MIPA-ResGCN: a multi-input part attention enhanced residual graph convolutional framework for sign language recognition
Sign language (SL) is used as primary mode of communication by individuals who experience deafness and speech disorders. However, SL creates an inordinate communication barrier as most people are not acquainted with it. To solve this problem, many technological solutions using wearable devices, vide...
Saved in:
Published in | Computers & electrical engineering Vol. 112; p. 109009 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sign language (SL) is used as primary mode of communication by individuals who experience deafness and speech disorders. However, SL creates an inordinate communication barrier as most people are not acquainted with it. To solve this problem, many technological solutions using wearable devices, video, and depth cameras have been put forth. The ubiquitous nature of cameras in contemporary devices has resulted in the emergence of sign language recognition (SLR) using video sequence as a viable and unobtrusive substitute. Nonetheless, the utilization of SLR methods based on visual features, commonly known as appearance-based methods, presents notable computational complexities. In response to these challenges, this study introduces an accurate and computationally efficient pose-based approach for SLR. Our proposed approach comprises three key stages: pose extraction, handcrafted feature generation, and feature space mapping and recognition. Initially, an efficient off-the-shelf pose extraction algorithm is employed to extract pose information of various body parts of a subject captured in a video. Then, a multi-input stream has been generated using handcrafted features, i.e., joints, bone lengths, and bone angles. Finally, an efficient and lightweight residual graph convolutional network (ResGCN) along with a novel part attention mechanism, is proposed to encode body's spatial and temporal information in a compact feature space and recognize the signs performed. In addition to enabling effective learning during model training and offering cutting-edge accuracy, the proposed model significantly reduces computational complexity. Our proposed method is assessed on five challenging SL datasets, WLASL-100, WLASL-300, WLASL-1000, LSA-64, and MINDS-Libras, achieving state-of-the-art (SOTA) accuracies of 83.33 %, 72.90 %, 64.92 %, 100± 0 %, and 96.70± 1.07 %, respectively. Compared to previous approaches, we achieve superior performance while incurring a lower computational cost. |
---|---|
AbstractList | Sign language (SL) is used as primary mode of communication by individuals who experience deafness and speech disorders. However, SL creates an inordinate communication barrier as most people are not acquainted with it. To solve this problem, many technological solutions using wearable devices, video, and depth cameras have been put forth. The ubiquitous nature of cameras in contemporary devices has resulted in the emergence of sign language recognition (SLR) using video sequence as a viable and unobtrusive substitute. Nonetheless, the utilization of SLR methods based on visual features, commonly known as appearance-based methods, presents notable computational complexities. In response to these challenges, this study introduces an accurate and computationally efficient pose-based approach for SLR. Our proposed approach comprises three key stages: pose extraction, handcrafted feature generation, and feature space mapping and recognition. Initially, an efficient off-the-shelf pose extraction algorithm is employed to extract pose information of various body parts of a subject captured in a video. Then, a multi-input stream has been generated using handcrafted features, i.e., joints, bone lengths, and bone angles. Finally, an efficient and lightweight residual graph convolutional network (ResGCN) along with a novel part attention mechanism, is proposed to encode body's spatial and temporal information in a compact feature space and recognize the signs performed. In addition to enabling effective learning during model training and offering cutting-edge accuracy, the proposed model significantly reduces computational complexity. Our proposed method is assessed on five challenging SL datasets, WLASL-100, WLASL-300, WLASL-1000, LSA-64, and MINDS-Libras, achieving state-of-the-art (SOTA) accuracies of 83.33 %, 72.90 %, 64.92 %, 100± 0 %, and 96.70± 1.07 %, respectively. Compared to previous approaches, we achieve superior performance while incurring a lower computational cost. |
ArticleNumber | 109009 |
Author | Ali, Sara Hasan, Osman Sajid, Hasan Ehsan, Muhammad Khurram Naz, Neelma |
Author_xml | – sequence: 1 givenname: Neelma orcidid: 0000-0002-5274-8913 surname: Naz fullname: Naz, Neelma email: neelma.naz@seecs.edu.pk organization: National University of Sciences and Technology, Islamabad 44000, Pakistan – sequence: 2 givenname: Hasan surname: Sajid fullname: Sajid, Hasan organization: National University of Sciences and Technology, Islamabad 44000, Pakistan – sequence: 3 givenname: Sara orcidid: 0000-0002-5100-9430 surname: Ali fullname: Ali, Sara organization: National University of Sciences and Technology, Islamabad 44000, Pakistan – sequence: 4 givenname: Osman orcidid: 0000-0003-2562-2669 surname: Hasan fullname: Hasan, Osman organization: National University of Sciences and Technology, Islamabad 44000, Pakistan – sequence: 5 givenname: Muhammad Khurram surname: Ehsan fullname: Ehsan, Muhammad Khurram organization: Faculty of Engineering Sciences, Bahria University Islamabad Campus, Islamabad 44000, Pakistan |
BookMark | eNqNkN1q3DAQhUXYQjY_76A8gLeSvbas3pRladNA2oSSXIuJNHK0tSUjyQl5-9hsL0qvcjXM4ZzDzHdGVj54JOSKsw1nvPl82OgwjNijRt9tSlZWsy4ZkydkzVshCybqekXWjG3rQkjWnJKzlA5s3hversnrz5v7XfEb0_X-1xcKdJj67ArnxynTEWKmkDP67IKn6J_BazQ0YnJmgp52EcZnqoN_Cf20eGbNRhjwNcQ_1IZIk-s87cF3E3Q4B3XovFucF-SThT7h5d95Th6_f3vY_yhu765v9rvbQlclz8UWtKlEq60GyUAwi_JJNCWH0tTCNLYpK74F07YtY8ArK4WVxjBoaxDAn6rqnHw99uoYUopolXYZlgtyBNcrztTCUR3UPxzVwlEdOc4N8r-GMboB4tuHsvtjFucXXxxGlbTDBaKbWWRlgvtAyzteuJol |
CitedBy_id | crossref_primary_10_1016_j_compeleceng_2024_109475 crossref_primary_10_3390_app15062957 crossref_primary_10_3390_electronics13071229 |
Cites_doi | 10.1007/s00521-021-05802-4 10.1109/ACCESS.2023.3247761 10.3390/fi11040091 10.1016/j.compeleceng.2021.107383 10.1016/j.compeleceng.2020.106898 10.1007/s00371-019-01725-3 10.1007/s11036-022-01939-1 10.1016/j.compeleceng.2023.108891 10.1038/s41598-022-15998-7 10.1038/s41598-022-09293-8 10.1109/TCSI.2021.3091001 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.compeleceng.2023.109009 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0755 |
ExternalDocumentID | 10_1016_j_compeleceng_2023_109009 S0045790623004330 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 UHS VOH WH7 WUQ XPP ZMT ~G- ~S- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c321t-4acd378cfca90a70fe9b7621a2d57d6f62314ad88800a13f97f9dd0a85a7a1b33 |
IEDL.DBID | .~1 |
ISSN | 0045-7906 |
IngestDate | Thu Apr 24 22:59:25 EDT 2025 Tue Jul 01 01:45:57 EDT 2025 Sat Jul 06 15:31:24 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Sign language recognition ResGCN Visualization Pose sequence modeling Multi input architecture Part attention |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c321t-4acd378cfca90a70fe9b7621a2d57d6f62314ad88800a13f97f9dd0a85a7a1b33 |
ORCID | 0000-0002-5100-9430 0000-0003-2562-2669 0000-0002-5274-8913 |
ParticipantIDs | crossref_citationtrail_10_1016_j_compeleceng_2023_109009 crossref_primary_10_1016_j_compeleceng_2023_109009 elsevier_sciencedirect_doi_10_1016_j_compeleceng_2023_109009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2023 2023-12-00 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: December 2023 |
PublicationDecade | 2020 |
PublicationTitle | Computers & electrical engineering |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ronchetti, Quiroga, Estrebou, Lanzarini, Rosete (bib0017) 2016 Gupta, Kumar (bib0008) 2021; 90 Naz, Sajid, Ali, Hasan, Ehsan (bib0006) 2023; 11 Rezende, Almeida, Guimarães (bib0018) 2021; 33 Konstantinidis, Dimitropoulos, Daras (bib0029) 2018 Zhang, Li (bib0028) 2019; 11 J.A. Shah, "Deepsign: a deep-learning architecture for sign language," Ph.D. thesis, Univ. Texas, Arlington, TX, USA, 2018. Basak, Kundu, Singh, Ijaz, Woźniak, Sarkar (bib0007) 2022; 12 Hamid Reza Vaezi Joze and Oscar Koller. Ms-asl: A largescale data set and benchmark for understanding american sign language. arXiv preprint arXiv:1812.01053, 2018. Passos, Araujo, Gois, de Lima (bib0013) 2021; 68 Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. Hosain, Santhalingam, Pathak, Rangwala, Kosecka (bib0025) 2021 Tunga, Nuthalapati, Wachs (bib0003) 2021 Rasley, Rajbhandari, Ruwase, He (bib0030) 2020 Zhang, Wu, Zhang, Zhu, Lin, Zhang, Sun, He, Mueller, Manmatha (bib0023) 2022 Yan, Woźniak (bib0020) 2022; 27 Slimane, Bouguessa (bib0014) 2021 Ivan GrishchenkoValentin Bazarevsky.Mediapipe holistic 2020. Song, Lan, Xing, Zeng, Liu (bib0016) 2017 . Li, Yu, Xu, Petersson, Li (bib0001) 2020 Li, Rodriguez, Yu, Li (bib0002) 2020 Aleesa, Mohammadi, Monadjemi, Hashim (bib0011) 2023; 110 Camgoz, Koller, Hadfield, Bowden (bib0015) 2020 Song, Zhang, Shan, Wang (bib0021) 2020 Alrubayi, Ahmed, Zaidan, Albahri, Zaidan, Albahri, Alamoodi, Alazab (bib0009) 2021; 95 Zhou, Khosla, Lapedriza, Oliva, Torralba (bib0022) 2016 Konstantinidis, Dimitropoulos, Daras (bib0026) 2018 Boháček, Hrúz (bib0004) 2022 Imran, Raman (bib0012) 2020; 36 Subramanian, Olimov, Naik, Kim, Park, Kim (bib0005) 2022; 12 Zhou (10.1016/j.compeleceng.2023.109009_bib0022) 2016 Gupta (10.1016/j.compeleceng.2023.109009_bib0008) 2021; 90 Zhang (10.1016/j.compeleceng.2023.109009_bib0023) 2022 Slimane (10.1016/j.compeleceng.2023.109009_bib0014) 2021 Imran (10.1016/j.compeleceng.2023.109009_bib0012) 2020; 36 Basak (10.1016/j.compeleceng.2023.109009_bib0007) 2022; 12 Rasley (10.1016/j.compeleceng.2023.109009_bib0030) 2020 Rezende (10.1016/j.compeleceng.2023.109009_bib0018) 2021; 33 Konstantinidis (10.1016/j.compeleceng.2023.109009_bib0026) 2018 Li (10.1016/j.compeleceng.2023.109009_bib0001) 2020 10.1016/j.compeleceng.2023.109009_bib0024 10.1016/j.compeleceng.2023.109009_bib0027 Passos (10.1016/j.compeleceng.2023.109009_bib0013) 2021; 68 Boháček (10.1016/j.compeleceng.2023.109009_bib0004) 2022 Song (10.1016/j.compeleceng.2023.109009_bib0021) 2020 Konstantinidis (10.1016/j.compeleceng.2023.109009_bib0029) 2018 Zhang (10.1016/j.compeleceng.2023.109009_bib0028) 2019; 11 Subramanian (10.1016/j.compeleceng.2023.109009_bib0005) 2022; 12 Ronchetti (10.1016/j.compeleceng.2023.109009_bib0017) 2016 Song (10.1016/j.compeleceng.2023.109009_bib0016) 2017 Aleesa (10.1016/j.compeleceng.2023.109009_bib0011) 2023; 110 Yan (10.1016/j.compeleceng.2023.109009_bib0020) 2022; 27 10.1016/j.compeleceng.2023.109009_bib0010 Camgoz (10.1016/j.compeleceng.2023.109009_bib0015) 2020 Tunga (10.1016/j.compeleceng.2023.109009_bib0003) 2021 Naz (10.1016/j.compeleceng.2023.109009_bib0006) 2023; 11 Alrubayi (10.1016/j.compeleceng.2023.109009_bib0009) 2021; 95 Li (10.1016/j.compeleceng.2023.109009_bib0002) 2020 10.1016/j.compeleceng.2023.109009_bib0019 Hosain (10.1016/j.compeleceng.2023.109009_bib0025) 2021 |
References_xml | – start-page: 7884 year: 2021 end-page: 7891 ident: bib0014 article-title: Context matters: self-attention for sign language recognition publication-title: Proceeding of the 25th international conference on pattern recognition (ICPR) – start-page: 6205 year: 2020 end-page: 6214 ident: bib0001 article-title: Transferring cross-domain knowledge for video sign language recognition publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 1459 year: 2020 end-page: 1469 ident: bib0002 article-title: Word-level deep sign language recognition from video: a new large-scale dataset and methods comparison publication-title: Proceedings of the IEEE/CVF winter conference on applications of computer vision – reference: Hamid Reza Vaezi Joze and Oscar Koller. Ms-asl: A largescale data set and benchmark for understanding american sign language. arXiv preprint arXiv:1812.01053, 2018. – start-page: 3429 year: 2021 end-page: 3439 ident: bib0025 article-title: Hand pose guided 3d pooling for word-level sign language recognition publication-title: Proceedings of the IEEE/CVF winter conference on applications of computer vision – start-page: 3505 year: 2020 end-page: 3506 ident: bib0030 article-title: Deepspeed: system optimizations enable training deep learning models with over 100 billion parameters publication-title: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining – start-page: 2736 year: 2022 end-page: 2746 ident: bib0023 article-title: Resnest: split-attention networks publication-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition – start-page: 182 year: 2022 end-page: 191 ident: bib0004 article-title: Sign Pose-based Transformer for Word-level Sign Language Recognition publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision – volume: 33 start-page: 10449 year: 2021 end-page: 10467 ident: bib0018 article-title: Development and validation of a Brazilian sign language database for human gesture recognition publication-title: Neural Comput Appl – volume: 27 start-page: 1252 year: 2022 end-page: 1261 ident: bib0020 article-title: Accurate key frame extraction algorithm of video action for aerobics online teaching publication-title: Mob Netw Appl – start-page: 1 year: 2018 end-page: 6 ident: bib0029 article-title: A deep learning approach for analyzing video and skeletal features in sign language recognition publication-title: Proceedings of the IEEE international conference on imaging systems and techniques (IST) – volume: 68 start-page: 4761 year: 2021 end-page: 4771 ident: bib0013 article-title: A gait energy image-based system for Brazilian sign language recognition publication-title: IEEE Trans Circuits Syst Regul Pap – start-page: 1625 year: 2020 end-page: 1633 ident: bib0021 article-title: Stronger, faster and more explainable: a graph convolutional baseline for skeleton-based action recognition publication-title: Proceedings of the 28th ACM international conference on multimedia – start-page: 2921 year: 2016 end-page: 2929 ident: bib0022 article-title: Learning deep features for discriminative localization publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 36 start-page: 1233 year: 2020 end-page: 1246 ident: bib0012 article-title: Deep motion templates and extreme learning machine for sign language recognition publication-title: Vis Comput – start-page: 301 year: 2020 end-page: 319 ident: bib0015 article-title: Multi-channel transformers for multi-articulatory sign language translation publication-title: Proceeding of the European conference on computer vision – start-page: 4263 year: 2017 end-page: 4270 ident: bib0016 article-title: An end-to-end spatio-temporal attention model for human action recognition from skeleton data publication-title: Proceedings of the thirty-first AAAI conference on artificial intelligence – start-page: 1 year: 2018 end-page: 4 ident: bib0026 article-title: Sign language recognition based on hand and body skeletal data publication-title: Proceedings of the 3DTV-conference: the true vision-capture, transmission and display of 3D video (3DTV-CON) – volume: 90 year: 2021 ident: bib0008 article-title: Indian sign language recognition using wearable sensors and multi-label classification publication-title: Comput Electr Eng – year: 2016 ident: bib0017 article-title: LSA64: an Argentinian sign language dataset publication-title: Proceeding of the XXII congreso Argentino de ciencias de la computación (CACIC 2016) – volume: 12 start-page: 1 year: 2022 end-page: 16 ident: bib0005 article-title: An integrated mediapipe-optimized GRU model for Indian sign language recognition publication-title: Sci Rep – volume: 12 start-page: 5494 year: 2022 ident: bib0007 article-title: A union of deep learning and swarm-based optimization for 3D human action recognition publication-title: Sci Rep – volume: 110 year: 2023 ident: bib0011 article-title: Dataset classification: an efficient feature extraction approach for grammatical facial expression recognition publication-title: Comput Electr Eng – reference: Ivan GrishchenkoValentin Bazarevsky.Mediapipe holistic 2020. – reference: J.A. Shah, "Deepsign: a deep-learning architecture for sign language," Ph.D. thesis, Univ. Texas, Arlington, TX, USA, 2018. – volume: 11 start-page: 19135 year: 2023 end-page: 19147 ident: bib0006 article-title: Signgraph: an Efficient and Accurate Pose-Based Graph Convolution Approach Toward Sign Language Recognition publication-title: IEEE Access – reference: . – reference: Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. – volume: 11 start-page: 91 year: 2019 ident: bib0028 article-title: Dynamic gesture recognition based on MEMP network publication-title: Future Internet – start-page: 31 year: 2021 end-page: 40 ident: bib0003 article-title: Pose-based sign language recognition using gcn and bert publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision – volume: 95 year: 2021 ident: bib0009 article-title: A pattern recognition model for static gestures in malaysian sign language based on machine learning techniques publication-title: Comput Electr Eng – start-page: 3505 year: 2020 ident: 10.1016/j.compeleceng.2023.109009_bib0030 article-title: Deepspeed: system optimizations enable training deep learning models with over 100 billion parameters – volume: 33 start-page: 10449 year: 2021 ident: 10.1016/j.compeleceng.2023.109009_bib0018 article-title: Development and validation of a Brazilian sign language database for human gesture recognition publication-title: Neural Comput Appl doi: 10.1007/s00521-021-05802-4 – start-page: 2921 year: 2016 ident: 10.1016/j.compeleceng.2023.109009_bib0022 article-title: Learning deep features for discriminative localization – ident: 10.1016/j.compeleceng.2023.109009_bib0024 – start-page: 301 year: 2020 ident: 10.1016/j.compeleceng.2023.109009_bib0015 article-title: Multi-channel transformers for multi-articulatory sign language translation – start-page: 1459 year: 2020 ident: 10.1016/j.compeleceng.2023.109009_bib0002 article-title: Word-level deep sign language recognition from video: a new large-scale dataset and methods comparison – volume: 11 start-page: 19135 year: 2023 ident: 10.1016/j.compeleceng.2023.109009_bib0006 article-title: Signgraph: an Efficient and Accurate Pose-Based Graph Convolution Approach Toward Sign Language Recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3247761 – volume: 11 start-page: 91 year: 2019 ident: 10.1016/j.compeleceng.2023.109009_bib0028 article-title: Dynamic gesture recognition based on MEMP network publication-title: Future Internet doi: 10.3390/fi11040091 – volume: 95 year: 2021 ident: 10.1016/j.compeleceng.2023.109009_bib0009 article-title: A pattern recognition model for static gestures in malaysian sign language based on machine learning techniques publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2021.107383 – year: 2016 ident: 10.1016/j.compeleceng.2023.109009_bib0017 article-title: LSA64: an Argentinian sign language dataset – ident: 10.1016/j.compeleceng.2023.109009_bib0019 – start-page: 6205 year: 2020 ident: 10.1016/j.compeleceng.2023.109009_bib0001 article-title: Transferring cross-domain knowledge for video sign language recognition – volume: 90 year: 2021 ident: 10.1016/j.compeleceng.2023.109009_bib0008 article-title: Indian sign language recognition using wearable sensors and multi-label classification publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2020.106898 – ident: 10.1016/j.compeleceng.2023.109009_bib0010 – volume: 36 start-page: 1233 year: 2020 ident: 10.1016/j.compeleceng.2023.109009_bib0012 article-title: Deep motion templates and extreme learning machine for sign language recognition publication-title: Vis Comput doi: 10.1007/s00371-019-01725-3 – volume: 27 start-page: 1252 year: 2022 ident: 10.1016/j.compeleceng.2023.109009_bib0020 article-title: Accurate key frame extraction algorithm of video action for aerobics online teaching publication-title: Mob Netw Appl doi: 10.1007/s11036-022-01939-1 – start-page: 2736 year: 2022 ident: 10.1016/j.compeleceng.2023.109009_bib0023 article-title: Resnest: split-attention networks – volume: 110 year: 2023 ident: 10.1016/j.compeleceng.2023.109009_bib0011 article-title: Dataset classification: an efficient feature extraction approach for grammatical facial expression recognition publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2023.108891 – ident: 10.1016/j.compeleceng.2023.109009_bib0027 – start-page: 7884 year: 2021 ident: 10.1016/j.compeleceng.2023.109009_bib0014 article-title: Context matters: self-attention for sign language recognition – volume: 12 start-page: 1 year: 2022 ident: 10.1016/j.compeleceng.2023.109009_bib0005 article-title: An integrated mediapipe-optimized GRU model for Indian sign language recognition publication-title: Sci Rep doi: 10.1038/s41598-022-15998-7 – start-page: 4263 year: 2017 ident: 10.1016/j.compeleceng.2023.109009_bib0016 article-title: An end-to-end spatio-temporal attention model for human action recognition from skeleton data – start-page: 1 year: 2018 ident: 10.1016/j.compeleceng.2023.109009_bib0026 article-title: Sign language recognition based on hand and body skeletal data – start-page: 182 year: 2022 ident: 10.1016/j.compeleceng.2023.109009_bib0004 article-title: Sign Pose-based Transformer for Word-level Sign Language Recognition – start-page: 1 year: 2018 ident: 10.1016/j.compeleceng.2023.109009_bib0029 article-title: A deep learning approach for analyzing video and skeletal features in sign language recognition – volume: 12 start-page: 5494 year: 2022 ident: 10.1016/j.compeleceng.2023.109009_bib0007 article-title: A union of deep learning and swarm-based optimization for 3D human action recognition publication-title: Sci Rep doi: 10.1038/s41598-022-09293-8 – volume: 68 start-page: 4761 year: 2021 ident: 10.1016/j.compeleceng.2023.109009_bib0013 article-title: A gait energy image-based system for Brazilian sign language recognition publication-title: IEEE Trans Circuits Syst Regul Pap doi: 10.1109/TCSI.2021.3091001 – start-page: 31 year: 2021 ident: 10.1016/j.compeleceng.2023.109009_bib0003 article-title: Pose-based sign language recognition using gcn and bert – start-page: 1625 year: 2020 ident: 10.1016/j.compeleceng.2023.109009_bib0021 article-title: Stronger, faster and more explainable: a graph convolutional baseline for skeleton-based action recognition – start-page: 3429 year: 2021 ident: 10.1016/j.compeleceng.2023.109009_bib0025 article-title: Hand pose guided 3d pooling for word-level sign language recognition |
SSID | ssj0004618 |
Score | 2.3640783 |
Snippet | Sign language (SL) is used as primary mode of communication by individuals who experience deafness and speech disorders. However, SL creates an inordinate... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 109009 |
SubjectTerms | Multi input architecture Part attention Pose sequence modeling ResGCN Sign language recognition Visualization |
Title | MIPA-ResGCN: a multi-input part attention enhanced residual graph convolutional framework for sign language recognition |
URI | https://dx.doi.org/10.1016/j.compeleceng.2023.109009 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA5jguiDeMV5GRF8zZa26U18GcO5KRsiDvZWkibRiXRFO3zzt5vTy6wgKPjYwIH25ORcmu98B6FzG-6iBHeIKR0CwrRQRAhlzhWVrvBsSHKhwXk88YZTdjNzZw3Ur3phAFZZ-v7Cp-feulzpltrspvM59Pgy1weaXSCNMmU5dLAzH6y882HVeiOtwhszoGak3jo6-8J4AWwbxs2o5LEDc8SBXIkCNvGnGFWLO4NttFUmjLhXvNMOaqhkF23WaAT30Pt4dNcj9-rtuj-5wBznIEEyT9JlhlPzMRg4NHNUI1bJU37lj02Vnbdh4ZyxGgP4vDRCs6YrxBY2KS0GiAeu_mviFeJokeyj6eDqoT8k5UAFEju2lRHGY-n4QaxjHlLuU61CYZyhxW3p-tLTRpUW49IUxZRyy9Ghr0MpKQ9c7nNLOM4BaiaLRB0izHRsdlkq5UmTg1ARxkyFgRML10TFkHstFFQqjOKSbRyGXrxEFazsOappPwLtR4X2W8heiaYF5cZfhC6rfYq-2U9kQsPv4kf_Ez9GG_BUwFxOUDN7XapTk6xkop1bYxut9Ua3w8knruLs1Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB5qCx4P4on1XMHX6OZOxJdSrKk9EGmhb2E3u9GKpEFT_Pvu5KgVBAVfNwwks7NzZL_5BuDCwLsozkxNlQ6eZsVcapxLda6osLljYJKLDc6DoROMrfuJPalBu-qFQVhl6fsLn55763LlqtTmVTqdYo-vZbtIs4ukUaosX4EGslPZdWi0ur1guNQeqRcO2UJ2RuqswvkXzAuR2zhxRiZPlzhKHPmVKMITfwpTS6GnswWbZc5IWsVrbUNNJjuwscQkuAsfg-5DS3uU73ft4TVhJMcJatMknWckVd9DkEYzBzYSmTznt_5EFdp5JxbJSasJ4s9LO1RrcQXaIiqrJYjyINWvTbIAHc2SPRh3bkftQCtnKmiRaeiZZrFImK4XxRHzKXNpLH2u_KHODGG7womVNnWLCVUXU8p0M_bd2BeCMs9mLtO5ae5DPZkl8gCIFUdqo4WUjlBpCOV-ZEnfMyNuq8DoM6cJXqXCMCoJx3HuxWtYIctewiXth6j9sNB-E4yFaFqwbvxF6Kbap_CbCYUqOvwufvg_8TNYC0aDftjvDntHsI5PCtTLMdSzt7k8UblLxk9L2_wExzDvhg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MIPA-ResGCN%3A+a+multi-input+part+attention+enhanced+residual+graph+convolutional+framework+for+sign+language+recognition&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Naz%2C+Neelma&rft.au=Sajid%2C+Hasan&rft.au=Ali%2C+Sara&rft.au=Hasan%2C+Osman&rft.date=2023-12-01&rft.pub=Elsevier+Ltd&rft.issn=0045-7906&rft.eissn=1879-0755&rft.volume=112&rft_id=info:doi/10.1016%2Fj.compeleceng.2023.109009&rft.externalDocID=S0045790623004330 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon |