpK74F07YtY8ArK4WVxjBoaxDAn6rqnHw99uoYUopolXYZlgtyBNcrztTCUR3UPxzVwlEdOc4N8r-GMboB4tuHsvtjFucXXxxGlbTDBaKbWWRlgvtAyzteuJol
CitedBy_id crossref_primary_10_1016_j_compeleceng_2024_109475
crossref_primary_10_3390_app15062957
crossref_primary_10_3390_electronics13071229
Cites_doi 10.1007/s00521-021-05802-4
10.1109/ACCESS.2023.3247761
10.3390/fi11040091
10.1016/j.compeleceng.2021.107383
10.1016/j.compeleceng.2020.106898
10.1007/s00371-019-01725-3
10.1007/s11036-022-01939-1
10.1016/j.compeleceng.2023.108891
10.1038/s41598-022-15998-7
10.1038/s41598-022-09293-8
10.1109/TCSI.2021.3091001
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compeleceng.2023.109009
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0755
ExternalDocumentID 10_1016_j_compeleceng_2023_109009
S0045790623004330
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
UHS
VOH
WH7
WUQ
XPP
ZMT
~G-
~S-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c321t-4acd378cfca90a70fe9b7621a2d57d6f62314ad88800a13f97f9dd0a85a7a1b33
IEDL.DBID .~1
ISSN 0045-7906
IngestDate Thu Apr 24 22:59:25 EDT 2025
Tue Jul 01 01:45:57 EDT 2025
Sat Jul 06 15:31:24 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Sign language recognition
ResGCN
Visualization
Pose sequence modeling
Multi input architecture
Part attention
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-4acd378cfca90a70fe9b7621a2d57d6f62314ad88800a13f97f9dd0a85a7a1b33
ORCID 0000-0002-5100-9430
0000-0003-2562-2669
0000-0002-5274-8913
ParticipantIDs crossref_citationtrail_10_1016_j_compeleceng_2023_109009
crossref_primary_10_1016_j_compeleceng_2023_109009
elsevier_sciencedirect_doi_10_1016_j_compeleceng_2023_109009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2023
2023-12-00
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationTitle Computers & electrical engineering
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ronchetti, Quiroga, Estrebou, Lanzarini, Rosete (bib0017) 2016
Gupta, Kumar (bib0008) 2021; 90
Naz, Sajid, Ali, Hasan, Ehsan (bib0006) 2023; 11
Rezende, Almeida, Guimarães (bib0018) 2021; 33
Konstantinidis, Dimitropoulos, Daras (bib0029) 2018
Zhang, Li (bib0028) 2019; 11
J.A. Shah, "Deepsign: a deep-learning architecture for sign language," Ph.D. thesis, Univ. Texas, Arlington, TX, USA, 2018.
Basak, Kundu, Singh, Ijaz, Woźniak, Sarkar (bib0007) 2022; 12
Hamid Reza Vaezi Joze and Oscar Koller. Ms-asl: A largescale data set and benchmark for understanding american sign language. arXiv preprint arXiv:1812.01053, 2018.
Passos, Araujo, Gois, de Lima (bib0013) 2021; 68
Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
Hosain, Santhalingam, Pathak, Rangwala, Kosecka (bib0025) 2021
Tunga, Nuthalapati, Wachs (bib0003) 2021
Rasley, Rajbhandari, Ruwase, He (bib0030) 2020
Zhang, Wu, Zhang, Zhu, Lin, Zhang, Sun, He, Mueller, Manmatha (bib0023) 2022
Yan, Woźniak (bib0020) 2022; 27
Slimane, Bouguessa (bib0014) 2021
Ivan GrishchenkoValentin Bazarevsky.Mediapipe holistic 2020.
Song, Lan, Xing, Zeng, Liu (bib0016) 2017
.
Li, Yu, Xu, Petersson, Li (bib0001) 2020
Li, Rodriguez, Yu, Li (bib0002) 2020
Aleesa, Mohammadi, Monadjemi, Hashim (bib0011) 2023; 110
Camgoz, Koller, Hadfield, Bowden (bib0015) 2020
Song, Zhang, Shan, Wang (bib0021) 2020
Alrubayi, Ahmed, Zaidan, Albahri, Zaidan, Albahri, Alamoodi, Alazab (bib0009) 2021; 95
Zhou, Khosla, Lapedriza, Oliva, Torralba (bib0022) 2016
Konstantinidis, Dimitropoulos, Daras (bib0026) 2018
Boháček, Hrúz (bib0004) 2022
Imran, Raman (bib0012) 2020; 36
Subramanian, Olimov, Naik, Kim, Park, Kim (bib0005) 2022; 12
Zhou (10.1016/j.compeleceng.2023.109009_bib0022) 2016
Gupta (10.1016/j.compeleceng.2023.109009_bib0008) 2021; 90
Zhang (10.1016/j.compeleceng.2023.109009_bib0023) 2022
Slimane (10.1016/j.compeleceng.2023.109009_bib0014) 2021
Imran (10.1016/j.compeleceng.2023.109009_bib0012) 2020; 36
Basak (10.1016/j.compeleceng.2023.109009_bib0007) 2022; 12
Rasley (10.1016/j.compeleceng.2023.109009_bib0030) 2020
Rezende (10.1016/j.compeleceng.2023.109009_bib0018) 2021; 33
Konstantinidis (10.1016/j.compeleceng.2023.109009_bib0026) 2018
Li (10.1016/j.compeleceng.2023.109009_bib0001) 2020
10.1016/j.compeleceng.2023.109009_bib0024
10.1016/j.compeleceng.2023.109009_bib0027
Passos (10.1016/j.compeleceng.2023.109009_bib0013) 2021; 68
Boháček (10.1016/j.compeleceng.2023.109009_bib0004) 2022
Song (10.1016/j.compeleceng.2023.109009_bib0021) 2020
Konstantinidis (10.1016/j.compeleceng.2023.109009_bib0029) 2018
Zhang (10.1016/j.compeleceng.2023.109009_bib0028) 2019; 11
Subramanian (10.1016/j.compeleceng.2023.109009_bib0005) 2022; 12
Ronchetti (10.1016/j.compeleceng.2023.109009_bib0017) 2016
Song (10.1016/j.compeleceng.2023.109009_bib0016) 2017
Aleesa (10.1016/j.compeleceng.2023.109009_bib0011) 2023; 110
Yan (10.1016/j.compeleceng.2023.109009_bib0020) 2022; 27
10.1016/j.compeleceng.2023.109009_bib0010
Camgoz (10.1016/j.compeleceng.2023.109009_bib0015) 2020
Tunga (10.1016/j.compeleceng.2023.109009_bib0003) 2021
Naz (10.1016/j.compeleceng.2023.109009_bib0006) 2023; 11
Alrubayi (10.1016/j.compeleceng.2023.109009_bib0009) 2021; 95
Li (10.1016/j.compeleceng.2023.109009_bib0002) 2020
10.1016/j.compeleceng.2023.109009_bib0019
Hosain (10.1016/j.compeleceng.2023.109009_bib0025) 2021
References_xml – start-page: 7884
  year: 2021
  end-page: 7891
  ident: bib0014
  article-title: Context matters: self-attention for sign language recognition
  publication-title: Proceeding of the 25th international conference on pattern recognition (ICPR)
– start-page: 6205
  year: 2020
  end-page: 6214
  ident: bib0001
  article-title: Transferring cross-domain knowledge for video sign language recognition
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 1459
  year: 2020
  end-page: 1469
  ident: bib0002
  article-title: Word-level deep sign language recognition from video: a new large-scale dataset and methods comparison
  publication-title: Proceedings of the IEEE/CVF winter conference on applications of computer vision
– reference: Hamid Reza Vaezi Joze and Oscar Koller. Ms-asl: A largescale data set and benchmark for understanding american sign language. arXiv preprint arXiv:1812.01053, 2018.
– start-page: 3429
  year: 2021
  end-page: 3439
  ident: bib0025
  article-title: Hand pose guided 3d pooling for word-level sign language recognition
  publication-title: Proceedings of the IEEE/CVF winter conference on applications of computer vision
– start-page: 3505
  year: 2020
  end-page: 3506
  ident: bib0030
  article-title: Deepspeed: system optimizations enable training deep learning models with over 100 billion parameters
  publication-title: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining
– start-page: 2736
  year: 2022
  end-page: 2746
  ident: bib0023
  article-title: Resnest: split-attention networks
  publication-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
– start-page: 182
  year: 2022
  end-page: 191
  ident: bib0004
  article-title: Sign Pose-based Transformer for Word-level Sign Language Recognition
  publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
– volume: 33
  start-page: 10449
  year: 2021
  end-page: 10467
  ident: bib0018
  article-title: Development and validation of a Brazilian sign language database for human gesture recognition
  publication-title: Neural Comput Appl
– volume: 27
  start-page: 1252
  year: 2022
  end-page: 1261
  ident: bib0020
  article-title: Accurate key frame extraction algorithm of video action for aerobics online teaching
  publication-title: Mob Netw Appl
– start-page: 1
  year: 2018
  end-page: 6
  ident: bib0029
  article-title: A deep learning approach for analyzing video and skeletal features in sign language recognition
  publication-title: Proceedings of the IEEE international conference on imaging systems and techniques (IST)
– volume: 68
  start-page: 4761
  year: 2021
  end-page: 4771
  ident: bib0013
  article-title: A gait energy image-based system for Brazilian sign language recognition
  publication-title: IEEE Trans Circuits Syst Regul Pap
– start-page: 1625
  year: 2020
  end-page: 1633
  ident: bib0021
  article-title: Stronger, faster and more explainable: a graph convolutional baseline for skeleton-based action recognition
  publication-title: Proceedings of the 28th ACM international conference on multimedia
– start-page: 2921
  year: 2016
  end-page: 2929
  ident: bib0022
  article-title: Learning deep features for discriminative localization
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 36
  start-page: 1233
  year: 2020
  end-page: 1246
  ident: bib0012
  article-title: Deep motion templates and extreme learning machine for sign language recognition
  publication-title: Vis Comput
– start-page: 301
  year: 2020
  end-page: 319
  ident: bib0015
  article-title: Multi-channel transformers for multi-articulatory sign language translation
  publication-title: Proceeding of the European conference on computer vision
– start-page: 4263
  year: 2017
  end-page: 4270
  ident: bib0016
  article-title: An end-to-end spatio-temporal attention model for human action recognition from skeleton data
  publication-title: Proceedings of the thirty-first AAAI conference on artificial intelligence
– start-page: 1
  year: 2018
  end-page: 4
  ident: bib0026
  article-title: Sign language recognition based on hand and body skeletal data
  publication-title: Proceedings of the 3DTV-conference: the true vision-capture, transmission and display of 3D video (3DTV-CON)
– volume: 90
  year: 2021
  ident: bib0008
  article-title: Indian sign language recognition using wearable sensors and multi-label classification
  publication-title: Comput Electr Eng
– year: 2016
  ident: bib0017
  article-title: LSA64: an Argentinian sign language dataset
  publication-title: Proceeding of the XXII congreso Argentino de ciencias de la computación (CACIC 2016)
– volume: 12
  start-page: 1
  year: 2022
  end-page: 16
  ident: bib0005
  article-title: An integrated mediapipe-optimized GRU model for Indian sign language recognition
  publication-title: Sci Rep
– volume: 12
  start-page: 5494
  year: 2022
  ident: bib0007
  article-title: A union of deep learning and swarm-based optimization for 3D human action recognition
  publication-title: Sci Rep
– volume: 110
  year: 2023
  ident: bib0011
  article-title: Dataset classification: an efficient feature extraction approach for grammatical facial expression recognition
  publication-title: Comput Electr Eng
– reference: Ivan GrishchenkoValentin Bazarevsky.Mediapipe holistic 2020.
– reference: J.A. Shah, "Deepsign: a deep-learning architecture for sign language," Ph.D. thesis, Univ. Texas, Arlington, TX, USA, 2018.
– volume: 11
  start-page: 19135
  year: 2023
  end-page: 19147
  ident: bib0006
  article-title: Signgraph: an Efficient and Accurate Pose-Based Graph Convolution Approach Toward Sign Language Recognition
  publication-title: IEEE Access
– reference: .
– reference: Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
– volume: 11
  start-page: 91
  year: 2019
  ident: bib0028
  article-title: Dynamic gesture recognition based on MEMP network
  publication-title: Future Internet
– start-page: 31
  year: 2021
  end-page: 40
  ident: bib0003
  article-title: Pose-based sign language recognition using gcn and bert
  publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
– volume: 95
  year: 2021
  ident: bib0009
  article-title: A pattern recognition model for static gestures in malaysian sign language based on machine learning techniques
  publication-title: Comput Electr Eng
– start-page: 3505
  year: 2020
  ident: 10.1016/j.compeleceng.2023.109009_bib0030
  article-title: Deepspeed: system optimizations enable training deep learning models with over 100 billion parameters
– volume: 33
  start-page: 10449
  year: 2021
  ident: 10.1016/j.compeleceng.2023.109009_bib0018
  article-title: Development and validation of a Brazilian sign language database for human gesture recognition
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-021-05802-4
– start-page: 2921
  year: 2016
  ident: 10.1016/j.compeleceng.2023.109009_bib0022
  article-title: Learning deep features for discriminative localization
– ident: 10.1016/j.compeleceng.2023.109009_bib0024
– start-page: 301
  year: 2020
  ident: 10.1016/j.compeleceng.2023.109009_bib0015
  article-title: Multi-channel transformers for multi-articulatory sign language translation
– start-page: 1459
  year: 2020
  ident: 10.1016/j.compeleceng.2023.109009_bib0002
  article-title: Word-level deep sign language recognition from video: a new large-scale dataset and methods comparison
– volume: 11
  start-page: 19135
  year: 2023
  ident: 10.1016/j.compeleceng.2023.109009_bib0006
  article-title: Signgraph: an Efficient and Accurate Pose-Based Graph Convolution Approach Toward Sign Language Recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3247761
– volume: 11
  start-page: 91
  year: 2019
  ident: 10.1016/j.compeleceng.2023.109009_bib0028
  article-title: Dynamic gesture recognition based on MEMP network
  publication-title: Future Internet
  doi: 10.3390/fi11040091
– volume: 95
  year: 2021
  ident: 10.1016/j.compeleceng.2023.109009_bib0009
  article-title: A pattern recognition model for static gestures in malaysian sign language based on machine learning techniques
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2021.107383
– year: 2016
  ident: 10.1016/j.compeleceng.2023.109009_bib0017
  article-title: LSA64: an Argentinian sign language dataset
– ident: 10.1016/j.compeleceng.2023.109009_bib0019
– start-page: 6205
  year: 2020
  ident: 10.1016/j.compeleceng.2023.109009_bib0001
  article-title: Transferring cross-domain knowledge for video sign language recognition
– volume: 90
  year: 2021
  ident: 10.1016/j.compeleceng.2023.109009_bib0008
  article-title: Indian sign language recognition using wearable sensors and multi-label classification
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2020.106898
– ident: 10.1016/j.compeleceng.2023.109009_bib0010
– volume: 36
  start-page: 1233
  year: 2020
  ident: 10.1016/j.compeleceng.2023.109009_bib0012
  article-title: Deep motion templates and extreme learning machine for sign language recognition
  publication-title: Vis Comput
  doi: 10.1007/s00371-019-01725-3
– volume: 27
  start-page: 1252
  year: 2022
  ident: 10.1016/j.compeleceng.2023.109009_bib0020
  article-title: Accurate key frame extraction algorithm of video action for aerobics online teaching
  publication-title: Mob Netw Appl
  doi: 10.1007/s11036-022-01939-1
– start-page: 2736
  year: 2022
  ident: 10.1016/j.compeleceng.2023.109009_bib0023
  article-title: Resnest: split-attention networks
– volume: 110
  year: 2023
  ident: 10.1016/j.compeleceng.2023.109009_bib0011
  article-title: Dataset classification: an efficient feature extraction approach for grammatical facial expression recognition
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2023.108891
– ident: 10.1016/j.compeleceng.2023.109009_bib0027
– start-page: 7884
  year: 2021
  ident: 10.1016/j.compeleceng.2023.109009_bib0014
  article-title: Context matters: self-attention for sign language recognition
– volume: 12
  start-page: 1
  year: 2022
  ident: 10.1016/j.compeleceng.2023.109009_bib0005
  article-title: An integrated mediapipe-optimized GRU model for Indian sign language recognition
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-15998-7
– start-page: 4263
  year: 2017
  ident: 10.1016/j.compeleceng.2023.109009_bib0016
  article-title: An end-to-end spatio-temporal attention model for human action recognition from skeleton data
– start-page: 1
  year: 2018
  ident: 10.1016/j.compeleceng.2023.109009_bib0026
  article-title: Sign language recognition based on hand and body skeletal data
– start-page: 182
  year: 2022
  ident: 10.1016/j.compeleceng.2023.109009_bib0004
  article-title: Sign Pose-based Transformer for Word-level Sign Language Recognition
– start-page: 1
  year: 2018
  ident: 10.1016/j.compeleceng.2023.109009_bib0029
  article-title: A deep learning approach for analyzing video and skeletal features in sign language recognition
– volume: 12
  start-page: 5494
  year: 2022
  ident: 10.1016/j.compeleceng.2023.109009_bib0007
  article-title: A union of deep learning and swarm-based optimization for 3D human action recognition
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-09293-8
– volume: 68
  start-page: 4761
  year: 2021
  ident: 10.1016/j.compeleceng.2023.109009_bib0013
  article-title: A gait energy image-based system for Brazilian sign language recognition
  publication-title: IEEE Trans Circuits Syst Regul Pap
  doi: 10.1109/TCSI.2021.3091001
– start-page: 31
  year: 2021
  ident: 10.1016/j.compeleceng.2023.109009_bib0003
  article-title: Pose-based sign language recognition using gcn and bert
– start-page: 1625
  year: 2020
  ident: 10.1016/j.compeleceng.2023.109009_bib0021
  article-title: Stronger, faster and more explainable: a graph convolutional baseline for skeleton-based action recognition
– start-page: 3429
  year: 2021
  ident: 10.1016/j.compeleceng.2023.109009_bib0025
  article-title: Hand pose guided 3d pooling for word-level sign language recognition
SSID ssj0004618
Score 2.3640783
Snippet Sign language (SL) is used as primary mode of communication by individuals who experience deafness and speech disorders. However, SL creates an inordinate...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109009
SubjectTerms Multi input architecture
Part attention
Pose sequence modeling
ResGCN
Sign language recognition
Visualization
Title MIPA-ResGCN: a multi-input part attention enhanced residual graph convolutional framework for sign language recognition
URI https://dx.doi.org/10.1016/j.compeleceng.2023.109009
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA5jguiDeMV5GRF8zZa26U18GcO5KRsiDvZWkibRiXRFO3zzt5vTy6wgKPjYwIH25ORcmu98B6FzG-6iBHeIKR0CwrRQRAhlzhWVrvBsSHKhwXk88YZTdjNzZw3Ur3phAFZZ-v7Cp-feulzpltrspvM59Pgy1weaXSCNMmU5dLAzH6y882HVeiOtwhszoGak3jo6-8J4AWwbxs2o5LEDc8SBXIkCNvGnGFWLO4NttFUmjLhXvNMOaqhkF23WaAT30Pt4dNcj9-rtuj-5wBznIEEyT9JlhlPzMRg4NHNUI1bJU37lj02Vnbdh4ZyxGgP4vDRCs6YrxBY2KS0GiAeu_mviFeJokeyj6eDqoT8k5UAFEju2lRHGY-n4QaxjHlLuU61CYZyhxW3p-tLTRpUW49IUxZRyy9Ghr0MpKQ9c7nNLOM4BaiaLRB0izHRsdlkq5UmTg1ARxkyFgRML10TFkHstFFQqjOKSbRyGXrxEFazsOappPwLtR4X2W8heiaYF5cZfhC6rfYq-2U9kQsPv4kf_Ez9GG_BUwFxOUDN7XapTk6xkop1bYxut9Ua3w8knruLs1Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB5qCx4P4on1XMHX6OZOxJdSrKk9EGmhb2E3u9GKpEFT_Pvu5KgVBAVfNwwks7NzZL_5BuDCwLsozkxNlQ6eZsVcapxLda6osLljYJKLDc6DoROMrfuJPalBu-qFQVhl6fsLn55763LlqtTmVTqdYo-vZbtIs4ukUaosX4EGslPZdWi0ur1guNQeqRcO2UJ2RuqswvkXzAuR2zhxRiZPlzhKHPmVKMITfwpTS6GnswWbZc5IWsVrbUNNJjuwscQkuAsfg-5DS3uU73ft4TVhJMcJatMknWckVd9DkEYzBzYSmTznt_5EFdp5JxbJSasJ4s9LO1RrcQXaIiqrJYjyINWvTbIAHc2SPRh3bkftQCtnKmiRaeiZZrFImK4XxRHzKXNpLH2u_KHODGG7womVNnWLCVUXU8p0M_bd2BeCMs9mLtO5ae5DPZkl8gCIFUdqo4WUjlBpCOV-ZEnfMyNuq8DoM6cJXqXCMCoJx3HuxWtYIctewiXth6j9sNB-E4yFaFqwbvxF6Kbap_CbCYUqOvwufvg_8TNYC0aDftjvDntHsI5PCtTLMdSzt7k8UblLxk9L2_wExzDvhg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MIPA-ResGCN%3A+a+multi-input+part+attention+enhanced+residual+graph+convolutional+framework+for+sign+language+recognition&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Naz%2C+Neelma&rft.au=Sajid%2C+Hasan&rft.au=Ali%2C+Sara&rft.au=Hasan%2C+Osman&rft.date=2023-12-01&rft.pub=Elsevier+Ltd&rft.issn=0045-7906&rft.eissn=1879-0755&rft.volume=112&rft_id=info:doi/10.1016%2Fj.compeleceng.2023.109009&rft.externalDocID=S0045790623004330
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon